
1

0.1 Self-reference

Recursive types are compound types in which the type itself occurs as the type
of one of its components. Self-reference in objects clearly involves recursive
types since the expression self denotes the object itself, and hence has the type
of the object. In Fµ, our extension of F6 taken from [CoHC90], recursive
types are written as µα.τ [α], where µ is the recursion abstractor and α a type
variable. The dependence of τ on α is made explicit by writing τ [α]. We
will use the type expressions µα.τ [α] to type object specifications of the form
λ(self).{a1 = e1, . . . , an = en} as indicated by the type assignment rule below.
Object specifications may be regarded as class descriptions in C++ or Eiffel.

Self-reference – recursive types Fµ

• τ ::= . . . | µα.τ [α]

• e ::= . . . | λ(self).{a1 = e1, . . . , an = en}

Type assignment

• Γ ` ei : τi (i = 1..n)
Γ ` λ(self).{a1 = τ1, .., an = τn} ∈ µα.{a1 : τ1, .., an : τn}[α]

Refinement

• Γ, α6β ` σ6τ
Γ ` µα.σ[α]6µβ.τ [β]

0-1

Slide 0-1: A calculus for recursive types

The subtype refinement rule for recursive types states that µα.σ[α]6µβ.τ [β]
if we can prove that σ6τ assuming that α6β.

An object specification λ(self).{. . .} is a function with the type of the actual
object as its domain and (naturally) also as its range. For convenience we will
write an object specification as λ(self).F , where F denotes the object record, and
the type of an object specification as µα.F [α], where F [α] denotes the (abstract)
type of the record F.

To obtain from an object specification λ(self).F the object that it specifies,
we need to find some type σ that types the record specification F as being of
type σ precisely when we assign the expression self in F the type σ. Technically,
this means that the object of type σ is a fixed point of the object specification
λ(self).F (self) which is of type σ→σ. We write this as Y (λ(self).F (self)) : σ,
which says that the object corresponding to the object specification is of type σ.
See slide ??.

Finding the fixed point of a specification involves technically a procedure
known as unrolling, which allows us to rewrite the type µα.F [α] as F [µα.F [α]].
Notice that unrolling is valid, precisely because of the fixed point property. Namely,
the object type σ is equal to µα.F [α], due to the type assignment rule, and we
have that σ = F [σ]. See slide ??.

2

Object semantics – fixed point σ = F [σ]

• Y (λ(self).F (self)) : σ

Unrolling – unraveling a type

• µα.F [α] = F [µα.F [α]]

Example

T = µα.{a : int , c : α, b : α→α}
T1 = {a : int , c : T , b : T→T , d : bool}
T2 = µα.{a : int , c : α, b : T→T , d : bool}
T3 = µα.{a : int , c : α, b : α→α, d : bool}

T1,T26T , T3 6 6T (contravariance)

0-2

Slide 0-2: Recursive types – examples

Unrolling allows us to reason on the level of types and to determine the
subtyping relation between recursive subtypes. Consider, for example, the type
declarations T and Ti (i = 1..3) above. Based on the refinement rules for object
records, functions and recursive types, we may establish that T16T , T26T but
T3 6 6T . To see that T16T , it suffices to substitute T for α in F, where
F = {a : Int , c : α, b : α→α}. Since F [T] = {a : Int , c : T , b : T→T} we
immediately see that T1 only extends T with the field d : Bool , hence T16T .
A similar line of reasoning is involved to determine that T26T , only we need to
unroll T2 as well. We must then establish that c : T26c : T , which follows from
an application of the refinement rule.

To show that T3 6 6T , let G [β] = {a : Int , c : β, b : β→β, d : Bool}
and T3 = µβ.G [β]. Then, by unrolling, T3 = G [T3] = {a : Int , c : T3, b :
T3→T3, d : Bool}. Now, suppose that T36T , then G [T3]6F [T3] and conse-
quently b : T3→T3 must refine b : T→T . But from the latter requirement
it follows that T36T and that T6T3 (by the contravariance rule for function
subtyping). However, this leads to a contradiction since T is clearly not equal to
T3 because T3 contains a field d : Bool that does not occur in T.

Although analyses of this kind are to some extent satisfactory in themselves,
the reader may wonder where this all leads to. In the following we will apply
these techniques to show the necessity of dynamic binding and to illustrate that
inheritance may easily violate the subtyping requirements.

Inheritance In section ?? we have characterized inheritance as an incremental
modification mechanism, which involves a dynamic interpretation of the expres-
sion self. In the recursive type calculus Fµ we may characterize this more pre-
cisely, by regarding a derived object specification C as the result of applying
the modifier M to the object specification P. We employ the notation C =
λ(self).P(self) with {a ′1 = e ′1, . . . , a

′
k = e ′k} to characterize derivation by inheri-

Self-reference 3

tance, and we assume the modifier M corresponding with {a ′1 = e ′1, . . . , a
′
k = e ′k}

to extend the record associated with P in the usual sense. See slide ??.

Inheritance – C = P + M

• P = λ(self).{a1 = e1, . . . , an = en}
• C = λ(self).P(self) with {a1′ = e1′, . . . , a′k = e′k}

Semantics – Y (C) = Y (λ(self).M (self)(P(self)))

• P : σ→σ ⇒ Y (P) : σ

• C = λ(s).M (s)(P(s)) : τ→τ ⇒ Y (C) : τ

0-3

Slide 0-3: Inheritance semantics – self-reference

The meaning of an object specification C is again a fixed point Y (C), that is
Y (λ(self).M (self)(P(self))). Now when we assume that the object specification
is of type τ→τ (and hence Y (P) of type τ), and that C is of type σ→σ (and
hence Y (C) of type σ), then we must require that σ6τ to obtain a properly
typed derivation. We write C6P whenever σ6τ .

A first question that arises when we characterize inheritance as incremental
modification is how we obtain the meaning of the composition of two object
specifications.

Object inheritance – dynamic binding P = λ(self).{i = 5, id = self }
C = λ(self).P(self) with {b = true}
Y (P) : τ where τ = µα.{i : int , id : α} and P : τ→τ
Simple typing – Y (C) : σ = {i : int , id : τ, b : bool}
Delayed – Y (C) : σ′ = µα.{i : int , id : α, b : bool}
We have σ′6σ (more information)

0-4

Slide 0-4: Object inheritance – dynamic binding

Let (parent) P and (child) C be defined as above. Now, if we know that
the type of Y (P) is τ then we may simply characterize Y (C) as being of type
σ = {i : Bool , id : τ, b : Bool}. However, when we delay the typing of the P
component (by first composing the record specifications before abstracting from
self) then we may obtain σ′ = µα.{i : Int , id : α, b : Bool} as the type of Y (C).
By employing the refinement rule and unrolling we can show that σ′6σ. Hence,
delayed typing clearly provides more information and must be considered as the
best choice. Note, however, that both σ′6τ and σ6τ hold. See slide ??.

A second, important question that emerges with respect to inheritance is how
self-reference affects the subtyping relation between object specifications related
by inheritance.

Consider the object specifications P and C given in slide ??. In the (derived)
specification C, the method eq is redefined to include an equality test for the b

4

component. However, when we determine the object types corresponding to the
specifications P and C we observe that C 6 6P .

Contravariance

• P = λ(self).{i = 5, eq = λ(o).(o.i = self .i)}

C = λ(self).P(self) with {b = true,
eq = λ(o).(o.i = self .i and
o.b = self .b)

}

Y (P) : τ where τ = µα.{i : int , eq : α→bool}
Y (C) : σ where σ = µα.{i : int , id : α→bool , b : bool}
However σ 6 6τ (subtyping error)

0-5

Slide 0-5: Object inheritance – contravariance

The reasoning is as follows. For Y (P) : τ and Y (C) : σ, we have that
σ = µβ.{i : Int , id : β→Bool , b : Bool} which is (by unrolling) equal to {i :
Int , id : σ→Bool , b : Bool}. Now suppose that σ6τ , then we have that {i :
Int , eq : σ→Bool , b : Bool} is a subtype of {i : Int , eq : τ→Bool} which is
true when eq : σ→Bool6eq : τ→Bool and hence (by contravariance) when σ6τ .
Clearly, this is impossible. Hence σ 6 6τ .

We have a problem here, since the fact that C 6 6P means that the type
checker will not be able to accept the derivation of C from P, although C is
clearly dependent on P. The solution to our problem lies in making the type
dependency involved in deriving C from P explicit. Notice, in this respect, that
in the example above we have omitted the type of the abstraction variable in the
definition of eq, which would have to be written as λ x : Y (P).x .i = self .i (and
in a similar way for C) to do it properly.

Type dependency The expression self is essentially of a polymorphic nature.
To make the dependency of object specification on self explicit, we will employ
an explicit type variable similar as in F6.

Let F [α] stand for {a1 : τ1, . . . , an : τ} as before. We may regard F [α] as a
type function, in the sense that for some type τ the expression F [τ] results in a
type. To determine the type of an object specification we must find a type σ that
satisfies both σ6F [σ] and F [σ]6σ.

We may write an object specification as Λα6F [α]. λ(self : α).{a1 = e1, . . . , an

= en}, which is typed as ∀α6F [α].α→F [α]. The constraint that α6F [α], which
is called an F-bounded constraint, requires that the subtype substituted for α
is a (structural) refinement of the record type F [α]. As before, we have that
Y (P [σ]) = σ with σ = µα.F [α], which differs from our previous definition only
by making the type dependency in P explicit. See slide ??.

Now, when applying this extended notion of object specification to the char-

Self-reference 5

Type dependency – is polymorphic

• Let F [α] = {m1 : σ1, . . . ,mj : σj }
• P : ∀α6F [α].t→F [α]

• P = Λα6F [α]. λ(self : α).{m1 : e1, . . . ,mj : ej }
F-bounded constraint α6F [α]
Object instantiation: Y (P [σ]) for σ = µ t .F [t]
We have P [σ] : σ→F [σ] because F [σ] = σ

0-6

Slide 0-6: Bounded type constraints

acterization of inheritance, we may relax our requirement that Y (C) must be a
subtype of Y (P) into the requirement that G [α]6F [α] for any α, where F is the
record specification of P and G the record specification of C.

Inheritance

P = Λα6F [α].λ(self : α).{. . .}
C = Λα6G[α].λ(self : α).P [α](self) with {. . .}

with recursive types
F [α] = {i : int , id : α→bool}
G[α] = {i : int , id : α→bool , b : bool}
Valid, because G[α]6F [α]
However Y (C [σ]) 6 6subtypeY (P [τ])

0-7

Slide 0-7: Inheritance and constraints

For example, when we declare F [α] and G [α] as in slide ??, we have that
G [α]6F [α] for every value for α. However, when we find types σ and τ such that
Y (C [σ]) : σ and Y (P [τ]) : τ we (still) have that σ 6 6τ . Conclusion, inheritance
allows more than subtyping. In other words, our type checker may guard the
structural application of inheritance, yet will not guarantee that the resulting
object types behaviorally satisfy the subtype relation.

Discussion – Eiffel is not type consistent We have limited our exploration of
the recursive structure of objects to (polymorphic) object variables. Self-reference,
however, may also occur to class variables. The interested reader is referred
to [CoHC90]. The question that interests us more at this particular point is
what benefits we may have from the techniques employed here and what lessons
we may draw from applying them.

One lesson, which should not come as a surprise, is that a language may
allow us to write programs that are accepted by the compiler yet are behaviorally
incorrect. However, if we can determine syntactically that the subtyping relations
between classes is violated we may at least expect a warning from the compiler.

6

So one benefit, possibly, is that we may improve our compilers on the basis of the
type theory presented in this chapter. Another potential benefit is that we may
better understand the trade-offs between the particular forms of polymorphism
offered by our language of choice.

The analysis given in [CoHC90] indeed leads to a rather surprising result.
Contrary to the claims made by its developer, [CoHC90] demonstrate that Eiffel
is not type consistent. The argument runs as follows. Suppose we define a class
C with a method eq that takes an argument of a type similar to the type of the
object itself (which may be written in Eiffel as like Current). We further assume
that the class P is defined in a similar way, but with an integer field i and a
method eq that tests only on i. See slide ??.

Inheritance != subtyping Eiffel

class C inherit P redefine eq
feature

b : Boolean is true;
eq(other : like Current) : Boolean is
begin

Result := (other.i = Current.i) and
(other.b = Current.b)

end
end C

0-8

Slide 0-8: Inheritance and subtyping in Eiffel

We may then declare variables v and p of type P. Now suppose that we have
an object c of type C, then we may assign c to v and invoke the method eq for v,
asking whether p is equal to v, as in

p,v:P, c:C

v:=c;
v.eq(p); // error p has no b

0-9

Slide 0-9: Example
Since v is associated with an instance of C, but syntactically declared as being
of type P, the compiler accepts the call. Nevertheless, when p is associated with
an instance of P trouble will arise, since (due to dynamic binding) the method eq
defined for C will be invoked while p not necessarily has a field b.

When we compare the definition of C in Eiffel with how we may define C in
C++, then we are immediately confronted with the restriction that we do not have
such a dynamic typing mechanism as like Current in C++. Instead, we may use
overloading, as shown in slide ??.

Self-reference 7

class C : public P { C++

int b;
public:
C() { ... }
bool eq(C& other) { return other.i == i && other.b

== b; }
bool eq(P& other) { return other.i == i; }
};

0-10

Slide 0-10: Inheritance and subtyping in C++

When we would have omitted the P variant of eq, the compiler complains about
hiding a virtual function. However, the same problem arises when we define eq
to be virtual in P, unless we take care to explicitly cast p into either a C or P
reference. (Overloading is also used in [Liskov93] to solve a similar problem.) In
the case we choose for a non-virtual definition of eq, it is determined statically
which variant is chosen and (obviously) no problem occurs.

Considering that determining equality between two objects is somehow or-
thogonal to the functionality of the object proper, we may perhaps better employ
externally defined overloaded functions to express relations between objects. This
observation could be an argument to have overloaded functions apart from objects,
not as a means to support a hybrid approach but as a means to characterize
relations between objects in a type consistent (polymorphic) fashion.

