
1

0.1 Decomposition – modules versus objects

Abstract data types allow the programmer to define a complex data structure and
an associated collection of functions, operating on that structure, in a consistent
way. Historically, the idea of data abstraction was originally not type-oriented but
arose from a more pragmatic concern with information hiding and representation
abstraction, see [Parnas72b]. The first realization of the idea of data abstraction
was in the form of modules grouping a collection of functions and allowing the
actual representation of the data structures underlying the values of the (abstract)
type domain to be hidden, see also [Parnas72a].

In [Cook90], a comparison is made between the way in which abstract data
types are realized traditionally (as modules) and the way abstract data types may
be realized using object-oriented programming techniques. According to [Cook90],
these approaches must be regarded as being orthogonal to one another and, being
to some extent complementary, deserve to be integrated in a common framework.

After presenting an example highlighting the differences between the two
approaches, we will further explore these differences and study the trade-offs with
respect to possible extensions and reuse of code.

Decomposition – matrix data abstraction

nil cons(h,t)
empty(l) true false

head(l) error h
tail(l) error t

Modules – operation oriented ADT

• organized around observers – representation hiding

Objects – data oriented OOP

• organized around generators – method interface

0-1

Slide 0-1: Decomposition and data abstraction

Recall that abstract data types may be completely characterized by a finite
collection of generators and a number of observer functions that are defined with
respect to each possible generator. Following this idea, we may approach the
specification of a data abstraction by constructing a matrix listing the generators
column-wise and the observers row-wise, which for each observer/generator pair
specifies the value of the observer for that particular generator. Incidentally, the
definition of such a matrix allows us to check in an easy way whether we have
given a complete characterization of the data type. Above, an example is given of
the specification of a list, with generators nil and cons, and observers empty, head
and tail. (Note that we group the secondary producer tail with the observers.)

Now, the traditional way of realizing abstract data types as modules may be



2

characterized as operation oriented, in the sense that the module realization of the
type is organized around the observers, resulting in a horizontal decomposition of
the matrix.

On the other hand, an object-oriented approach may be characterized as
data oriented, since the object realization of a type is based on specifying a
method interface for each possible generator (sub)type, resulting in a vertical
decomposition of the matrix. See slide ??.

Note, however, that in practice, different generators need not necessarily
correspond to different (sub)classes. Behavior may be subsumed in variables,
as an object cannot change its class/type.

0.1.1 Abstract interfaces

When choosing for the module realization of the data abstraction list in C style,
we are likely to have an abstract functional interface as specified in slide ??.

Modules – a functional interface ADT

typedef int element;
struct list;

extern list* nil();
extern list* cons(element e, list* l);
extern element head(list* l);
extern list* tail(list* l);
extern bool equal(list* l, list* m);

0-2

Slide 0-2: Modules – a functional interface

For convenience, the list has been restricted to contain integer elements only.
However, at the expense of additional notation, we could also easily define a
generic list by employing template functions as provided by C++. This is left as
an exercise for the reader.

The interface of the abstract class list given in slide ?? has been defined
generically by employing templates.

Note that the equal function in the ADT interface takes two arguments,
whereas the operator == function in the OOP interface takes only one, since the
other is implicitly provided by the object itself.

0.1.2 Representation and implementation

The realization of abstract data types as modules with functions requires addi-
tional means to hide the representation of the list type. In contrast, with an
object-oriented approach, data hiding is effected by employing the encapsulation
facilities of classes.



Decomposition – modules versus objects 3

Objects – a method interface OOP

template¡ class E ¿
class list {
public:
list() { }
virtual ∼list() { }
virtual bool empty() = 0;
virtual E head() = 0;
virtual list¡E¿* tail() = 0;
virtual bool operator ==(list¡E¿* m) = 0;
};

0-3

Slide 0-3: Objects – a method interface

Modules – representation hiding Modules provide a syntactic means to group
related pieces of code and to hide particular aspects of that code. In slide ?? an
example is given of the representation and the generator functions for a list of
integers.

For implementing the list as a collection of functions (ADT style), we employ
a struct with an explicit tag field, indicating whether the list corresponds to nil
or a cons.

The functions corresponding with the generators create a new structure and
initialize the tag field. In addition, the cons operator sets the element and next
field of the structure to the arguments of cons.

The implementation of the observers is given in slide ??.
To determine whether the list is empty it suffices to check whether the tag of

the list is equal to NIL. For both head and tail the pre-condition is that the list
given as an argument is not empty. If the pre-condition holds, the appropriate
field of the list structure is returned.

The equality operator, finally, performs an explicit switch on the tag field,
stating for each case under what conditions the lists are equal.

Below, a program fragment is given that illustrates the use of the list.

list* r = cons(1,cons(2,nil()));

while (!empty(r)) {
cout << head(r) << endl;

r = tail(r);

}

Note that both the generator functions nil and cons take care of creating a new
list structure. Writing a function to destroy a list is left as an exercise for the
reader.



4

Modules – representation hiding ADT

typedef int element;

enum { NIL, CONS };

struct list {
int tag;
element e;
list* next;
};

Generators

list* nil() { nil

list* l = new list; l-¿tag = NIL; return l;
}

list* cons( element e, list* l) { cons

list* x = new list;
x-¿tag = CONS; x-¿e = e; x-¿next = l;
return x;
}

0-4

Slide 0-4: Data abstraction and modules

Objects – method interface The idea underlying an object-oriented decompo-
sition of the specification matrix of an abstract type is to make a distinction be-
tween the (syntactic) subtypes of the data type (corresponding with its generators)
and to specify for each subtype the value of all possible observer functions. (We
speak of syntactic subtypes, following [Dahl92], since these subtypes correspond
to the generators defining the value domain of the data type. See [Dahl92] for a
more extensive treatment.)

In the object realization in slide ??, each subtype element is defined as a class
inheriting from the list class. For both generator types nil and cons the observer
functions are defined in a straightforward way. Note that, in contrast to the ADT
realization, the distinction between the various cases is implicit in the member
function definitions of the generator classes.

As an example of using the list classes consider the program fragment below.

list<int>* r = new cons<int>(1, new cons<int>(2, new nil<int>));
while (! r->empty()) {

cout << r->head() << endl;

r = r->tail();

}
delete r;



Decomposition – modules versus objects 5

Modules – observers ADT

int empty(list* lst) { return !lst —— lst-¿tag == NIL;
}

element head(list* l) { head

require( ! empty(l) );
return l-¿e;
}

list* tail(list* l) { tail

require( ! empty(l) );
return l-¿next;
}

bool equal(list* l, list* m) { equal

switch( l-¿tag) {
case NIL: return empty(m);
case CONS: return !empty(m) &&

head(l) == head(m) &&
tail(l) == tail(m);

}
}

0-5

Slide 0-5: Modules – observers

For deleting a list we may employ the (virtual) destructor of list, which recursively
destroys the tail of a list.

0.1.3 Adding new generators

Abstract data types were developed with correctness and security in mind, and
not so much from a concern with extensibility and reuse. Nevertheless, it is
interesting to compare the traditional approach of realizing abstract data types
(employing modules) and the object-oriented approach (employing objects as
generator subtypes) with regard to the ease with which a specification may be
extended, either by adding new generators or by adding new observers.

Let us first look at what happens when we add a new generator to a data type,
such as an interval list subtype, containing the integers in the interval between
two given integers.

For the module realization of the list, adding an interval(x , y) generator will



6

Method interface – list OOP

template¡ class E ¿
class nil : public list¡ E ¿ { nil

public:
nil() {}
bool empty() { return 1; }
E head() { require( false ); return E(); }
list¡ E ¿* tail() { require( 0 ); return 0; }
bool operator ==(list¡E¿* m) { return m-¿empty(); }
};

template¡ class E ¿
class cons : public list¡ E ¿ { cons

public:
cons(E e, list¡E¿* l) : e(e), next(l) {}
∼cons() { delete next; }
bool empty() { return 0; }
E head() { return e; }
list¡E¿* tail() { return next; }
bool operator ==(list¡E¿* m);
protected:
E e;
list¡E¿* next;
};

0-6

Slide 0-6: Data abstraction and objects

result in an extension of the (hidden) representation types with an additional
representation tag type INTERVAL and the definition of a suitable generator
function.

To represent the interval list type, we employ a union to select between the
next field, which is used by the cons generator, and the z field, which indicates
the end of the interval.

Also, we need to modify the observer functions by adding an appropriate case
for the new interval representation type, as pictured in slide ??.

Clearly, unless special constructs are provided, the addition of a new generator
case requires disrupting the code implementing the given data type manually, to
extend the definition of the observers with the new case.

In contrast, not surprisingly, when we wish to add a new generator case to the
object realization of the list, we do not need to disrupt the given code, but we
may simply add the definition of the generator subtype as given in slide ??.

Adding a new generator subtype corresponds to defining the realization for an



Decomposition – modules versus objects 7

Adding new generators – representation ADT

typedef int element;

enum { NIL, CONS, INTERVAL };

struct list {
int tag;
element e;
union { element z; list* next; };
};

Generator

list* interval( element x, element y ) {
list* l = new list;
if ( x ¡= y ) {

l-¿tag = INTERVAL;
l-¿e = x; l-¿z = y;
}

else l-¿tag = NIL;
return l;
}

0-7

Slide 0-7: Modules and generators

abstract interface class, which gives a method interface that its subclasses must
respect.

Observe, however, that we cannot exploit the fact that a list is defined by an
interval when testing equality, since we cannot inspect the type of the list as for
the ADT implementation.

0.1.4 Adding new observers

Now, for the complementary case, what happens when we add new observers
to the specification of a data type? Somewhat surprisingly, the object-oriented
approach now seems to be at a disadvantage.

Since in a module realization of an abstract data type the code is organized
around observers, adding a new observer function amounts simply to adding a
new operation with a case for each of the possible generator types, as shown in
slide ??.

When we look at how we may extend a given object realization of an abstract
data type with a new observer we are facing a problem.

The obvious solution is to modify the source code and add the length function



8

Modifying the observers ADT

element head(list* l) { head

require( ! empty(l) );
return l-¿e; // for both CONS and INTERVAL
}

list* tail(list* l) { tail

require( ! empty(l) );
switch( l-¿tag ) {

case CONS: return l-¿next;
case INTERVAL:

return interval((l-¿e)+1,l-¿z);
}

}

0-8

Slide 0-8: Modifying the observers

to the list interface class and each of the generator classes. This is, however,
against the spirit of object orientation and may not always be feasible.

Another, rather awkward solution, is to extend the collection of possible
generator subtypes with a number of new generator subtypes that explicitly
incorporate the new observer function. However, this also means redefining the
tail function since it must deliver an instance of a list with length class.

As a workaround, one may define a function length and an extended version
of the list template class supporting only the length (observer) member function
as depicted in slide ??.

A program fragment illustrating the use of the listWL class is given below.

list<int¿* r = new cons<int¿(1,new cons<int¿(2,new interval(3,7)));
while (! r-¿empty()) {

cout ¡¡ ((listWL¡ int ¿*)r)-¿length() ¡¡ endl;
r = r-¿tail();
}

delete r;

Evidently, we need to employ a cast whenever we wish to apply the length observer
function. Hence, this seems not to be the right solution.

Alternatively, we may use the function length directly. However, we are then
forced to mix method syntax of the form ref→op(args) with function syntax of
the form fun(ref , args), which may easily lead to confusion.

Discussion



Decomposition – modules versus objects 9

Adding new generators OOP

class interval : public list<int¿ { interval

public:
interval(int x, int y) : x(x), y(y) { require( x ¡= y );
}

bool empty() { return 0; }
int head() { return x; }
list¡ int ¿* tail() {

return ( x+1 ¡= y)?
new interval( x+1, y):
new nil<int¿;

}

bool operator ==(list@lt;int¿* m) {
return !m-¿empty() &&
x == m-¿head() && tail() == m-¿tail();
}

protected:
int x; int y;
};

0-9

Slide 0-9: Objects and generators

We may wonder why an object-oriented approach, that is supposed to support
extensibility, is at a disadvantage here when compared to a more traditional
module-based approach.

As observed in [Cook90], the problem lies in the fact that neither of the two
approaches reflect the full potential and flexibility of the matrix specification of
an abstract data type. Each of the approaches represents a particular choice with
respect to the decomposition of the matrix, into either an operations-oriented
(horizontal) decomposition or a data-oriented (vertical) decomposition.

The apparent misbehavior of an object realization with respect to extending
the specification with observer functions explains why in some cases we prefer the
use of overloaded functions rather than methods, since overloaded functions allow
for implicit dispatching to take place on multiple arguments, whereas method
dispatching behavior is determined only by the type of the object.

However, it must be noted that the dispatching behavior of overloaded func-
tions in C++ is of a purely syntactic nature. This means that we cannot exploit
the information specific for a class type as we can when using virtual functions.
Hence, to employ this information we would be required to write as many variants
of overloaded functions as there are combinations of argument types.

Dynamic dispatching on multiple arguments is supported by multi-methods



10

Adding new observers ADT

int length( list* l ) { length

switch( l-¿tag ) {
case NIL: return 0;
case CONS: return 1 + length(l-¿next);
case INTERVAL: return l-¿z - l-¿e + 1;
};

}

0-10

Slide 0-10: Modules and observers

Adding new observers OOP

template¡ class E ¿
int length(list¡ E ¿* l) { length

return l-¿empty() ? 0 : 1 + length( l-¿tail() );
}

template¡ class E ¿
class listWL : public list<E> { listWL

public:
int length() { return ::length( this ); }
};

0-11

Slide 0-11: Objects and observers

in CLOS, see [Paepcke93]. According to [Cook90], the need for such methods
might be taken as a hint that objects only partially realize the true potential of
data abstraction.


