
1

0.1 Abstraction and types

The concern for abstraction may be regarded as the driving force behind the
development of programming languages (of which there are astoundingly many).
In the following we will discuss the role of abstraction in programming, and
especially the importance of types. We then briefly look at what mathematical
means we have available to describe types from a foundational perspective and
what we may (and may not) expect from types in object-oriented programming.

0.1.1 Abstraction in programming languages

In [Shaw84], an overview is given of how increasingly powerful abstraction mech-
anisms have shaped the programming languages we use today. See slide 0-1.

Abstraction – programming methodology

• control abstractions – structured programming

• data abstraction – information hiding

The kind of abstraction provided by ADTs can be supported by any
language with a procedure call mechanism (given that appropriate
protocols are developed and observed by the programmer). [DT88]

0-1

Slide 0-1: Abstraction and programming languages

Roughly, we may distinguish between two categories of abstractions: abstrac-
tions that aid in specifying control (including subroutines, procedures, if-then-else
constructs, while-constructs, in short the constructs promoted by the school of
structured programming in their battle against the goto); and abstractions that
allow us to hide the actual representation of the data employed in a program
(introduced to support the information hiding approach, originally advocated
in [Parnas72a]).

Although there is clearly a pragmatic interest involved in developing and
employing such abstractions, the concern with abstraction (and consequently
types) is ultimately motivated by a concern with programming methodology and,
as observed in [DT88], the need for reliable and maintainable software. However,
the introduction of language features is also often motivated by programmers’
desires for ease of coding and naturalness of expression.

In the same vein, although types were originally considered as a convenient
means to assist the compiler in producing efficient code, types have rapidly
been recognized as a way in which to capture the meaning of a program in an
implementation independent way. In particular, the notion of abstract data types
(which has, so to speak, grown out of data abstraction) has become a powerful
device (and guideline) to structure large software systems.

In practice, as the quotation from [DT88] in slide 0-1 indicates, we may employ
the tools developed for structured programming to realize abstract data types in
a program, but with the obvious disadvantage that we must rely on conventions



2

with regard to the reliability of these realizations. Support for abstract data types
(support in the sense as discussed in section ??) is offered (to some extent) by
languages such as Modula-2 and Ada by means of a syntactic module or package
construct, and (to a larger extent) by object-oriented languages in the form of
object classes. However, both realizations are of a rather ad hoc and pragmatic
nature, relying in the latter case on the metaphor of encapsulation and message
passing. The challenge to computer science in this area is to develop a notion
of types capturing the power of abstract data types in a form that is adequate
both from a pragmatic point of view (in the sense of allowing efficient language
support) and from a theoretical perspective (laying the foundation for a truly
declarative object-oriented approach to programming).

0.1.2 A foundational perspective – types as constraints

Object-oriented programming may be regarded as a declarative method of pro-
gramming, in the sense that it provides a computation model (expressed by
the metaphor of encapsulation and message passing) that is independent of a
particular implementation model. In particular, the inheritance subtype relation
may be regarded as a pure description of the relations between the entities
represented by the classes. Moreover, an object-oriented approach favors the
development of an object model that bears close resemblance to the entities and
their relations living in the application domain. However, the object-oriented
programming model is rarely introduced with the mathematical precision charac-
teristic of descriptions of the other declarative styles, for example the functional
and logic programming model. Criticizing, [DT88] remark that OOP is generally
expressed in philosophical terms, resulting in a proliferation of opinions concerning
what OOP really is.

From a type-theoretical perspective, our interest is to identify abstract data
types as elements of some semantic (read mathematical) domain and to charac-
terize their properties in an unambiguous fashion. See slide 0-2.

Abstract data types – foundational perspective

• unambiguous values in some semantic domain

Mathematical models – types as constraints

• algebra – set oriented

• second order lambda calculus – polymorphic types

• constructive mathematics – formulas as types

0-2

Slide 0-2: Mathematical models for types

There seems to be almost no limit to the variety and sophistication of the
mathematical models proposed to characterize abstract data types and inher-
itance. We may make a distinction between first order approaches (based on



Abstraction and types 3

ordinary set theory) and higher order approaches (involving typed lambda calculus
and constructive logic).

The algebraic approach is a quite well-established method for the formal
specification of abstract data types. A type (or sort) in an algebra corresponds
to a set of elements upon which the operations of the algebra are defined. In
the next section, we will look at how equations may be used to characterize the
behavioral aspects of an abstract data type modeled by an algebra.

Second order lambda calculus has been used to model information hiding and
the polymorphism supported by inheritance and templates. In the next chapter
we will study this approach in more detail.

In both approaches, the meaning of a type is (ultimately) a set of elements
satisfying certain restrictions. However, in a more abstract fashion, we may regard
a type as specifying a constraint. The better we specify the constraint, the
more tightly the corresponding set of elements will be defined (and hence the
smaller the set). A natural consequence of the idea of types as constraints is
to characterize types by means of logical formulas. This is the approach taken
by type theories based on constructive logic, in which the notion of formulas as
types plays an important role. Although we will not study type theories based
on constructive logic explicitly, our point of view is essentially to regard types
as constraints, ranging from purely syntactical constraints (as expressed in a
signature) to semantic constraints (as may be expressed in contracts).

From the perspective of types as constraints, a typing system may contribute
to a language framework guiding a system designer’s conceptualization and sup-
porting the verification (based on the formal properties of the types employed)
of the consistency of the descriptive information provided by the program. Such
an approach is to be preferred (both from a pragmatic and theoretical point of
view) to an ad hoc approach employing special annotations and support mecha-
nisms, since these may become quite complicated and easily lead to unexpected
interactions.

Formal models There is a wide variety of formal models available in the litera-
ture. These include algebraic models (to characterize the meaning of abstract
data types), models based on the lambda-calculus and its extensions (which
are primarily used for a type theoretical analysis of object-oriented language
constructs), algebraic process calculi (which may be used to characterize the
behavior of concurrent objects), operational and denotational semantic models
(to capture structural and behavioral properties of programs), and various spec-
ification languages based on first or higher-order logics (which may be used to
specify the desired behavior of collections of objects).

We will limit ourselves to studying algebraic models capturing the properties
of abstract data types and objects (section ??), type calculi based on typed
extensions of the lambda calculus capturing the various flavors of polymorphism
and subtyping (sections ??–??), and an operational semantic model characterizing
the behavior of objects sending messages (section ??).

Both the algebraic and type theoretical models are primarily intended to
clarify the means we have to express the desired behavior of objects and the



4

restrictions that must be adhered to when defining objects and their relations.
The operational characterization of object behavior, on the other hand, is intended
to give a more precise characterization of the notion of state and state changes
underlying the verification of object behavior by means of assertion logics.

Despite the numerous models introduced there are still numerous approaches
not covered here. One approach worth mentioning is the work based on the
pi-calculus. The pi-calculus is an extension of algebraic process calculi that allow
for communication via named channels. Moreover, the pi-calculus allows for a
notion of migration and the creation and renaming of channels. A semantics of
object-based languages based on the pi-calculus is given in [Walker90]. However,
this semantics does not cover inheritance or subtyping. A higher-order object-
oriented programming language based on the pi-calculus is presented in [PRT93].

Another approach of interest, also based on process calculi, is the object
calculus (OC) described in [Nier93]. OC allows for modeling the operational
semantics of concurrent objects. It merges the notions of agents, as used in
process calculi, with the notion of functions, as present in the lambda calculus.

For alternative models the reader may look in the comp.theory newsgroup to
which information concerning formal calculi for OOP is posted by Tom Mens of
the Free University, Brussels.

0.1.3 Objectives of typed OOP

Before losing ourselves in the details of mathematical models of types, we must
reflect on what we may expect from a type system and what not (at least not
currently).

From a theoretical perspective our ideal is, in the words of [DT88], to arrive at
a simple type theory that provides a consistent and flexible framework for system
descriptions (in order to provide the programmer with sufficient descriptive power
and to aid the construction of useful and understandable software, while allowing
the efficient utilization of the underlying hardware).

Objectives of typed OOP – system description

• packaging in a coherent manner

• flexible style of associating operations with objects

• inheritance of description components – reuse, understanding

• separation of specification and implementation

• explicit typing to guide binding decisions

0-3

Slide 0-3: Object orientation and types

The question now is, what support does a typing system provide in this respect.
In slide 0-3, a list is given of aspects in which a typing system may be of help.

One important benefit of regarding ADTs as real types is that realizations of
ADTs become so-called first class citizens, which means that they may be treated



Abstraction and types 5

as any other value in the language, for instance being passed as a parameter. In
contrast, syntactic solutions (such as the module of Modula-2 and the package of
Ada) do not allow this.

Pragmatically, the objective of a type system is (and has been) the prevention
of errors. However, if the type system lacks expressivity, adequate control for
errors may result in becoming over-restrictive.

In general, the more expressive the type system the better the support that
the compiler may offer. In this respect, associating constructors with types may
help in relieving the programmer from dealing with simple but necessary tasks
such as the initialization of complex structures. Objects, in contrast to modules or
packages, allow for the automatic (compiler supported) initializations of instances
of (abstract) data types, providing the programmer with relief from an error-prone
routine.

Another area in which a type system may make the life of a programmer easier
concerns the association of operations with objects. A polymorphic type system
is needed to understand the automatic dispatching for virtual functions and the
opportunity of overloading functions, which are useful mechanisms to control the
complexity of a program, provided they are well understood.

Reuse and understanding are promoted by allowing inheritance and refinement
of description components. (As remarked earlier, inheritance and refinement may
be regarded as the essential contribution of object-oriented programming to the
practice of software development.) It goes without saying that such reuse needs
a firm semantical basis in order to achieve the goal of reliable and maintainable
software.

Another important issue for which a powerful type system can provide support
is the separation of specification and implementation. Naturally, we expect our
type system to support type-safe separate compilation. But in addition, we may
think of allowing multiple implementations of a single (abstract type) specifica-
tion. Explicit typing may then be of help in choosing the right binding when the
program is actually executed. For instance in a parallel environment, behavior
may be realized in a number of ways that differ in the degree to which they affect
locality of access and how they affect, for example, load balancing. With an eye
to the future, these are problems that may be solved with a good type system
(and accompanying compiler).

One of the desiderata for a type system for OOP, laid down in [DT88], is
the separation of a behavioral hierarchy (specifying the behavior of a type in an
abstract sense) and an implementation hierarchy (specifying the actual realization
of that behavior). Separation is needed to accommodate the need for multiple
realizations and to resolve the tension between subtyping and inheritance (a
tension we have already noted in sections ?? and ??).

Remark In these chapters we cannot hope to do more than get acquainted
with the material needed to understand the problems involved in developing
a type system for object-oriented programming. For an alternative approach,
see [Palsberg94].


	Abstraction and types
	Abstraction in programming languages
	A foundational perspective -- types as constraints
	Objectives of typed OOP


