
1

0.1 Flavors of polymorphism

Polymorphism is not a feature exclusive to object-oriented languages. For example
the ML language is a prime example of a non object-oriented language supporting
a polymorphic type system (see Milner et al., 1990). Also, most languages, includ-
ing Fortran and Pascal, support implicit conversion between integers and floats,
and backwards from floats to integers, and (in Pascal) from integer subranges to
integers. Polymorphism (including such conversions) is a means to relieve the
programmer from the rigidity imposed by typing. Put differently, it’s a way in
which to increase the expressivity of the type system.

Typing – protection against errors

• static – type checking at compile time

• strong – all expressions are type consistent

Untyped – flexibility

• bitstrings, sets, λ-calculus

Exceptions to monomorphic typing:

• overloading, coercion, subranging, value-sharing (nil)

0-1

Slide 0-1: 9-typing

Typing, as we have argued before, is important as a means to protect against
errors. We must distinguish between static typing (which means that type check-
ing takes place at compile time) and strong typing (which means that each ex-
pression must be type consistent). In other words, strong typing allows illegal
operations to be recognized and rejected. Object-oriented languages (such as
Eiffel, and to a certain extent C++) provide strong typing which is a mixture
of static typing and runtime checks to effect the dynamic binding of method
invocations. See slide ??.

Typed languages impose rather severe constraints on the programmer. It may
require considerable effort to arrive at a consistently typed system and to deal
with the additional notational complexity of defining the appropriate types. In
practice, many programmers and mathematicians seem to have a preference for
working in an untyped formalism, like bitstrings, (untyped) sets or (untyped)
lambda calculus. We may further note that languages such as Lisp, Prolog and
Smalltalk are popular precisely because of the flexibility due to the absence of
static type checking.

For reliable software development, working in an untyped setting is often
considered as not satisfactory. However, to make typing practical, we need to
relieve the typing regime by supporting well-understood exceptions to monomor-
phic typing, such as overloaded functions, coercion between data types and value
sharing between types (as provided by a generic nil value). More importantly,



2

Flavors of polymorphism

polymorphism



universal

{
parametric (generics)
inclusion (inheritance)

ad-hoc

{
overloading intersection

coercion

• inclusion polymorphism – to model subtypes and inheritance

• parametric polymorphism – uniformly on a range of types

• intersection types – coherent overloading

0-2

Slide 0-2: Flavors of polymorphism

however, we must provide for controlled forms of polymorphism. In [CW85], a
distinction is made between ad hoc polymorphism (which characterizes the mech-
anisms mentioned as common exceptions to monomorphic typing) and universal
polymorphism (which allows for theoretically well-founded means of polymor-
phism). Universal polymorphism may take the form of inclusion polymorphism
(which is a consequence of derivation by inheritance) or parametric polymorphism
(which supports generic types, as the template mechanism offered by C++). See
slide ??. The term inclusion polymorphism may be understood by regarding
inheritance as a means to define the properties of a (sub)type incrementally, and
thus (by adding information) delimiting a subset of the elements corresponding to
the supertype. When overloading is done in a systematic fashion we may speak of
intersection types, which allows for polymorphism based on a finite enumeration
of types. See section ??.

Inheritance as incremental modification

The notion of inheritance as incremental modification was originally introduced
in [WZ88]. Abstractly, we may characterize derivation by inheritance in a formula
as R = P + M , where R is the result obtained by modifying the parent P by
(modifier) M. See slide ??.

For example, we may define the record consisting of attributes a1 . . . an by
adding {a2, a3} to the parent {a1, a2}. Clearly, we must make a distinction
between independent attributes (that occur in either P or M) and overlapping
attributes (that occur in both P and M and are taken to be overruled by the
definition given in M).

An important property of objects, not taken into account in our interpretation



Flavors of polymorphism 3

Inheritance – incremental modification

• Result = Parent + Modifier

Example: R = {a1, a2}+ {a2, a3} = {a1, a2, a3}
Independent attributes: M disjoint from P
Overlapping attributes: M overrules P

Dynamic binding

• R = . . . ,Pi : self !A, . . .+ {. . . ,Mj : self !B , . . .}

0-3

Slide 0-3: Inheritance as incremental modification

of object as records given before, is that objects (as supported by object-oriented
languages) may be referring to themselves. For example, both in the parent and
the modifier methods may be defined that refer to a variable this or self (denoting
the object itself). It is important to note that the variable self is dynamically
bound to the object and not (statically) to the textual module in which the
variable self occurs. [WZ88] make a distinction between attributes that are
redefined in M, virtual attributes (that need to be defined in M) and recursive
attributes (that are defined in P). Each of these attributes may represent methods
which (implicitly) reference self. (In many object-oriented languages, the variable
self or this is implicitly assumed whenever a method defined within the scope of the
object is invoked.) Self-reference (implicit or explicit) underlies dynamic binding
and hence is where the power of inheritance comes from. Without self-reference
method calls would reduce to statically bound function invocation.

Generic abstract data types

Our goal is to arrive at a type theory with sufficient power to define generic (poly-
morphic) abstract data types. In the following section, we will develop a number
of type calculi (following Pierce, 1993) that enable us to define polymorphic types
by employing type abstraction.

Type abstraction may be used to define generic types, data hiding and (in-
heritance) subtypes. The idea is that we may characterize generic types by
quantifying over a type variable. For example, we may define the identity function
id generically as ∀T .id(x : T ) = x , stating that for arbitrary type T and element
x of type T, the result of applying id to x is x. Evidently this holds for any T.

In a similar way, we may employ type parameters to define generic abstract
data types. Further, we may improve on our notion of objects as records by
defining a packaging construct that allows for data hiding by requiring merely
that there exists a particular type implementing the hidden component.

Also, we may characterize the (inheritance) subtyping relation in terms of
bounded quantification, that is quantification over a restricted collection of types
(restricted by imposing constraints with respect to the syntactic structure of the
type instantiating the type parameter).


