0.1 Existential types — hiding

Existential types were introduced in [CW85] to model aspects of data abstraction
and hiding. The language introduced in [CW85] is essentially a variant of the
typed lambda calculi we have looked at previously.

Our new calculus, that we call F5, is an extension of F¢ with type expressions
of the form Ja<o.7 (to denote existential types) and expressions of the form
pack[a = o in 7] (to denote values with hidden types). Intuitively, the meaning of
the expression pack[o = o in 7] is that we represent the abstract type a occurring
in the type expression 7 by the actual type o (in order to realize the value e).
Following the type assignment rule, we may actually provide an instance of a
subtype of the bounding type as the realization of a hidden type. See slide ?77?.

Existential types — hiding 0-1
e Tu=...| Fasn.m
e cu=... | packla =0cinT|.e

Type assignment

IT'Fo'<o I'ke:7
packla = ¢’ inT].e € Ja<o.T

Refinement
I'Fo<o! er'<r
T'F3da<o . 7'<Ja<o.T

Slide 0-1: The existential type calculus

The subtyping refinement rule is similar to the refinement rule for univer-
sally quantified types. Notice also here the contravariance relation between the
bounding types.

More interesting is what bounding types allow us to express. (As before, we
will write 3 .7 to denote Ja< Top.7.) First, existential types allow us to indicate
that the realization of a particular type exists, even if we do not indicate how.
The declaration e : Ja.7 tells us that there must be some type o such that e of
type 7 can be realized. Apart from claiming that a particular type exists, we may
also provide information concerning its structure, while leaving its actual type
undetermined.

For example, the type 3 a.cv (which may clearly be realized by any type) carries
no information whatsoever, hence it may be considered to be equal to the type
Top. More information, for example, is provided by the type 3a 3 [.a0 x which
defines the product type consisting of two (possibly distinct) types. (A product
may be regarded as an unlabeled record.) The type Ja.a X « gives even more
information concerning the structure of a product type, namely that the two
components are of the same type. Hence, for the actual product (3,4) the latter
is the best choice. See slide ?7.

Structure — indeterminacy 0-2
e Top =Fa.a the biggest type
o AnyPair =3aIf.a X any pair
e (3,4) : Ja.av — does not provide sufficient structure!
e (3,4): Jaaa
Information hiding
e Ja.a X (a—Int) object, operation
e z:Ja.ax (a—Int) ~ snd(z)(fst(z))

Slide 0-2: Existential types — examples

Existential types may be used to impose structure on the contents of a value,
while hiding its actual representation. For example, when we have a variable
z of which we know that it has type Ja.a x (a—1Int) then we may use the
second component of x to produce an integer value from its first component, by
snd(z)(fst(x)), where fst extracts the first and snd the second component of a
product. Clearly, we do not need to know the actual representation type for a.

A similar idea may be employed for (labeled) records. For example, when we
have a record z of type Ja.{val : a, op : «—Int} then we may use the expression
z.op(x.val) to apply the operation op to the value val. Again, no knowledge of
the type of val is required in this case. However, to be able to use an element of an
existential type we must provide an actual representation type, by instantiating

the type parameter in a pack statement.

Abstract data types — packages
e z:3Ja{val:a,op:a—Int}
e z = packla = Int in {val : a, op : a—Int}]((3,9))
e z.op(z.val) =4

0-8

Encapsulation ’ pack[representation in interface](contents)

o interface — type a.{val : o, 0p : a—Int}
e representation — a = Int

e contents — (3, 5)

Slide 0-3: Packages — examples

The pack statement may be regarded as an encapsulation construct, allowing

us to protect the inner parts of an abstract data type.

When we look more

closely at the pack statement, we can see three components. First, we have an

Existential types — hiding 3

interface specification corresponding to the existential type associated with the
pack expression. Secondly, we need to provide an actual representation of the
hidden type, Int in the example above. And finally, we need to provide the actual
contents of the structure. See slide ?7.

In combination with the notion of objects as records, existential types provide
us with a model of abstract data types. Real objects, however, require a notion of
self-reference that we have not captured yet. In the next section we will conclude
our exploration of type theories by discussing the F), calculus that supports
recursive (object) types and inheritance.

Hiding in C++4 Naturally, the classical way of data hiding in C++ is to employ
private or protected access protection. Nevertheless, an equally important means
is to employ an abstract interface class in combination with forwarding.

class event { 4
protected:

event(event* x) : ev(x) {}

public:

int type() { return ev-jtype(); }
void* rawevent() { return ev; }
private:

event* ev;

};

class xevent : public event {
public:

int type() { return X-;type(); }

private:

struct XEvent* X;

};

Slide 0-4: Hiding in C++

For example, as depicted in slide 7?7, we may offer the user a class event
which records information concerning events occurring in a window environment,
while hiding completely the underlying implementation. The actual xzevent class
realizing the type event may itself need access to other structures, as for example
those provided by the X window environment. Yet, the zevent class itself may
remain entirely hidden from the user, since events are not something created
directly (note the protected constructor) but only indirectly, generally by the
system in response to some action by the user.

