[image: image1.jpg]AN

INTRODUCTION

SHADERS

Table of Contents

2Introduction

2Required development tools

2Required knowledge

3About shaders

4HLSL

5Shader effects

5Vertex Shaders

5Geometry shaders

5Pixel Shaders

7Effects

7Examining a Simple Effect

8HLSL Semantics

8HLSL Types

9Effect Parameters

10Uniform and Varying Inputs

11Shader functions

11Vertex Shader Function

12Pixel Shader Function

13State Setting

14Example: Vertex lighting

15Using an effect in an XNA game

16Flatshaded Effect

17VertexLighting Effect

18Lambertian lighting explained

Introduction
Required development tools

In this document there is a code example of a vertex lighting shader effect, which is written in C#, and needs to be compiled and runned with the XNA Game Studio Express IDE.
To use XNA Game Studio Express, Microsoft .NET 2.0 and Microsoft Visual Studio 2005 (C#) must be installed.

Required knowledge
Some knowledge of programming data structures is required.
The reader should also have some mathematical knowledge about vectors and matrices.

Purpose of this document
The goal of this document is introduce the reader to the concept of shaders, and to give the reader a basic understanding of various shader effects that are frequently used. There will also be an example of how to implement a basic shader effect with XNA (vertex lighting).
About shaders

Microsoft introduced a new feature in version 7 of its DirectX API: hardware T&L
(hardware transformation and lighting). The new technology moved the expensive vertex transformation and lighting calculations from the CPU to the GPU. This was a very interesting feature that would lead to an increasing demand for more powerful GPUs to run 3D programs. Because shader effects became more intricate and expensive (resulting in a demand for more powerful GPUs), CPU power to run sophisticated graphics programs became less necessary.
The DirectX 7 API exposed an elaborate set of state values that allowed a fixed number of lights, textures, and other states to be applied to a given draw function.
While hardware texturing and lighting had an incredible impact on the quality of 3D graphics on the personal computer, there was a significant drawback. The calculations used to light and display the world were hard-wired on the GPU. As a result, games of that time began to look very similar, since they couldn’t differentiate their lighting models except by applying different states.
In the field of offline software image rendering for movie special effects, small programs or functions called shaders were increasingly being used to define custom interactions between a variety of materials and lighting conditions.
In 2002, the first consumer level programmable GPUs became available and game developers began to make use of the new functionality. Most early consumers of programmable GPUs associated shaders with the classic rippling water effect, which at the time was considered the height of real-time graphical “eye candy.”
A common misconception is that shaders can only be used for 3D graphics. However,
shader functions can be used in 2D applications too to render graphics (for example to render rectangles or post-processing effect like blooming/blurring).
DirectX 8.0 was the first Microsoft graphics API to support programmable shaders, though initially, all shader programs had to be written in assembly code. As shader hardware increased in complexity, so did the programs. High-level shading languages were introduced to make shader development manageable. Today, Microsoft high-level shader language (HLSL) is the standard language used by all Microsoft 3D APIs, including the XNA Framework. The language compiles directly to the byte code used to execute shaders on GPUs.
Shaders have evolved greatly over the years. Generations of shader hardware are usually categorized by the DirectX shader models they support. Early shader models had extreme limits on the kinds and number of instructions that could be run on each vertex or pixel. Later models defined more instructions, added larger numbers of instructions per shader program, and enabled looping and branching functionality. Shader models correspond to a "generation" of hardware feature sets that define such things as the supported number of operations per pass, intrinsic functions, and supported control statements.
Many XNA Windows materials are written with a minimum bar of Shader Model 2.0, while the Xbox 360 platform supports its own version of Shader Model 3.0.
For the included XNA code sample, Shader Model 2.0 was chosen since it would target widely available computer hardware.
HLSL

HLSL (High Level Shading Language) is a shading language developed by Microsoft for use with the Microsoft Direct3D API. It is analogous to the GLSL shading language used with the OpenGL standard. It is very similar to the NVIDIA Cg shading language, as it was developed alongside it.
HLSL programs come in three forms: vertex shaders, geometry shaders, and pixel shaders.
A vertex shader is executed for each vertex that is submitted by the application, and is primarily responsible for transforming the vertex from object space to view space, generating texture coordinates, and calculating lighting coefficients such as the vertex's tangent, binormal and normal vectors. When a group of vertices (normally 3, to form a triangle) come through the vertex shader, their output position is interpolated to form pixels within its area. This process is known as rasterisation. Each of these pixels comes through the pixel shader, whereby the resultant screen colour is calculated.
Optionally, an application using a Direct3D10 interface and Direct3D10 hardware may also specify a geometry shader. This shader takes as its input the three vertices of a triangle and uses this data to generate additional triangles, which are each then sent to the rasterizer.
Shader effects

Vertex Shaders

Vertex shaders expose functionality that was originally hard-coded into fixed-function hardware texture and lighting. Vertex shader programs are functions run once on each vertex passed into a Draw call. They are responsible for transforming raw, unlit vertices into processed vertex data usable by the rest of the graphics pipeline. The input of the vertex shader corresponds to the untransformed data in the vertex buffer.
At the bare minimum, a vertex shader only needs to return a transformed position.
Geometry shaders

A geometry shader can generate new primitives from existing primitives like pixels, lines and triangles.
Geometry shader is executed after Vertex shader and its input is the whole primitive or primitive with adjacency information. For example, when operating on triangles, three vertices are geometry shader's input. Geometry shader can then emit zero or more primitives, which are rasterized and their fragments ultimately passed to Pixel shader.
Typical uses of a geometry shader include point sprite generation, geometry tessellation, shadow volume extrusion, single pass rendering to a cube map.
A geometry shader begins with a single primitive (point, line, triangle). It can read the attributes of any of the vertices in the primitive and use them to generate new primitives. A geometry shader has a fixed output primitive type (point, line strip, or triangle strip) and emits vertices to define a new primitive. A geometry shader can emit multiple disconnected primitives.
Pixel Shaders

Pixel shaders add a level of control not available in classic fixed-function pipelines. To understand a pixel shader, we need to know more about what happens after the vertex shader runs. The processed vertex data is used to set up triangles, which in turn are used to determine which pixels on the screen will be drawn. The input to the pixel shader is calculated using the vertex shader outputs from each of the triangle's three vertices.
The inputs of a pixel shader function are therefore bound to the outputs of the vertex shader. So if a vertex shader returns color data, the pixel shader inputs may include this color data. The data is typically interpolated using the three surrounding vertices. For example, imagine an equilateral triangle. Each of its three vertices is a different color. One is red, one is green, and one is blue. The color input to the pixel shader will be calculated by linear interpolation on those three colors. Pixels that are close to the red vertex will be mostly red, pixels that are closer to the blue vertex will be blue, and the pixel in the exact center of the triangle will have equal parts of red, green, and blue.

At a minimum, pixel shaders must output color data. Pixel shader outputs translate directly into the colors seen on the screen. Pixel shaders are primarily used for a number of per-pixel color operations, including texturing, lighting, and image processing.

Effects
Effects combine the ideas of vertex shaders, pixel shaders, and graphics device states into one common file format. XNA supports shaders primarily through effects, so they are central to the idea of writing shader programs. An effect file is a text file that contains the HLSL code used by any number of vertex and pixel shaders.
An effect contains one or more techniques, which are in turn made up of at least one pass. Each pass usually contains one vertex shader function, one pixel shader function, and any number of render state and sampler state settings. In the next section, we’ll look as a simple example effect and go over each line in detail.

Examining a Simple Effect

	float4x4 mWorldViewProj; // World * View * Projection transformation

float4 Vertex_Shader_Transform(

 in float4 vPosition : POSITION) : POSITION

{

 float4 TransformedPosition;

 // Transform the vertex into projection space.

 TransformedPosition = mul(vPosition, mWorldViewProj);

 return TransformedPosition;

}

float4 Pixel_Shader() : COLOR0

{

 return float4(1,1,1,1);

}

technique ColorShaded

{

 pass P0

 {

 VertexShader = compile vs_1_1 Vertex_Shader_Transform();

 PixelShader = compile ps_1_4 Pixel_Shader();

 }

}

This effect is one of the simplest effects that will produce a useable render. This shader will take a world-view-projection matrix and render white geometry based on its vertex positions. We’ll now break this shader down and explain each part in detail.
HLSL Semantics

In the code listing above, a syntax that may be somewhat unfamiliar are the capitalized keywords that follow a variable and a colon. Consider the following line of HLSL code:

	in float4 vPosition : POSITION

The POSITION keyword is called a semantic, which has an important place in HLSL code. These keywords indicate to the shader compiler how to map the inputs and outputs of the graphics data to the shader variables. In this example, vertex position data is being mapped to an argument called vPosition. This informs the shader that the vPosition argument will contain position data from the vertex buffer.

In this document we’ll explain the usage of semantics as they come up in the effect code.

HLSL Types

	float4 TransformedPosition;

One aspect of HLSL programming that will quickly become intuitive is the different primitive types available when initializing variables. In this case, a float4x4 primitive is used, indicating a matrix of four floats by four floats. A Vector3, which is a structure of three floats, is a float3 in HLSL.
The following is a table mapping some basic HLSL types to their .NET or XNA Framework equivalents.

	HLSL Type
	XNA or .NET Framework Type

	Float
	Float

	float2
	Vector2

	float3
	Vector3

	float4
	Vector4, Quaternion, Color

	float4x4
	Matrix

	Int
	Int32

Effect Parameters

Effect parameters are the uniform data that remains constant for every vertex or pixel processed by the Draw call. These can be initialized in the effect, though many times it’s only appropriate to set these values in the render loop. Effect constants are used to represent a variety of things, but most commonly they’ll represent transformation data, light settings, and material information.

	float4x4 mWorldViewProj; // World * View * Projection transformation

Only one constant has been specified in the example effect. In this case, it’s the world-view-projection matrix used to transform the vertices drawn from object space into clip space.
By itself, this uninitialized parameter isn’t all that helpful. The application must provide this data. The XNA Framework API facilitates this assignment using the EffectParameter type, which is used to get or set the value of the parameter in the effect. The following condensed example shows how one might set the above matrix in C# code.

	//Initialize the parameter

Effect exampleEffect = content.Load<Effect>("ExampleEffect");

EffectParameter worldViewProjParameter =

 exampleEffect.Parameters["mWorldViewProj"];

Matrix worldViewProj = Matrix.Identity * //world transform

 Matrix.CreateLookAt(//view transform

 new Vector3(0f, 0f, -10f),

 Vector3.Zero,

 Vector3.Up) *

 Matrix.CreatePerspectiveFieldOfView(//projection transform

 MathHelper.PiOver4,

 1.333f,

 0.1f,

 100f);

//Set the world-view-projection matrix

worldViewProjParameter.SetValue(worldViewProj);

Uniform and Varying Inputs

The data that makes shaders function comes in two types: varying and uniform. Varying data is unique to each execution of the shader function. In the case of vertex shaders, it’s the data that comes from the vertex buffer. For pixel shaders, it is the data specific to the individual pixel being rendered.
The other type of data is uniform, and it includes data that applies across the entire draw call. This is also referred to as constant data, and is treated differently. The developer can set the values of any of the shader constants through the Effect API. In the previous example, one of the constants was a float4x4 (a 4x4 matrix of floating-point values) called mWorldViewProj. In the XNA Framework API, the developer can look up the wvp field by name and set it to a matrix available in the application. In this example, the matrix being set is the word-view-projection matrix information required by nearly every basic vertex shader.

Shader functions

Vertex Shader Function

Vertex shaders take a variety of inputs, and the values of these inputs vary for each vertex rendered. Usually, there’s a one-to-one correspondence between vertex shader inputs and the structure of the vertices in the supplied vertex buffer.

	float4 Vertex_Shader_Transform(

in float4 vPosition : POSITION) : POSITION

In the provided example shader, the vertex shader takes a single input: the untransformed vertex position. The way that the shader informs Direct3D what the purpose of each variable is through semantics. In this case, the POSITION semantic is applied to vPosition, meaning that vPosition will correspond to the x, y, and z-coordinates of a vertex.
There is a second POSITION semantic declared after the function declaration. This semantic applies to the float4 return value of the vertex shader function. This is an output semantic that informs the effect compiler that the return value is a transformed position.
Next, the body of the vertex shader function will be examined, starting with the first line:

	 float4 TransformedPosition;

Here, we’re initializing a variable that will hold the results of the vertex shader. This is a structure of the type float4. The syntax for declaring a local variable is similar to variable initialization in C# or other C-style languages.
In the fixed-function pipeline, the actual transformation function was hidden from the developer. In the programmable pipeline (transformation pipeline), shader flexibility is contingent on allowing the developer to apply transforms as needed.
In this example, the vertex shader is responsible for transforming the incoming vertex data. This requires a calculation in the shader that multiplies a position vector by a world-view-projection matrix.
	 // Transform the vertex into projection space.

 TransformedPosition = mul(vPosition, mWorldViewProj);

This calculation transforms the vertex position from model space to projection space. These transformed positions are used by the geometry processing portion of the Direct3D pipeline to define the triangles that make up primitives on the screen. This is a matter of a simple multiply (the mul function in HLSL). That function in the shader is identical to calling Vector4.Transform(vPosition, mWorldViewProj) in the XNA Framework.
The last part of the vertex shader function simply returns the output from the shader. Like C++ and C#, the return keyword is used to return the vertex shader outputs.
	 return TransformedPosition;

Pixel Shader Function

	float4 Pixel_Shader() : COLOR0

The first thing to note is that the pixel shader is returning a float4 value. This value represents the color of the pixel after the draw call. A pixel shader’s primary function is to return the color of the current pixel. Like the vertex shader, a semantic (COLOR0) is defined for the return value of the function.
Most simple pixel shader functions will only ever return an RGBA color. In most shaders, color values are represented by floating-point vectors with 0.0 being completely dark and 1.0 as the maximum or “fully-on” state. The graphics hardware then translates this value into a color that is meaningful in the context of the current back-buffer format.

	 return float4(1,1,1,1);

There’s not much to this pixel shader, since the vertex shader has done all the hard. The pixel shader simply returns a white color. This means that all of the triangles drawn with this shader will appear flat-white.

State Setting

The last part of the effect is used to set state on the GraphicsDevice. It tells the device how the shader functions should be used.

	technique ColorShaded

{

 pass P0

 {

 VertexShader = compile vs_1_0 Vertex_Shader_Transform();

 PixelShader = compile ps_1_4 Pixel_Shader();

 }

}

This section informs the effect of which shaders to apply using a given technique or pass. An effect file may contain several techniques. However, for this example, the effect is limited to a single technique. Passes are included to allow multiple-pass renders, which are common in more complex shaders. In this example, “P0” refers to the name of the pass.
There are only two states being set in this technique – the pixel shader and the vertex shader. The compile command also indicates what shader model to which to compile the shader. For now, it’s best not to get bogged down by shader model specifics. The samples all use appropriate shader models for the techniques being employed.
There are lots of other states that can be set in the technique. For example, nearly all of the render states and sampler states available on the GraphicsDevice can be set in the technique code. This is a useful way to organize specific states with their accompanying shaders.
Example: Vertex lighting
Now we’ll take a look at a few vertex lighting effects (named FlatShaded and VertexLighting) that are used in the code sample accompanying this document.
As this code is official sample code, made for learning more about shaders in XNA, from an official XNA website (http://creators.xna.com/), the code is structured in a learning friendly way. Throughout the code, you can find several “Example X.X” comments, indicating that section is referred to in this document.
The controls in while running the sample (in XNA Game Studio Express):

[image: image2.jpg]Action
Rotate the camera

Rotate the mesh

Zoom in

Zoom out,

Toggle between flat shading and vertex lighing effects.
Display diferent 3D primitive

Exit the sample.

Keyboard Control
W, 8,5,a0dD

UP ARROW, DOWN ARROW, LEFT ARROW, and RIGHT ARROW
2

x

spacEBAR

Tap

ESC or ALT+F4

Gamepad Control
Right analog D-Pad
Left analog D-Pad
a

5

¥

x

BACK

Using an effect in an XNA game

As mentioned before, in this example there are 2 effects that are implemented, which are named: “FlatShading” and “VertexLighting”. Each effect has its own file with the same name and the extension “.fx”.
Example 1.1 shows the declaration of several effect types which are used throughout the sample code (interestingly, there is also an ‘effect type’ named “noLightingEffect”), and in example 1.2 these types are initialized.
To be able to use effects, a way is needed to provide data to them. These data fields are called effect parameters and correspond directly to variables in the code.
This is why in Example 1.3, the world, view, and projection parameters are loaded by referring to the strings "world," "view," and "projection."
These same variables are used in Example 2.1 in the FlatShaded.fx file at a global scope. They represent the data that the shader needs to correctly position the vertices on the screen. There's something interesting about the world, view, and projection parameters: they're shared between all of the shaders in the example. When the Content Pipeline loads effects, it puts them all in a global EffectPool. Shader parameters that have the same name and use the shared keyword can be shared across multiple shaders, which is why the same parameters can be found in VertexLighting.fx too.
The next thing to examine is where those effect parameters are set. In VertexLighting.cs Example 1.4 and Example 1.5, we're using SetValue to set the effect parameter to a value in the application. SetValue has several overloads to allow multiple kinds of data to be set. However, it is the programmer’s responsibility to ensure that the type being set is the same type of data in the effect code. For example, the world parameter is a 4×4 Matrix type in the XNA Framework. In the HLSL effect code, a 4×4 Matrix is called a float4x4. Similarly, a Vector3 in the XNA Framework is a float3 in HLSL.
The last interesting thing to look at in this part of the source code, deals with how we use the effect to draw primitives to the screen. Example 1.6 in the source code describes this in detail, but these are the general steps:

1 Set up the geometry.
The GraphicsDevice vertex stream, vertex declaration, and the indices are all set to the correct values in this step.
2 Begin the effect.
Calling the Effect.Begin and Pass.Begin functions, which are used to be able to set different GraphicsDevice states.
3 Draw the primitives.
4 End the effect.
Using the Pass.End and Effect.End functions to end the effect and the pass.
Flatshaded Effect
The FlatShaded effect consists of a simple vertex and pixel shader pair.
Example 2.1 contains the data supplied via EffectParameter objects.
Example 2.2 is the function body for the vertex shader function that positions the mesh vertices on the screen. When the mesh is drawn, this function is run once for each vertex in the scene. Each time the vertex shader function is run, the untransformed position parameter is transformed into a transformed position returned at the end of the function.
This simple shader has only three lines of code. The first line combines the world, view, and projection matrices into a single matrix that applies all three transformations.
The untransformed position parameter is then cast to a 4-component vector (with w equal to 1.0) and multiplied by the combined matrix.
The keyword mul is also known as an HLSL intrinsic function. In this case, the function takes two matrix parameters and returns their product.
Most HLSL intrinsic functions are heavily overloaded for maximum flexibility though, and mul is not an exception. For example, in Example 2.4 the mul function takes a 4-component vector and a matrix. It is however safe to say conclude that the mul function always multiplies its supplied parameters (if they are of valid type combinations).
The next function is the pixel shader function (Example 2.5), which is executed for each pixel covered by the transformed geometry.
In most cases, the pixel shader function returns a 4-component vector representing the output color. Because there is no need for any additional information, this function has no parameters. This shader simply returns a white color, represented in floating-point RGBA values as (1.0, 1.0, 1.0, 1.0).
The last section in the FlatShaded.fx file (Example 2.6) is the code block specific to an effect file. XNA effect files differ slightly from straight HLSL because they define state for the 3D device. In this shader, the state section defines a technique and a pass, which correspond to the techniques and passes in the source code (Example 1.6). States that can be done on the device are replicated for effect files to simplify development.
In the case of this effect, the pass P0 defines the VertexShader state and the PixelShader state for the device when the pass is begun.
VertexShader is a keyword that represents the vertex shader on the graphics device. It is assigned to the vertex shader defined above. However, there are two special keywords exclusive to this state. The compile keyword is followed by vs_2_0. This indicates the shader model to which to compile the function (in this case Vertex Shader Model 2.0).
The PixelShader state is set the same way as the VertexShader state, but using the ps_2_0 keyword to indicate that a pixel shader is being compiled.
VertexLighting Effect

The vertex lighting effect has a few more effect parameters specific to the more complex effect. The lightColor and lightDirection parameters indicate the color and direction of the global light illuminating the geometry. There is also a definition of an ambient light color (Example 3.2) that represents a constant light scattered throughout the scene. Ambient light is not directional, so only the color parameter is required.
To simplify the shader code, the effect defines a struct containing parameter information (Example 3.3). The VertexShaderOutput structure contains fields with semantics, which is a convenient way to clean up the function definition. Another noticeable thing is that struct definitions in HLSL are terminated with a semicolon, which is a bit different than C#.
This new structure represents the data to be returned from the vertex shader. This time, the shader will return both the required transformed position and the new COLOR0 semantic, representing a color at that vertex.
The pixel shader now requires an input color to indicate what color to shade the destination pixels. A second structure is defined in Example 3.4 with the input color. All the lighting calculations are done in the vertex shader; the pixel shader simply returns the incoming color.
Example 3.5 is the vertex shader function. Most of this is identical to FlatShaded.fx, but there are two new additions.
First, there's the new parameter, normal, which indicates the unit normal direction of the vertex. A unit normal direction is required for the diffuse lighting equation.
The other new feature is that the function initializes an instance of the VertexShaderOutput structure.
Examples 3.6–3.8 are the math equations used to calculate a diffuse color for the vertex. A more complete discussion of this calculation is found in the next section of this document.
The addition in Example 3.8 adds the global ambient color to the diffuse color calculated for the vertex. Since this sample doesn't account for transparency effects, the alpha component value is fixed at 1.0. The individual components of a vector are accessible via RGBA or XYZW.
The pixel shader function is slightly more complicated than the function in FlatShaded.fx, since it returns the input color instead of simply returning white. This input color value is the interpolated value of the color at the pixel.
The interpolation of color values happens between the end of the vertex shader and the start of the pixel shader. When the triangles that make up a scene are set up from their constituent vertices, the 3D device translates the triangle positions to pixels. The color data returned from the vertex data is sent to the pixel shader interpolated with respect to the pixel's position between the vertices that define the triangle.
Lambertian lighting explained

The lighting technique used in the vertex shader function in VertexLighting.fx is called Lambertian lighting and represents the simplest way to calculate directional light.

Lambertian lighting always has the same intensity, no matter the distance of the light source. When the light hits the surface, the amount of light reflected is calculated by the angle of incidence the light has on the surface. When light has an angle of incidence of 90 degrees (perpendicular) on a surface, it reflects all the light back with maximum intensity. However, as the angle of incidence of the light is increased, the intensity of the light fades.

[image: image3.png]Surface Normal

Light vector
(UnitLength)

Projecton of
Light Vector

Surfece

To calculate the intensity that a light has on a surface, the angle between the light direction and the normal of the surface is measured, which is defined as a vector perpendicular to the surface. One can measure this angle by using a dot product, which returns the projection of the light direction vector onto the normal.
The dot intrinsic is one of the most fundamental operations in 3D rendering.
The dot product of two unit direction vectors yields the angle between them; the wider the angle, the less intense the light. Therefore, the dot product of the normal and the light vector gives us the light intensity at that vertex.
The light source used in the sample is only an approximation of directional lighting. The vector that describes the light source determines the direction of the light. Since it's an approximation, no matter where an object is, the direction in which the light shines toward it is the same (similar to beams of sunlight in the real world). In addition, the intensity of the light on individual objects is not taken into consideration.
Example 3.6 orients the normal direction into world space. This is done because the light direction is defined in world coordinate space, but the normal is still in model space. For the equation to make sense, both the normal and the light vector must be in the same coordinate space.
Example 3.7 is the implementation of the dot-product function described above. The dot intrinsic speaks for itself: it returns the scalar dot product of two vectors. The saturate intrinsic is something new however. It clamps the value of the parameter between 0.0 and 1.0. This prevents the intensity of the light from becoming negative for normals that face away from the light source, resulting in physically impossible negative intensities.
Example 3.8 calculates the diffuse color by multiplying the scalar intensity by the light's color.

Conclusion
Shaders have slowly evolved from a handy, but complex and limited, set of dynamic visual effects, to an almost indispensable aspect of visually complex 2D and 3D programs (especially games). This change can be explained in three points.
· The fact that basic shader programming followed the trend of becoming ‘higher level’ (more intuitive and less complex).
· The potential number of different shader effects gradually increased as hardware became more powerful and new shader models were introduced.
· A large part of the popularity of shaders in programming stems from the fact that once the effect has been programmed, it can be applied on any texture to give models or environments a visually similar, and dynamic (i.e. not bland) look.
Although basic shader programming has become significantly easier compared to the first years, it should be noted that there are some complex shader effects that take advantage of features of new shader models.
We can conclude that shaders are an essential tool to create convincing, dynamic visual styles that can be applied on any texture. With each shader model adding more features and potential to shader programming, it’s safe to say that shaders will only become an even more integral part in (visually complex) game programming in the coming years.
E.R.M.A. Razab-Sekh (1204424)
1

