0.1 Polymorphism

Polymorphism is an intriguing notion. Briefly put, polymorphism is the ability of
a particular entity (which may be an object, a function, or a variable) to present
itself as belonging to multiple types. Object-oriented languages are not unique
in their support for polymorphism, but it is safe to say that polymorphism is an
important feature of object-oriented languages. As explained in chapter 7?7, poly-
morphism comes in various flavors. With regard to object-oriented languages, we
usually mean inheritance or inclusion polymorphism. Even within this restricted
interpretation, we have to make a distinction between syntactic polymorphism,
which requires merely that interfaces conform, and semantic polymorphism, where
conformance requirements also include behavioral properties. In this section, we
will look at some simple examples in Java that illustrate how we may use the
mechanisms of inheritance and (simple) delegation to define objects that have
similar functionality but differ in the way that functionality is realized. These
examples prepare the way for the more complex idioms and patterns presented
later in this chapter. In the rest of this section we will look briefly at the
polymorphic constructs offered by C++. We will also study how behavioral
conformance can be enforced in C++ by including invariants and assertions. These
sections may be skipped on first reading.

0.1.1 Inheritance and delegation in Java

Consider the example below, an envelope class that offers a message method. In
this form it is nothing but a variation on the hello world example presented in
the appendix.

public class envelope { 01

public envelope() { }

public void message() {
System.out.println(”hello ... 7);
}

b

Slide 0-1: Hello World

To illustrate the idea underlying idioms and patterns in its most simple form,
we will refine the envelope class into the collection of classes depicted in slide
??7. We will proceed in three steps: (1) The envelope class will be redesigned so
that it acts only as an interface to the letter implementation class. (2) Then we
introduce a factory object, that is used to create envelope and letter instances. (3)
Finally, we refine the letter class into a singleton class, that prevents the creation
of multiple letter instances.



