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0.1 Algebraic specification

Algebraic specification techniques have been developed as a means to specify the
design of complex software systems in a formal way. The algebraic approach has
been motivated by the notion of information hiding put forward in [Parnas72a]
and the ideas concerning abstraction expressed in [Ho72]. Historically, the ADJ-
group (see Goguen et al., 1978) provided a significant impetus to the algebraic
approach by showing that abstract data types may be interpreted as (many sorted)
algebras. (In the context of algebraic specifications the notion of sorts has the
same meaning as types. We will, however, generally speak of types.)

As an example of an algebraic specification, look at the module defining the
data type Bool, as given in slide 0-1.

Algebraic specification – ADT Bool

adt bool is
functions

true : bool
false : bool
and, or : bool * bool -¿ bool
not : bool -¿ bool

axioms
[B1] and(true,x) = x
[B2] and(false,x) = false
[B3] not(true) = false
[B4] not(false) = true
[B5] or(x,y) = not(and(not(x),not(y)))

end
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Slide 0-1: The ADT Bool

In this specification two constants are introduced (the zero-ary functions true
and false), three functions (respectively and, or and not). The or function is
defined by employing not and and, according to a well-known logical law. These
functions may all be considered to be (strictly) related to the type bool. Equations
are used to specify the desired characteristics of elements of type bool. Obviously,
this specification may mathematically be interpreted as (simply) a boolean alge-
bra.

Mathematical models The mathematical framework of algebras allows for a
direct characterization of the behavioral aspects of abstract data types by means
of equations, provided the specification is consistent. Operationally, this allows
for the execution of such specifications by means of term rewriting, provided that
some (technical) constraints are met. The model-theoretic semantics of algebraic
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specifications centers around the notion of initial algebras, which gives us the
preferred model of a specification.

To characterize the behavior of objects (that may modify their state) in an
algebraic way, we need to extend the basic framework of initial algebra models
either by allowing so-called multiple world semantics or by making a distinction
between hidden and observable sorts (resulting in the notion of an object as an
abstract machine). As a remark, in our treatment we obviously cannot avoid the
use of some logico-mathematical formalism. If needed, the concepts introduced
will be explained on the fly. Where this does not suffice, the interested reader is
referred to any standard textbook on mathematical logic for further details.

0.1.1 Signatures – generators and observers

Abstract data types may be considered as modules specifying the values and
functions belonging to the type. In [Dahl92], a type T is characterized as a
tuple specifying the set of elements constituting the type T and the collection
of functions related to the type T. Since constants may be regarded as zero-ary
functions (having no arguments), we will speak of a signature Σ or ΣT defining
a particular type T. Also, in accord with common parlance, we will speak of the
sorts s ∈ Σ, which are the sorts (or types) occurring in the declaration of the
functions in Σ. See slide 0-2.

Signature – names and profiles Σ

• f : s1 × . . .× sn→s

Functions – for T

• constants – c : →T C

• producers – g : s1 × . . .× sn→T P

• observers – f : T→si O

Type – generators

• ΣT = PT ∪OT , CT ⊂ PT , PT ∩OT = ∅
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Slide 0-2: Algebraic specification

A signature specifies the names and (function) profiles of the constants and
functions of a data type. In general, the profile of a function is specified as

• f : s1 × . . .× sn→s

where si(i = 1..n) are the sorts defining the domain (that is the types of the
arguments) of the function f, and s is the sort defining the codomain (or result
type) of f. In the case n = 0 the function f may be regarded as a constant. More
generally, when s1, . . . , sn are all unrelated to the type T being defined, we may
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regard f as a relative constant. Relative constants are values that are assumed to
be defined in the context where the specification is being employed.

The functions related to a data type T may be discriminated according to
their role in defining T. We distinguish between producers g ∈ PT , that have
the type T under definition as their result type, and observers f ∈ OT , that
have T as their argument type and deliver a result of a type different from T. In
other words, producer functions define how elements of T may be constructed. (In
the literature one often speaks of constructors, but we avoid this term because
it already has a precisely defined meaning in the object-oriented programming
language C++.) In contrast, observer functions do not produce values of T, but
give instead information on some particular aspect of T.

The signature ΣT of a type T is uniquely defined by the union of producer
functions PT and observer functions OT . Constants of type T are regarded as
a subset of the producer functions PT defining T. Further, we require that the
collection of producers is disjoint from the collection of observers for T, that is
PT ∩OT = ∅.

Generators The producer functions actually defining the values of a data type
T are called the generator basis of T, or generators of T. The generators of T may
be used to enumerate the elements of T, resulting in the collection of T values
that is called the generator universe in [Dahl92]. See slide 0-3.

Generators – values of T T

• generator basis – GT = {g ∈ PT}
• generator universe – GUT = {v1, v2, . . .}

Examples

• GBool = {t , f }, GUBool = {t , f }
• GNat = {0,S}, GUNat = {0,S0,SS0, . . .}
• GSetA = {∅, add}, GUSetA = {∅, add(∅, a), . . .}

0-3

Slide 0-3: Generators – basis and universe

The generator universe of a type T consists of the closed (that is variable-free)
terms that may be constructed using either constants or producer functions of T.
As an example, consider the data type Bool with generators t and f. Obviously,
the value domain of Bool, the generator universe GUBool consists only of the
values t and f.

As another example, consider the data type Nat (representing the natural
numbers) with generator basis GNat = {0,S}, consisting of the constant 0 and
the successor function S : Nat→Nat (that delivers the successor of its argument).
The terms that may be constructed by GNat is the set GUNat = {0,S0,SS0, . . .},
which uniquely corresponds to the natural numbers {0, 1, 2, . . .}. (More precisely,
the natural numbers are isomorphic with GUNat .)
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In contrast, given a type A with element a, b, ..., the generators of SetA result
in a universe that contains terms such as add(∅, a) and add(add(∅, a), a) which
we would like to identify, based on our conception of a set as containing only
one exemplar of a particular value. To effect this we need additional equations
imposing constraints expressing what we consider as the desired shape (or normal
form) of the values contained in the universe of T. However, before we look at
how to extend a signature Σ defining T with equations defining the (behavioral)
properties of T we will look at another example illustrating how the choice of a
generator basis may affect the structure of the value domain of a data type.

In the example presented in slide 0-4, the profiles are given of the functions
that may occur in the signature specifying sequences. (The notation is used to
indicate parameter positions.)

Sequences

Seq

• ε : seqT empty

• B : seqT × T→seqT right append

• C : T × seqT→seqT left append

• · : seqT × seqT→seqT concatenation

• 〈 〉 : T→seqT lifting

• 〈 , . . . , 〉 : T n→seqT multiple arguments

Generator basis – preferably one-to-one

• GseqT = {ε,B}, GUseqT = {ε, ε B a, ε B b, . . . , ε B a B b, . . .}
• G′seqT = {ε,C}, GU ′seqT = {ε, a C ε, b C ε, . . . , b C a C ε, . . .}

• G′′seqT = {ε, ·, 〈 〉}, GU ′′seqT = {ε, 〈a〉, 〈b〉, , . . . , ε · ε, . . . , ε · 〈a〉, . . .}

Infinite generator basis

• G′′′seqT = {ε, 〈 〉, 〈 , 〉, . . .}, GU ′′′seqT = {ε, 〈a〉, 〈b〉, , . . . , 〈a, a〉, . . .}

0-4

Slide 0-4: The ADT Seq

Dependent on which producer functions are selected to generate the universe of
T, the correspondence between the generated universe and the intended domain
is either one-to-one (as for G and G ′) or many-to-one (as for G ′′). Since we
require our specification to be first-order and finite, infinite generator bases (such
as G ′′′) must be disallowed, even if they result in a one-to-one correspondence.
See [Dahl92] for further details.

0.1.2 Equations – specifying constraints

The specification of the signature of a type (which lists the syntactic constraints to
which a specification must comply) is in general not sufficient to characterize the
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properties of the values of the type. In addition, we need to impose semantic
constraints (in the form of equations) to define the meaning of the observer
functions and (very importantly) to identify the elements of the type domain
that are considered equivalent (based on the intuitions one has of that particular
type).

The equivalence relation – congruence

• x = x reflexivity

• x = y ⇒ y = x symmetry

• x = y ∧ y = z ⇒ x = z transitivity

• x = y ⇒ f (. . . , x , . . .) = f (. . . , y, . . .)

Equivalence classes – representatives

• abstract elements – GUT/∼

0-5

Slide 0-5: Equivalence

Mathematically, the equality predicate may be characterized by the properties
listed above, including reflexivity (stating that an element is equal to itself),
symmetry (stating that the orientation of the formula is not important) and
transitivity (stating that if one element is equal to another and that element is
equal to yet another, then the first element is also equal to the latter). In addition,
we have the property that, given that two elements are equal, the results of the
function applied to them (separately) are also equal. (Technically, the latter
property makes a congruence of the equality relation, lifting equality between
elements to the function level.) See slide 0-5.

Given a suitable set of equations, in addition to a signature, we may identify
the elements that can be proved identical by applying the equality relation. In
other words, given an equational theory (of which the properties stated above
must be a part), we can divide the generator universe of a type T into one or
more subsets, each consisting of elements that are equal according to our theory.
The subsets of GU /∼, that is GU factored with respect to equivalence, may be
regarded as the abstract elements constituting the type T, and from each subset
we may choose a concrete element acting as a representative for the subset which
is the equivalence class of the element.

Operationally, equations may be regarded as rewrite rules (oriented from left to
right), that allow us to transform a term in which a term t1 occurs as a subterm
into a term in which t1 is replaced by t2 if t1 = t2. For this procedure to be
terminating, some technical restrictions must be met, amounting (intuitively) to
the requirement that the right-hand side must in some sense be simpler than the
left-hand side.

Also, when defining an observer function, we must specify for each possible
generator case an appropriate rewriting rule. That is, each observer must be able
to give a result for each generator. The example of the natural numbers, given
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below, will make this clear. Identifying spurious elements by rewriting a term
into a canonical form is somewhat more complex, as we will see for the example
of sets.

Equational theories To illustrate the notions introduced above, we will look at
specifications of some familiar types, namely the natural numbers and sets.

In slide 0-6, an algebraic specification is given of the natural numbers (as first
axiomatized by Peano).

Natural numbers Nat

functions
0 : Nat
S : Nat -¿ Nat
mul : Nat * Nat -¿ Nat
plus : Nat * Nat -¿ Nat
axioms
[1] plus(x,0) = x
[2] plus(x,Sy) = S(plus(x,y))
[3] mul(x,0) = 0
[4] mul(x,Sy) = plus(mul(x,y),x)
end

0-6

Slide 0-6: The ADT Nat

In addition to the constant 0 and successor function S we also introduce a
function mul for multiplication and a function plus for addition. (The notation Sy
stands for application by juxtaposition; its meaning is simply S (y).) The reader
who does not immediately accept the specification in slide 0-6 as an adequate
axiomatization of the natural numbers must try to unravel the computation
depicted in slide 0-7.

mul(plus(S 0,S 0),S 0) -[2]-¿
mul(S(plus(S 0,0)), S 0) -[1]-¿
mul(SS 0,S 0) -[4]-¿
plus(mul(SS0,0),SS0) -[3]-¿
plus(0,SS0) -[2*]-¿ SS0

0-7

Slide 0-7: Symbolic evaluation

Admittedly, not an easy way to compute with natural numbers, but fortu-
nately term rewriting may, to a large extent, be automated (and actual calcula-
tions may be mimicked by semantics preserving primitives).
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Using the equational theory expressing the properties of natural numbers, we
may eliminate the occurrences of the functions mul and plus to arrive (through
symbolic evaluation) at something of the form S n0 (where n corresponds to the
magnitude of the natural number denoted by the term).

The opportunity of symbolic evaluation by term rewriting is exactly what has
made the algebraic approach so popular for the specification of software, since it
allows (under some restrictions) for executable specifications.

Since they do not reappear in what may be considered the normal forms
of terms denoting the naturals (that are obtained by applying the evaluations
induced by the equality theory), the functions plus and mul may be regarded as
secondary producers. They are not part of the generator basis of the type Nat.

Since we may consider mul and plus as secondary producers at best, we can
easily see that when we define mul and plus for the case 0 and Sx for arbitrary x,
that we have covered all possible (generator) cases. Technically, this allows us to
prove properties of these functions by using structural induction on the possible
generator cases. The proof obligation (in the case of the naturals) then is to
prove that the property holds for the function applied to 0 and assuming that the
property holds for applying the function to x, it also holds for Sx.

As our next example, consider the algebraic specification of the type SetA in
slide 0-8.

Sets Set

• GSetA = {∅, add}
• GUSetA = {0, add(0, a), . . . , add(add(0, a), a), . . .}

Axioms

[S1] add(add(s, x ), y) = add(add(s, y), x ) commutativ-

ity

[S2] add(add(s, x ), x ) = add(s, x ) idempotence

0-8

Slide 0-8: The ADT Set

In the case of sets we have the problem that we do not start with a one-to-one
generator base as we had with the natural numbers. Instead, we have a many-
to-one generator base, so we need equality axioms to eliminate spurious elements
from the (generator) universe of sets.

The equivalence classes of GUSetA
/∼ (which is GUSetA

factored by the equiv-
alence relation), each have multiple elements (except the class representing the
empty set). To select an appropriate representative from each of these classes
(representing the abstract elements of the type SetA) we need an ordering on
terms, so that we can take the smaller term as its canonical representation. See
slide 0-9.
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Equivalence classes GUSetA/∼

• {∅}
• {add(0, a), add(add(0, a), a), . . .}
• . . .

• {add(add(0, a), b), add(add(0, b), a), . . .}

0-9

Slide 0-9: Equivalence classes for Set

0.1.3 Initial algebra semantics

In the previous section we have given a rather operational characterization of
the equivalence relation induced by the equational theory and the process of term
rewriting that enables us to purge the generator universe of a type, by eliminating
redundant elements. However, what we actually strive for is a mathematical model
that captures the meaning of an algebraic specification. Such a model is provided
(or rather a class of such models) by the mathematical structures known as (not
surprisingly) algebras.

A single sorted algebra A is a structure (A,Σ) where A is a set of values, and
Σ specifies the signature of the functions operating on A. A multi-sorted algebra
is a structure A = ({As}s ∈ S ,Σ) where S is a set of sort names and As the set
of values belonging to the sort s. The set S may be ordered (in which case the
ordering indicates the subtyping relationships between the sorts). We call the
(multi-sorted) structure A a Σ-algebra.

Mathematical model – algebra

• Σ-algebra – A = ({As}s ∈ S ,Σ)

• interpretation – eval : TΣ→A
• adequacy – A |= t1 = t2 ⇐⇒ E ` t1 = t2

0-10

Slide 0-10: Interpretations and models

Having a notion of algebras, we need to have a way in which to relate an
algebraic specification to such a structure. To this end we define an interpretation
eval : TΣ→A which maps closed terms formed by following the rules given in the
specification to elements of the structure A. We may extend the interpretation
eval to include variables as well (which we write as eval : TΣ(X )→A), but then we
also need to assume that an assignment θ : X→TΣ(X ) is given, such that when
applying θ to a term t the result is free of variables, otherwise no interpretation
in A exists. See slide 0-10.
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Interpretations As an example, consider the interpretations of the specification
of Bool and the specification of Nat, given in slide 0-11.

Booleans

• B = ({tt ,ff }, {¬,∧,∨})
• evalB : TBool→B = {or 7→ ∨, and 7→ ∧,not 7→ ¬}

Natural numbers

• N = (N, {++,+, ?})
• evalN : TNat→N = {S 7→ ++,mul 7→ ?, plus 7→ +}

0-11

Slide 0-11: Interpretations of Bool and Nat

The structure B given above is simply a boolean algebra, with the operators
¬, ∧ and ∨. The functions not, and and or naturally map to their semantic
counterparts. In addition, we assume that the constants true and false map to
the elements tt and ff.

As another example, look at the structure N and the interpretation evalN ,
which maps the functions S, mul and plus specified in Nat in a natural way.
However, since we have also given equations for Nat (specifying how to eliminate
the functions mul and plus) we must take precautions such that the requirement

N |= evalN (t1) =N evalN (t2)⇐⇒ ENat ` t1 = t2

is satisfied if the structure N is to count as an adequate model of Nat. The
requirement above states that whenever equality holds for two interpreted terms
(in N ) then these terms must also be provably equal (by using the equations given
in the specification of Nat), and vice versa.

As we will see illustrated later, many models may exist for a single specifica-
tion, all satisfying the requirement of adequacy. The question is, do we have a
means to select one of these models as (in a certain sense) the best model. The
answer is yes. These are the models called initial models.

Initial models A model (in a mathematical sense) represents the meaning of a
specification in a precise way. A model may be regarded as stating a commitment
with respect to the interpretation of the specification. An initial model is intu-
itively the least committing model, least committing in the sense that it imposes
only identifications made necessary by the equational theory of a specification.
Technically, an initial model is a model from which every other model can be
derived by an algebraic mapping which is a homomorphism.

The starting point for the construction of an initial model for a given specifica-
tion with signature Σ is to construct a term algebra TΣ with the terms that may
be generated from the signature Σ as elements. The next step is then to factor the
universe of generated terms into equivalence classes, such that two terms belong
to the same class if they can be proven equivalent with respect to the equational
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Initial algebra

• ΣE -algebra – M = (TΣ/∼,Σ/∼)

Properties

• no junk – ∀ a : TΣ/∼ ∃ t • evalM(t) = a

• no confusion – M |= t1 = t2 ⇐⇒ E ` t1 = t2

0-12

Slide 0-12: Initial models

theory of the specification. We will denote the representative of the equivalence
class to which a term t belongs by [t ]. Hence t1 = t2 (in the model) iff [t1] = [t2].

So assume that we have constructed a structure M = (TΣ/ ∼,Σ) then;
finally, we must define an interpretation, say evalM : TΣ→M, that assigns closed
terms to appropriate terms in the term model (namely the representatives of the
equivalence class of that term). Hence, the interpretation of a function f in the
structure M is such that

fM([t1], . . . , [tn ]) = [f (t1, . . . , tn)]

where fM is the interpretation of f inM. In other words, the result of applying f
to terms t1, . . . , tn belongs to the same equivalence class as the result of applying
fM to the representatives of the equivalence classes of t1, . . . , tn . See slide 0-12.

An initial algebra model has two important properties, known respectively as
the no junk and no confusion properties. The no junk property states that for
each element of the model there is some term for which the interpretation inM is
equal to that element. (For the TΣ/∼ model this is simply a representative of the
equivalence class corresponding with the element.) The no confusion property
states that if equality of two terms can be proven in the equational theory of
the specification, then the equality also holds (semantically) in the model, and
vice versa. The no confusion property means, in other words, that sufficiently
many identifications are made (namely those that may be proven to hold), but
no more than that (that is, no other than those for which a proof exists). The
latter property is why we may speak of an initial model as the least committing
model; it simply gives no more meaning than is strictly needed.

The initial model constructed from the term algebra of a signature Σ is
intuitively a very natural model since it corresponds directly with (a subset of)
the generator universe of Σ. Given such a model, other models may be derived
from it simply by specifying an appropriate interpretation. For example, when
we construct a model for the natural numbers (as specified by Nat) consisting of
the generator universe {0,S0,SS0, . . .} and the operators {++,+, ?} (which are
defined as S n + + = S n+1, S n ∗ S m = S n∗m and S n + S m = S n+m) we may
simply derive from this model the structure ({0, 1, 2, . . .}, {++,+, ?}) for which
the operations have their standard arithmetical meaning. Actually, this structure
is also an initial model for Nat, since we may also make the inverse transformation.
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More generally, when defining an initial model only the structural aspects
(characterizing the behavior of the operators) are important, not the actual con-
tents. Technically, this means that initial models are defined up to isomorphism,
that is a mapping to equivalent models with perhaps different contents but an
identical structure. Not in all cases is a structure derived from an initial model
itself also an initial model, as shown in the example below.

Example Consider the specification of Bool as given before. For this specification
we have given the structure B and the interpretation evalB which defines an initial
model for Bool. (Check this!)

Structure – B = ({tt ,ff }, {¬,∧,∨}) B
• evalB : TΣBool

→B = {or 7→ ∨,not 7→ ¬}
• evalB : TΣNat

→B = {S 7→ ¬,mul 7→ ∧, plus 7→ xor}

0-13

Slide 0-13: Structure and interpretation

We may, however, also use the structure B to define an interpretation of Nat.
See slide 0-13. The interpretation evalB : TNat→B is such that evalB(0) =
ff , evalB(Sx ) = ¬evalB(x ), evalB(mul(x , y)) = evalB(x ) ∧ evalB(y) and
evalB(plus(x , y)) = xor(evalB(x ), evalB(y)), where xor(p, q) = (p∨q)∧(¬(p∧q)).
The reader may wish to ponder on what this interpretation effects. The answer
is that it interprets Nat as specifying the naturals modulo 2, which discriminates
only between odd and even numbers. Clearly, this interpretation defines not an
initial model, since it identifies all odd numbers with ff and all even numbers with
tt. Even if we replace ff by 0 and tt by 1, this is not what we generally would
like to commit ourselves to when we speak about the natural numbers, simply
because it assigns too much meaning.

0.1.4 Objects as algebras

The types for which we have thus far seen algebraic specifications (including Bool,
Seq, Set and Nat) are all types of a mathematical kind, which (by virtue of being
mathematical) define operations without side-effects. Dynamic state changes, that
is side-effects, are often mentioned as determining the characteristics of objects in
general. In the following we will explore how we may deal with assigning meaning
to dynamic state changes in an algebraic framework.

Let us look first at the abstract data type stack. The type stack may be
considered as one of the ‘real life’ types in the world of programming. See slide
0-14.

Above, a stack has been specified by giving a signature (consisting of the
functions new, push, empty, pop and top). In addition to the axioms characterizing
the behavior of the stack, we have included two pre-conditions to test whether
the stack is empty in case pop or top is applied. The pre-conditions result in
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Abstract Data Type – applicative Stack

functions
new : stack;
push : element * stack -¿ stack;
empty : stack -¿ boolean;
pop : stack -¿ stack;
top : stack -¿ element;

axioms
empty( new ) = true
empty( push(x,s) ) = false
top( push(x,s) ) = x
pop( push(x,s) ) = s

preconditions
pre: pop( s : stack ) = not empty(s)
pre: top( s : stack ) = not empty(s)

end

0-14

Slide 0-14: The ADT Stack

conditional axioms for the operations pop and top. Conditional axioms, however,
do preserve the initial algebra semantics.

The specification given above is a maximally abstract description of the be-
havior of a stack. Adding more implementation detail would disrupt its nice
applicative structure, without necessarily resulting in different behavior (from a
sufficiently abstract perspective).

The behavior of elements of abstract data types and objects is characterized
by state changes. State changes may affect the value delivered by observers
or methods. Many state changes (such as the growing or shrinking of a set,
sequence or stack) really are nothing but applicative transformations that may
mathematically be described by the input-output behavior of an appropriate
function.

An example in which the value of an object on some attribute is dependent
on the history of the operations applied to the object, instead of the structure of
the object itself (as in the case of a stack) is the object account, as specified in
slide 0-15. The example is taken from [Goguen].

An account object has one attribute function (called bal) that delivers the
amount of money that is (still) in the account. In addition, there are two method
functions, credit and debit that may respectively be used to add or withdraw
money from the account. Finally, there is one special error function, overdraw,
that is used to define the result of balance when there is not enough money left to
grant a debit request. Error axioms are needed whenever the proper axioms are
stated conditionally, that is contain an if expression. The conditional parts of the
axioms, including the error axioms, must cover all possible cases.
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Dynamic state changes – objects account

object account is
functions
bal : account -¿ money

methods
credit : account * money -¿ account
debit : account * money -¿ account

error
overdraw : money -¿ money

axioms
bal(new(A)) = 0
bal(credit(A,M)) = bal(A) + M
bal(debit(A,M)) = bal(A) - M if bal(A) ¿= M

error-axioms
bal(debit(A,M)) = overdraw(M) if bal(A) ¡ M

end

0-15

Slide 0-15: The algebraic specification of an account

Now, first look at the form of the axioms. The axioms are specified as

fn(method(Object ,Args)) = expr

where fn specifies an attribute function (bal in the case of account) and method
a method (either new, which is used to create new accounts, credit or debit). By
convention, we assume that method(Object , . . .) = Object , that is that a method
function returns its first argument. Applying a method thus results in redefining
the value of the function fn. For example, invoking the method credit(acc, 10)
for the account acc results in modifying the function bal to deliver the value
bal(acc) + 10 instead of simply bal(acc). In the example above, the axioms define
the meaning of the function bal with respect to the possible method applications.
It is not difficult to see that these operations are of a non-applicative nature, non-
applicative in the sense that each time a method is invoked the actual definition
of bal is changed. The change is necessary because, in contrast to, for example,
the functions employed in a boolean algebra, the actual value of the account may
change in time in a completely arbitrary way. A first order framework of (multi
sorted) algebras is not sufficiently strong to define the meaning of such changes.
What we need may be characterized as a multiple world semantics, where each
world corresponds to a possible state of the account. As an alternative semantics
we will also discuss the interpretation of an object as an abstract machine, which
resembles an (initial) algebra with hidden sorts.

Multiple world semantics From a semantic perspective, an object that changes
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its state may be regarded as moving from one world to another, when we see a
world as representing a particular state of affairs. Take for example an arbitrary
(say John’s) account, which has a balance of 500. We may express this as
balance(accountJohn) = 500. Now, when we invoke the method credit, as in
credit(accountJohn, 200), then we expect the balance of the account to be raised
to 700. In the language of the specification, this is expressed as

bal(credit(accountJohn, 200)) = bal(accountJohn) + 200

Semantically, the result is a state of affairs in which bal(accountJohn) = 700.
In [Goguen] an operational interpretation is given of a multiple world seman-

tics by introducing a database D (that stores the values of the attribute functions
of objects as first order terms) which is transformed as the result of invoking a
method, into a new database D ′ (that has an updated value for the attribute
function modified by the method). The meaning of each database (or world) may
be characterized by an algebra and an interpretation as before.

The rules according to which transformations on a database take place may
be formulated as in slide 0-16.

Multiple world semantics – inference rules

• 〈f (t1, . . . , tn ),D〉→〈v ,D〉 attribute

• 〈m(t1, . . . , tn ),D〉→〈t1,D ′〉 method

• 〈t ,D〉→〈t ′,D ′〉 ⇒ 〈e(. . . , t , . . .),D〉→〈e(. . . , t ′, . . .),D ′〉

0-16

Slide 0-16: The interpretation of change

The first rule (attribute) describes how attribute functions are evaluated.
Whenever a function f with arguments t1, . . . , tn evaluates to a value (or expres-
sion) v, then the term f (t1, . . . , tn) may be replaced by v without affecting the
database D. (We have simplified the treatment by omitting all aspects having to do
with matching and substitutions, since such details are not needed to understand
the process of symbolic evaluation in a multiple world context.) The next rule
(method) describes the result of evaluating a method. We assume that invoking
the method changes the database D into D ′. Recall that, by convention, a method
returns its first argument. Finally, the last rule (composition) describes how we
may glue all this together.

No doubt, the reader needs an example to get a picture of how this machinery
actually works.

In slide 0-17, we have specified a simple object ctr with an attribute function
value (delivering the value of the counter) and a method function incr (that may
be used to increment the value of the counter).

The end result of the evaluation depicted in slide 0-18 is the value 2 and a
context (or database) in which the value of the counter C is (also) 2. The database
is modified in each step in which the method incr is applied. When the attribute
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Example - a counter object

object ctr is ctr

function n : ctr -¿ nat
method incr : ctr -¿ ctr
axioms

n(new(C)) = 0
n(incr(C)) = n(C) + 1

end

0-17

Slide 0-17: The object ctr

Abstract evaluation

¡n(incr(incr(new(C)))),{ C }¿ -[new]-¿
¡n(incr(incr(C))),{ C[n:=0] }¿ -[incr]-¿
¡n(incr(C)),{ C[n:=1] }¿ -[incr]-¿
¡n(C), { C[n:=2] }¿ -[n]-¿
¡2, { C[n:=2] }¿

0-18

Slide 0-18: An example of abstract evaluation

function value is evaluated the database remains unchanged, since it is merely
consulted.

Objects as abstract machines Multiple world semantics provide a very pow-
erful framework in which to define the meaning of object specifications. Yet, as
illustrated above, the reasoning involved has a very operational flavor and lacks
the appealing simplicity of the initial algebra semantics given for abstract data
types. As an alternative, [Goguen] propose an interpretation of objects (with
dynamic state changes) as abstract machines.

Recall that an initial algebra semantics defines a model in which the elements
are equivalence classes representing the abstract values of the data type. In effect,
initial models are defined only up to isomorphism (that is, structural equivalence
with similar models). In essence, the framework of initial algebra semantics allows
us to abstract from the particular representation of a data type, when assigning
meaning to a specification. From this perspective it does not matter, for example,
whether integers are represented in binary or decimal notation.

The notion of abstract machines generalizes the notion of initial algebras in
that it loosens the requirement of (structural) isomorphism, to allow for what
we may call behavioral equivalence. The idea underlying the notion of behavioral
equivalence is to make a distinction between visible sorts and hidden sorts and
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to look only at the visible sorts to determine whether two algebras A and B
are behaviorally equivalent. According to [Goguen], two algebras A and B are
behaviorally equivalent if and only if the result of evaluating any expression of a
visible sort in A is the same as the result of evaluating that expression in B.

Now, an abstract machine (in the sense of Goguen and Meseguer, 1986) is
simply the equivalence class of behaviorally equivalent algebras, or in other words
the maximally abstract characterization of the visible behavior of an abstract data
type with (hidden) states.

The notion of abstract machines is of particular relevance as a formal frame-
work to characterize the (implementation) refinement relation between objects.
For example, it is easy to determine that the behavior of a stack implemented
as a list is equivalent to the behavior of a stack implemented by a pointer array,
whereas these objects are clearly not equivalent from a structural point of view.
Moreover, the behavior of both conform (in an abstract sense) with the behavior
specified in an algebraic way. Together, the notions of abstract machine and
behavioral equivalence provide a formalization of the notion of information hiding
in an algebraic setting. In the chapters that follow we will look at alternative for-
malisms to explain information hiding, polymorphism and behavioral refinement.
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