
Foreword

What an unusual book! I have certainly seen many books on object-oriented soft-

ware development and even some that have similar coverage, but Anton Eli�ens's

book is in a di�erent category entirely. As so many books in our �eld, this

one has also had its roots in the development of lecture notes. However, Eli�ens

took a surprising deviation from the established path of developing notes into

books. Instead of in
ating the notes, reorganizing the material, and creating the

traditional textbook, Eli�ens decided to keep the essence of his notes alive.

By condensing the key points into "slides" and keeping these slides as visual

anchors all over his text, the reader's experience is truly di�erent. There is a

fast track where we just follow the slides: this is what students to with hand-

outs on �rst encounter. Then there are the deeper modes of reading where we

focus in and follow Eli�ens's full-text explanations; explanations that are thorough

enough where that is important and shallow enough where overwhelming detail

wouldn't pay back. Reading through this book and working with it to enhance

our understanding is a pleasure.

For a breakdown of the book's structure, I refer to the preface and the foreword

to the �rst edition. However, it is worth noting that Eli�ens has improved his text

substantially over the �rst edition. A theme close to my heart has been woven into

the text: components. Software architecture, a closely related theme of quickly

growing importance, has also found coverage.

The style and didactic quality of the presentation are matched by a wide-

ranging selection of topics. Living in times of rapid change and extremely broad

diversi�cation of our discipline, we have to value the few books that span signif-

icant ranges in an integrative fashion. After all, it is the reader's key challenge

to use books like Eli�ens's to reconstruct and integrate the vast sea of knowledge

fragments out there; and it is with the help of books like Eli�ens's that the reader

has a chance of achieving this formidable goal. Instructors and lecturers will

equally appreciate this book as readily usable for teaching and lecturing tasks.

In the end, for the software developer to be, as well as for the established

software developer or the computer scientist with an eye on software development,

there is a lot to know from a spectrum of subdisciplines, before we can feel even

half-con�dent about what we are actually doing when developing software. To get

there, we need to understand everything from modeling and design techniques,

over architecture and components, to implementation detail expressed in speci�c

programming languages. This book is a good starting point for doing so from

v



vi Foreword

an object-oriented perspective. (Keep your eyes open for other perspectives and

approaches, though!)

Clemens Szyperski

November 1999



Foreword to the first edition

This book is an important contribution to object-oriented literature, bridging

the gap between the language and software engineering communities. It covers

language design issues relating to inheritance, types, polymorphism, and active

objects as well as software design paradigms such as the object modeling technique

(OMT), the model-view-controller paradigm (MVC) and responsibility-driven

design. Its four-part subdivision of the subject matter into design, languages

and systems, foundations, and application frameworks nicely balances practice

and theory, covering both practical design techniques and foundational models.

Its use of C

++

as the primary application language, with Smalltalk and Ei�el as

additional languages, allows the book to be used in courses with programming

assignments in mainstream object-oriented languages.

The overall sense of balance and perspective is matched by an engaging style

and a modern treatment of an exceptionally broad range of topics in the body of

the book. The conceptually challenging questions at the end of each chapter (with

answers in an appendix) are sometimes humorous. For example, the question

`Why do you need friends?', which invites the reader to examine the value of this

C

++

language construct, is nicely answered by pointing out tradeo�s between

e�ciency and safety, ending with the admonition `treat friends with care'.

Object-oriented programming started as a language framework for single-

user systems, but is maturing into a technology for heterogeneous, distributed

network systems that focus on interoperability and glue for the composition of

heterogeneous modules. The notion of structure in object-oriented programming

is analogous to, but more complex than, the structure of structured programming.

This book re
ects the maturation process from single-user to distributed systems

technology and provides a bridge from object-oriented concepts of single-user

programming to distributed software design concepts.

Basic object-oriented concepts are introduced from the viewpoint of design,

thereby motivating language concepts by their role in the software life cycle.

The �rst four chapters provide a gentle introduction to fundamental concepts

that yields unexpected insights for the seasoned reader. Chapter 1 examines

paradigms of programming and provides a distinctive object-oriented view of

the software life cycle, while chapter 2 presents C

++

, examines its bene�ts and

pitfalls, and compares it to Smalltalk and Ei�el. Chapter 3 on object-oriented

design includes an insightful discussion of models, contracts, and speci�cations

that provides a comparative overview and synthesis of alternative approaches to
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the conceptual foundations of design. Chapter 4 rounds out the section on design

with a discussion of testing and metrics for software validation that provides a

practical counterpoint to the conceptual focus of earlier chapters.

The topics in the �rst four chapters are well chosen to provide a foundation

for later topics. The chapter on language design principles includes an up-to-

date review of models of inheritance and delegation, the chapter on concur-

rency examines inheritance anomalies, concurrent object models, and principles

of distributed programming, while the chapter on composition and collaboration

explains callbacks, window management, and event-driven computation. The

three chapters on foundations examine, in a substantive but relaxed way, algebraic

models for abstract data types, calculi for type polymorphism, and behavioral

re�nement through subtyping. The two �nal chapters provide an account of

interoperability, standards, library design, requirements engineering, hypermedia

links, and heterogeneous systems.

This book covers an unusually broad range of topics in an eminently read-

able fashion and is unique in its balance between theory and practice and its

multifaceted approach. Anton Eli�ens demonstrates an up-to-date mastery of the

literature and the rare ability to compare, evaluate, and synthesize the work of

di�erent software research and development communities. He is to be commended

on his skill and versatility in weaving a sequential expository thread through a

heterogeneous, distributed domain of subject matter.

Peter Wegner

October 1994



Preface

This is a book about object-oriented software development. It re
ects the contents

of an upper-level undergraduate course on Object-Oriented Programming, given

at the Vrije Universiteit Amsterdam.

This was the beginning of the preface of the �rst edition. It still holds true.

However, OO is a rapidly evolving �eld. As a consequence my book, published in

1994, may have been considered to be outdated from the start. As an example,

right after its publication, patterns came into the focus of public interest. As

another example, think of the Java wave that has come over us. Clearly, a revised

edition was needed in which those subjects, and other subjects, are covered, or,

as in the case of CORBA, are covered in more detail.

Another reason is that the �eld of OO itself has matured considerably. The

acceptance of UML as a modeling standard is one example. The increased utiliza-

tion of CORBA for business-critical applications is another sign that (distributed)

object technology is being considered as su�ciently robust.

The availability of new topics in itself is not enough to justify a second edition,

since new books have been published in which these topics are covered. You only

have to think of the enormous number of books on Java ... A revised second edition

of the book is justi�ed however, in my opinion, since the book distinguishes itself

from the competition by its approach. Set up as a series of lectures, organized

around so-called slides, the book covers a large number of topics, some in depth,

some more casually. From an educational point of view, the advantage of this

approach is the direct availability of educational material, including the slides to

be presented in classroom. For the average reader, moreover, the slides provide

an overview which facilitates comprehension and recall.

Finally, another more personal reason for bringing out a revised edition is that

both in research and teaching my experience with OO has become more extensive,

and I may even dare say that my own thoughts about OO have matured to some

extent. In particular, in my group we have developed a multi-paradigm OO

framework, which was already introduced in chapter 12 of the �rst edition, that

has been applied in, for example, business process reengineering and collective

improvisation on the Web. Although I do not plan to treat any of this material

extensively, it does provide a basis for the examples and, moreover, the material

(including articles, software and examples) will be available on the accompanying

CDROM.
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Features of this book

� The book provides an introduction to object-oriented programming, cover-

ing design, languages, and foundational issues. It pays attention to issues

such as reuse, component technology, design patterns and in particular the

application of object technology in Web applications.

� It contains guidelines for developing object-oriented applications. Apart

from practical examples it provides an overview of development methods as

well as an introduction to UML, the standard for object-oriented modeling.

In particular design patterns will act as a recurrent theme, or rather as a

perspective from which examples and solutions will be discussed.

� Distributed object technology will be a major theme. The book provides an

introduction to CORBA that allows the student to gain hands-on experience

with developing CORBA applications. It also provides a discussion of

competing technologies, and in particular it will elucidate the distinction

between component technology and distributed objects. Examples in Java

and C

++

will be included.

� Another major theme of the book is to establish precisely the relation

between the guidelines and prescriptions emerging from software engineering

practice on the one hand, and the constraints and insights originating from

theoretical research. In the book attention will be paid to foundational

issues as well as the pragmatical solutions the designers of object-oriented

languages have chosen to realize their ideas.

� Many of the notions introduced and problems discussed are clari�ed by

short programs, mostly in Java, some in C

++

. The examples cover GUI

development, business process reengineering and Web applications. No

extensive knowledge of the programming languages used is required since

a brief tutorial on a number of object-oriented programming languages,

including C

++

, Smalltalk, Ei�el and Java, is given in the appendix.

� The material is organized around slides. The slides occur in the text in

reduced format, but are also available in Powerpoint and Netscape Presen-

tation format. Each slide captures some important notion or concept which

is explained and commented upon in the accompanying text. An online

Instructor's Guide is available that provides hints for presenting the slides

and answers to the questions posed at the end of each chapter.

� The entire book, including the software from the examples and the Instruc-

tor's Guide is available electronically, on the accompanying CDROM as well

as on the Internet. The electronic version contains links to other material on

the Internet. The electronic version may be accessed also in slide mode that

allows for presenting the material in a classroom equipped with a beamer.
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Intended readers The book will primarily address an academic audience, or IT

professionals with an academic interest. Nevertheless, since I am getting more

and more involved in joint research with business partners and the development

of extra-academic curricula, examples are included that are of more relevance

to IT in business. In particular, it contains a section on the deployment of

(object-oriented) simulation for business process redesign, and a section on the

3D visualisation of business data using object technology.

This book may be used as the primary text for a course on OO or indepen-

dently as study or reference material. It may be used by the following categories

of readers:

� students { as a textbook or as supplementary reading for research or project

papers.

� software engineers { as (another) text on object-oriented software develop-

ment.

� professional teachers { as ready-made material for a course on object-oriented

software development.

Naturally, this is not meant to exclude other readers. For instance, researchers

may �nd the book useful for its treatment of foundational issues. Programmers

may bene�t from the hints and example programs in Java and C

++

. Another

reason for using this book may be its compact representation of already familiar

material and the references to other (often research) literature.

The book is meant to be self-contained. As prior knowledge, however, a general

background in computer science (that is, computer languages and data structures

as a minimum) is required. To fully understand the sections that deal with

foundational issues or formal aspects, the reader must also have some knowledge

of elementary mathematical logic.

Organization The book is divided into four parts. Each part presents the issues

involved in object-oriented programming from a di�erent perspective, which may

be characterized respectively as software engineering and design, languages and

system development, abstract data types and polymorphism, and applications and

frameworks.

Part I: Designing Object-Oriented Systems

1. Introduction: This chapter gives an introduction to the area of object-oriented

software development. It gives a global view on the object-oriented life cycle and

discusses object orientation as a paradigm of programming. It discusses a number

of trends and technologies that have come into the focus of public attention and

indicates their relevance to `object-orientation'.
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2. Idioms and patterns*: This chapter introduces idioms and design patterns as

means to capture recurrent structures and solutions in object-oriented program-

ming. It distinguishes between idioms as solutions tied to a particular language

and patterns which are the product of rational design. This chapter contains

numerous examples, in Java.

3. Software engineering perspectives: This chapter discusses the process of soft-

ware development and the various modeling perspectives involved in analysis and

design. It explains the issues involved in arriving at a proper object model and

introduces the notion of contract as an instrument to capture the relationships

between object classes. In addition, it proposes a method for validation and

testing based on contracts.

4. Application development*: In this chapter we develop a complete application

and discuss the issues involved in its design and realization. It presents guidelines

for (individual) class design, and gives an example of how to derive an implemen-

tation from a formal speci�cation.

Part II: Object-Oriented Languages and Systems

5. Object-oriented languages: This chapter provides a comparison between object-

oriented languages, including Smalltalk, Ei�el, C

++

and Java. It further discusses

a number of alternative languages, included Self and Javascript, each with their

own object model, and treats issues such as dynamic inheritance by delegation.

synchronous active objects, and meta-level architectures for class-based languages.

6. Component technology*: This chapter discusses the relation between compo-

nent technology and distributed object technology, and will give a brief overview of

the solutions that are available on the market, including Microsoft COM/ActiveX,

JavaBeans, Java RMI and CORBA. It also presents a simple workgroup applica-

tion and an example of integrating CORBA with an existing software library.

7. Software architecture*: In this chapter we explore how software architecture

a�ects design and implementation. It treats design patterns for distributed object

systems, and looks at the technical issues involved in developing multi-lingual

systems. As an example we show how to employ the native interface to embed an

existing framework in Java.

Part III: Foundations of Object-Oriented Modeling

8. Abstract data types: This chapter considers the notion of abstract data types

from the perspective of types as constraints. It presents an algebraic approach in

which objects may be characterized as algebras. Further, it explains the di�erence

between the classical approach of realizing abstract data types in procedural

languages and the realization of abstract data types in object-oriented languages.

The implications of a more pragmatic conception of types is also discussed.
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9. Polymorphism: This chapter discusses inheritance from a declarative per-

spective, and gives a precise characterization of the subtype relation. It further

discusses the various 
avors of polymorphism and presents a type theoretical

treatment of genericity and overloading. Also, type calculi that capture data

hiding and self-reference are given. These insights are related to the realization

of polymorphism in Ei�el, C

++

and Java.

10. Behavioral re�nement: This chapter extends the notion of types as con-

straints to include behavioral properties. It presents an assertion logic for the

veri�cation of programs and discusses the operational model underlying the ver-

i�cation of object behavior based on traces. It further gives precise guidelines

to determine whether classes that are syntactical subtypes satisfy the behavioral

re�nement relation. Finally, an overview is given of formal approaches to charac-

terize the behavior of collections of objects.

Part IV: Object-Oriented Application Frameworks

11. Business process redesign*: In this chapter we look at the opportunities

IT o�ers in (re)designing business processes. In particular, we look at (object-

oriented) simulation as a means to capture the logistical aspects involved in

business process modeling, and in addition we look at how simulation models

can be made available as to allow decision making, by deploying visualisation and

dissemination over the Web.

12. Web applications*: In this chapter we look at how object technology may be

applied to the Web. We will look both at client-side extensions and server-side

solutions. In particular, we look at systems that employ CORBA in addition to

other Web technologies. We also brie
y look at another new trend in computing,

intelligent, mobile agents, and we argue that agents are a direct derivation from

object technology.

Appendices The appendices contain brief tutorials on Smalltalk, Ei�el, C

++

,

Java and the distributed logic programming language DLP. They also contain

an overview of UML, an overview of CORBA IDL, a tutorial on programming

CORBA applications with Orbacus, and suggestions for small and medium-term

projects.

Tracks For those developing a course on object-oriented programming, the book

o�ers a choice between various tracks, for which the ingredients are sketched

below. Also, an indication is given of the sections that contain more advanced

material.
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regular extended advanced

programming 2, 4, 5, 12 6, 11 7, 8

software engineering 1, 3, 4, 11 8.1-2, 10.1 9.1-3, 10.2

theoretical 1, 3, 8 5, 9.1-4 9.5-6, 10

The programming track, consisting of chapters 2, 4, 5 and 12, may be aug-

mented with material from the appendices and chapters 6 and 11. The software

engineering track, consisting of chapters 1, 3, 4 and 11, may be augmented with

material from the theoretical track as indicated. The theoretical track, consisting

of chapters 8, 9 and 10, may need to be augmented with more general information

concerning OOP provided in the other tracks.

Di�erences with respect to the �rst edition For clarity I have marked the

chapters that have been substantially changed with an asterisks.

Adding new topics is one thing, eliminating parts of the book, naturally, is

quite another thing. Yet I have chosen to remove the chapters on C

++

(pre-

viously chapter 2), software engineering issues (chapter 4), concurrency in C

++

(chapter 6), composition mechanisms (chapter 7), software libraries (chapter 11)

and hypermedia (chapter 12). Some of this material, for example parts of the

hypermedia chapter (12), composition mechanisms (7), and software engineering

issues (4), will reappear elsewhere. Nevertheless, since some of it is obsolete, and

other material does not function well in classroom, it is better to remove it, and

allow its space to be taken by other topics.

Background and motivations My own interest in object-oriented languages

and software development stems from my research on the language DLP, a lan-

guage integrating logic programming with object-oriented features and parallelism

(Eli�ens, 1992). When looking for material for a course on object-oriented program-

ming, I could not �nd a book that paid su�cient attention to foundational and

formal aspects. Most of the books were written from a perspective on OOP that

did not quite suit my purposes. What I was looking for could to some extent

only be found in research papers. As a consequence, I organized my OOP course

around a small number of papers, selecting the papers that, to my mind, can

be considered as landmark papers, papers that have become known as originally

presenting some signi�cant notion or insight. The apparent disadvantage of basing

a course on OOP on papers is the obvious lack of a uni�ed view, and of a consistent

use of terminology. The advantage of such an approach, however, is that students

are encouraged to assess the contribution of each paper and to form their own

view by comparing critically the di�erent viewpoints expressed in the papers.

Personally, I favor the use of original papers, since these somehow show more

clearly how the ideas put forward originated. Later, more polished, renderings of

these same ideas often lack this quality of `discovery'.

The idea of organizing a book around slides came quite naturally, as the

result of structuring the growing collection of slides, and the wish to maintain

the compact representation o�ered by the slides.
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The choice of material re
ects my personal preference for foundational issues,

in other words, papers that are focused on concepts rather than (mal)practice.

The choice of material has also been colored by my interest in (distributed)

hypermedia systems, the Web and, to some extent, by my previous work on

distributed logic programming. Although the book is certainly not focused on

language constructs, modeling issues as well as foundational issues are generally

related to existing or conceivable language constructs, and (whenever possible)

illustrated by working examples developed for that purpose.

The choice for Java as the main vehicle for presenting the program fragments

and examples is motivated simply by the popularity of Java. The presentation

of some of the other examples in C

++

re
ects my belief that C

++

must still be

considered as a valid programming language for object-oriented software develop-

ment. However, I also believe that in the (near) future multi-paradigm approaches

(extending Java and C

++

) will play a signi�cant role.

The approach taken in this book may be characterized as abstract, in the

sense that attention is paid primarily to concepts rather than particular details

of a solution or implementation language. By chance, in response to a discussion

in my class, I looked up the meaning of abstract in a dictionary, where to my

surprise I learned that one of its meanings is to steal, to take away dishonestly.

Jokingly, I remarked that this meaning sheds a di�erent light on the notion of

abstract data types, but at a deeper level I recognized the extent to which the ideas

presented in this book have pro�ted from the ideas originally developed by others.

My rendering of these ideas in a more abstract form is, however, not meant to

appropriate them in a dishonest way, but rather to give these ideas the credit they

deserve by �tting them in a context, a framework encompassing both theoretical

and pragmatical aspects of object-oriented computing. As one of the meanings

of the adjective abstract, the dictionary also lists the word abstruse (not easy to

understand). There is no need to say that, within the limits of my capabilities, I

have tried to avoid becoming abstruse.

Finally, in presenting the material, I have tried to retain a su�cient degree of

objectivity. Nevertheless, whenever personal judgments have slipped in, they are

meant rather to provoke a discussion than provide a �nal answer.

Information The electronic version can be found at

http://www.cs.vu.nl/�eliens/online/oo

For any questions or comments you may contact the author at eliens@cs.vu.nl

by electronic mail, or at Dr A. Eli�ens, Vrije Universiteit, Faculty of Sciences,

Division of Mathematics and Computer Science, De Boelelaan 1081, 1081 HV

Amsterdam, The Netherlands.

Contents of the CDROM The CDROM contains a complete online version

of the book, including additional lectures, software and links to resources on the

Internet. This online version may be used for presentation in the classroom, using

the Netscape Presentation Format, which is supported by Netscape Navigator 4.x

or better and by Internet Explorer 4.x or better. For each chapter, the CDROM
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also provides a Powerpoint presentation, that may be adapted by the lecturer.

For additional information, see README �le on the CDROM.
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1
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de�nite answer and which may even require extensive expertise and technology

to come up with a partial solution. Returning to the music, I often �nd myself

improvising, leaving the written music for what it is, a starting point.

Anton Eli�ens

Januari 2000
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To gain an understanding of some new area, it is virtually unavoidable to be

immersed in the material for a while without exactly understanding where it will

lead.

Principles of Object-Oriented Software Development 1

� themes and variations { object speak

� abstraction { paradigms of programming

� software development { the OO life-cycle

� object technology { trends

Additional keywords and phrases: object, data abstraction, analysis,

design, implementation, distribution

1-1

Slide 1-1: Introduction

This �rst chapter will give a preliminary characterization of object-oriented

software development, sketch some of its history and give an outline of the main

themes of this book. The dominant theme may be summarized by the phrase that

object-orientation provides the software developer with the right abstractions for

the analysis, design, implementation, and perhaps even the testing of complex

software systems. The underlying theme of the book, however, is to indicate the

technological requirements that must be satis�ed to employ these abstractions

e�ectively in actual software development. Yet another theme of the book is

3
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based on the observation that what OO o�ers is not altogether new. So, we will

relate the solutions o�ered by OO to their precedents in the history of computer

programming and software design. The reader may then establish whether OO

is just another toy for software developers or a signi�cant contribution to both

software engineering and programming.

1.1 Themes and variations

Nowadays, many have at least some notion of object orientation. Undergraduate

courses teaching programming in Java are becoming standard practice. And,

in industry and business, object-oriented technology is being adopted on an

increasingly large scale. Nevertheless, to some extent, object orientation is still

an emerging technology with many open questions. So, we will start with a brief

survey of what object orientation is about, what solutions it o�ers and what is

needed to put these solutions e�ectively into practice. We will also brie
y review

some object terminology, re
ect on the notion of object computation, and discuss

design by contract.

Themes and variations

� abstraction { the object metaphor

� modeling { understanding structure and behavior

� software architecture { mastering complexity

� frameworks { patterns for problem solving

� components { scalable software

1-2

Slide 1-2: Themes and variations

Object metaphor In an object-oriented approach, objects are our primary

abstraction device. Objects provide a metaphor that helps us in each phase of the

software life-cycle. During analysis, we may partition the domain into objects,

that have properties, possibly responsibilities, and relations among each other.

In design, objects are our primary unit of decomposition. In our design,

objects may re
ect real life entities, such as Employer and Employee, but may

also represent system artefacts, such as stacks or graphics.

In actual development, that is in the implementation, objects are our unit of

implementation. Each object itself may be regarded as a collection of functions.

But it is the collection of functions, and the behavior that they describe, that we

take as our unit; not the individual function.

Modeling Taking objects as the unit of analysis, design and implementation,

allows us to de�ne the structure and behavior of a software system in a natural

way. Nevertheless, although this may at �rst sight seem to simplify our task, it
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does actually become more di�cult to develop software. Why? Simply, because it

takes more e�ort to �nd the right kinds of objects! It is di�cult to arrive at stable

abstractions, to de�ne the corresponding objects, to de�ne the objects' interfaces

and to de�ne the appropriate relations between the objects, and to implement

them so that everything works.

A consequence of adopting an object-oriented approach is that we have to

spend more time in describing and understanding the structure and behavior of

the system, and to learn the formalisms and tools that enable us to do so.

Software architecture Objects not only provide a metaphor. Objects also de�ne

a computational platform. Computation in an object-oriented system consists of

objects sending messages to one another. This may give rise to very complicated

sequences of instructions, in particular when the system is dependent on events

from the outside, for example the window or network environment.

To master this complexity, we need to think about how objects can be made

to �t together. To bene�t from an object-oriented approach, we need to design a

software architecture that de�nes and regulates the interactions between objects.

Frameworks When does an object-oriented approach pay o�? It does pay o�

when we have arrived at (more or less) stable abstractions for which we have good

implementations, that may be reused for a variety of other applications.

A framework is a kind of library of reusable objects. However, in contrast

with ordinary software libraries, frameworks may at times take over control. The

best-known examples of frameworks are in the GUI domain; frameworks in other

domains (e.g. the business process domain) are emerging.

Using a framework may simplify your life, since a framework provides generic

solutions for a particular application domain. But the price you pay is twofold.

You have to understand what (patterns of) solutions the framework provides, and

you have to comply with the rules of the game imposed by the framework.

Components Frameworks consist of components. Simplistically, components

correspond to objects in a one-to-one way. However, life is more complicated.

Components usually consist of a collection of objects that provide additional

functionality that allows components to interact together. A typical example of

components are distributed objects, objects that may be accessed over a network.

These objects must have, preferably in a non-visible way, all the functionality

needed to make a network connection and send data (arguments and results) over

a network.

1.1.1 Object terminology

Object-orientation originally grew out of research in programming languages.

The �rst object-oriented language was Simula. However, Smalltalk may be held

responsible for the initial popularity of the object-oriented approach. The termi-

nology Smalltalk introduced was at the time unfamiliar and, for many, somewhat
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hard to grasp. Nowadays, students and IT specialists, have at least heard the

object-oriented jargon. Let's brie
y look at it. See slide 1-3.

Objects provide the means by which to structure a system. In Smalltalk (and

most other object-oriented languages) objects are considered to be grouped in

classes. A class speci�es the behavior of the objects that are its instances. Also,

classes act as templates from which actual objects may be created. Inheritance is

de�ned for classes only. From the perspective of design, inheritance is primarily

meant to promote the reuse of speci�cations.

Object terminology object speak

� objects { packet containing data and procedures

� methods { deliver service

� message { request to execute a method

� class { template for creating objects

� instance { an object that belongs to a class

� encapsulation { information hiding supported by objects

� inheritance { mechanism allowing the reuse of class speci�cations

� class hierarchy { tree structure representing inheritance relations

� polymorphism { to hide di�erent implementations behind a

common interface

1-3

Slide 1-3: Object terminology

The use of inheritance results in a class hierarchy that, from an operational

point of view, determines the dispatching behavior of objects, that is what method

will be selected in response to a message. If certain restrictions are met (see

sections 3.3, 9.2 and 10.4), the class hierarchy corresponds to a type hierarchy,

specifying the subtype relation between classes of objects.

Finally, an important feature of object-oriented languages is their support

for polymorphism. Polymorphism is often incorrectly identi�ed with inheritance.

Polymorphism by inheritance makes it possible to hide di�erent implementations

behind a common interface. However, other forms of polymorphism may arise by

overloading functions and the use of generic (template) classes or functions. See

sections 2.1.2 and 9.3.

Features and bene�ts of OOP Having become acquainted with the terminol-

ogy of OOP, we will brie
y review what are generally considered features and

bene�ts from a pragmatic point of view. This summary is based on Pokkunuri

(1989). I do expect, however, that the reader will take the necessary caution with

respect to these claims. See slide 1-4.

Both information hiding and data abstraction relieve the task of the program-

mer using existing code, since these mechanisms mean that the programmer's

attention is no longer distracted by irrelevant implementation details. On the
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other hand, the developer of the code (i.e. objects) may pro�t from informa-

tion hiding as well, since it gives the programmer the freedom to optimize the

implementation without interfering with the client code. Sealing o� the object's

implementation by means of a well-de�ned message interface moreover o�ers the

opportunity to endow an object with (possibly concurrent) autonomous behavior.

Features of OOP

information hiding: state, autonomous behavior

data abstraction: emphasis on what rather than how

dynamic binding: binding at runtime, polymorphism

inheritance: incremental changes (specialization), reusability

1-4

Slide 1-4: Features of OOP

The 
exible dispatching behavior of objects that lends objects their polymor-

phic behavior is due to the dynamic binding of methods to messages. Polymorphic

object behavior is e�ected by using methods, or in C

++

jargon virtual functions,

for which, in contrast to ordinary functions, the binding to an actual function

takes place at runtime and not at compile-time. In this way, inheritance provides

a 
exible mechanism by which to reuse code since a derived class may specialize

or override parts of the inherited speci�cation.

Encapsulation and inheritance Object-oriented languages o�er encapsulation

and inheritance as the major abstraction mechanisms to be used in program

development. See slide 1-5.

Encapsulation promotes modularity, meaning that objects must be regarded

as the building blocks of a complex system. Once a proper modularization has

been achieved, the implementor of the object may postpone any �nal decisions

concerning the implementation at will. This feature allows for quick prototyping,

with the risk that the `quick and dirty' implementations will never be cleaned up.

However, experience with constructing object-oriented libraries and frameworks

has shown that the modularization achieved with objects may not be very stable.

Another advantage of an object oriented approach, often considered to be the

main advantage, is the reuse of code. Inheritance is an invaluable mechanism in

this respect, since the code that is reused seldom o�ers all that is needed. The

inheritance mechanism enables the programmer to modify the behavior of a class

of objects without requiring access to the source code.

Although an object-oriented approach to program development indeed o�ers

great 
exibility, some of the problems it addresses are intrinsically di�cult and

cannot really be solved by mechanisms alone. For instance, modularization is rec-

ognized to be a notoriously di�cult problem in the software engineering literature.

Hence, since some of the promises of OOP depend upon the stability of the chosen

modularization, the real advantage of OOP may be rather short-lived. Moreover,
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Bene�ts of OOP

� OO = encapsulation + inheritance

� modularity { autonomous entities, cooperation through exchanges

of messages

� deferred commitment { the internal workings of an object can be

rede�ned without changing other parts of the system

� reusability { re�ning classes through inheritance

� naturalness { object-oriented analysis / design, modeling

1-5

Slide 1-5: Bene�ts of OOP

despite the optimistic claims about `tuning' reused code by means of inheritance,

experience shows that often more understanding of the inherited classes is needed

than is available in their speci�cation.

The probability of arriving at a stable modularization may increase when

shifting focus from programming to design. The mechanisms supported by OOP

allow for modeling application oriented concepts in a direct, natural way. But this

bene�t of OOP will only be gained at the price of increasing the design e�ort.

1.1.2 Object computation

Programming is, put brie
y, to provide a computing device with the instructions

it needs to do a particular computation. In the words of Dijkstra: `Programming

is the combination of human reasoning and symbol manipulation skills used to

develop symbol manipulators (programs). By supplying a computer to such a

symbol manipulator it becomes a concrete one.' Although we are by now used to

quite fashionable computing devices, including graphic interfaces and multimedia

peripherals, the abstract meaning of a computing device has not essentially altered

since the original conception of the mathematical model that we know as the

Turing machine (see below).

Despite the fact that our basic mathematical model of a computing device

(and hence our notion of computability) has not altered signi�cantly, the devel-

opment of high level programming languages has meant a drastic change in our

conception of programming. Within the tradition of imperative programming,

the introduction of objects, and object-oriented programming, may be thought

of as the most radical change of all. Indeed, at the time of the introduction of

Smalltalk, one spoke of a true revolution in the practice of programming.

The object model introduced by Smalltalk somehow breaks radically with

our traditional notion of computation. Instead of regarding a computation as

the execution of a sequence of instructions (changing the state of the machine),

object-based computation must be viewed as sending messages between objects.

Such a notion of computation had already been introduced in the late 1960s in

the programming language Simula (see Dahl and Nygaard, 1966). Objects were
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The object model

� computation is sending messages between objects

Message

� object method arguments

Encapsulation

� objects encapsulate data and procedures

Protocol

� the collection of messages an object supports

1-6

Slide 1-6: The object model

introduced in Simula to simulate complex real-world events, and to model the

interactions between real-world entities.

In the (ordinary) sequential machine model, the result of a computation is

(represented by) the state of the machine at the end of the computation. In

contrast, computation in the object model is best characterized as cooperation

between objects. The end result then consists, so to speak, of the collective state

of the objects that participated in the computation. See slide 1-6.

Operationally, an object may be regarded as an abstract machine capable

of answering messages. The collection of messages that may be handled by an

object is often referred to as the protocol obeyed by the object. This notion was

introduced in the Smalltalk programming environment originally to provide the

means to group the messages to which an object may respond. For instance, the

distinction between methods for initialization and methods for modi�cation or

processing may be convenient in developing or using a program. The notion of

protocol may also be given a more formal interpretation, as has been done for

instance in the notion of contracts (introduced in Ei�el) stating the requirements

that must be adhered to in communicating with an object.

Structurally, an object may be regarded as a collection of data and procedures.

In principle, the data are invisible from the outside and may be manipulated only

by invoking the right procedure. In a pure object-oriented language such as

Smalltalk and Ei�el, sending a message to an object is the only way of invoking

such a procedure. Combined, data-hiding and message interface abstraction will

be referred to as encapsulation. Actually, object-oriented languages, while in some

way supporting objects as collections of data and procedures, may di�er subtly

in the degree and way in which they support data-hiding and abstraction.

Computability and complexity Mathematically, a computing device consists

of a �nite table of instructions and a possible in�nite memory in which to store

intermediate results. In order to perform a computation the device also needs an
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input and some means by which to display the results.

For now, we need not be concerned with the precise mathematical details of

our model of a computing device. For a very much more precise and elaborate

description of the Turing machine, the interested reader is referred to Hopcroft and

Ullman (1979). What is important, however, is that this model captures in a very

precise sense the notion of computation, in that it allows us to characterize what

can be computed, and also what a computation will cost, in terms of computing

time and memory usage.

An interesting, but perhaps somewhat distressing, feature of the Turing ma-

chine model is that it is the strongest model we have, which means that any other

model of computation is at best equivalent to it. Parallel computation models in

e�ect do extend the power of (sequential) Turing machines, but only in a linear

relation with the number of processors. In other words, the Turing machine de�nes

what we may regard as computable and establishes a measure of the complexity

of a computation, in space and time. The awareness of the intrinsic limitations

imposed by a precise mathematical notion of computability has, for example, led

us to regarding the claims of arti�cial intelligence with some caution, see Rabin

(1974). However, the theoretical insight that a problem may in the worst case not

be solved in �nite time or space should not hinder us in looking for an optimal,

approximate solution that is reachable with bounded resources.

An equally important feature of the Turing machine model is that it gives

us an illustration of what it means to program a computing device, that is to

instruct the machine to perform actions dependent on its input and state. As

an extension to the model, we can easily build a universal computing device,

into which we may feed the description of some particular machine, in order

to mimic the computation of that machine. Apparently, this gives us a more

powerful machine. However, this has proven not to be the case. Neither does

this universal device enlarge the class of computable problems, nor does it a�ect

in any signi�cant sense the computational complexity of what we know to be

computable. See slide 1-7.

Computing devices

� mathematical model { Turing machine

� universal machine { machines as programs

� computability &amp; complexity { time/space bounded

Object-oriented programming does not enlarge the class of computable

problems, nor does it reduce the computational complexity of the

problems we can handle.

1-7

Slide 1-7: Computing devices

Interestingly, there is an extension of the (basic and universal) Turing machine

model that allows us to extend the narrow boundaries imposed by a mathematical

characterization of computability. This extension is known as an oracle machine,

and as the name suggests, the solution to an (otherwise) intractable problem
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must come from some external source, be it human, machine-like or divine (which

is unlikely). Partly, this explains why intelligent systems (such as automatic

translation systems) are, to a certain extent, intrinsically interactive, since only

the human user can provide the (oracle) information needed to arrive at a solution.

Our model of a computing device does quite precisely delimit the domain of

computable problems, and gives us an indication of what we can expect the ma-

chine to do for us, and what not. Also, it illustrates what means we have available

to program such a device, in order to let it act in the way we want. Historically, the

Turing machine model may be regarded as a mathematical description of what is

called the Von Neumann machine architecture, on which most of our present-day

computers are based. The Von Neumann machine consists of a memory and a

processor that fetches data from the memory, does some computation and stores

the data back in memory. This architecture has been heavily criticized, but no

other model has yet taken its place. This criticism has been motivated strongly

by its in
uence on the practice of programming. Traditionally, programs for the

Von Neumann architecture are conceived as sequences of instructions that may

modify the state of the machine. In opposition to this limited, machine-oriented

view of programming a number of proposals have been made that are intended

to arrive at a more abstract notion of programming, where the machine is truly

at the service of the programmer and not the other way around.

One of these proposals to arrive at a more abstract notion of programming

is advocated as the object-oriented approach. Before studying the intrinsics of

the object-oriented approach, however, it may be useful to re
ect on what we

may expect from it. Do we hope to be able to solve more problems, or to solve

known problems better? In other words, what precisely is the contribution of an

object-oriented approach?

Based on the characterization of a computing device, some answers are quite

straightforward. We cannot expect to be able to solve more problems, nor can we

expect to reduce the computational complexity of the problems that we can solve.

What an object-oriented approach can contribute, however, is simply in providing

better means with which to program the machine. Better means, to reduce the

chance of (human) errors, better means, also, to manage the complexity of the

task of programming (but not to reduce the computational complexity of the

problem itself). In other words, by providing abstractions that are less machine

oriented and more human oriented, we may enlarge the class of problems that

we can tackle in the reality of software engineering. However, we simply cannot

expect that an object-oriented approach may in any sense enlarge our notion of

what is computable.

Some history In the last few decades, we have been able to witness a rapid

change in the technology underlying our computer systems. Simultaneously, our

ideas of how to program these machines have changed radically as well.

The history of programming languages may be regarded as a progression from

low level constructs towards high level abstractions, that enable the programmer

to specify programs in a more abstract manner and hence allow problem-related

abstractions to be captured more directly in a program. This development towards
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high level languages was partly motivated by the need to be able to verify that

a program adequately implemented a speci�cation (given in terms of a formal

description of the requirements of an application). Regarded from this perspec-

tive, it is then perhaps more appropriate to speak of a progression of paradigms

of programming, where a paradigm must be understood as a set of mechanisms

and guidelines telling us how to employ these mechanisms.

The �rst abstraction mechanism beyond the level of assembler language and

macros is provided by procedures. Procedures play an important role in the

method of stepwise re�nement introduced by the school of structured program-

ming. Stepwise re�nement allows the speci�cation of a complex algorithm grad-

ually in more and more detail. Program veri�cation amounts to establishing

whether the implementation of an algorithm in a programming language meets

its speci�cation given in mathematical or logical terms. Associated with the school

of structured programming is a method of veri�cation based on what has become

known as Hoare logic, which proceeds by introducing assertions and establishing

that procedures meet particular pre- and post-conditions.

Other developments in programming language research are aimed at providing

ways in which to capture the mathematical or logical meaning of a program

more directly. These developments have resulted in a number of functional

programming languages (e.g. ML, Miranda) and logic programming languages,

of which Prolog is the best-known. The programming language Lisp may in this

respect also be regarded as a functional language.

The history of object-oriented programming may be traced back to a concern

for data abstraction, which was needed to deal with algorithms that involved com-

plex data structures. The notion of objects, originally introduced in Simula (Dahl

and Nygaard, 1966), has signi�cantly in
uenced the design of many subsequent

languages (e.g. CLU, Modula and Ada). The �rst well-known object-oriented

language was Smalltalk, originally developed to program the Dynabook, a kind of

machine that is now familiar to us as a laptop or notebook computer. In Smalltalk,

the data-hiding aspect of objects has been combined with the mechanism of

inheritance, allowing the reuse of code de�ning the behavior of objects. The

primary motivation behind Smalltalk's notion of objects, as a mechanism to

manage the complexity of graphic user interfaces, has now proven its worth, since

it has been followed by most of the manufacturers of graphic user interfaces and

window systems.

Summarizing, from a historical perspective, the introduction of the object-

oriented approach may be regarded as a natural extension to previous develop-

ments in programming practice, motivated by the need to cope with the com-

plexity of new applications. History doesn't stop here. Later developments,

represented by Ei�el, C

++

(to a certain extent) and Java, more clearly re
ect

the concern with abstraction and veri�cation, which intrinsically belongs to the

notion of abstract data types as supported by these languages.
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1.1.3 Design by Contract

After this �rst glance at the terminology and mechanisms employed in object-

oriented computation, we will look at what I consider to be the contribution of an

object-oriented approach (and the theme of this book) in a more thematic way.

The term `contract' in the title of this section is meant to refer to an approach

to design that has become known as design by contract, originally introduced

in Meyer (1988), which is closely related to responsibility-driven design (see

Wirfs-Brock, 1989). Of course, the reader is encouraged to re
ect on alternative

interpretations of the phrase responsibilities in OOP.

The approach captured by the term contract stresses the importance of an

abstract characterization of what services an object delivers, in other words what

responsibilities an object carries with respect to the system as a whole. Contracts

specify in a precise manner the relation between an object and its `clients'.

Objects allow one to modularize a system in distinct units, and to hide the

implementation details of these units, by packaging data and procedures in a

record-like structure and de�ning a message interface to which users of these units

must comply. Encapsulation refers to the combination of packaging and hiding.

The formal counterpart of encapsulation is to be found in the theory of abstract

data types. An abstract data type (ADT) speci�es the behavior of an entity in

an abstract way by means of what are called operations and observations, which

operationally amount to procedures and functions to change or observe the state

of the entity. See also section 8.3.

Abstract data types, that is elements thereof, are generally realized by employ-

ing a hidden state. The state itself is invisible, but may be accessed and modi�ed

by means of the observations and operations speci�ed by the type. See slide 1-8.

Encapsulation

� Abstract data types

ADT = state + behavior

Object-oriented modeling

� data oriented

1-8

Slide 1-8: Abstract data types { encapsulation

Complex applications involve usually complex data. As observed by Wirfs-

Brock (1989), software developers have reacted to this situation by adopting more

data oriented solutions. Methods such as semantic information modeling and

object-oriented modeling were developed to accommodate this need. See also

sections 3.1 and 4.3.1.

Objects may be regarded as embodying an (element of an) abstract data type.

To use an object, the client only needs to know what an object does, not (generally

speaking) how the behavior of the object is implemented. However, for a client
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to pro�t from the data hiding facilities o�ered by objects, the developer of the

object must provide an interface that captures the behavior of the object in a

su�ciently abstract way. The (implicit) design guideline in this respect must be

to regard an object as a server that provides high level services on request and

to determine what services the application requires of that particular (class of)

object(s). See slide 1-9.

Responsibilities

� to specify behavior what rather than how

Client client/server model

� makes request to perform a service

Server

� provides service upon request

1-9

Slide 1-9: Responsibilities in OOP

Naturally, the responsibilities of an object cannot be determined by viewing

the object in isolation. In actual systems, the functionality required is often depen-

dent on complex interactions between a collection of objects that must cooperate

in order to achieve the desired e�ect. However, before trying to specify these

interactions, we must indicate more precisely how the communication between a

server and a single client proceeds.

From a language implementation perspective, an object is nothing but an

advanced data structure, even when we �t it in a client-server model. For design,

however, we must shift our perspective to viewing the object as a collection of

high level, application-oriented services. Specifying the behavior of an object

from this perspective, then, means to de�ne what speci�c information the object

is responsible for and how it maintains the integrity of that information. See slide

1-10.

object = information + responsibilities

Contracts

� a set of services

Behavioral re�nement

� improving contracts

1-10

Slide 1-10: Contracts and behavioral re�nement

The notion of contracts was introduced by Meyer (1988) to characterize in

a precise manner what services an object must provide and what requirements

clients of an object must meet in order to request a service (and expect to get
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a good result). A contract speci�es both the requirements imposed on a client

and the obligations the server has, provided the requirements are met. When

viewed from the position of a client, a contract reveals what the client can count

on when the requirements are ful�lled. From the position of the server, on the

other hand, when a client does not ful�ll the requirements imposed, the server

has no obligation whatsoever.

Formally, the requirements imposed on the client and the obligations of the

server can be speci�ed by means of pre- and post-conditions surrounding a method.

Nevertheless, despite the possibility of formally verifying these conditions, the

designer must specify the right contract for this approach to work at all. A

problem of a more technical nature the designer of object-oriented systems faces

is how to deal with inheritance.

Inheritance, as a mechanism of code reuse, supports the re�nement of the

speci�cation of a server. From the perspective of abstract data types, we must

require that the derived speci�cation re�nes the behavior of the original server.

We must answer the following two questions here. What restrictions apply, when

we try to re�ne the behavior of a server object? And, ultimately, what does it

mean to improve a contract?

Behavioral re�nement Inheritance provides a very general and powerful mech-

anism for reusing code. In fact, the inheritance mechanism is more powerful than

is desirable from a type-theoretical perspective.

Conformance { behavioral re�nement

if B re�nes A then B may be used wherever A is allowed

1-11

Slide 1-11: Behavioral re�nement

An abstract data type speci�es the behavior of a collection of entities. When

we use inheritance to augment the de�nition of a given type, we either specify

new behavior in addition to what was given, or we modify the inherited behavior,

or both. The restriction that must be met when modifying behavior is that the

objects de�ned in this way are allowed to be used at all places where objects of the

given type were allowed. This restriction is expressed in the so-called conformance

rule that states that if B re�nes A then B may be used wherever A is allowed.

Naturally, when behavior is added, this condition is automatically ful�lled. See

slide 1-11.

The conformance rule gives a very useful heuristic for applying inheritance

safely. This form of inheritance is often called `strict' inheritance. However, it is

not all that easy to verify that a class derived by inheritance actually re�nes the

behavior speci�ed in a given class. Partly, we can check for syntactic criteria such

as the signature (that is, type) of the individual methods, but this is de�nitely

not su�cient. We need a way in which to establish that the behavior (in relation
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to a possible) client is re�ned according to the standard introduced above. In

other words we need to know how to improve a contract.

Recall that from an operational point of view an object may be regarded

as containing data attributes storing information and procedures or methods

representing services. The question `how to improve a contract?' then boils

down to two separate questions, namely: (1) `how to improve the information?'

and (2) `how to improve a service?'. To provide better information is, technically

speaking, simply to provide more information, that is more speci�c information.

Type-theoretically, this corresponds to narrowing down the possible elements of

the set that represents the (sub) type. To provide a better service requires either

relieving the restrictions imposed on the client or improving the result, that is

tightening the obligations of the server. Naturally, the or must be taken as

non-exclusive. See slide 1-12.

Attributes re�ne

� more information

Services

� better services

Contracts

� more and better services

A better service

� fewer restrictions for the client

� more obligations for the server
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Slide 1-12: Improving services

To improve a contract thus simply means adding more services or improving

the services that are already present. As a remark, Meyer (1988) inadvertently

uses the term subcontract for this kind of re�nement. However, in my understand-

ing, subcontracting is more a process of delegating parts of a contract to other

contractors whereas re�nement, in the sense of improving contracts, deals with

the contract as a whole, and as such has a more competitive edge.

Summarizing, at a very high level we may think of objects as embodying a

contract. The contract is speci�ed in the de�nition of the class of which that

object is an instance. Moreover, we may think of inheritance as a mechanism

to e�ect behavioral re�nement, which ultimately means to improve the contract

de�ning the relation between the object as a server and a potential client.

To warrant the phrase contract, however, the designer of an object must specify

the functionality of an object in a su�ciently abstract, application-oriented way.

The (implicit) guideline in this respect is to construct a model of the application

domain. See slide 1-13.
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Object-oriented modeling

� prototyping, speci�cation, re�nement, interactions

OOP = Contracts + Re�nements

1-13

Slide 1-13: Object-oriented modeling

The opportunity o�ered by an object-oriented approach to model concepts of

the application domain in a direct way makes an object-oriented style suitable for

incremental prototyping (provided that the low-level support is available).

The metaphor of contracts provides valid guidelines for the design of objects.

Because of its foundation in the theory of abstract data types, contracts may be

speci�ed (and veri�ed) in a formal way, although in practice this is not really

likely to occur.

Before closing this section, I wish to mention a somewhat di�erent interpre-

tation of the notion of contracts which is proposed by Helm et al. (1990). There

contracts are introduced to specify the behavior of collections of cooperating

objects. See section 10.5.

1.2 Paradigms of programming

In a landmark paper with the title `What is object-oriented programming?' Bjarne

Stroustrup raises the question of when a language may be considered to support

a particular style of programming, Stroustrup (1988). See slide 1-14.

Object-oriented programming

� high tech synonym for good

Styles of programming

� A language supports a style of programming if it provides facilities

that make it convenient (easy, safe and e�cient) to use that style

� compile/runtime checks

� clean interpretation/ orthogonal / e�cient / minimal

1-14

Slide 1-14: Styles of programming

In general, one can say that a language supports a particular style of program-

ming if it provides facilities, both syntactic and semantic, that makes it convenient

(that is easy, safe and e�cient) to use that style. The crucial distinction that must

be made in this context is that between allowing a certain style and providing
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support for that style. Allowing means that it is possible to program in that style.

To support a given style, however, requires in addition that suitable compile and

runtime checks are provided to enforce a proper use of the relevant language

constructs. With these considerations in mind, one could question the assertion

that Ada is object-oriented or thatModula supports abstract data types. Naturally,

this attitude back�res with C

++

. Does C

++

support abstract data types and is

it really object-oriented?

Procedural programming

� procedures, use the optimal algorithms

Modules

� hide the data, provide functional abstractions

Data abstraction

� types, provide a su�ciently complete set of operations

Object-oriented { organize your types

� make commonality explicit

1-15

Slide 1-15: Paradigms of programming

It is equally important to establish whether a language allows a clean inter-

pretation of the constructs introduced, whether the constructs supporting object

orientation are orthogonal to (that is independent of) the other constructs of the

language, whether an e�cient implementation of these constructs is possible, and

whether the language is kept minimal, that is without super
uous constructs.

Before establishing what the main ingredients of object-orientation are, let

us brie
y look at some of the styles of programming that may be considered as

leading to an object-oriented style. See slide 1-15.

In his article, Stroustrup (1988) stresses the continuity between the respec-

tive styles of programming pictured in slide 1-15. Each style is captured by a

short phrase stating its principal concern, that is guidelines for developing good

programs.

1.2.1 Procedural programming

The procedural style of programming is most closely related to the school of

structured programming, of which for instance Dijkstra (1976) and Gries (1981)

are important proponents. The procedural style supports a method of program

development that is known as stepwise re�nement. Stepwise re�nement is an

important heuristic for developing complex algorithms. Instead of writing out a

complex algorithm in all its detail, the method allows for re�ning the elementary

steps of the basic algorithm by means of increasingly detailed procedures.
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while ( programming == art ) f

incr( pleasure );

decr( bugs );

incr( portability );

incr( maintainability );

incr( quality );

incr( salary );

g // live happily ever after

1-16

Slide 1-16: Programming as an art

As a playful example of this style of programming, consider the fragment

that may be found on the cover of Knuth (1992). See slide 1-16. Ignoring

the contents, clearly the structure shows an algorithm that is conceived as the

repeated execution of a number of less complex steps.

1.2.2 Data abstraction

When programs became larger and data more complex, the design of correct

algorithms was no longer the primary concern. Rather, it became important

to provide access to data in a representation independent manner. One of the

early proponents of data hiding was, see Parnas (1972a) and Parnas (1972b), who

introduced a precursor to the notion of data abstraction as it has become popular

in object-oriented languages such as Smalltalk or C

++

.

As a language that supports data hiding, we may think of Modula-2 that o�ers

strong support for modules and the speci�cation of import and export relations

between modules. Also the package construct of Ada provides support for data

hiding. See slide 1-17.

Modules as provided by Modula-2 and Ada give a syntactic means for decom-

posing a program into more or less independent components. It is precisely the

purely syntactic nature of modules that may be considered the principal defect

of this approach to data hiding. Semantically, modules provide no guideline with

respect to how to decompose a program into meaningful components.

To express the meaning of a module, we need the stronger notion of types, in

the sense of abstract data types which are characterized by a set of operations. The

notion of types as for example supported in CLU, Liskov and Zilles (1974), enables

us to determine whether our decomposition satis�es certain formal criteria. For

instance, we may ask whether we have de�ned su�ciently many operations for a

given type and whether we have correctly done so. An important advantage of

using abstract data types is that we can often �nd a mathematical model that

formally characterizes the behavior of that type. From the perspective of formal
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Support for data abstraction

� Abstract Data Types { encapsulation

Encapsulation

� initialization

� protection

� coercions

1-17

Slide 1-17: Data abstraction

methods, data abstraction by means of abstract data types may be considered

as one of the principal means for the speci�cation and veri�cation of complex

software systems. See also sections 8.3 and 10.5.

From an implementation perspective, to support data abstraction a language

must provide constructs to implement concrete realizations of abstract data types.

Such support requires that means are provided to create and initialize elements

of a concrete type in a safe way, and that vulnerable data is e�ectively protected.

Very important is the possibility of de�ning generic types, that is types which

take a (type) parameter with which they are instantiated. For example, the

de�nition of a stack does not di�er for a stack of integers, a stack of strings or a

stack of elements from an arbitrary user-de�ned type.

1.2.3 Object­oriented programming

There is a close similarity between the object model as presented earlier and the

notion of abstract data types just described. Both objects and abstract data types

de�ne a set of applicable operations that completely determine the behavior of

an object or an element of the data type. To relate an object to an abstract data

type we need the notion of class, that serves as the description on an abstract level

of the behavior of (a collection of) objects. (The objects are called the instances

of the class.)

As noted in Stroustrup (1988), abstract data types as such, although mathe-

matically satisfying, are rather in
exible and inconvenient for specifying complex

software systems. To attain such 
exibility, we need to be able to organize

our types and express the commonality between them. The notion of class

supports this by a mechanism called inheritance. When regarding classes as

types, inheritance may be seen as introducing polymorphic types. A class that is

derived from a particular class (the base class) may be treated by the compiler as

a subtype of (the type of) that particular class. See slide 1-18.

Operationally, the power of inheritance comes from message dispatching. This

mechanism is called dynamic binding. Message dispatching takes care of selecting

the right method in response to a message or method call. In a hierarchy of

(derived) classes, a method for an object may be either de�ned within the class
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Support for OOP

� Polymorphism { inheritance

Inheritance

� dynamic binding

� protection

� multiple inheritance

1-18

Slide 1-18: Support for OOP

of the object itself or by one of the classes from which that class is (directly or

indirectly) derived. Message dispatching is an essential mechanism for supporting

polymorphism, since it allows to choose the most appropriate behavior for an

object of a given type. This must occur at runtime, since the type of an object

as determined at compile-time may be too general.

An important issue in determining whether a language supports object-oriented

programming is whether it o�ers a protection mechanism to shield the vulnerable

parts of a base class from the classes that derived from that class.

Another question of interest is whether a language must support multiple

inheritance. Clearly, there is some disagreement on this issue. For example,

Smalltalk-80 and Java do not support multiple inheritance. The Ei�el language,

on the other hand, supported multiple inheritance from its �rst days. For C

++

,

multiple inheritance was introduced at a later stage. At �rst, it was thought to

be expensive and not really necessary. Closer analysis, however, revealed that the

cost was not excessive. (See Ellis and Stroustrup, 1990.) The issue of multiple

inheritance is still not resolved completely. Generally, it is acknowledged to be a

powerful and at the same time natural extension of single inheritance. However,

the inheritance mechanism itself seems to be under attack. Some doubt remains

as to whether inheritance is a suitable composition mechanism when regarded

from the perspective of reuse and reliability.

An elegant solution is provided by Java which o�ers multiple interface inheri-

tance, by allowing multiple interfaces to be realized by an actual class.

1.3 The object­oriented software life­cycle

No approach to software development is likely to survive unless it solves some of

the real problems encountered in software engineering practice. In this section

we will examine how the object-oriented approach is related to the conceptions

of the life-cycle of software and what factors may motivate the adoption of an

object-oriented approach to software development.

Despite some variations in terminology, there is a generally agreed-on concep-

tion of the various phases in the development of a software product. Roughly,
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a distinction can be made between a phase of analysis, which aims at specifying

the requirements a product must meet, a phase of design, which must result in

a conceptual view of the architecture of the intended system, and a phase of

implementation, covering coding, testing and, to some extent, also maintenance

activities. See slide 1-19.

No such consensus exists with respect to the exact relation between these

phases. More speci�cally, there is a considerable variation in methods and guide-

lines describing how to make the transition from one phase to another. Another

important issue is to determine what the products are exactly, in terms of software

and documentation, that must result from each phase.

The software life-cycle

� Analysis { Conceptual Model, System Requirements

� Design { System Design, Detailed Design

� Implementation { Coding, Testing

With an increase in the number of software products not satisfying user

needs, prototyping has become quite popular!

1-19

Slide 1-19: The software life-cycle

The traditional conception of the software life-cycle is known as the waterfall

model, which prescribes a strictly sequential transition between the successive

phases, possibly in an iterative manner. Strict regulations with respect to vali-

dation of the products resulting from each phase may be imposed to avoid the

risk of backtracking. Such a rigid approach, however, may cause severe problems,

since it does not easily allow for modifying decisions taken earlier.

One important problem in this respect is that the needs of the users of a system

may change over time, invalidating the requirements laid down in an earlier phase.

To some extent this problem may be avoided by better techniques of evoking the

user requirements in the analysis phase, for instance by developing a prototype.

Unfortunately, the problem of accommodating changing user needs and adapting

to changing circumstances (such as hardware) seems to be of a more persistent

nature, which provides good reason to look at alternative software development

models.

Software development models The software engineering literature abounds

with descriptions of failing software projects and remedies proposed to solve the

problem of software not meeting user expectations.

User expectations may be succinctly characterized by the RAMP requirements

listed in slide 1-20. Reliability, adaptability, maintainability and performance are

not unreasonable demands in themselves. However, opinions on how to satisfy

these criteria clearly diverge.

Berso� and Davis (1991) and Davis et al. (1988) explain how the choice of a

particular software development model may in
uence the chances of successfully
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Requirements { user needs

� Reliability { incremental development, reuse, synthesis

� Adaptability { evolutionary prototyping

� Maintainability { incremental development, synthesis

� Performance { incremental development, reuse

1-20

Slide 1-20: Requirements { RAMP

completing a software project. As already mentioned, rapid throwaway proto-

typing may help to evoke user needs at an early stage, but does not help much

in adapting to evolving user requirements. A better solution in this respect is

to adopt a method of evolutionary prototyping. Dependent on the technology

used, however, this may cause severe problems in maintaining the integrity and

robustness of the system. Less 
exible but more reliable is an approach of

incremental development, which proceeds by realizing those parts of a system

for which the user requirements can be clearly speci�ed.

Another means of adapting to changing user requirements is to use a technique

of automated software synthesis. However, such an approach works only if the user

requirements can be formalized easily. This is not always very likely, unless the

application domain is su�ciently restricted. A similar constraint adheres to the

reuse of software. Only in familiar application domains is it possible to anticipate

how user requirements may change and how to adapt the system appropriately.

Nevertheless, the reuse of software seems a very promising technique with which

to reduce the cost and time involved in software products without (in principle)

sacri�cing reliability and performance. See slide 1-21.

Software development models

� rapid throwaway prototyping { quick and dirty

� incremental development { slowly evolving

� evolutionary prototyping { evolving requirements

� reusable software { reduces cost and time

� automated software synthesis { one level of abstraction higher
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Two of the early advocates of object-oriented technology, Cox and Meyer, re-

gard the reuse of software as the ultimate solution to the software crisis. However,

the true solution is in my opinion not so straightforward. One problem is that

tools and technologies are needed to store and retrieve reusable components. That

simple solutions do not su�ce is illustrated by an anecdote reported by Alan Kay
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telling how di�cult it was to �nd his way in the Smalltalk class structure after a

signi�cant change, despite the browsing facilities o�ered by the Smalltalk system.

Another problem lies in the area of human factors. The incentives for pro-

grammer productivity have too long been directed at the number of lines of code

to make software reuse attractive. This attitude is also encouraged in universities.

Moreover, the reuse of other students' work is usually (not unjusti�ably) punished

instead of encouraged.

However, having a su�ciently large store of reusable software at our disposal

will allow us to build software meeting the RAMP requirements stated above, only

if we have arrived at su�ciently stable abstractions of the application domain.

In the following, we will explore how object-oriented technology is motivated

by problems occurring in the respective phases of the software life-cycle and how

it contributes to solving these problems.

1.3.1 Analysis

In academic environments software often seems to grow, without a clear plan or

explicit intention of ful�lling some need or purpose, except perhaps as a vehicle

for research. In contrast, industrial and business software projects are usually

undertaken to meet some explicit goal or to satisfy some need.

One of the main problems in such situations, from the point of view of the

developers of the software, is to extract the needs from the future users of the

system and later to negotiate the solutions proposed by the team. The problem is

primarily a problem of communication, of bridging the gap between two worlds,

the world of domain expertise on the one hand and that of expertise in the craft

of software development on the other.

In a number of publications (Coad and Yourdon, 1991a; Wirfs-Brock et al.,

1990; and Meyer, 1988) object-oriented analysis has been proposed as providing

a solution to this problem of communication. According to Coad and Yourdon

(1991a), object-oriented techniques allow us to capture the system requirements

in a model that directly corresponds with a conceptual model of the problem

domain. See slide 1-22.

Object-Oriented Analysis

� analysis = extracting the needs

The problem domain { complex reality

Communication { with domain experts

Continual change { user requirements

Reuse { of analysis results
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Another claim made by proponents of OOP is that an object-oriented ap-

proach enables a more seamless transition between the respective phases of the

software life-cycle. If this claim is really met, this would mean that changing
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user requirements could be more easily discussed in terms of the consequences of

these changes for the system, and if accepted could in principle be more easily

propagated to the successive phases of development.

One of the basic ideas underlying object-oriented analysis is that the ab-

stractions arrived at in developing a conceptual model of the problem domain

will remain stable over time. Hence, rather than focusing on speci�c functional

requirements, attention should be given to modeling the problem domain by

means of high level abstractions. Due to the stability of these abstractions, the

results of analysis are likely candidates for reuse.

The reality to be modeled in analysis is usually very complex. Coad and

Yourdon (1991a) mention a number of principles or mechanisms with which to

manage complexity. These show a great similarity to the abstraction mechanisms

mentioned earlier.

Personally, I do not feel entirely comfortable with the characterization of

the analysis phase given by Coad and Yourdon (1991a), since to my mind user

needs and system requirements are perhaps more conveniently phrased in terms

of functionality and constraints than in terms of a model that may simultaneously

act as an architectural sketch of the system that is to be developed.

However, I do agree with Coad and Yourdon (1991a), and others, that the

products of analysis, that is the documents describing user needs and system

requirements, should as far as possible provide a conceptual model of the domain

to which these needs and requirements are related.

Actually, I do consider the blurring of the distinction between analysis and

design, and as we will see later, between design and implementation, as one of

the attractive features of an object-oriented approach.

Analysis methods The phases of analysis and design di�er primarily in orien-

tation: during analysis the focus is on aspects of the problem domain and the

goal is to arrive at a description of that domain to which the user and system

requirements can be related. On the other hand, the design phase must result in

an architectural model of the system, for which we can demonstrate that it ful�lls

the user needs and the additional requirements expressed as the result of analysis.

Analysis methods

� Functional Decomposition = Functions + Interfaces

� Data Flow Approach = Data Flow + Bubbles

� Information Modeling = Entities + Attributes + Relationships

� Object-Oriented = Objects + Inheritance + Message passing
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Coad and Yourdon (1991a) discuss a number of methods that are commonly

used in analysis (see slide 1-23). The choice of a particular method will often

depend upon circumstances of a more sociological nature. For instance, the
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experience of a team with a particular method is often a crucial factor for success.

For this reason, perhaps, an eclectic method combining the various approaches

may be preferable (see, for instance, Rumbaugh et al., 1991). However, it is

doubtful whether such an approach will have the same bene�ts as a purely object-

oriented approach. See also section 3.1.

I will brie
y characterize the various methods mentioned by Coad and Yourdon

(1991a). For a more extensive description and evaluation the reader is referred

to, for example, Jones (1990).

The method of Functional Decomposition aims at characterizing the steps

that must be taken to reach a particular goal. These steps may be represented

by functions that may take arguments in order to deal with data that is shared

between the successive steps of the computation. In general, one can say that

this method is not very good for data hiding. Another problem is that non-expert

users may not be familiar with viewing their problem in terms of computation

steps. Also, the method does not result in descriptions that are easily amenable

to change.

The method indicated as the Data Flow Approach aims at depicting the

information 
ow in a particular domain by means of arrows that represent data

and bubbles that represent processes acting on these data.

Information Modeling is a method that has become popular primarily for de-

veloping information systems and applications involving databases. As a method,

it aims at modeling the application domain in terms of entities, that may have

attributes, and relations between entities.

An object-oriented approach to analysis is very similar in nature to the in-

formation modeling approach, at least with respect to its aim of developing a

conceptual model of the application domain. However, in terms of their means,

both methods di�er signi�cantly. The most important distinction between objects,

in the sense of OOP, and entities, as used in information modeling, to my mind

lies in the capacity of objects to embody actual behavior, whereas entities are of

a more passive nature.

Concluding this brief exploration of the analysis phase, I think we may safely

set as the goal for every method of analysis to aim at stable abstractions, that is

a conceptual model which is robust with respect to evolving user requirements.

Also, we may state a preference for methods which result in models that have a

close correspondence to the concepts and notions used by the experts operating

in the application domain.

With respect to notation UML (the Uni�ed Modeling Language, see Appendix

F) is the obvious choice. How to apply UML in the various phases of object-

oriented software construction is an altogether di�erent matter.

1.3.2 Design

In an object-oriented approach, the distinction between analysis and design is

primarily one of emphasis; emphasis on modeling the reality of the problem

domain versus emphasis on providing an architectural model of a system that

lends itself to implementation.
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One of the attractive features of such an approach is the opportunity of a

seamless transition between the respective phases of the software product in devel-

opment. The classical waterfall model can no longer be considered as appropriate

for such an approach. An alternative model, the fountain model, is proposed

by Henderson-Sellers (1992). This model allows for a more autonomous devel-

opment of software components, within the constraints of a unifying framework.

The end goal of such a development process may be viewed as a repository of

reusable components. A similar viewpoint has originally been proposed by Cox

(1986) and Meyer (1988).

Object-Oriented Design

� design for maintenance and reuse!

Software quality

� correctness, robustness, extensibility, compatibility

Design projects

� IDA { Interior Design Assistant

� MASS { Multi-user Agenda Support System
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In examining the primary goals of design, Meyer (1988) distinguishes between

reusability, quality and ease of maintenance. Naturally, reusable software presup-

poses quality, hence both quality and maintainability are important design goals.

See slide 1-24. In Meyer (1988) a rough estimate is given of the shift in e�ort

between the phases of the software life-cycle, brought about by an object-oriented

approach. Essentially, these �gures show an increase in the e�ort needed for

design. This is an immediate consequence of the observation that the development

of reusable code is intrinsically more di�cult.

To my mind, there is yet another reason for the extra e�ort involved in

design. In practice it appears to be di�cult and time consuming to arrive at

the appropriate abstract data types for a given application. The implementation

of these structures, on the other hand, is usually straightforward. This is another

indication that the unit of reuse should perhaps not be small pieces of code, but

rather (the design of) components that �t into a larger framework.

From the perspective of software quality and maintenance, these mechanisms

of encapsulation and inheritance may be characterized as powerful means to

control the complexity of the code needed to realize a system. In Meyer (1988) it is

estimated that maintenance accounts for 70% of the actual cost of software. More-

over, adaptive maintenance, which is the adaptation to changing requirements,

accounts for a disproportionately large part of the cost. Of primary importance

for maintenance, in the sense of the correction of errors, is the principle of locality

supported by encapsulation, data abstraction and hiding. In contrast, inheritance
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is a feature that may interfere with maintenance, since it often breaks down the

protection o�ered by encapsulation. However, to cope with changing require-

ments, inheritance provides both a convenient and relatively safe mechanism.

Design assignments

Actually designing systems is a complex activity, about which a lot can be said.

Nevertheless, to get a good feeling for what is involved in designing a system it is

best to gain some experience �rst. In the remainder of this subsection, you will

�nd the descriptions of actual software engineering assignments. The assignments

have been given, in subsequent years, to groups consisting of four or �ve CS2

students. The groups had to accomplish the assignments in �ve weeks, a total of

1000 man-hours. That includes formulating the requirements, writing the design

speci�cation and coding the implementation. (For the �rst of the assignments,

IDA, C

++

was used with the hush GUI library. For the second, MASS, Java

with Swing was used.) In both cases we allowed for an iterative development

cycle, inspired by a Rapid Application Development (RAD) approach. These

assignments will be taken as a running example, in the sense that most examples

presented in the book solve in one way or another the problems that may occur

when realizing the systems described in the assignments.

IDA An Interior Design Assistant (IDA) is a tool to support an interior design

architect. When designing the interior of a house or building, the architect

proceeds from the spatial layout and a list of furniture items. IDA must allow

for placing furniture in a room. It will check for constraints. For example placing

a chair upon a table will be prohibited. For each design, IDA must be able

to give information with respect to pricing and the time it takes to have the

furniture items delivered. In addition to the design facilities, IDA must also o�er

a showroom mode, in which the various designs can be inspected and compared

with respect to price and delivery time.

MASS An Agenda Support System assists the user in maintaining a record of

important events, dates and appointments. It moreover o�ers the user various

ways of inspecting his or her agenda, by giving an overview of important dates,

an indication of important dates on a calendar, and (more advanced) timely

noti�cation.

A Multi-user Agenda Support System extends a simple Agenda Support Sys-

tem by providing facilities for scheduling a meeting, taking into account various

constraints imposed by the agendas of the participants, as for example a special

event for which a participant already has an entry in his or her agenda.

A minimal Multi-user Agenda Support System must provide facilities for

registering important dates for an arbitrary number of users. It must, moreover,

be able to give an overview of important dates for any individual user, and it

must be possible to schedule a meeting between an arbitrary subset of users that

satis�es the time-constraints for each individual in that particular group.
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This minimal speci�cation may be extended with input facilities, gadgets

for presenting overviews and the possibility of adding additional constraints.

Nevertheless, as a piece of advice, when developing a Multi-user Agenda Support

System, follow the KISS principle: Keep It Simple ...

1.3.3 Implementation

In principle, the phase of implementation follows on from the design phase. In

practice, however, the products of design may often only be regarded as providing

a post hoc justi�cation of the actual system. As noted, for instance, in Halbert

and O'Brien (1987), an object-oriented approach may blur the distinction between

design and implementation, even to the extent of reversing their actual order.

The most important distinction between design and implementation is hence the

level of abstraction at which the structure of the system is described. Design is

meant to clarify the conceptual structure of a system, whereas the implementation

must include all the details needed for the system to run. Whatever approach is

followed, in the end the design must serve both as a justi�cation and clari�cation

of the actual implementation.

Design is of particular importance in projects that require long-term mainte-

nance. Correcting errors or adapting the functionality of the system on the basis

of code alone is not likely to succeed. What may help, though, are tools that

extract explanatory information from the code.

Testing and maintenance Errors may (and will) occur during the implementa-

tion as well as later when the system is in operation. Apart from the correction of

errors, other maintenance activities may be required, as we have seen previously.

In Knuth (1992), an amusing account is given of the errors Knuth detected in

the T

E

X program over a period of time. These errors range from trivial typos to

errors on an algorithmic level. See slide 1-25.

Errors, bugs T

E

X

A { algorithm awry

B { blunder

C { structure debacle

F { forgotten function

L { language liability

M { mismatch between modules

R { reinforcement of robustness

S { surprises

T { a trivial typo
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E

X errors and bugs
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An interesting and important question is to what extent an object-oriented

approach, and more speci�cally an object-oriented implementation language, is

of help in avoiding and correcting such errors. The reader is encouraged to make

a �rst guess, and to verify that guess later.

As an interesting aside, the T

E

X system has been implemented in a language

system called Web. The Web system allows one to merge code and explanatory

text in a single document, and to process that document as either code or text.

In itself, this has nothing to do with object orientation, but the technique of

documentation supported by the Web system is also suitable for object-oriented

programs. We may note that the javadoc tool realizes some of the goals set for

the Web system, for Java.

Object-oriented language support Operationally, encapsulation and inheri-

tance are considered to be the basic mechanisms underlying the object-oriented

approach. These mechanisms have been realized in a number of languages. (See

slide 1-26. See also chapter 5 for a more complete overview.)

Historically, Smalltalk is often considered to be the most important object-

oriented language. It has served as an implementation vehicle for a variety of

applications (see, for instance, Pope, 1991). No doubt, Smalltalk has contributed

greatly to the initial popularity of the object-oriented approach, yet its role is

being taken over by C

++

and Java, which jointly have the largest community of

users. Smalltalk is a purely object-oriented language, which means that every

entity, including integers, expressions and classes, is regarded as an object. The

popularity of the Smalltalk language may be attributed partly to the Smalltalk

environment, which allows the user to inspect the properties of all the objects in

the system and which, moreover, contains a large collection of reusable classes.

Together with the environment, Smalltalk provides excellent support for fast

prototyping.

The language Ei�el, described by Meyer (1988), may also be considered as

a pure object-oriented language, pure in the sense that it provides classes and

inheritance as the main device with which to structure a program. The major

contribution of Ei�el is its support for correctness constructs. These include the

possibility to specify pre- and post-conditions for methods, as well as to specify

a class invariant, that may be checked before and after each method invocation.

The Ei�el system comes with a number of libraries, including libraries for graphics

and window support, and a collection of tools for browsing and the extraction of

documentation.

The C

++

language (Stroustrup, 1991) has a somewhat di�erent history. It

was originally developed as an extension of C with classes. A primary design

goal of C

++

has been to develop a powerful but e�cient language. In contrast

to Smalltalk and Ei�el, C

++

is not a pure object-oriented language; it is a hybrid

language in the sense that it allows us to use functions in C-style as well as

object-oriented constructs involving classes and inheritance.

The newest, and perhaps most important, object-oriented language around is

Java, which owes its popularity partly to its tight connection with the Internet.

Java comes with a virtual machine that allows for running Java programs (applets)
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Smalltalk { a radical change in programming languages

� rapid prototyping

Ei�el { a language with assertions

� correctness

C++ { is much more than a better C

� the bene�ts of e�ciency

Java { the dial-tone of the Internet

� security

DLP { introduces logic into object orientation

� development of knowledge-based systems
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in a browser, in a so-called sandbox, which protects the user from possibly

malicious programs.

As the �nal language in this brief overview, I wish to mention the distributed

logic programming language DLP (see Eli�ens, 1992). The DLP language combines

logic programming with object-oriented features and parallelism. I mention it,

partly because the development of this language was my �rst involvement with

OOP. And further, because it demonstrates that other paradigms of programming,

in particular logic programming, may be fruitfully combined with OOP. The

language DLP provides a high level vehicle for modeling knowledge-based systems

in an object-oriented way.

A more extensive introduction to the Smalltalk, Ei�el, C

++

, Java and DLP

languages is given in the appendix.

1.4 Beyond object­orientation?

No introduction to object orientation is complete without an indication of the

trends and technologies that surround the �eld. The word trend should be

understood in its positive meaning of set examples and emerging guidelines.

And `technologies', such as for example CORBA (the OMG Common Object

Request Broker Architecture), as those that set the technological landscape which

determines whether object-oriented approaches can be deployed e�ectively in

practice.

At the design front, we may observe two dominant trends. The �rst may be

called the patterns movement, which came into the forefront after the publication

of Design Patterns, authored by a group of authors that is commonly known

as the `Gang of Four', Gamma et al. (1994). The design patterns published
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Trends { modeling

� patterns { examples of design

� UML { Uni�ed Modeling Language

Technologies { components

� Web { global infrastructure

� CORBA/DCOM - the software bus

� Java { the platform?

Challenges

� Applications ! Frameworks  Patterns
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there, and elsewhere e.g. Coplien and Schmidt (1995), may be regarded as the

outcome of mining actual framework and application designs for valid solutions

that may be generalized to broader classes of problems. Design patterns focus on

understanding and describing structural and behavioral properties of (fragments

of) software systems.

Equally focused on understanding structure and behavior, but more from

a modeling perspective, is the Uni�ed Modeling Language (UML), which has

resulted from a common e�ort of leading experts in object-oriented analysis

and design, Grady Booch, Ivar Jacobson and James Rumbaugh, also known

as `The Three Amigos'. UML, indeed the second trend, aims at providing the

full notational repertoire needed for modeling every conceivable structural and

behavioral aspect of software systems. An excellent introduction to UML is given

in Fowler (1997b). In Appendix F you will �nd a brief introduction to the UML.

With respect to technology, the �eld is still very much in 
ux. A dominant

factor here is the rapid increase in Internet usage and, more in particular, the Web.

The Web has boosted the interest of the IT business world in the deployment of

distributed object or component technology to extend their range of business.

Nevertheless, the very existence of this infrastructure is in itself somewhat em-

barrassing, in that the Web and the technology around which it is built is not

object-oriented. Perhaps it should be, but it simply isn't. Our embarrassment

is aggravated when we observe, following Szyperski (1997), that the technology

which may change this, in casu component software, is in itself not object-oriented

but, paraphrasing the subtitle of this excellent book, `beyond object orientation'.

And even worse, object-oriented approaches at framework development have failed

more often than they have succeeded, an observation which is con�rmed by for

example Cockburn (1997). Reading this you may think that object-orientation is

in a deplorable state, and close the book. It isn't. First of all, because in terms

of modeling and design there is no beyond object-orientation. And secondly,

quoting Szyperski, `object-technology, if harnessed carefully, is possibly one of
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the best ways to realize component technology ...'. Well, believe me, it is the

best way. Whether it is CORBA, Microsof (D)COM or Java that will become the

dominant component technology is quite another issue; component technology

that ignores the object-lessons is doomed to fail!

Challenges Ignoring the component question for the moment, we may ask our-

selves what the major challenges are that are confronting us as software devel-

opers. Brie
y put, we still need to go a long way before we understand our

applications well enough in terms of the (problem-solving) patterns underlying

their construction that we can realize these patterns robustly in frameworks that

are not only reusable conceptually, but that will also be (re)used in practice to

develop cost-e�ective, competitive, economically viable applications.

More concretely, a major challenge for the next decade will be to develop

and deploy frameworks that operate in areas such as �nance, medical care, social

welfare and insurance. This is explicitly not only a technical problem, but also a

problem of coming to agreement with respect to the abstractions and correspond-

ing standards that provide the computational infrastructure for these domains.

Also on my wish-list is the separation of logic and control, by which I mean the

decoupling of the more or less invariant functionality as may be provided by for

example business objects and business processes and the more variable logic that

controls these processes. In other words, it is necessary that the business logic is

made explicit and that it is factored out of the code e�ectuating it.

Challenges in O-O

� vertical framework development { �nance, medical care, insurance

� separation of 'logic' from 'control' { business rules

� distributed object technology { heterogeneous systems

� visualisation { structure and processes

� knowledge intensive applications { declarative

� heterogeneous systems { fragmented applications
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Another challenge is to integrate the various technologies into our frameworks

and systems. In e�ect we will see more and more heterogeneous systems, com-

posed of components from a variety of suppliers. These components may be

implemented in every conceivable language, and may run on di�erent platforms.

How to connect these components in a reliable manner is still an open problem.

And more generally, although there are solutions for crossing the various bound-

aries, the platform boundary and the language boundary, there are still a lot of

problems to solve. In this book we will explore some of these problems, and get

some experience with some of the solutions.

Both our hardware and software technology are improving rapidly. Yet, we
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are still stuck with the WIMP interfaces. In my opinion, it is time for a change.

What I would like to see is an exploration of 3D user interfaces and 3D visualisa-

tions of the structure and processes underlying information-intensive applications.

Although not speci�cally related to object-oriented software development, this is

an area where object orientation can prove its worth.

When we think about real applications, for example information or business

services on the Internet, they are usually the kind of applications that we may

characterize as knowledge-intensive applications. In a somewhat idealistic vision,

we may think of application development that consists of composing components

from perhaps even a number of frameworks, so that we don't have to bother with

the tiresome details of network access and GUI development. Then what remains

to be done is to glue it all together, and provide the information and knowledge

that enables our application to deliver its services. Partly we can rely on database

technology for the storage and retrieval of information. But in addition we will

need other declarative formalisms for expressing, for example, our business logic

or, as another example, for expressing the synchronisation constraints of our

multimedia presentation.

Considering Web applications, even as they are today, we see applications

that consist of a mixture of code, tools and information. The phrase fragmented

applications seems apt here. For example a store selling books on the Internet

needs everything ranging from Javascript enabled webpages, to a secure CORBA-

based accounting server. It is very likely that such applications will be developed

partly by composing already existing components.

In his book, Szyperski (1997) argues that component-technology must be

considered as the next stage, that is (as the subtitle of his book indicates) beyond

object orientation. This is true to the extent that naive object orientation, charac-

terized by weak encapsulation and white-box or implementation inheritance, has

proven to be not entirely successful. What we need is a more robust speci�cation

of the behavioral properties of objects, for example by contractual speci�cations,

and a stronger notion of encapsulation, in which not only the inner world of the

object is protected from invasions from the outside, but where the outer world

is also shielded from the object itself, so that the object cannot reach out into

a world that might not even exist. More concretely, objects must be designed

that allows them to be used in a distributed environment. They must observe, as

Wegner puts it, the distribution boundary.

Summary

This chapter has given an outline of the major theme of this book, which may

be characterized as the uni�cation of a software engineering perspective and a

foundational approach. The minor theme may be characterized by saying that a

considerable amount of technology is involved.

In section 1 we looked at the terminology associated with object orientation,

we studied the mechanisms underlying object computation and we discussed an

approach to the development of software that centers around the identi�cation of
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Themes and variations 1

� terminology { all phrases

� object computation { message passing

� contracts { for constructing and validating software
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responsibilities and the de�nition of abstract data types embodying the mutual

responsibilities of a client and a server object in terms of a contract. See slide

1-29.

Paradigms of programming 2

� styles of programming { as a family of conventions

� data abstraction { and its possible realizations

� polymorphism { and the features of inheritance
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Then, in section 2, we looked at object-orientation as a paradigm of program-

ming, extending an abstract data type approach with support for the organization

of object types in a polymorphic type structure. See slide 1-30. Further, an

overview was given of the literature available on OOP, including a number of

landmark papers on which this book was originally based.

The object-oriented software life-cycle 3

� software development models { in particular the role of prototyping

� software quality { in relation to reuse and maintenance

� programming languages { the choice of a vehicle
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In section 3 we looked at the object-oriented software life-cycle, consisting

of the phases of analysis, design and implementation. We discussed software

development models and the role of prototyping, how an object-oriented approach

may promote software quality and facilitate maintenance, and we looked at some

programming languages as vehicles for the implementation of object-oriented

code. See slide 1-31.

In section 4 we attempted to discern trends in the research and deployment

of object-oriented technologies. We also tried to formulate the challenges we are
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Beyond object orientation? 3

� modeling { patterns, UML

� components { CORBA, (D)COM, Java

� heterogeneous systems { separating logic and control
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faced with which concern the utilization of components for the development of

knowledge-intensive heterogeneous systems, that allow to factor out the (business)

logic in a declarative manner. See slide 1-32.

Questions

1. How would you characterize OOP and what, in your opinion, is the moti-

vation underlying the introduction of OOP?

2. Characterize the most important features of OOP.

3. Explain the meaning of the phrase `object orientation reduces the complexity

of programming.'

4. How would you characterize contracts? Why are contracts important?

5. How is OOP related to programming languages?

6. What classes of languages support OOP features? Explain.

7. What in
uence is an object-oriented approach said to have on the software

life-cycle? What is your own opinion? Discuss the problem of maintenance.

8. How would you characterize software quality?

9. Mention a number of object-oriented programming languages, and give a

brief characterization.

10. What do you see as the major challenges for research in object orientation?

Further reading

Nowadays there are many books that may serve as a starting point for reading

about OO. Dependent on your interest, you may look at Cockburn (1997), which

treats issues of OO project management, Meyer (1997), which gives an extensive

introduction to design by contract and programming in Ei�el, or Fowler (1997b),

which gives a succinct introduction to UML. Alternatively, you may take one

of the introductory programming books for Java, from which you will almost

certainly learn something about OO as well.
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Object orientation has brought about a radical shift in our notion of software

development. The basic mechanisms of object-oriented programming, encapsu-

lation and inheritance, have clear advantages when it comes to data-hiding and

incremental development.

Idioms and patterns 2

� polymorphism { inheritance and delegation

� idioms { realizing concrete types

� patterns { a catalogue of design patterns

� events { the reactor pattern

Additional keywords and phrases: generic types, assertions, canonical

classes, event-driven computation

2-1

Slide 2-1: Idioms and patterns

However, these basic mechanisms alone do not su�ce for the realization of

more complex systems. In this chapter, we will look at idioms and patterns for

object and class composition. Patterns, as originally introduced in Gamma et al.

(1994), characterize a generic solution to a problem or dilemma in design. Idioms

may be understood as the implementation techniques underlying the realization

of (design) patterns.

First we will look at some examples in Java, illustrating the use of inheritance

37



38 Idioms and patterns

and delegation for the realization of some simple idioms and patterns. Then,

we will brie
y deal with polymorphism in C

++

, including the use of assertions

that may be used to enforce contractual obligations. After discussing some of

the idioms and patterns that have been employed in the hush framework, we will

look more closely at the catalogue of design patterns introduced in Gamma et al.

(1994). Finally, we will study the reactor pattern as introduced in Schmidt (1995)

and brie
y explore event-based software architectures.

2.1 Polymorphism

Polymorphism is an intriguing notion. Brie
y put, polymorphism is the ability of

a particular entity (which may be an object, a function, or a variable) to present

itself as belonging to multiple types. Object-oriented languages are not unique

in their support for polymorphism, but it is safe to say that polymorphism is an

important feature of object-oriented languages. As explained in chapter 9, poly-

morphism comes in various 
avors. With regard to object-oriented languages, we

usually mean inheritance or inclusion polymorphism. Even within this restricted

interpretation, we have to make a distinction between syntactic polymorphism,

which requires merely that interfaces conform, and semantic polymorphism, where

conformance requirements also include behavioral properties.

In this section, we will look at some simple examples in Java that illustrate

how we may use the mechanisms of inheritance and (simple) delegation to de�ne

objects that have similar functionality but di�er in the way that functionality

is realized. These examples prepare the way for the more complex idioms and

patterns presented later in this chapter.

In the rest of this section we will look brie
y at the polymorphic constructs

o�ered by C

++

. We will also study how behavioral conformance can be enforced

in C

++

by including invariants and assertions. These sections may be skipped on

�rst reading.

2.1.1 Inheritance and delegation in Java

Consider the example below, an envelope class that o�ers a message method. In

this form it is nothing but a variation on the hello world example presented in

the appendix.

public class envelope f envelope

public envelope() f g

public void message() f

System.out.println("hello ... ");

g

g;
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To illustrate the idea underlying idioms and patterns in its most simple form,

we will re�ne the envelope class into the collection of classes depicted in slide 2-2.

We will proceed in three steps: (1) The envelope class will be redesigned so

that it acts only as an interface to the letter implementation class. (2) Then we

introduce a factory object, that is used to create envelope and letter instances. (3)

Finally, we re�ne the letter class into a singleton class, that prevents the creation

of multiple letter instances.

FactoryLetterEnvelope

SingletonLetter

message()

message()

enverlope()

letter()

message()

Slide 2-2: Envelope/Letter Factory

Envelope/Letter The Envelope/Letter idiom was introduced in Coplien (1992)

as a means to separate interface aspects from implementation aspects. Here the

call to message is simply forwarded to the letter object.

public class envelope f envelope

letter impl;

public envelope() f

impl = new letter();

g

public void message() f

impl.message();

g

g;

public class letter f letter

public letter() f g

public void message() f

System.out.println("Message in a letter");

g

g;
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Admittedly, there is no need here to make such a distinction, but the idea

speaks for itself. As you will see, this distinction allows us to change the imple-

mentation without modifying the envelope or interface class.

Factory In the next re�nement, we introduce a factory object, that allows us to

create envelope and letter instances without invoking a constructor.

public class factory f factory

public factory() f g

letter letter() f return new letter(); g

envelope envelope() f return new envelope(); g

g;

public class envelope f envelope

letter impl;

public envelope() f

factory f = new factory();

impl = f.letter(); // obtained from factory

g

public void message() f

impl.message();

g

g;

The factory object is used in the envelope class to create a letter. The

advantage here, as will be shown shortly, is that the envelope class does not

need to have any information about the actual type of the letter.

Singleton letter Finally, we re�ne the letter class into a singleton class. When

you inspect the implementation, you will see that only one instance of a letter will

be created.

public class singleton extends letter f singleton

static int number = 0;

protected singleton() f g

static letter instance() f

if (number==0) f

theletter = new letter();

number = 1;

g

return theletter;
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g

public void message() f

System.out.println("Message in a letter");

g

static letter theletter;

g;

Note that the factory object must be modi�ed so that the static method

instance of singleton is invoked instead of the original constructor of letter.

Discussion This example, however simple, demonstrates the implementation

of some of the idioms and patterns that will be discussed in the rest of this

chapter. It shows that the basic mechanisms of inheritance and simple delegation

or forwarding are su�cient to implement these idioms and patterns. We have not

discussed yet why we need idioms and patterns, but this will hopefully become

clear later on.

2.1.2 Polymorphism in C++

Polymorphism essentially characterizes the type of a variable, function or object.

Polymorphism may be due to overloading, parametrized types or inheritance.

Polymorphism due to inheritance is often considered as the greatest contribution

of object-oriented languages. This may be true, but the importance of generic

(template) types and overloading should not be overlooked.

In slide 2-3 some examples are given of declarations involving polymorphic

types. The function print is separately de�ned for int and 
oat. Also, a generic

list class is de�ned by means by employing templates. The list may be used for

any kind of objects, for example integers. Finally, a shape class is de�ned from

which a circle class is derived. An instance of the circle may be referred to by

using a shape pointer, because the type shape encompasses circle objects.

The Standard Template Library (STL)

The Standard Template Library for C

++

provides a generic library of data struc-

tures to store, access and manipulate data. It is a generic library based on

templates. In fact, it uses templates in such an aggressive way that the C

++

standardization committee was forced to reconsider its de�nition of the generic

template facility in C

++

. See Schildt (1999).

The Standard Template Library (STL) o�ers containers, to hold objects, algo-

rithms, that act on containers, and iterators, to traverse containers. Algorithms,

which are implemented as objects, may use functions, which are also de�ned as

objects, overloading the application operator() method. In addition, STL o�ers

adaptors, to transform objects, and allocators, for memory management.
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Overloading print

extern void print(int);

extern void print(
oat);

Generic class { templates list< T >

template< class T > class list f ... g

list<int>* alist;

Polymorphism by inheritance shape

class shape f ... g;

class circle : public shape f ... g

shape* s = new circle;

2-3

Slide 2-3: Polymorphic type declarations

Standard Template Library STL

� containers { to hold objects

� algorithms { act on containers

� iterators { to traverse containers

� functions { as objects

� adaptors { to transform objects

� allocators { for memory management

2-4

Slide 2-4: The Standard Template Library

STL is supported by C

++

compilers that adhere to the C

++

standard, includ-

ing Microsoft Visual C

++

and the Cygnus/GNU C

++

compilers. A more extensive

discussion of STL is beyond the scope of this book, but the reader is advised to

consult Schildt (1999), which gives an introduction to STL and its history, as well

as a thorough course on programming with STL.

2.1.3 Assertions in C++

Whatever support a language may o�er, reliable software is to a large extent the

result of a disciplined approach to programming. The use of assertions has long

since been recognized as a powerful way in which to check whether the functional

behavior of a program corresponds with its intended behavior. In e�ect, many

programming language environments support the use of assertions in some way.
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For example, both C and C

++

de�ne a macro assert which checks for the result

of a boolean expression and stops the execution if the expression is false.

In the example below, assertions are used to check for the satisfying of both

the pre- and post-conditions of a function that computes the square root of its

argument, employing a method known as Newton iteration.

double sqrt( double arg ) f sqrt

require ( arg >= 0 );

double r=arg, x=1, eps=0.0001;

while( fabs(r - x) > eps ) f

r=x; x=r-((r*r-arg)/(2*r));

g

promise ( r - arg * arg <= eps );

return r;

g

In the example, the macro assert has been renamed require and promise to

indicate whether the assertion serves as, respectively, a pre- or post-condition.

As the example above shows, assertions provide a powerful means by which

to characterize the behavior of functions, especially in those cases where the

algorithmic structure itself does not give a good clue as to what the function

is meant to do.

The use of assertions has been promoted in Meyer (1988) as a design method

for object-oriented programming in Ei�el. The idea is to de�ne the functionality

of the various methods by means of pre- and post-conditions stating in a precise

manner the requirements that clients of an object must meet and the obligations

an object has when executing a method. Together, the collection of methods

annotated with pre- and post-conditions may be regarded as a contract between

the object and its potential clients. See section 3.3.

Whereas Ei�el directly supports the use of assertions by allowing access to

the value of an instance variable before the execution of a method through the

keyword old, the C

++

programmer must rely on explicit programming to be able

to compare the state before an operation with the state after the operation.

class counter f counter

public:

counter(int n = 0) : n(n) f

require( n >= 0 );

promise( invariant() ); check initial state

g

virtual void operator ++() f

require( true ); empty pre-condition

hold(); save the previous state

n += 1;

promise( n == old n + 1 && invariant() );

g
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int value() const f return n; g no side e�ects

virtual bool invariant() f return value() >= 0; g

protected:

int n;

int old n;

virtual void hold() f old n = n; g

g;

The annotated counter above includes a member function hold to store the

value of its instance variable. It is used in the operator ++ function to check

whether the new value of the counter is indeed the result of incrementing the old

value.

Assertions may also be used to check whether the object is correctly initialized.

The pre-condition stated in the constructor requires that the counter must start

with a value not less than zero. In addition, the constructor checks whether the

class invariant, stated in the (virtual) member function invariant, is satis�ed.

Similarly, after checking whether the post-condition of the operator ++ function is

true, the invariant is checked as well.

class bounded : public counter f bounded

public:

bounded(int b = MAXINT) : counter(0), max(b) fg

void operator ++() f

require( value() < max ); to prevent over
ow

counter::operator ++();

g

bool invariant() f

return value() <= max && counter::invariant();

g

private:

int max;

g;

When employing inheritance, care must be taken that the invariance require-

ments of the base class are not violated. The class bounded, given above, re�nes the

class counter by imposing an additional constraint that the value of the (bounded)

counter must not exceed some user-de�ned maximum. This constraint is checked

in the invariant function, together with the original counter :: invariant(), which

was declared virtual to allow for overriding by inheritance. In addition, the

increment operator ++ function contains an extra pre-condition to check whether

the state of the (bounded) counter allows it to perform the operation.

From a formal perspective, the use of assertions may be regarded as a way

of augmenting the type system supported by object-oriented languages. More
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importantly, from a software engineering perspective, the use of assertions is a

means to enforce contractual obligations.

2.1.4 Canonical class idioms

The multitude of constructs available in C

++

to support object-oriented pro-

gramming may lead the reader to think that object-oriented programming is not

at all meant to reduce the complexity of programming but rather to increase

it, for the joy of programming so to speak. This impression is partly justi�ed,

since the number and complexity of constructs is at �rst sight indeed slightly

bewildering. However, it is necessary to realize that each of the constructs

introduced (classes, constructors and destructors, protection mechanisms, type

conversion, overloading, virtual functions and dynamic binding) may in some

way be essential to support object-oriented programming in a type-safe, and yet

convenient, way.

Having studied the mechanisms, the next step is to �nd proper ways, recipes

as it were, to use these mechanisms. What we need, in the terminology of Coplien

(1992), are idioms, that is established ways of solving particular problems with

the mechanisms we have available. In his excellent book, Coplien discusses a

number of advanced C

++

idioms for a variety of problem domains, including

signal processing and symbolic computing.

In this section, we will look at the concrete class idiom for C

++

, which states

the ingredients that every class must have to behave as if it were a built-in

type. Other idioms, in particular an improved version of the handle/body or

envelope/letter idiom that may be used to separate interface from implementation,

will be treated in the next section.

Concrete data types in C++ A concrete data type is the realization of an

abstract data type. When a concrete data type is correctly implemented it must

satisfy the requirements imposed by the de�nition of the abstract data type it

realizes. These requirements specify what operations are de�ned for that type, and

also their e�ects. In principle, these requirements may be formally speci�ed, but

in practice just an informal description is usually given. Apart from the demands

imposed by a more abstract view of the functionality of the type, a programmer

usually also wishes to meet other requirements, such as speed, e�ciency in terms

of storage and error conditions, to prevent the removal of an item from an empty

stack, for example. The latter requirements may be characterized as requirements

imposed by implementation concerns, whereas the former generally result from

design considerations.

To verify whether a concrete data type meets the requirements imposed by

the speci�cation of the abstract data type is quite straightforward, although

not always easy. However, the task of verifying whether a concrete data type

is optimally implemented is rather less well de�ned. To arrive at an optimal

implementation may involve a lot of skill and ingenuity, and in general it is

hard to decide whether the right choices have been made. Establishing trade-o�s
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Canonical class in C++

� default constructor

� copy constructor

� destructor

� assignment

� operators

Abstract data types must be indistinguishable from built-in types

2-5

Slide 2-5: Canonical class

and making choices, for better or worse, is a matter of experience, and crucially

depends upon the skill in handling the tools and mechanisms available.

When de�ning concrete data types, the list of requirements de�ning the canon-

ical class idiom given in slide 2-5 may be used as a check list to determine whether

all the necessary features of a class have been de�ned. Ultimately, the programmer

should strive to realize abstract data types in such a way that their behavior is in

some sense indistinguishable from the behavior of the built-in data types. Since

this may involve a lot of work, this need not be a primary aim in the �rst stages

of a software development project. But for class libraries to work properly, it is

simply essential.

2.2 Idioms in hush

The hush framework, developed by the author and his colleagues, aims at pro-

viding an easy-to-use and 
exible, multi-paradigm environment for developing

distributed hypermedia and web-based applications. Actually hush, which stands

for hyper utility shell, is a part of the DejaVU framework which has been developed

at the Free University in Amsterdam over the last �ve years. The DejaVU

framework is meant as an umbrella for our research in object-oriented applications

and architectures. Many of the examples in this book are in some way derived

from hush or applications developed within the DejaVU project. The hush library

was originally developed in C

++

, but parts of it have been ported to Java using

the Java native runtime interface. You will see examples of hush in chapters 4, 6,

7, 11 and 12.

In this section a brief overview will be given of the basic concepts underlying

hush. Then we will discuss the idioms used in realizing hush and its extensions,

in particular an adapted version of the handle/body idiom originally introduced

in Coplien (1992), the virtual self-reference idioms and the dynamic role switching

idiom. At the end of this section we will discuss the implications these idioms

have for developing hush applications. Readers not interested in hush may safely

skip the introduction that follows and the discussion at the end of this section.

The hush framework is object-oriented in that it allows for a component-wise

approach to developing applications. Yet, in addition to object class interfaces,
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it o�ers the opportunity to employ a script language, such as Tcl and Prolog,

to develop applications and prototypes. The hush framework is a multi-paradigm

framework, not only by supporting a multi-lingual approach, but also by providing

support for distributed client/server solutions in a transparent (read CORBA)

manner.

In this section we will look at the idioms employed for the realization of

the framework. In developing hush we observed that there is a tension between

de�ning a clean object model and providing the 
exibility needed to support a

multiparadigm approach. We resolved this tension by choosing to di�erentiate

between the object model (that is class interfaces) o�ered to the average user of

the framework and the object model o�ered to advanced users and system-level

developers.

In this approach, idioms play a central role. We achieved the desired 
exibility

by systematically employing a limited number of basic idioms. We succeeded

in hiding these idioms from the average user of the framework. However, the

simplicity of our original object model is only apparent. Advanced or system-level

developers who intend to de�ne extensions to the framework must be well aware of

the patterns underlying the basic concepts, that is the functionality requirements

of the classes involved, and the idioms employed in realizing these requirements.

The hush framework – basic concepts

Application development generally encompasses a variety of programming tasks,

including system-level software development (for example for networking or multi-

media functionality), programming the user interface (including the de�nition of

screen layout and the responsivity of the interface widgets to user actions), and

the de�nition of (high-level) application-speci�c functionality. Each of these kinds

of tasks may require a di�erent approach and possibly a di�erent application

programming language. For example, the development of the user interface

is often more conveniently done using a scripting language, to avoid the wait-

ing times involved in compiling and linking. Similarly, de�ning knowledge-level

application-speci�c functionality may bene�t from the use of a declarative or logic

programming language.

In developing hush, we decided from the start to support a multiparadigm

approach to software development and consequently we had to de�ne the mutual

interaction between the various language paradigms, as for example the inter-

action between C

++

and a scripting language, such as Tcl. Current scripting

languages, including Python and Tcl, provide facilities for being embedded in C

and C

++

, but extending these languages with functionality de�ned in C or C

++

and employing the language from within C/C

++

is rather cumbersome. The hush

library o�ers a uniform interface to a number of script languages and, in addition,

it o�ers a variety of widgets and multimedia extensions, which are accessible

through any of the script interpreters as well as the C

++

interface.

These concepts are embodied in (pseudo) abstract classes that are realized by

employing idioms extending the handle/body idiom, as explained later on.

Programming a hush application requires the de�nition of an application class
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Basic hush classes

� session { to manage (parts of) the application

� kit { to provide access to the underlying system and interpreter

� handler { to bind C++ functionality to events

� event { stores information concerning user actions or system events

� widget { to display information on a screen

� item { represents an element of a widget

2-6

Slide 2-6: Basic hush classes

derived from session to initialize the application and start the (window environ-

ment) main loop. In addition, one may bind Java or C+= handler objects to

script commands by invoking the kit::bind function. Handler objects are to be

considered an object realization of callback functions, with the advantage that

client data may be accessed in a type-secure way (that is either by resources

stored when creating the handler object or by information that is passed via

events). When invoked, a handler object receives a pointer to an event (that is,

either an X event or an event related to the evaluation of a script command).

Both the widget and (graphical) item class are derived from handler to allow for

declaring widgets and items to be their own handler.

Embedding script interpreters The hush framework o�ers a generic kit that

may be used as the interface to any embedded interpreter. The public interface

of the kit class looks as follows:

interface kit f kit

void eval(string cmd);

string result();

void bind(string name, handler h);

g;

The function eval is used for evaluating (script) commands, and result may

be used to communicate data back. The limitation of this approach, obviously, is

that it is purely string based. In practice, however, this proves to be 
exible and

su�ciently powerful. The bind function may be used to de�ne new commands and

associate it with functionality de�ned in handler objects, which are introduced

below.

Handler objects The problem of extending the script language with func-

tionality de�ned by the application, is (as already indicated above) addressed

by de�ning a generic handler object class. Handler objects may be regarded
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as a generalization of callback functions, in the sense that they are activated

whenever the corresponding script command is evaluated. The advantage of using

objects for callbacks instead of functions, obviously, is that we no longer need

type-insecure casts, or static or global variables to pass information around. The

public interface of the handler class looks as follows:

interface handler f handler

int dispatch( event e ); // to dispatch events

int operator();

g;

The dispatch function is called by the underlying system. The dispatch function

receives a pointer to an event which encodes the information relevant for that

particular callback. In its turn dispatch calls the operator() function. Classes

derived from handler need only rede�ne the operator() function. Information

needed when activating a handler object must be provided when creating the

object, or obtained from the event for which the handler is activated.

The use of handler objects is closely connected to the paradigm of event-driven

computation. An event, conceptually speaking, is an entity that is characterized

by two signi�cant moments, the moment of its creation and the moment of its

activation, its occurrence. Naturally, an event may be activated multiple times

and even record a history of its activation, but the basic principle underlying the

use of events is that all the information that is needed is stored at creation time

and, subsequently, activation may proceed blindly. See section 2.4.1.

User actions Another use of handler objects (in hush) is for de�ning what must

be done in response to user events, resulting from actions such as moving the

mouse, or pressing a button, or selecting an entry from a menu. This is illustrated

by the public interface of the generic widget class:

interface widget : handler f widget

...

void bind( handler h );

void bind( string action, handler h );

...

g;

The �rst member function bind may be used for installing a handler for the

default bindings of the widget, whereas the second bind function is to be used

for overriding any speci�c bindings. (Recall that the class widget is derived from

handler class to allow the widget to be its own handler. In this way inheritance or

the delegation to a separate handler object may be used to de�ne the functionality

of a widget.)

In addition to the widget class, the hush library also provides the class item,

representing graphical items. Graphical items, however, are to be placed within

a canvas widget, and may be tagged to allow for the groupwise manipulation of
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a collection of items, as for example moving them in response to dragging the

mouse pointer.

Programmer-de�ned events User interface events occur in response to actions

by the user. They are scheduled by the underlying window system, which invokes

the handler whenever it is convenient or necessary. When getting used to event-

driven computation, system designers and programmers may feel the need to have

events at their disposal that may be scheduled at will, under the programmer's

control. It will come as no surprise that another use of handler objects is to allow

for programmer-de�ned events. The public interface of the class event looks as

follows:

interface event : handler f event

operator();

g;

Actual event classes are derived from the generic class event, and a scheduler

is provided to activate events at the appropriate time. (In e�ect, we provide a

fully functional discrete event simulation library, including facilities for generating

random distributions and analysing the outcome of experiments. Business process

simulations done with this library are discussed in Chapter 11.) Note that there is

an important di�erence between programmer-de�ned events and system-de�ned

events. System-de�ned events are delivered to the user by activating a handler

callback. In contrast, programmer-de�ned events are (directly) activated by a

scheduler. They contain, so to speak, their own handler.

Discussion What bene�ts do we derive from employing handler objects and

their derivatives? One advantage is that we have a uniform way to de�ne the

functionality of script commands, callbacks to user actions and programmer-

controlled events. Another, less apparent advantage, is that it allows us to

incorporate a variety of functionality (including sound synthesis facilities, digital

video and active documents) in a relatively straightforward fashion.

2.2.1 The handle/body idiom

The handle/body class idiom, originally introduced in Coplien (1992), separates

the class de�ning a component's abstract interface (the handle class) from its

hidden implementation (the body class). All intelligence is located in the body,

and (most) requests to the handle object are delegated to its implementation.

In order to illustrate the idiom, we use the following class as a running example:

class A f A { naive

public A() f g

public void f1() f System.out.println("A.f1"); f2(); g
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public void f2() f System.out.println("A.f2"); g

g;

The implementation of A is straightforward and does not make use of the

handle/body idiom. A call to the f1() member function of A will print a message

and make a subsequent call to f2().

Without any modi�cation in the behavior of A's instances, it is possible to

re-implement A using the handle/body idiom. The member functions of class A

are implemented by its body, and A is reduced to a simple interface class:

class A f A

public A() f body = new BodyOfA(this); g

protected A(int x) f g

public void f1() f body.f1(); g

public void f2() f body.f2(); g

public void f3() f System.out.println("A.f3"); g

private A body;

g;

Note that the implementation of A's body can be completely hidden from the

application programmer. In fact, by declaring A to be the superclass of its body

class, even the existence of a body class can be hidden. If A is a class provided

by a shared library, new implementations of its body class can be plugged in,

without the need to recompile dependent applications:

class BodyOfA extends A f BodyOfA { naive

public BodyOfA() f super(911); g

public void f1() f System.out.println("A.f1"); f2(); g

public void f2() f System.out.println("A.f2"); g

g;

In this example, the application of the idiom has only two minor drawbacks.

First, in the implementation below, the main constructor of A makes an explicit

call to the constructor of its body class. As a result, A's constructor needs to

be changed whenever an alternative implementation of the body is required. The

Abstract Factory pattern described in Gamma et al. (1994) may be used to solve

this problem in a generic and elegant way. Another (aesthetic) problem is the

need for the dummy constructor to prevent a recursive chain of constructor calls.

But the major drawback of the handle/body idiom occurs when deriving a

subclass of A which partially rede�nes A's virtual member functions. Consider

this de�nition of a derived class C:
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class C extends A f C

public void f2() f System.out.println("C.f2"); g

g;

Try to predict the output of a code fragment like:

C c = new C; c.f1();

The behavior of instances of C does indeed depend on whether the hidden

implementation of its base class A applies the handle/body idiom or not! If it

does, the output will be A.f1() A.f2(). because the indirect call to f2() in f1()

will (unexpectedly) not call the rede�ned version of f2(). The original de�nition

of A would of course yield A.f1() C.f2(). but this can only be obtained by

deriving C directly from the (hidden) body class.

Note that this is an illustration of one of the main drawbacks of the OOP

paradigm: the inability to change base classes at the top of a hierarchy without

introducing errors in derived classes.

Explicit invocation context In both implementations of A, the call to f2() in

f1() is an abbreviation of this.f2(). However, in the �rst, naive implementation

of A, the implicit this reference refers to the handle object (which can be an

instance of a derived class). In contrast, this in the BodyOfAwill refer to the body

object. As a consequence, the body object is unable to make calls to functions

rede�ned by classes derived from the base class A.

We use the term invocation context to denote a reference to the context in

which the original request for a speci�c service is made, and represent this by a

pointer to the handle object. In other words, the handle object needs a pointer

to its body to be able to delegate its functionality, and, symmetrically, the body

needs a pointer to the handle in order to be able to use any rede�ned virtual

functions.

The body can be rede�ned as:

class BodyOfA extends A f BodyOfA

public BodyOfA(A h) f super(911); handle = h; g

public void f1() f System.out.println("A.f1"); handle.f2(); g

public void f2() f System.out.println("A.f2"); g

A handle; reference to invocation context

g;

The new body class is aware of the fact that it is implementing services which

are accessed via the handle object. Consequently, it can use this information and

is able to make calls to functions which might be rede�ned by descendants of A.
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Note that this solution does require some programming discipline: all (im-

plicit) references to the body object should be changed into a reference to the

invocation context. Fortunately, this discipline is only required in the body classes

of the implementation hierarchy.

Class A

Subclass C

Body of A

Body of C

ImplementationPublic interface

Slide 2-7: Separating interface hierarchy and implementation

Descendants of the handle classes in the public interface hierarchy can share

and rede�ne code implemented by the hidden body classes in a completely trans-

parent way, because all code sharing takes place indirectly, via the interface

provided by the handle classes. However, even other body classes will typically

share code via the handle classes. Also derived classes can use the handle/body

idiom, as depicted in slide 2-7.

2.2.2 Virtual self­reference

A special feature of the hush widget class library is its support for the de�nition of

new composite widgets, which provide to the application programmer the interface

of a built-in (or possibly other composite) widget. To realize this 
exibility, we

introduced a self() function that adds another level of indirection to self-reference.

For example, look at the item class below:

class item f item

public item(String x) f name = x; self = null; g

String name() f return exists()?self().name(): name; g

public void redirect(item x) f self = x; g

boolean exists() f return self != null; g
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public item self() f return exists()? self.self():this; g

item self;

String name;

g;

The item class has an instance variable self, that can be set to an arbitrary

instance of item by invoking redirect. Now, when we ask for the name of the

item, it is checked whether a redirection exists. If so, the call is redirected to the

instance referenced by self(), otherwise the name of the item itself is returned.

public class go f

public static void main(String[] args) f

item a = new item("a");

item b = new item("b");

a.redirect(b);

System.out.println(a.name()); indeed, b

g

g;

In combination with the handle/body idiom, we can create composites o�ering

the interface of item, providing access to one or more (inner) items. This will be

further illustrated in chapter 4.

Those well-versed in design patterns will recognize the Decorator patterns (as

applied in the Interviews MonoGlyph class, Linton et al. (1989)).

2.2.3 Dynamic role­switching

For many applications, static type hierarchies do not provide the 
exibility needed

to model dynamically changing roles. For example we may wish to consider a

person as an actor capable of various roles during his lifetime, some of which

may even coexist concurrently. The characteristic feature of the dynamic role

switching idiom underlying the actor pattern is that it allows us to regard a

particular entity from multiple perspectives and to see that the behavior of that

entity changes accordingly. We will look at a possible realization of the idiom

below.

Taking our view of a person as an actor as a starting point, we need �rst to

establish the repertoire of possible behavior.

class actor f actor

public static final int Person = 0;

public static final int Student = 1;

public static final int Employer = 2;

public static final int Final = 3;
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public void walk() f if (exists()) self().walk(); g

public void talk() f if (exists()) self().talk(); g

public void think() f if (exists()) self().think(); g

public void act() f if (exists()) self().act(); g

public boolean exists() f return false; g

public actor self() f return this; g

public void become(actor A) f g

public void become(int R) f g

g;

Apart from the repertoire of possible behavior, which consists of the ability to

walk, talk, think and act, an actor has the ability to establish its own identity (self)

and to check whether it exists as an actor, which is true only if it has become

another self. However, an actor is not able to assume a di�erent role or to become

another self. We need a person for that!

Next, we may wish to re�ne the behavior of an actor for certain roles, such as

for example the student and employer roles, which are among the many roles a

person can play.

class student extends actor f student

public void talk() f System.out.println("OOP"); g

public void think() f System.out.println("Z"); g

g;

class employer extends actor f employer

public void talk() f System.out.println("money"); g

public void act() f System.out.println("business"); g

g;

Only a person has the ability to assume a di�erent role or to assume a di�erent

identity. Apart from becoming a Student or Employer, a person may for example

become an adult person and in that capacity again assume a variety of roles.

class person extends actor f person

public person() f

role = new actor[ Final+1 ];

for( int i = Person; i <= Final; i++ ) role[i]=this;

become(Person);

g

public boolean exists() f return role[ role] != this; g
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public actor self() f

if ( role[ Person ] != this ) return role[ Person ].self();

else return role[ role];

g

public void become(actor p) f role[ Person ] = p; g

public void become(int R) f

if (role[ Person ] != this) self().become(R);

else f

role = R;

if ( role[ role] == this ) f

switch( role) f

case Person: break; // nothing changes

case Student: role[ role] = new student(); break;

case Employer: role[ role] = new employer(); break;

case Final: role[ role] = new actor(); break;

default: break; // nothing happens

g

g

g

g

int role;

actor role[];

g;

A person may check whether he exists as a Person, that is whether the Person

role di�ers from the person's own identity. A person's self may be characterized

as the actor belonging to the role the person is playing, taking a possible change

of identity into account.

When a person is created, his repertoire is still empty. Only when a person

changes identity by becoming a di�erent actor (or person) or by assuming one of

his (�xed) roles, is he capable of displaying actual behavior.

Assuming or `becoming' a role results in creating a role instance if none exists

and setting the role instance variable to that particular role. When a person's

identity has been changed, assuming a role a�ects the actor that replaced the

person's original identity. (However, only a person can change roles!)

The ability to become an actor allows us to model the various phases of a

person's lifetime by di�erent classes, as illustrated by the adult class.

class adult extends person f adult

public void talk() f System.out.println("interesting"); g

g;

In the example code below we have a person talking while assuming di�erent
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roles. Note that the person's identity may be restored by letting the person

become its original self.

public class go f example

public static void main(String[] args) f

person p = new person(); p.talk(); empty

p.become(actor.Student); p.talk(); OOP

p.become(actor.Employer); p.talk(); money

p.become(new adult()); p.talk(); interesting

p.become(actor.Student); p.talk(); OOP

p.become(p); p.talk(); old role: employer

p.become(actor.Person); p.talk(); // initial state

g

g;

The dynamic role switching idiom can be used in any situation where we wish

to change the functionality of an object dynamically. It may for example be used

to incorporate a variety of tools in a drawing editor, as illustrated in chapter 4.

2.2.4 The art of hush programming

For the average user, programming in hush amounts (in general) to instantiating

widgets and appropriate handler classes, or derived widget classes that de�ne their

own handler. However, advanced users and system-level programmers developing

extensions are required to comply with the constraints resulting from the patterns

underlying the design of hush and the application of their associated idioms in

the realization of the library.

The design of hush and its extensions can be understood by a consideration

of two basic patterns and their associated idioms, that is the nested-component

pattern (which allows for nesting components that have a similar interface) and

the actor pattern (which allows for attributing di�erent modes or roles to ob-

jects). The realizations of these patterns are based on idioms that extend an

improved version of the familiar handle/body idiom. Our improvement concerns

the introduction of an explicit invocation context which is needed to repair the

disruption of the virtual function call mechanism caused by the delegation to

`body implementation' objects.

In this section, we will �rst discuss the handle/body idiom and its improvement.

Then we will discuss the two basic patterns underlying the design of hush and we

will brie
y sketch their realization by extensions of the (improved) handle/body

idiom.

Invocation context The handle/body idiom is one of the most popular id-

ioms. It underlies several other idioms and patterns (e.g. the envelope/letter

idiom, Coplien (1992); the Bridge and Proxy patterns, Gamma et al. (1994)).
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Invocation context handle/body

Problem Inheritance breaks with handle/body

Background Envelope/Letter, hiding implementations

Realization Explicit invocation contact in body

Usage sessions, events, kits, widgets, items

2-8

Slide 2-8: Invocation context

However, despite the fact that it is well documented there seems to be a major 
aw

in its realization. Its de�ciency lies in the fact that the dynamic binding mecha-

nism is disrupted by introducing an additional level of indirection (by delegating

to the `body' object), since it is not possible to make calls to member functions

which are re�ned by subclasses of the (visible) handle class in the implementation

of the (hidden) body class. We restored the working of the normal virtual

function mechanism by introducing the notion of explicit invocation context. In

this way, the handle/body idiom can be applied completely transparently, even

for programmers of subclasses of the handle.

The (improved version of) the idiom is frequently used in the hush class library.

The widget library is build of a stable interface hierarchy, o�ering several common

GUI widgets classes like buttons, menus and scrollbars. The widget (handle)

classes are implemented by a separate, hidden implementation hierarchy, which

allows for changing the implementation of the widget library, without the need

to recompile dependent applications. Additionally, the idiom helps us to ensure

that the various widget implementations are used in a consistent manner.

The nested component pattern The nested component pattern has been intro-

duced to support the development of compound widgets. It allows for (re)using

the script and C

++

interface of possibly compound widgets, by employing explicit

redirection to an inner or primary component.

Nested components virtual self-reference

Problem Realizing composites with single inheritance

Background Decorators, prototypes

Realization Smart delegation

Usage Composite widgets, embedded logic

2-9

Slide 2-9: Nested components

Inheritance is not always a suitable technique for code sharing and object

composition. A familiar example is the combination of a Text object and two
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scrollbars into a ScrollableText object. In that case, most of the functionality of

ScrollableText will be equal to that of the Text object. This problem may be dealt

with by employing multiple inheritance. Using single inheritance, it may be hard

to inherit this functionality directly and add extra functionality by attaching the

scrollbars, especially when interface inheritance and implementation inheritance

coincide.

The nested component pattern is closely related to the Decorator pattern

treated in Gamma et al. (1994) and InterViews' notion of MonoGlyph, Linton et

al. (1989). Additionally, by using explicit delegation it provides an alternative

form of code sharing to inheritance, as can be found in languages supporting

prototypes or exemplars, see section 5.4.

The nested component pattern is realized by applying the virtual self-reference

idiom. Key to the implementation of that idiom is the virtual self() member of a

component. The self() member returns a reference to the object itself (e.g. this

in C

++

) by default, but returns the inner component if the outer object explicitly

delegated its functionality by using the redirect() method. Note that chasing for

self() is recursive, that is (widget) components can be nested to arbitrary depth.

The self() member must be used to access the functionality that may be realized

by the inner component.

The nested component pattern is employed in designing the hush widget hier-

archy. Every (compound) widget can delegate part of its functionality to an inner

component. It is common practice to derive a compound widget from another

widget by using interface inheritance only, and to delegate functionality to an

inner component by explicit redirection.

The actor pattern The actor pattern provides a means to o�er a multitude of

functional modes simultaneously. For example, a single kit object gives access to

multiple (embedded) script interpreters, as well as (possibly) a remote kit.

Actor pattern dynamic role switching

Problem Static type hierarchies may be too limited

Background State transitions, self-reference

Realization Dynamic instantiation and delegation

Usage Web viewer, kit { embedded logic

2-10

Slide 2-10: Actor pattern

The characteristic feature of the actor pattern is that it allows us to regard a

particular entity as being attributed various roles or modes and that the behavior

of that entity changes accordingly.

Changing roles or modes can be regarded as some kind of state transition,

and indeed the actor pattern (and its associated dynamic role-switching idiom)

is closely related to the State pattern treated in Gamma et al. (1994). In both
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cases, a single object is used to access the current role (or state) of a set of several

role (or state) classes. In combination with the virtual self-reference idiom, our

realization of the actor pattern allows for changing the role by installing a new

actor.

The realization of the actor pattern employs the dynamic role-switching idiom,

which is implemented by extending the handle class with a set of several bodies

instead of only one. To enable role-switching, some kind of indexing is needed.

Usually, a dictionary or a simple array of roles will be su�cient.

In the hush library the actor pattern is used to give access to multiple inter-

preters via the same interface class (i.e. the kit class). The pattern is essential

in supporting the multi-paradigm nature of the DejaVU framework. In our

description of the design of the Web components in section 12.2, we will show

how dynamic role-switching is employed for using various network protocols via

the same (net)client class. The actor pattern is also used to de�ne a (single) viewer

class that is capable of displaying documents of various MIME-types (including

SGML, HTML, VRML).

2.3 A catalogue of design patterns

Why patterns, you may wonder. Why patterns and why not a method of object-

oriented design and an introduction in one or more object-oriented languages?

The answer is simple. Patterns bookmark e�ective design. They �ll the gap

between the almost in�nite possibilities of object-oriented programming languages

and tools and the rigor of methodical design. As Brian Foote expressed it in Mar-

tin et al. (1997), patterns are the footprints of design, paving the way for future

designs. They provide a common design vocabulary and are also helpful in

documenting a framework. And, as we will see later, patterns may also act as a

target for redesign, that is when the current design no longer o�ers the desired

functionality and 
exibility.

A catalogue of design patterns

� a common design vocabulary

� documentation and learning aid

� an adjunct to existing methods

� a target for redesign

Gamma et al. (1994)

2-11

Slide 2-11: A catalogue of design patterns

The Gang of Four book, Design Patterns by Gamma et al. (1994), was

immediately recognized as an important contribution to object-oriented software

development. Not only because of the actual patterns presented, but also because

of the style in which they were presented, crisp problem-oriented descriptions of

actual solutions to real design problems, written with scienti�c rigor and accuracy.
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As Brian Foote remarked, actual design became a legitimate subject of computer

science research.

The pattern schema, or rather a simpli�ed version thereof, is depicted in slide

2-12. Each pattern must have a name, which acts as a handle in discussions about

the design. Being able to speak about speci�c pattern solutions, such as a factory,

greatly facilitates discussions about design.

pattern schema

Name { handle

� increases design vocabulary

Problem { when to apply

� explains the problem and the con
ict

Solution { general arrangement

� design, responsibilities, collaborations

Consequences { tradeo�s

� to understand the costs and bene�ts

2-12

Slide 2-12: The pattern schema

Other important entries in the pattern schema are, the problem indicating what

the patterns is all about, the solution describing the general arrangment of the

classes and objects involved, and the consequences or tradeo�s that a particular

solution entails.

The actual patterns presented in Gamma et al. (1994) are the result of

the authors' involvement in developing various GUI toolkits, in particular Inter-

views, Linton et al. (1989), and ET++, Weinand et al. (1988), and applications

such as, for example, interactive text and image editors. In the course of devel-

oping a toolkit or application there are many occasions for redesign. Reasons

why you may need to redesign are listed in slide 2-13, along with an appropriate

selection of patterns from Gamma et al. (1994).

Following Gamma et al. (1994), we may distinguish between creational pat-

terns that govern the construction and management of objects, structural patterns

that de�ne the static relationships between objects, and behavioral patterns that

characterize the dynamic aspects of the interaction between objects.

In this section we will look at a brief overview of the classi�cation as originally

presented in Gamma et al. (1994). The patterns themselves will be treated only

brie
y. The reader is invited to consult the original source and the many publica-

tions that followed: Coplien and Schmidt (1995), Vlissides et al. (1996), Martin

et al. (1997).
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Causes for redesign design for change

� creating an object by specifying a class explicitly { Abstract

Factory, Factory Method, Prototype

� dependence on speci�c operations { Chain of Responsibilty, Com-

mand

� dependence on hardware & software platforms { Abstract Factory,

Bridge

� dependence on object implementation or representation {Abstract

Factory, Bridge, Memento, Proxy

� algorithm dependence { Iterator, Strategy, Template Method,

Visitor

� extending functionality by subclassing { Bridge, Composite, Dec-

orator, Observer

� tight coupling { Abstract Factory, Bridge, Chain of Responsibili-

ties, Command, Facade, Mediator, Observer

� inability to alter classes conveniently { Adaptor, Decorator, Visitor

2-13

Slide 2-13: Causes for redesign

2.3.1 Creational patterns

Design for change means to defer commitment to particular object implemen-

tations as long as possible. Due to inheritance, or rather subtyping, the client,

calling a particular method, can choose the most abstract class, highest in the

hierarchy. However, when it comes to creating objects, there seems to be no

other choice than naming the implementation class explicitly. Wrong. Creational

patterns are meant to take care of that, that is to hide the actual class used as

far away as possible.

Creational patterns

� Factory { hide concrete classes

� Factory Method { virtual constructors

� Prototype { dynamic creation by cloning

� Singleton { one instance only

2-14

Slide 2-14: Creational patterns

Creational patterns come in various 
avors. In section 2.1.1 some example

realizations were presented. The factory class, for example, is a rather static way

of hiding the implementation classes. As an alternative, you may use a factory

method, similar to the instance method of the singleton class.

If you prefer a more dynamic approach, the prototype pattern might be better.
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A prototype is an object that may be used to create copies or clones, in a similar

way as instances are created from a class. However, cloning is much more dynamic,

the more so if delegation is used instead of inheritance to share resources with

some ancestor class. See section 5.4.

The advantage of using a factory, or any of the other creational patterns, is

that exchanging product families becomes very easy. Just look for example at the

Java Swing library. Swing is supported under Unix, Windows and MacOS. The

key to multiple platform support is here, indeed, the use of factories to create

widgets. Factories are also essential when using CORBA, simply because calling

a constructor is of no use for creating objects on a remote site.

2.3.2 Structural patterns

Objects rarely live in isolation. In slide 2-15 a selection of the structural patterns

treated in Gamma et al. (1994) is collected. Structural patterns indicate how

classes and objects may be composed to form larger structures.

Structural patterns

� object and class composition

Pattern Alias Remarks

Composite part/whole collections of components

Flyweight handle/body extrinsic state, many objects

Adaptor wrapper resolve inconsistency between interfaces

Bridge handle/body relate abstraction to implementation

Decorator handle/body to introduce additional functionality

Facade handle/body provides uni�ed interface

Proxy handle/body to defer ... remote, virtual, protection

2-15

Slide 2-15: Structural patterns

Imagine, for example, an application for interactive text processing. Now,

the Composite pattern may be used to combine text, images and also compound

components, that may itself consist of other components.

Closely related to the Composite pattern is the Flyweight pattern, which is

needed when the number of components grows very large. In that case, the

components themselves must for obvious reasons carry as little information as

possible. Context or state information must then be passed as a parameter.

To give some more examples, suppose there exists a nice library for formatting

text and images, but unfortunately with only a procedural interface. Then the

Adaptor pattern may be used to provide a interface that suits you, by wrapping

the original library.

The Bridge pattern is in some sense related to the Factory. In order to work

with a platform-independent widget library, you need, as has been explained, a

factory to hide the creation of widgets, but you also need to bridge a hierarchy
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of platform-dependent implementation classes to the more abstract platform-

independent widget set.

When creating widgets to display text or images it may be very inconvenient

to create a separate class, for example when adding scrolling functionality. The

Decorator pattern allows you to insert additional functionality without subclass-

ing.

Now think of a networked application, for example to be able to incorporate

components that are delivered by a server. The library may provide a number

of networking classes that deal with all possible communication protocols. To

simplify access to these classes a Facade may be built, hiding the complexity of

the original class interfaces.

Alternatively, remote components may be available through a proxy. The

Proxy pattern describes how access may be regulated by an object that acts as

a surrogate for the real object. Like composites and decorators, proxies may

be used for recursive composition. However, proxies primarily regulate access,

whereas decorators add responsibilities, and composites represent structure.

2.3.3 Behavioral patterns

Our �nal category of patterns, behavioral patterns, concern the construction of

algorithms and the assignment of responsibilities to the objects that cooperate in

achieving some goal.

Behavioral patterns cooperation

� algorithms and the assignment of responsibilities between objects

class

� Template Method { the skeleton of an algorithm

� Interpreter { to evaluate expressions

object composition

� Mediator { provides indirection

� Chain of Responsibility { connect objects to interact

� Observer { to handle dependencies

2-16

Slide 2-16: Behavioral patterns

A �rst distinction can be made between patterns that involve the composition

of classes (using inheritance) and patterns that rely on object composition.

As an example of the Template Method pattern, think of a compiler class

that o�ers methods for scanning and the creation of a parse tree. Each of these

methods may be re�ned without a�ecting the structure of the compilation itself.

An interpreter allows for evaluating expressions, for example mathematical
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formula. Expressions may be organised in a hierarchy. new kinds of expressions

can be inserted simply by �lling in details of syntax and (semantic) evaluation.

Object composition, which employs the handle/body idiom and delegation, is

employed in the Mediator pattern, the Chain of Responsibility pattern and the

Observer pattern. The actual task, such as for example updating the display

of information when the actual information has changed, is delegated to a more

specialized object, to achieve a loose coupling between components. The di�erence

between a mediator and chain of responsibility is primarily the complexity of

co-ordinating the tasks. For example, changing the format of a single image

component from one image type to another image type may be done simply by

using an image converter (mediator), whereas exporting the complete document

to a particular format such as HTML may involve delegating control to a spe-

cialized converter that itself needs access to the original components (chain of

responsibility). We will discuss the Observer pattern in more detail later.

Encapsulating behavior objectify!

� Command { action + undo

� Strategy { choice of algorithms

� Visitor { decouple traversal and operations

� Iterator { access and traversal

� State { object state ! behavioral change

2-17

Slide 2-17: Encapsulating behavior

A common characteristic of the patterns listed in slide 2-17 is that functional

behavior is realized as an object. Semantically, objects are more powerful than

functions, since objects can carry a state. Hence, the imperative objectify pays o�

when we need functions that must know their invocation history.

As an example of the Command pattern, think of how you would realize

insertion and deletion commands in an interactive editor, with undo! Turning

these commands into an object in which the information necessary for undoing

the command can be stored, for example having a snapshot of the state stored in

aMemento, it su�ces to stack the actual command objects. To undo a command,

pop the stack and invoke the undo method.

The Strategy pattern may be used to hide the details of the various layout

algorithms that are available. For example, you may use a straightforward algo-

rithm that formats the text line by line, or you may use the much more advanced

formatting algorithm of T

E

X, which involves the minimalization of penalties.

These alternatives can be collected in a formatting strategy hierarchy, that hides

the implementation details from the client by a common interface.

When doing the formatting, you may wish to separate the traversal of the

component tree structure from the actual formatting operations. This may be

accomplished by employing the Visitor pattern. In general it is recommended to
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abstract from the data structure and use a more abstract way, such as an Iterator

or Visitor to access and traverse it.

The State pattern is similar to the dynamic role switching idiom that has

been discussed in section 2.2.4. As an example, think of providing viewers for

alternative document formats, such as VRML or PDF, in your application. Using

the State pattern, it su�ces to have a single viewer that changes itself according

to the format of the document viewed.

The Observer pattern

The Observer pattern is a variant of the famous Model-View-Control (MVC)

pattern, that governed the creation of the graphical user interface of the Smalltalk

environment and many Smalltalk applications.

Observer

� one-to-many dependencies and noti�cation

Consequences

� abstract coupling between subject and observer

� constraint propagation

� deals with unexpected updates

2-18

Slide 2-18: Observer pattern

The basic idea is simple, to decouple information management and the display

of information. In other words, a distinction is made between the model or

subject, that carries the information, and the views or observers, that present

that information in some format. As a consequence, when a change occurs, the

viewers or observers have only to be noti�ed to update their presentation.

In e�ect, MVC or the Observer pattern can be regarded as a simple method for

constraint propagation. An advantage is that unexpected updates can be easily

dealt with.

The objects involved in realizing the Observer pattern are depicted in slide

2-19. The subject object must allow for observers to be attached and detached.

Note that observers must also have a reference to the subject. In particular,

concrete observers must know how to obtain information about the state of the

subject, to be able to update their view. What the abstract subject and observer

classes supply are the facilities for attachment and mechanisms for noti�cation

and updates.

In the implementation of the Observer pattern there are a number of problems

and tradeo�s that must be considered. For example, do we allow one observer

to be attached to more than one subject? Do we allow for alternative update

semantics, for example observer-pull instead of subject-push? Do we provide

facilities for specifying aspects of interest, so that updates only need to concern
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ConcreteSubject

Observer

ConcreteObserver

getState()

update()

update()

for o in observers

     o.update();

subject.getState()

Subject

attach()

detach()

notify()

Slide 2-19: The Observer pattern

those aspects? And �nally, how do we guarantee mutual consistency between

subjects and observers when we do allow for alternative update semantics?

2.4 Event­driven computation

Event-driven computation underlies many applications, ranging from graphical

user interfaces to systems for discrete event simulation and business process

modeling. An important characteristic of event-driven computation is that control

is relinquished to an environment that waits for events to occur. Handler function

or handler objects are then invoked for an appropriate response.

In this section we will look at the Reactor pattern that explains the interaction

between objects and the environment. We will also look at an event system,

in which the event types are de�ned by the application programmer. In this

application, events are used to maintain global consistency, similar to the Observer

pattern.

2.4.1 The Reactor pattern

The Reactor pattern has been introduced in Schmidt (1995) as a general architec-

ture for event-driven systems. It explains how to register handlers for particular

event types, and how to activate handlers when events occur, even when events

come from multiple sources, in a single-threaded environment. In other words, the

reactor allows for the combination of multiple event-loops, without introducing

additional threads.
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The Reactor pattern

� activate handlers when events occur

� allow events from multiple sources

� in single threaded process

2-20

Slide 2-20: The Reactor pattern

The abstract layout of the software architecture needed to realize the pattern

is depicted in slide 2-21. The reactor environment must allow for binding handlers

to particular types of events. In addition, it must be able to receive events, and

select a handler to which the event can be dispatched.

Reactor

run()

bind(Type, Handler)

receive(Event)

select_handler(Event)

Event

operate(Event)

Handler

ConcreteHandler

operate(Event)

Slide 2-21: The Reactor pattern { structure

Events may be organized in a hierarchy. There are two possible choices here.

Either the topmost event class has a fat interface, containing all the methods that

an event may ever need to support, or the topmost event class can be lean, so

that additional methods need to be added by the subclasses of event. The �rst

solution is chosen for hush, because in C

++

it is not possible to load new classes

dynamically. The latter solution is the way Java does it. In Java new event types

can be added at the reactor level without recompiling the system. In the Java

AWT and Swing libraries, handlers are called Listeners.

Concrete handlers, derived from an abstract handler, must provide a method,

such as operate(Event) that can be called by the reactor when the handler is

selected after receiving an event.

The interaction between the application, its handlers, the reactor and the
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Initialize

Register handler

Receive event

dispatch &

operate

main ConcreteHandler Reactor Environment

Run event loop

Reactor()

bind()

run()

select()

operate()

receive()

Slide 2-22: The Reactor Pattern - interaction

environment from which the events originate is depicted in slide 2-22. First, the

reactor must be initialized, then one or more handlers can be registered, providing

a binding for particular types of events. The reactor must then start to execute its

eventloop. When it receives an event from the environment, it selects a handler

and dispatches the event to that handler, by calling operate(Event).

Consequences Modularity is one of the advantages of an event-driven software

architecture. Handlers can be composed easily, since their invocation is controlled

by the reactor. Another advantage is the decoupling of application-independent

mechanisms from application-speci�c policies. In other words, handler objects

need not be aware of how events are dispatched. This is the responsibility of the

system or framework.

The fact that control is handed over to the environment has, however, also

some disadvantages. First of all, as experience with student assignments shows,

it is di�cult to learn in the beginning. But even when mastered, applications

may be hard to debug, since it is not always clear why a particular handler was

invoked, and because it may be di�cult to repeat the computation preceding the

fault.

Applicability Some variant of the reactor pattern is used in Unix (X) Windows,

(MS) Windows, and also GUI libraries such as Interviews, ET++ and hush.

Another example is the Orbacus object request broker, that supports a reactor

mode for server objects, which allows for receiving messages from multiple sources

in a single thread. The Orbacus broker, however, also allows for multi-threaded

servers.
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2.4.2 Abstract event systems

To conclude this chapter about idioms and patterns, we will look at a somewhat

more detailed example employing (user-de�ned) events to characterize and control

the interaction between the objects. The example is taken from Henderson (1993).

The abstract system, or repertoire of statements indicating the functionality of our

application is depicted in slide 2-23.

th = new centigrade();

th = new fahrenheit();

th.set(f);

f = th.get();

For thermometer th, th1; float f;

2-23

Slide 2-23: Abstract system { thermometers

First, we will de�ne the functional behavior of the system (in this case a collec-

tion of thermometers that record and display temperature values, as characterized

above). Then we will introduce the user interface classes, respectively to update

the temperature value of a thermometer and to display its value. After that we

de�ne a concrete event class (derived from an abstract event class) for each of the

possible kinds of interactions that may occur. Then, after installing the actual

objects comprising the system, we will de�ne the dependencies between (actual)

events, so that we can guarantee that interactions with the user will not result in

an inconsistent state.

Functional behavior A thermometer must provide the means to store a tem-

perature value and allow for the changing and retrieving of this value. The

temperature values are assumed to be stored in degrees Kelvin.

class thermometer f thermometer

protected thermometer( float v ) f temp = v; g

public void set(float v) f temp = v; g

public float get() f return temp; g

protected float temp;

g;

Since only derived classes can use the protected constructor, no direct instances

of thermometer exist, so the class is abstract.

We will distinguish between two kinds of thermometers, measuring tempera-

tures respectively in centigrade and fahrenheit.

class centigrade extends thermometer f centigrade
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public centigrade() f super(0); g

public void set(float v) f temp = v + 273; g

public float get() f return temp - 273; g

g;

The class centigrade rede�nes the methods get and set according to the mea-

surement in centigrade, and in a similar way we may de�ne the class fahrenheit.

class fahrenheit extends thermometer f fahrenheit

public fahrenheit() f super(0); g

public void set(float v) f temp = (v - 32) * 5/9 + 273; g

public float get() f return temp * 9/5 + 32 - 273; g

g;

Both the thermometer realization classes take care of performing the conver-

sions necessary to store and retrieve the absolute temperature value.

User interface We will de�ne two simple interface classes, of which we omit

the implementation details. First, we de�ne the interface of the displayer class,

needed to put values to the screen.

class displayer extends window f displayer

public displayer() f ... g

public void put(String s) f ... g

public void put(float f) f ... g

g;

And secondly, we de�ne a prompter class, which de�nes (in an abstract way)

how we may get a value from the user (or some other component of the system).

class prompter extends window f prompter

public prompter(String text) f ... g

public float get() f ... g

public String gets() f ... g

g;

Together, the classes displayer and prompter de�ne a rudimentary interface

which is su�cient to take care of many of the interactions between the user and

the system.

Events To de�ne the interactions with the user (and their possible consequences)

we will employ events, that is instances of realizations of the abstract event class,

de�ned below.
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abstract class event f event

pubic void dependent(event e) f ... g

pubic void process() f ... g

public void operator(); // abstract method

private event[] dep;

g;

Since a simple event (for example, the modi�cation of a value) may result

in a series of events (needed to keep the system in a consistent state), an event

object maintains a set of dependent events, which may be activated using the

process method. Further, each class derived from event is assumed to de�ne the

application operator, that is the actual actions resulting from activating the event.

The �rst realization of the abstract event class is the update event class, which

corresponds to retrieving a new temperature value from the user.

class update extends event f update

public update(thermometer th, prompter p) f

th =th; p = p;

g

void operator()() f

th.set( p.get() );

process();

g

thermometer th;

prompter p;

g;

An update involves a thermometer and a prompter, which are stored when

creating the update event object. Activating an update event instance results in

retrieving a value from the prompter, setting the thermometer to this value and

activating the dependent events.

In a similar way, we de�ne the second realization of the abstract event class,

the show event class, which corresponds to displaying the value of a thermometer.

class show extends event f show

public show(thermometer th, displayer d) f

th = th; d = d;

g

public void operator() f

d.put( th.get() );

process();

g
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thermometer th;

displayer d;

g;

Activating a show event instance results in retrieving a value from the ther-

mometer, putting that value on display and activating the events associated with

this event.

The installation The next step we must take is to install the application, that

is to create the objects comprising the functional behavior of the system, the user

interface objects and (�nally) the various event objects.

thermometer c = new centigrade();

thermometer f = new fahrenheit();

displayer cd = new displayer("centigrade");

displayer fd = new displayer("fahrenheit");

prompter cp = new prompter("enter centigrade value");

prompter fp = new prompter("enter fahrenheit value");

show sc = new show(c,cd);

show sf = new show(f,fd);

update uc = new update(c,cp);

update uf = new update(f,fp);

Having created the objects, we are almost done. The most important and per-

haps di�cult part is to de�ne the appropriate dependencies between the respective

event objects.

uc.dependent(sc);

uc.dependent(sf);

uf.dependent(sc);

uf.dependent(sf);

As shown above, we declare the event of showing the value of the centigrade

thermometer (and also of the fahrenheit thermometer) to be dependent upon the

event of updating the value of the centigrade thermometer. And we repeat this

declaration for the event of updating the value of the fahrenheit thermometer.

We may now allow the user the choice between updating the centigrade or

fahrenheit thermometer temperature value, for example by inserting these events

in a menu, as indicated below

menu.insert(uc);

menu.insert(uf);
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The reader is urged to do some mental processing to check that updating the

value of one thermometer actually results in changing the value displayed for the

other thermometer as well.

Discussion Organizing interactions with the user (and the other components

of the system as well) by means of events provides a powerful way in which to

control the consequences of one particular (kind of) interaction. The advantage

of such an approach is that the repertoire of possible interactions can easily be

extended or modi�ed without a�ecting the other parts of the system (the parts

realizing the functional behavior of the system and the particularities of the user

interface). From the perspective of design, it is a good alternative for de�ning

behavioral compositions (and its corresponding protocol of interaction) in a more

or less formal way. See also section 10.5.

Summary

This chapter has introduced the idioms and patterns of object-oriented program-

ming. We looked at a polymorphism in Java and C

++

, and discussed assertions

in C

++

and canonical class idioms.

Polymorphism 1

� inheritance and delegation in Java

� polymorphism in C++

� assertions in C++

� canonical class idioms

2-24

Slide 2-24: Section 2.1: Polymorphism

In section 2, we proceeded with a fairly detailed discussion of the idioms in

hush, which illustrate basic solutions to problems occurring in the development

of frameworks.

Idioms in hush 2

� the handle/body idiom

� virtual self-reference

� dynamic role switching

� the art of hush programming

2-25

Slide 2-25: Section 2.2: Idioms in hush
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Further, we looked at how these idioms are related to patterns that provide a

solution on the level of design.

A catalogue of design patterns 3

� creational patterns

� structural patterns

� behavioral patterns

2-26

Slide 2-26: Section 2.3: A catalogue of design patterns

Following the treatment of idioms and patterns in hush, section 3 gave an

overview of the catalogue of design patterns presented in Gamma et al. (1994).

The catalogue includes creational, structural and behavioral patterns.

Event-driven computation 4

� the Reactor pattern

� abstract event systems

2-27

Slide 2-27: Section 2.4: Event-driven computation

In section 4, we discussed the reactor pattern, which provides a generalization

of event-driven software architectures. We concluded with looking at an example

of a simple temperature-monitoring system, implemented using events to maintain

internal consistency.

Questions

1. How would you explain the letter/envelope idiom?

2. Characterize the notion of polymorphism. Give some examples.

3. What is a canonical class? Characterize its ingredients and give an example.

4. Give a brief description of the handle/body idiom, virtual self-reference, and

dynamic role switching.

5. What kinds of patterns can you distinguish? Why do you consider patterns

to be of relevance?

6. Give a detailed description of the Factory pattern and also of the Observer

pattern.

7. Describe the Reactor pattern. Why is it useful?

8. Give an example of a system based on event-driven computation.
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Further reading

For an introduction to Java, there is ample choice. An excellent online tutorial

can be found on http://java.sun.com/docs/books/tutorial. As textbooks on C

++

I recommend Lippman (1991), and for the more advanced reader Stroustrup

(1998). For an extensive introduction to STL, read Schildt (1999). Coplien

(1992) is the original introduction to idioms in C

++

. The by now classical book

for patterns is Gamma et al. (1994). Well worth reading are the many articles

in the POPL proceedings, Coplien and Schmidt (1995), Vlissides et al. (1996)

and Martin et al. (1997).
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In the previous chapter we looked at idioms and patterns that resulted from

object-oriented software development. In this chapter we will focus on the software

engineering of object-oriented systems and issues of design in particular, including

the identi�cation of objects and the speci�cation of contractual obligations.

Software engineering perspectives 3

� methods of development

� the identi�cation of objects

� contracts { re�nement

� validation { a formal approach

Additional keywords and phrases: requirements, analysis, implemen-

tation, design as transition, CRC cards, responsibilities, heuristics,

contractual obligations, validation

3-1

Slide 3-1: Software engineering perspectives

First we will explore what methods are available to guide us in the development

of object-oriented systems. Then we will look more closely at the heuristics

of actual design. After establishing what is involved in specifying contractual

obligations, we will discuss what is needed for a more formal approach to object-

oriented development.

77



78 Software engineering perspectives

3.1 Development methods

Object-oriented software development is a relatively new technology. Conse-

quently, ideas with respect to methodologies supporting an object-oriented ap-

proach are still in 
ux. Nevertheless, a plethora of methods and tools does exist

supporting object-oriented analysis and design. See slide 3-2.

Methods

� OOA/D { incremental Coad and Yourdon (1991b)

� Objectory { use-case analysis Jacobson et al. (1992)

� OOSA { model-driven Kurtz et al. (1990)

� OOSD { structured Wasserman et al. (1989)

� CRC { cards Beck and Cunningham (1989)

� RDD { responsibility-driven Wirfs-Brock (1989)

� OMT { object modeling Rumbaugh et al. (1991)

� OOD { development Booch (1991)

� Fusion { lifecycle Coleman et al. (1994)

Uni�ed Modeling Language { standard notation UML

� class diagrams, object interaction, packages, state and activity

3-2

Slide 3-2: Software development methods

Some of these methods (and corresponding tools) directly stem from a more

conventional (read structured) approach to software development. Others are

more radical and propose new tools to support the decomposition principles un-

derlying object-oriented technology. Naturally, those who wish to make a gradual

shift from conventional technology to adopting an object-oriented approach may

bene�t from methods that adapt familiar techniques to the new concepts.

In this section we will look at a variety of existing methods and the tools they

o�er. We do not discuss the tools and diagram techniques used in any detail.

However, we will discuss the Fusion method in somewhat more detail. Fusion

is a strongly systematic approach to object-oriented software development that

integrates various concepts and modeling techniques from the other methods,

notably OMT, Booch OOD, Objectory and CRC. We will discuss the process

view underlying Fusion and sketch the models it supports in relation to the other

methods. For the reader this section may supply an overview and references

needed for a more detailed study of a particular method or tool.

A recent development is the Uni�ed Modeling Language (UML), which has

been approved as a standard in 1998. UML brings together the models and

notations featured by the various methods. Jim Rumbaugh, Grady Booch and

Ivar Jacobson, all leading experts in object-oriented development, joined forces

to achieve this.
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The importance of such a standardization can hardly be overemphasized.

However, it must be noted that UML does not provide a method, in the sense of

delineating the steps that must be taken in the development of a system. UML

itself may be regarded as a toolbox, providing notations and modeling techniques

that may be deployed when needed. A brief overview of UML is given in F. An

excellent introduction to UML, including advice how to apply it in actual projects

may be found in Fowler (1997b).

Structured methods Initially, structured methods (which were developed at

the beginning of the 1970s) were primarily concerned with modeling processes

in a modular way. Based on software engineering principles such as module

coupling and cohesion, tools were developed to represent the structure of a design

(within what we have previously called the procedural or modular paradigm);

see, for example, Yourdon and Constantine (1979). Apart from diagrams to

describe the modular architecture of a system (such as structure charts and

process speci�cations), structured methods also employ data 
ow diagrams to

depict processes and the 
ow of data between them, and hierarchy diagrams to

model the structure of the data involved. See slide 3-3.

Structured methods tools

� structure chart

� process speci�cation

� data
ow diagrams

� hierarchy diagram

� entity-relationship diagrams

� data dictionary

� state transition diagram

3-3

Slide 3-3: Tools for a structured approach

Later, structured methods were extended to encompass analysis, and the focus

shifted to modeling the data by means of entity-relationship diagrams and data

dictionaries. Also, state transition diagrams were employed to represent the

behavioral aspects of a system.

As observed in Fichman and Kemerer (1992), in the late 1970s and early

1980s, planning and modeling of data began to take on a more central role

in system development, culminating in data oriented methodologies, such as

information engineering (which may be regarded as precursors to object-oriented

methods). Information engineering, however, is primarily concerned with analysis

and strategic planning. In addition to the modeling techniques mentioned, tools

were developed to model the information needs of an enterprise and to perform

risk analysis. Also, extensions to the data dictionary were proposed in order to

have an integrated repository, serving all phases of the development. Currently,
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repository-based techniques are again of interest since, in combination with mod-

ern hypermedia technology, they may serve as the organizational basis for reuse.

3.1.1 Perspectives of modeling

Understanding a problem domain may be quite demanding. Understanding is even

more di�cult when the description of the domain is cast in some representation

pertaining to the solution domain. An object-oriented approach is said to require

less translation from the problem domain to the (software) solution domain, thus

making understanding easier. Many proponents of an object-oriented approach,

however, seem to be overly optimistic in their conception of the modeling task.

From an epistemological point of view, modeling may be regarded as being essen-

tially colored by the mechanisms that are available to express the model. Hence,

rather than opposing the functional and object-oriented approach by claiming

that an object-oriented approach aims at modeling reality, I would prefer to

characterize the distinction in terms of (modeling from) a di�erent vernacular,

a di�erent perspective due to di�erent modeling mechanisms. In other words, a

model is meant to capture some salient aspects of a system or problem domain.

Dependent on what features are considered as most important, di�erent means

will be chosen to construct a model.

Even within the con�nes of an object-oriented approach, there appear to be

radically di�erent perspectives of the modeling required in the various phases of

the software life-cycle.

Modeling reality { vernacular

� requirements { use cases

� analysis { domain concepts

� design { system architecture

� implementation { language support

Design model { system oriented

� provides a justi�cation of the architecture

3-4

Slide 3-4: Perspectives of modeling

An important contribution of Jacobson et al. (1992) is the notion of use cases

that describe the situations in which a user actually interacts with the system.

Such a (use case) model is an important constituent of the requirements document,

since it precisely describes what the system is intended for. For the purpose of

analysis, it may be helpful to develop a more encompassing (conceptual) model of

the problem domain. The advantage of such an approach is that the actual system

may later easily be extended due to the generality of the underlying analysis

model.
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In contrast to the model used in analysis, both the design model and the

implementation model are more solution oriented than domain oriented. The

implementation model is clearly dependent on the available language support.

Within a traditional life-cycle, the design model may be seen as a transition

from analysis to implementation. The notion of objects may act as a unifying

factor, relating the concepts described in the analysis document to the com-

ponents around which the design model is built. However, as we have noted,

object-oriented development does not necessarily follow the course of a traditional

software life-cycle. Alternatively, we may characterize the function of the design

document as a justi�cation of the choices made in deciding on the �nal architecture

of the system. This remark holds insofar as an object-oriented approach is adopted

for both design and implementation. However, see Henderson-Sellers and Edwards

(1990) for a variety of combinations of structured, functional and object-oriented

techniques.

Dimensions of modeling When restricting ourselves to design models, we may

again distinguish between di�erent modeling perspectives or, which is perhaps

more adequate in this context, dimensions of modeling.

In Rumbaugh et al. (1991), it is proposed to use three complementary models

for describing the architecture and functionality of a system. See slide 3-5.

Dimensions of modeling { OMT

� object model { decomposition into objects

� dynamic model { intra-object state changes

� functional model { object interaction (data-
ow)

Model of control

� procedure-driven, event-driven, concurrent

3-5

Slide 3-5: The OMT method

The OMT method distinguishes between an object model, for describing the

(static) structure of object classes and their relations, a dynamic model, that

describes for each object class the state changes resulting from performing oper-

ations, and a functional model, that describes the interaction between objects in

terms of a data-
ow graph.

An important contribution of Rumbaugh et al. (1991) is that it identi�es

a number of commonly used control models, including procedure-driven control,

event-driven control and concurrent control. The choice for a particular control

model may deeply a�ect the design of the system.

The OMT approach may be called a hybrid method since it employs non object-

oriented techniques for describing intra-object dynamics, namely state-charts, and

a functional approach involving data-
ow diagrams, for describing inter-object

communication.
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Coherent models The OMT object model, however, only captures the static

structure of the system. To model the dynamic and functional aspects, the object

model is augmented with a dynamic model, which is given by state diagrams,

and a functional model, which is handled by data 
ow diagrams. From a formal

point of view this solution is rather unsatisfactory since, as argued in Hayes and

Coleman (1991), it is hard to establish the consistency of the combined model,

consisting of an object, dynamic and functional model.

Model criteria { formal approach

� unambiguous { single meaning

� abstract { no unnecessary detail

� consistent { absence of con
ict

3-6

Slide 3-6: Coherent models { criteria

Consistency checking, or at least the possibility to do so, is important to

increase our belief in the reliability (and reusability) of a model. To be able

to determine whether a model is consistent, the model should be phrased in an

unambiguous way, that is, in a notation with a clear and precise meaning. See slide

3-6. Also, to make the task of consistency checking manageable, a model should

be as abstract as possible, by leaving out all irrelevant details. To establish the

consistency of the combined model, covering structural, functional and dynamic

aspects, the interaction between the various models must be clearly de�ned.

3.1.2 Requirements engineering { Fusion

The Fusion method is presented in Coleman et al. (1994) as a second generation

object-oriented method. The phrase second generation is meant to indicate that

the method transcends and incorporates the ideas and techniques employed in the

early object-oriented methods.

Above all, the Fusion method focuses on a strongly systematic approach

to object-oriented software development, with an emphasis on the process of

development and the validation of the consistency between the models delivered

in the various phases of a project.

The software life-cycle model underlying Fusion is the traditional waterfall

model, consisting of the subsequent phases of analysis, design and implementation.

Each phase results in a number of models describing particular aspects of the

system. See slide 3-7. A data dictionary is to be kept as a means to unify the

terminology employed in the various phases.

The models produced as the result of analysis, design and implementation

serve to document the decisions made during the development. Each of the

phases covers di�erent aspects of the system. Analysis serves to document the

system requirements from a user perspective. The Fusion method describes how
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Analysis { Fusion Fusion

� Object Model { concepts and relations

� LifeCycle Model { sequences of operations

� Operation Model { semantics of system operations

Design data dictionary

� Object Interaction Graph { functional dependencies

� Visibility Graphs { communication structure

� Class Descriptions { attributes and methods

� Inheritance Graphs { subtype re�nement

Implementation validation

� System Lifecycle { state machines

� Class Descriptions { coding, performance

3-7

Slide 3-7: The Fusion method

to construct an Object Model that captures the basic concepts of the application

domain. These concepts are represented as entities or objects and are connected

by relations, similar to entity-relationship diagrams employed in semantic model-

ing. Analysis also results in an Operation Model, describing the semantics of the

operations that may be performed by a user by means of pre- and post-conditions,

in a formal manner. In addition, Fusion de�nes a Lifecycle Model that describes,

by means of regular expressions, which sequences of operations are allowed.

Design may be considered as the transition between analysis and implementa-

tion. During design, decisions are made with respect to the realization of the

system operations identi�ed during analysis. Design according to the Fusion

method results in an Object Interaction Graph, that for each system operation

describes which objects are involved and which methods are invoked. Fusion

also allows one to label the arrows representing method calls in the interaction

diagram with sequencing information. In addition, design involves the construc-

tion of Visibility Graphs, indicating the attribute and method interface for each

object, Class Descriptions, de�ning the attributes and methods of objects, and

Inheritance Graphs, specifying the subtype re�nement relation between classes.

Implementation is considered in the Fusion method as a phase in which to

work out the details of the decisions taken during analysis and design. It results

in a System Lifecycle description for each object identi�ed in the Object Model,

in the form of a �nite state machine, and precise Class Descriptions, in the form

of (preferably) e�cient code.

Validation An important aspect of the Fusion method is the validation of the

completeness and consistency of the collection of models. Completeness, obvi-
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ously, is a relative matter and can only be established with respect to explicitly

stated user requirements. However, the models developed in a particular phase

impose additional requirements upon the e�orts engaged in the later phases and in

the end maintenance. Consistency involves verifying whether the various models

are not contradictory. For both development and validation, the data dictionary

plays an important role, as a common point of reference.

3.1.3 Methods for analysis and design – a comparative study

In Fichman and Kemerer (1992) a comparative review of a selected number

of object-oriented analysis and design methods is given. Criteria for selection

were the availability of documentation and acceptance in the object-oriented

community, measured in terms of refereed articles.

Paraphrasing Fichman and Kemerer (1992) again: As with traditional analy-

sis, the primary goal of object-oriented analysis is the development of an accurate

and complete description of the problem domain.

The three analysis models described in Fichman and Kemerer (1992) share

a number of diagram techniques with both structured methods and methods

for object-oriented design. However, the method proposed in Shlaer and Mellor

(1988) in particular re
ects the domain-oriented focus of analysis.

A similar focus on domain requirements and analysis may be found in the

Objectory method. See slide 3-8. Objectory is one of the methods that has

inspired Fusion, in particular because it presents a systematic approach to the

process of software development. The Objectory method centers around use

case analysis. Use case analysis involves a precise description of the interaction

between the user of a system and the components representing domain-speci�c

functionality. The Objectory method gives precise guidelines on how to proceed

from the identi�cation of use cases, which include user interface aspects, to their

realization in the subsequent phases of design and implementation. Objects are

called blocks in Objectory. Use case analysis corresponds in a loose way with the

identi�cation of system operations in Fusion.

There is a close correspondence between the OMT object model and the

analysis object model of Fusion. Both OMT and Fusion employ extended entity-

relationship diagrams. Also, the dynamic model of OMT reoccurs in the Fusion

method, albeit in a later phase. The functional model of OMT, which has

the form of a data
ow diagram, is generally considered to be inappropriate for

object-oriented analysis. Instead, Fusion employs a model in which the semantics

of system operations are captured by means of formal pre- and post-conditions.

In Coleman et al. (1994), OMT is characterized as a very loose method, giving

few rules for discovering inconsistencies between the various models and lacking a

clear view with respect to the process of development. OMT is strongly focused

on analysis, giving nothing but heuristics to implement the models that result

from analysis. However, what is called the light-weight Fusion method almost

coincides with OMT.

A lack of detailed guidelines for the process of software development is also

characteristic of the Booch OOD method. Booch o�ers a wealth of descriptive
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Objectory { systematic process

� requirements { use cases, domain object model, user interface

� analysis { subsystems

� design, implementation { block model, interaction diagrams

OMT { few rules for inconsistencies

� analysis { object model, dynamic model, functional model

� design, implementation { heuristics to implement analysis models

Booch { descriptive

� diagrams { class, object, timing, state, module, process

CRC { exploratory

� analysis, design { class, responsibilities, collaborators

Formal methods

� operations { pre- and post-conditions

3-8

Slide 3-8: Comparison of methods (1)

diagrams, giving detailed information on the various aspects of a system, but

o�ers merely heuristics for the actual process of development.

The CRC method must be regarded primarily as a means to explore the

interaction between the various objects of a domain. It is powerful in generating

ideas, but o�ers poor support for documenting the decisions with respect to the

objects and how they interact.

Formal methods have been another important source of inspiration for the

Fusion method. The description of system operations during analysis employs a

characterization of the functionality of operations that is directly related to the

speci�cation of operations in model-based speci�cation methods such as VDM

and Z. See section 10.5.

The Fusion method may be regarded as being composed of elements of the

methods mentioned above. It shares its object model with OMT, its approach to

the characterization of system operations with formal methods, its focus on object

interaction with CRC and its explicit description of classes and their relations with

Booch. See slide 3-9.

In comparison with these methods, however, it provides a much more system-

atic approach to the process of development and, moreover, is explicitly concerned

with issues of validation and consistency between models. In addition, Coleman

et al. (1994) claim to provide explicit semantics for their various models, whereas

the other methods fail to do so. However, it must be remarked that the Fusion

method remains somewhat obscure about the nature of system operations. System

operations are characterized as asynchronous. Yet, if they are to be taken as
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Comparison { as a systematic approach Fusion

Objectory OMT Booch CRC Fusion

development + � - � +

maintenance + � + - +

structure � � + + +

management + � � - +

tool support � � � - +

3-9

Slide 3-9: Comparison of methods (2)

methods, such operations may return a result, which is quite hard to reconcile with

their asynchronous nature. The claim that the models have a precise semantics,

which is essential for tool support, must be substantiated by providing an explicit

semantics in a formal manner!

With regard to the process of development, both Objectory and Fusion provide

precise guidelines. The CRCmethod may be valuable as an additional exploratory

device. For maintenance, the extent to which a method enforces the documenta-

tion of design decisions is of utmost importance. Both the Objectory and Booch

method satisfys this criterion, as does the Fusion method. OMT is lacking in this

respect, and CRC is clearly inadequate.

Whether a method leads to a good object-oriented design of the system ar-

chitecture, depends to a large extent upon the ability and experience of the

development team. Apart from Fusion, both the Booch method and CRC may

be characterized as purely object-oriented, whereas Objectory and OMT are

considered to be impure.

A strongly systematic approach to the process of development is important in

particular from the point of view of project management. Project management

support entails a precise de�nition of the deliverables associated with each phase,

as well as an indication of the timing of their deliverance and validation. Both the

OMT method and Booch are lacking in this respect, since they primarily provide

techniques to develop descriptive models. Clearly, CRC lacks any support for

project management.

Tool support is dependent on the existence of a well-de�ned semantics for the

models employed. For both Objectory and OMT commercial tools are available,

despite their loosely speci�ed semantics. The Fusion diagramming techniques are

also supported. For CRC, tool support is considered to be useless. The success of

the method depends upon 
exibility, the ease with which new ideas can be tried,

a 
exibility which even hypertext cannot o�er, according to its authors.

3.2 Identifying objects

Object-oriented design aims at describing a system in terms of objects (as the

primary components) and the interaction between them. Motivated by the wish

to arrive at stable abstractions, object-oriented design is often characterized as
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modeling reality, that is the application domain. However, many applications

require, at least partly, a system-oriented view towards design, since they involve

system artifacts for which there exist no clearly identi�able counterparts in the

application domain. As an example, think of a window-based system. Many of

the items (widgets) introduced in such a system belong to an arti�cial reality,

which at best is only vaguely analogous with reality as we normally understand

it.

Irrespective of whether the design is intended as a preliminary study before

the implementation or as a post hoc justi�cation of the actual system, the most

important and di�cult part of design is the identi�cation of objects and the

characterization of their role in the system and interaction with other objects.

As observed in McGregor and Sykes (1992), object-oriented design is best

seen as class oriented, that is directed towards the static description of (classes

of) objects, rather than a description of the dynamic interaction between actual

objects. In section 5.4, we will discuss class-less languages which are well suited for

exploratory programming. However, from the perspective of design, we are more

interested in a (static) abstract speci�cation of the components that constitute

the system.

Object-oriented design { decomposition into objects

� application/system/class oriented

Identifying objects { responsibilities

� data/procedure oriented

Layers of abstraction

� components, subsystems, frameworks

3-10

Slide 3-10: Object-oriented design

In comparison with a functional approach, object-oriented design is clearly

data oriented. However, although a data-oriented approach may provide a �rst

guideline in developing the system, the primary concern in object-oriented design

should be the responsibilities of an object rather than how it acts as a data

manager, so to speak.

For larger systems, the complexity of the design may necessitate the intro-

duction of additional layers of abstraction. Apart from objects, which must be

regarded as the basic components of a system, we may need to isolate subsystems,

consisting of a number of related object classes. When we have developed a

subsystem that can be used in a variety of contexts, such a subsystem may

be used as a framework. A framework is generally not only a collection of

classes but must also be seen as an approach or method in its own way, since

it usually imposes additional constraints on the development. For example, most

development environments for window-based applications provide a framework



88 Software engineering perspectives

consisting of a number of prede�ned classes and functions, and guidelines or

recipes that prescribe how to use or adapt these classes and functions. Also,

most frameworks impose a speci�c control model, such as the event-driven control

model imposed by window programming environments.

3.2.1 Modeling heuristics

Following Booch (1986), we may characterize objects as `crisp' entities that su�er

and require actions. From the perspective of system development, objects must

primarily be regarded as computational entities, embodying the means by which

we may express a computation. Modeling a particular problem domain, then,

means de�ning abstractions in terms of objects, capturing the functional charac-

teristics of that domain. The question is, how do we arrive at such a model?

Objects { crisp entities

� object = an entity that su�ers and requires actions

The method:

� [1] Identify the objects and their attributes

� [2] Identify operations su�ered and required

� [3; 4] Establish visibility/interface

3-11

Slide 3-11: The Booch method

In Booch (1986), a straightforward method of object oriented development

is proposed, which consists of the successive identi�cation of objects and their

attributes, followed by a precise characterization of the interobject visibility re-

lations. In Booch (1991), a shift of emphasis has occurred towards determining

the semantics of an individual object and the interaction between collections of

objects.

Heuristics

� model of reality { balance nouns (objects) and verbs (operations)

Associations

� directed action { drives, instructs

� communication { talks-to, tells, instructs

� ownership { has, part-of

� resemblance { like, is-a

� others { works-for, married-to

3-12

Slide 3-12: Heuristics for modeling
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As a heuristic to arrive at the proper abstractions of the problem domain

(in terms of object classes), Booch (1986) proposes scanning the requirements

document for nouns, verbs and adjectives, and using these as initial suggestions

for respectively objects, and operations and attributes belonging to objects (see

slide 3-12). This technique has been adopted and augmented by a number of

other authors, among which Wirfs-Brock et al. (1990) and Rumbaugh et al.

(1991). For example, Wirfs-Brock et al. (1990) illustrate the technique in �ne

detail in several examples, including the design of an automated teller machine

and a document processing system.

In addition to the interpretation of nouns as possible objects, verbs as possible

operations on objects, and adjectives as possible attributes of objects, Rumbaugh

et al. (1991) suggest this technique to determine other relations and associations

between object classes as well. For instance, a model of control and object inter-

action may be suggested by phrases indicating directed action or communication.

Similarly, structural issues, such as whether an object owns another object or

whether inheritance should be used, may be decided on the basis of resemblance

or subordination relations.

Example { ATM (1) The example of an automated teller machine discussed

in Wirfs-Brock et al. (1990) nicely illustrates a number of the notions that we

have thus far looked at only in a very abstract way. A teller machine is a device,

presumably familiar to everyone, that allows you to get money from your account

at any time of the day. Obviously, there are a number of constraints that such

a machine must satisfy. For instance, other people should not be allowed to

withdraw money from your account. Another reasonable constraint is that a

user cannot overdraw more than a designated amount of money. Moreover, each

transaction must be correctly re
ected by the state of the user's account.

Candidate classes ATM

� account { represents the customer's account in the banks database

� atm { performs �nancial services for a customer

� cardreader { reads and validates a customer's bankcard

� cashdispenser { gives cash to the customer

� screen { presents text and visual information

� keypad { the keys a customer can press

� pin { the authorization code

� transaction { performs �nancial services and updates the database

3-13

Slide 3-13: The ATM example (1)

An initial decomposition into objects based on these requirements is shown in

slide 3-13. In Wirfs-Brock et al. (1990), a fully detailed account is given of how

one may arrive at such a decomposition by carefully reading (and re-reading) the
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requirements document. What we are interested in here, however, is how we may

establish that we have not overlooked anything when proposing a design, and how

we may verify that our design correctly re
ects the requirements.

This particular example nicely illustrates the need for an analysis of the use

cases. To develop a proper interface, we must precisely know what a user is

expected to do (for instance, insert a bank card, key in a PIN code) and how the

system must respond (what messages must be displayed, how to react to a wrong

PIN code, etc.). Another decision that must be made is when the account will be

changed as the result of a transaction. Also, we must decide what to do when a

user overdraws.

A very important issue that we will look at in more detail in the next sections

is how the collection of objects suggested above will interact. What means do we

have to describe the cooperation between the objects, and how do we show that

the proposed system meets all the requirements listed above? Moreover, can we

verify that the system satis�es all the constraints mentioned in the requirements

document?

Validation However, before examining these questions and trying out di�erent

scenarios, we may as well try to eliminate the spurious classes that came up in our

initial attempt. In Rumbaugh et al. (1991), a number of reasons are summarized

that may be grounds on which to reject a candidate class. See slide 3-14.

Eliminating spurious classes

� vague { system, security-provision, record-keeping

� attribute { account-data, receipt, cash

� redundant { user

� irrelevant { cost

� implementation { transaction-log, access, communication

Good classes

� our candidate classes

3-14

Slide 3-14: Eliminating spurious classes

For example, the notion underlying the candidate class may be too vague to

be represented by a class, such as the notion of system or record-keeping. Another

reason for rejecting a suggested class may be that the notion represents not so

much a class, but rather a possible attribute of a class. Further, a proposed class

may either be redundant, for example the class user, or simply irrelevant, as is the

class cost. And �nally, a class may be too implementation oriented, such as the

class transaction-log or classes that represent the actual communication or access

to the account.

Looking back, our choice of candidate classes seems to have been quite fortu-
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nate, but generally this will not be the case, and we may use the checklist above

to prune the list of candidate classes.

An interesting architectural issue is, how may we provide for future extensions

of the system? How easily can we reuse the design and the code for a system

supporting di�erent kinds of accounts, or di�erent input or output devices? And

how can we establish that the objects, as identi�ed, interact as desired?

3.2.2 Assigning responsibilities

Design is to a large extent a matter of creative thinking. Heuristics such as

performing a linguistic scan on the requirements document for �nding objects

(nouns), methods (verbs) and attributes (adjectives) may be helpful, but will

hopelessly fail when not applied with good taste and judgement. Not surprisingly,

one of the classical techniques of creative writing, namely the shoe-box method, has

reappeared in the guise of an object-oriented development method. The shoe-box

method consists of writing fragments and ideas on note cards and storing them in a

(shoe) box, so that they may later be retrieved and manipulated to �nd a suitable

ordering for the presentation of the material. To �nd a proper decomposition into

objects, the method creates for each potential (object) class a so-called CRC card,

which lists the Class name, the Responsibilities and the possible Collaborators of

the proposed class. In a number of iterations, a collection of cards will result that

more or less re
ects the structure of the intended system.

According to the authors (see Beck and Cunningham, 1989), the method

e�ectively supports the early stages of design, especially when working in small

groups. An intrinsic part of the method consists of what the authors call dynamic

simulation. To test whether a given collection of cards adequately characterizes

the functionality of the intended system, the cards may be used to simulate the

behavior of the system. When working in a group, the cards may be distributed

among the members of the group, who participate in the simulation game accord-

ing to their cards. See slide 3-15.

Object-oriented thinking CRC

� Immerse the reader in the object-ness of the material

� Give up global knowledge of control

� Rely on the local knowledge of objects

OO design with CRC cards

� Class, Responsibility, Collaborators

3-15

Slide 3-15: The CRC method

A number of authors have adopted this method, or developed a very simi-

lar method, for identifying objects and characterizing their functionality in an

abstract way. It is doubtful, however, whether the method has any signi�cance
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beyond the early stages of analysis and design. Without any more formal means

to verify whether the responsibilities listed adequately characterize the intended

functionality of the system, the method amounts to not much more than brain-

storming. Clearly, the method needs to be complemented by more formal means

to establish whether the (implicit) protocols of interaction between the objects

satisfy the behavioral requirements of the system.

Nevertheless, the elegant simplicity of the method is appealing, and the card

format lends itself to easy incorporation in an on-line documentation system.

Moreover, since the method imposes no strict order, and has relatively little

overhead, it is indeed a good way to get an initial idea of what objects the system

will comprise.

Example { ATM (2) Actually, the ATM example is an interesting example for

comparing the various approaches, since it is used by many authors to illustrate

their methods. In Wirfs-Brock et al. (1990) the example is used for spelling out

all the steps that must be taken. In Rumbaugh et al. (1991) it is extensively

described to illustrate the various modeling techniques employed by the method.

And in Beck and Cunningham (1989) the CRC cards method is illustrated by

sketching the design of an automated teller machine.

The approaches presented in Beck and Cunningham (1989) and Wirfs-Brock

et al. (1990) are actually very closely related. Both may be characterized as

responsibility-driven, in that they concentrate on responsibilities and collabora-

tion relations to model the interaction between objects. However, the method

described in Wirfs-Brock et al. (1990) is much more detailed, and to some

extent includes means to formally characterize the behavior of an object and

its interaction with other objects. To this end it employs an informal notion of

contracts as originally introduced in Meyer (1988).

In section 3.2.1 a number of candidate classes have been suggested for our

ATM. Now, with the use of CRC cards, we will delineate the functionality of (a

number of) these classes more precisely. Also we will establish how the various

object classes must collaborate to perform their duties. At the highest level of the

design, we may distinguish between two groups of classes: the classes representing

the banking model (comprising the class account and the class transaction), and

the classes that model the interaction with the user (comprising the class card-

reader and the class cash-dispenser). At a lower level, we also need a class

modeling the database that provides persistent storage for the user's account and

the information needed for authorization. For each of these classes we will use a

CRC card to indicate their responsibilities and the classes with which they need

to collaborate.

The banking model, depicted in slide 3-16, consists of the classes account

and transaction. The class account keeps a record of the actual balance of the

account and must allow a user to deposit or withdraw money. However, for safety

reasons, these operations are never carried out directly, but are performed by an

intermediary transaction object.

The responsibilities of the transaction class may be summarized as: the vali-

dation of user requests and the execution of money transfers. The responsibility
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Banking model ATM

account transaction

keeps balance database

deposit money

withdraw money

transaction card-reader

validation cash-dispenser

performs transfer account

keeps audit info database

3-16

Slide 3-16: The ATM example (2a)

for maintaining audit information is also assigned to the transaction class. To

act as required, a transaction object needs to communicate with a number of

other objects. It must acquire information from both the card-reader and the

database to check, for example, whether the user has entered the right PIN code.

To validate a request, it must check whether the account will be overdrawn or not.

To pay the requested money, it must instruct the cash-dispenser to do so. And it

must contact the database to log the appropriate audit information. In contrast,

an account only needs to respond to the requests it receives from a transaction.

Apart from that, it must participate in committing the transaction to the bank's

database. Note that the CRC method is non-speci�c about how the collaborations

are actually realized; it is unclear which object will take the initiative. To model

these aspects we will need a more precise notion of control that tells us how the

potential behavior (or responsibility) of an object is activated.

The second group of classes may be called interaction classes, since these are

meant to communicate with entities in the outside world, outside from the per-

spective of the system. Also the bank's database may be considered as belonging

to the outside world, since it stores the information concerning the account and

the authorization of customers in a system-independent manner. See slide 3-17.

Both the card-reader and the cash-dispenser rely on a class called event, which

is needed to model the actions of the user. For example, when a user inserts

a bankcard, we expect a transaction to start. For this to happen, we must

presuppose an underlying system that dispatches the event to the card-reader,

which in turn noti�es the teller machine that a new transaction is to take place.

The 
ow of control between a transaction object and the cash-dispenser is far more

straightforward, since a transaction object only needs to issue the appropriate

instruction. However, the actual interaction between the cash-dispenser and the

underlying hardware, that turns out the money, may be quite intricate.

The database may either respond directly to the request coming from the

account or transaction object or it may respond to events by taking the initiative

to call the appropriate methods of the account and transaction objects. Whether

the database may be accessed directly or will only react to events is actually

dependent on the control model we assume when developing the system model.
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Interaction classes ATM

cardreader event

signals insertion transaction

decodes strip

cashdispenser event

emits cash transaction

database event

retrieves account transaction

records transaction account

authorization database
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Slide 3-17: The ATM example (2b)

3.2.3 Object roles and interaction

Objects rarely live in isolation. In a system of some complexity, a number of

di�erent kinds of object classes may usually be distinguished. Each kind of class

may be regarded as playing a speci�c role in the system. For example, when

considering our ATM, classes such as card-reader and cash-dispenser are of a

completely di�erent kind, and play a completely di�erent role, than the classes

account and database for instance, or the classes event and transaction. Often

it will take some experimentation to decide how control must be distributed

among the objects comprising the system. Although the framework chosen for

the development of the system may partly determine the control model, there will

usually be ample choice left for the designer of the system to de�ne the interactions

between objects.

Object roles

� actor { operates (su�ers no operations)

� server { su�ers operations

� agent { su�ers and operates (actor & server)

3-18

Slide 3-18: Object roles

An important function of the design document is to elucidate the role of each

object class in the system, and to point out how the objects cooperate to complete

the task. In Booch (1986), a distinction is made between objects that su�er no

operations (actors), objects that only su�er operations (servers) and objects that

both su�er and require operations (agents). Such a characterization in terms of

initiative may give a �rst indication of the role an object plays in the system.

For example, the account class in our ATM example is best characterized as a

server class, whereas the transaction class may be regarded, in the terminology
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of Booch (1986), as an actor class, since it actively controls the computation. In

many cases, the software control model adopted will also in
uence the way in

which individual objects are supposed to behave. See slide 3-18.

With respect to a global view of the system, it is necessary to ensure that each

object class is completely de�ned, that is to establish that each class provides a

su�ciently complete method interface. In Booch (1986), a characterization is

given of the kinds of methods that may occur in an interface. These include

methods to create or destroy an object, methods to modify the state of an object

and methods that only provide information on the state of an object, or parts

thereof.

Before being able to make �nal decisions with respect to the functionality of

a class, however, it is generally necessary to get a clear overall picture of the

system �rst. This requires what Booch (1986) characterizes as round trip gestalt

design, which in other words expresses the need to analyze a little, design a little,

implement a little, test a little ... (The notion of gestalt comes from perception

psychology, where it means a global perceptual con�guration emerging from the

background.)

3.3 Contracts

To establish the interaction between objects in a more precise way, we need a

notion of contracts, specifying the requirements a client must comply with when

requesting a service from a server object. Our notion of contracts will be based

on the notion of types.

In the universe of programming, types are above all a means to create order and

regularity. Also, in an object-oriented approach, types may play an important role

in organizing classes and their relationships. As observed in Halbert and O'Brien

(1987), the notion of types gives a natural criterion for modularization, perhaps

not so much as a guideline to arrive at a particular object decomposition, but as a

means to judge whether the modular structure of a system is consistently de�ned,

that is technically well-typed.

Contractual obligations

client supplier

pre-condition obligation bene�t

post-condition bene�t obligation

3-19

Slide 3-19: Contractual obligations

The meaning of a type must be understood as a formal characterization of the

behavior of the elements belonging to the type. A type consists of a (possibly
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in�nite) collection of elements which is characterized by the de�nition of the type.

For example, a class de�nes such a collection, namely the instances of the class,

whose behavior is constrained by the speci�cation of the class.

3.3.1 Specifying contractual obligations

A formal speci�cation of the behavior of an object may be given by de�ning a

pre-condition and post-condition for each method. The pre-condition of a method

speci�es in a logical manner what restrictions the client invoking a particular

method is obliged to comply with. When the client fails to meet these require-

ments the result of the method will be unde�ned. In e�ect, after the violation of

a pre-condition anything can happen. Usually, this means that the computation

may be aborted or that some other means of error-handling may be started. For

instance, when the implementation language supports exceptions an exception

handler may be invoked.

The post-condition of a method states what obligations the server object

has when executing the method, provided that the client's request satis�es the

method's pre-condition.

Apart from specifying a pre-condition and post-condition for each method

publicly supported by the class, the designer of the class may also specify a class

invariant, to de�ne the invariant properties of the state of each instance of the

class.

A class annotated with an invariant and pre- and post-conditions for the

methods may be regarded as a contract, since it speci�es precisely (in an abstract

way) the behavioral conformance conditions of the object and the constraints

imposed on the interactions between the object and its clients. See slide 3-19.

Assertions { formal speci�cation

� require { method call pre-condition

� ensure, promise { post-condition

� invariant { object invariance
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Slide 3-20: Formal speci�cation of contracts

Intuitively, contracts have a clear analogy to our business a�airs in everyday

life. For instance, when buying audio equipment, as a client you wish to know

what you get for the price you pay, whereas the dealer may require that you

pay in cash. Following this metaphor through, we see that the supplier may

actually bene�t from imposing a (reasonable) pre-condition and that the client

has an interest in a well-stated post-condition. Most people are not willing to pay

without knowing what they will get for their money.

Language support The use of contracts was originally proposed by Meyer

(1988), and is directly supported by the language Ei�el, which o�ers the key-
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words require (to indicate a pre-condition), ensure (to indicate a post-condition)

and invariant (to indicate the invariance condition). See slide 3-20. The Ei�el

environment has options to dynamically check any of the three kinds of assertions,

even selectively per class. The assertions, except for the invariance condition, are

directly embedded in the code. Although less elegant, the same functionality can

be achieved in C

++

by using the assert macro de�ned in assert.h as explained

in section 2.1.3, which also introduced the require and promise macros for C

++

.

For dynamically checking the invariance condition, a test should be executed

when evaluating the constructor and before and after each method invocation.

While a method is being executed, the invariant need not necessarily hold, but it

is the responsibility of a method to restore the invariant when it is disrupted. In

case object methods are recursively applied, the invariant must be restored when

returning to the original caller.

An alternative approach to incorporating assertions in a class description

is presented in Cline and Lea (1990), which introduces an extension of C

++

called Annotated C

++

. Instead of directly embedding assertions in the code,

Annotated C

++

requires the user to specify separately the axioms characterizing

the functionality of the methods and their e�ect on the state of the object.

Interfaces Contracts may be used to document the method interface of a class.

Pre- and post-conditions allow the class designer to specify in a concise manner

the functional characteristics of a method, whereas the use of natural language

often leads to lengthy (and imprecise) descriptions. Below, an example is given

of a contract specifying an account.

class account f account

public:

account();

// assert( invariant() );

virtual float balance() f return balance; g

void deposit(float x); to deposit money

// require( x > 0 );

// promise( balance() � old balance + x && invariant() );

void withdraw(float x); to withdraw money

// require( x 6 balance() );

// promise( balance() � old balance � x && invariant() );

bool invariant() f return balance() > 0; g

protected:

float balance;

g;

The interface for the account class speci�es in an abstract way what the

user expects of an account. From the perspective of design, the behavioral
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abstraction expressed by the axioms is exactly what we need, in principle. The

implementation must guarantee that these constraints are met.

System development From the perspective of system development, the notion

of contracts has some interesting consequences. Assertions may be used to decide

who is responsible for any erroneous behavior of the system. See slide 3-21.

System development

� violated pre-condition { bug in client

� violated post-condition { bug in supplier

A pre-condition limits the cases that a supplier must handle!

3-21

Slide 3-21: System development with contracts

For example, imagine that you are using a software library to implement a

system for �nancial transactions and that your company su�ers a number of

losses due to bugs in the system. How would you �nd out whether the loss is your

own fault or whether it is caused by some bug in the library?

Perhaps surprisingly, the use of assertions allows you to determine exactly

whether to sue the library vendor or not. Assume that the classes in the library

are all annotated with assertions that can be checked dynamically at runtime.

Now, when you replay the examples that resulted in a loss for your company with

the option for checking pre- and post-conditions on, it can easily be decided who

is in error. In the case that a pre-condition of a method signals violation, you, as a

client of a library object, are in error. However, when no pre-condition violation

is signaled, but instead a post-condition is violated, then the library object as

the supplier of a service is in error; and you may proceed to go to court, or do

something less dramatic such as asking the software vendor to correct the bug.

Realization The contract speci�ed in the account class interface may actually

be enforced in code as illustrated below.

class account f account

public:

account() f balance = 0; assert(invariant()); g

virtual float balance() f return balance; g

void deposit(float x) f

require( x >= 0 ); check precondition

hold(); to save the old state

balance += x;

promise( balance() == old balance + x );

promise( invariant() );

g
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void withdraw(float x) f

require( x <= balance ); check precondition

hold(); to save the old state

balance -= x;

promise( balance() == old balance - x );

promise( invariant() );

g

virtual bool invariant() f return balance() >= 0; g

protected:

float balance;

float old balance; additional variable

virtual void hold() f old balance = balance; g

g;

The additional variable old balance is needed to compare the state preceding

an operation with the state that results afterwards. The old state must explicitly

be copied by calling hold. In this respect, Ei�el o�ers better support than C

++

.

Whenever balance() proves to be less than zero, the procedure sketched above

can be used to determine whether the error is caused by an erroneous method

invocation, for example when calling withdraw(x ) with x > balance(), or whether

the implementation code contains a bug.

For the developer of the software, pre-conditions o�er a means to limit the

number of cases that a method must be able to handle. Often, programmers

tend to anticipate all possible uses. For instance, many programs or systems

have options that may be learned only when inspecting the source code but are

otherwise undocumented. Rather than providing all possible options, for now

and the future, it is more sensible to delineate in a precise manner what input will

be processed and what input is considered illegal. For the developer, this may

signi�cantly reduce the e�ort of producing the software.

3.3.2 Refining contracts

Contracts provide a means to specify the behavior of an object in a formal way by

using logical assertions. In particular, a contract speci�es the constraints involved

in the interaction between a server object and a client invoking a method for that

object. When developing a re�nement subtype hierarchy we need to establish

that the derived types satisfy the constraints imposed by the contract associated

with the base type.

To establish that the contract of a derived class re�nes the contract of the

base class it su�ces to verify that the following rules are satis�ed. See slide 3-22.

First, the invariant of the base class must apply to all instances of the derived

class. In other words, the invariance assertions of the derived class must be

logically equal to or stronger than the assertions characterizing the invariant

properties of the base class. This requirement may be veri�ed by checking that the
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Re�ning a contract { state responsibilities and obligations

� invariance { respect the invariants of the base class

� methods { services may be added or re�ned

Re�ning a method { like improving a business contract

class C : public P f

virtual void m();

g

� pre(m

C

) > pre(m

P

) weaken pre-condition

� post(m

C

) 6 post(m

P

) strengthen post-condition
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Slide 3-22: Contracts and inheritance

invariance properties of the base class can be logically derived from the statement

asserting the invariance properties of the derived class. The intuition underlying

this requirement is that the behavior of the derived class is more tightly de�ned

and hence subject to stronger invariance conditions.

Secondly, each method occurring in the base class must occur in the derived

class, possibly in a re�ned form. Note that from a type-theoretical point of view it

is perfectly all right to add methods but strictly forbidden to delete methods, since

deleting a method would violate the requirement of behavioral conformance that

adheres to the subtype relation. Apart from adding a method, we may also re�ne

existing methods. Re�ning a method involves strengthening the post-condition

and weakening the pre-condition. Suppose that we have a class C derived from

a base class P, to verify that the method m

C

re�nes the method m

P

de�ned for

the base class P, we must check, assuming that the signatures of m

C

and m

P

are

compatible, that the post-condition ofm

C

is not weaker than the post-condition of

m

P

, and also that the pre-condition of m

C

is not stronger than the pre-condition

of m

P

.

This rule may at �rst sight be surprising, because of the asymmetric way

in which post-conditions and pre-conditions are treated. But re
ecting on what

it means to improve a service, the intuition underlying this rule, and in par-

ticular the contra-variant relation between the pre-conditions involved, is quite

straightforward. To improve or re�ne a service, in our commonsense notion of

a service, means that the quality of the product or the result delivered becomes

better. Alternatively, a service may be considered as improved when, even with

the result remaining the same, the cost of the service is decreased. In other words,

a service is improved if either the client may have higher expectations of the result

or the requirements on the client becomes less stringent. The or is non-exclusive.

A derived class may improve a service while at the same time imposing fewer

constraints on the clients.
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Example As an example of improving a contract, consider the re�nement of the

class account into a class credit account, which allows a consumer to overdraw an

account to a limit of some maximum amount.

class credit account : public account f credit account

public:

credit account(float x) f maxcredit = x; credit = 0; g

float balance() f return balance + credit; g

float credit(float x) f

require( x + credit <= maxcredit );

hold();

credit += x;

promise( credit = old credit + x );

promise( balance = old balance);

promise( invariant() );

g

void reduce(float x) f

require( 0 <= x && x <= credit );

hold();

credit -= x;

promise( credit = old credit - x );

promise( balance = old balance );

promise( invariant() );

g

bool invariant() f

return credit <= maxcredit && account::invariant();

g

protected:

float maxcredit, credit;

float old credit;

void hold() f old credit = credit; account::hold(); g

g;

As a �rst observation, we may note that the invariant of account immediately

follows from the invariant of credit account. Also, we may easily establish that the

pre-condition of withdraw has (implicitly) been weakened, since we are allowed to

overdraw the credit account by the amount given by credit. Note, however, that

this is implied by the virtual de�nition of balance(). To manage the credit given,

the methods credit and reduce are supplied. This allows us to leave the methods

deposit and withdraw unmodi�ed.
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3.3.3 Runtime consistency checking

Debugging is a hopelessly time-consuming and unrewarding activity. Unless the

testing process is guided by clearly speci�ed criteria on what to test for, testing

in the sense of looking for errors must be considered as ordinary debugging,

that is running the system to see what will happen. Client/server contracts, as

introduced in section 3.3 as a method for design, do o�er such guidelines in that

they enable the programmer to specify precisely the restrictions characterizing

the legal states of the object, as well as the conditions that must be satis�ed in

order for legal state transitions to occur. See slide 3-23.

Assertions { side-e�ect free contracts

� require { test on delivery

� promise { test during development

Object invariance { exceptions

� invariant { verify when needed

Global properties { requirements

� interaction protocols { formal speci�cation
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Slide 3-23: Runtime consistency checking

The Ei�el language is the �rst (object-oriented) language in which assertions

were explicitly introduced as a means to develop software and to monitor the

runtime consistency of a system. Contracts as supported by Ei�el were primarily

in
uenced by notions concerning the construction of correct programs. The

unique contribution of Meyer (1988) consists of showing that these notions may

be employed operationally by specifying the pragmatic meaning of pre- and post-

conditions de�ning the behavior of methods. To use assertions operationally,

however, the assertion language must be restricted to side-e�ect free boolean

expressions in the language being used.

Combined with a bottom-up approach to development, the notion of contracts

gives rise to the following guidelines for testing. Post-conditions and invariance

assertions should primarily be checked during development. When su�cient

con�dence is gained in the reliability of the object de�nitions, checking these

assertions may be omitted in favor of e�ciency. However, pre-conditions must

be checked when delivering the system to ensure that the user complies with the

protocol speci�ed by the contract.

When delivering the system, it is a matter of contractual agreement between

the deliverer and user whether pre- and/or post-conditions will be enabled. The

safest option is to enable them both, since the violation of a pre-condition may

be caused by an undetected violated post-condition.

In addition, the method of testing for identity transitions may be used to
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cover higher level invariants, involving multiple objects. To check whether the

conditions with respect to complex interaction protocols are satis�ed, explicit

consistency checks need to be inserted by the programmer. See also section 10.5.

3.4 Towards a formal approach

Reliability is the cornerstone of reuse. Hence, object-oriented implementation,

design and analysis must �rst and foremost support the development of reliable

software, should the original claim to promote the reuse of software ever come

true.

Validating software by means of testing alone is clearly insu�cient. As argued

in Backhouse (1986), the probability of �nding an error is usually too small to

view testing as a reliable method of detecting the error.

The fallacy of any empirical approach to validating software, which includes

quantitative measurements based on software metrics, is that in the end we just

have to wait and see what happens. In other words, it is useless as a design

methodology.

Formal speci�cation { contracts

� type speci�cation { local properties

� relational speci�cation { structural properties, type relations

� functional speci�cation { requirements

Veri�cation { as a design methodology

� reasoning about program speci�cation/code

Runtime consistency { invariance

� behavioral types specify test cases

� invariants and assertions monitor consistency
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Slide 3-24: Formal speci�cation and veri�cation

Veri�cation should be at the heart of any design method. In addition to

allowing us to reason about the speci�cation and the code, the design process

should result in an architectural description of the system as well as in a proof

that the system meets its requirements. Looking at the various approaches to the

speci�cation and veri�cation of software, we can see that the notion of invariance

plays a crucial role in developing provably correct solutions for a variety of

problems (cf. Gries, 1981; Backhouse, 1986; Apt and Olderog, 1991; Dahl, 1992).

Invariance, as we observed when discussing object test methods, also play

an important role in testing the runtime consistency of a system. Hence, from a

pragmatic point of view, studying formal approaches may help us become aware of

the properties that determine the runtime consistency of object-oriented systems.



104 Software engineering perspectives

In part III (chapter 10), we will explore what formal methods we have available

for developing object-oriented software. Our starting point will be the foundations

underlying the notion of contracts as introduced in Meyer (1988). We will take a

closer look at the relation between contracts and the speci�cation of the properties

of abstract data types. Also, we will look at methods allowing us to specify

structural and functional relations between types, as may occur in behavioral

compositions of objects. More speci�cally, we will study the means available to

relate an abstract speci�cation of the properties of a data type to a concrete

implementation. These studies are based on an analysis of the notion of abstract

data types, and the relation between inheritance and subtyping. In particular, we

will look at rules to determine whether a subclass derived by inheritance conforms

to the subtype relation that we may de�ne in a formal approach to object types.

However, before we delve into the formal foundations of object-oriented mod-

eling, we will �rst look at an example of application development and explore the

design space of object-oriented languages and system implementation techniques.

These insights will enable us to establish to what extent we may capture a design in

formal terms, and what heuristics are available to accomplish the tasks remaining

in object-oriented development.

Summary

This chapter presented an overview of the issues involved in the design and

software engineering of object-oriented software. The approach taken may be

characterized as eclectic, in that various methods are referred to when illustrating

design issues without commitment to a particular method or approach.

Development methods 1

� perspectives of modeling

� requirements engineering { Fusion

� methods for analysis and design { a comparative study
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Slide 3-25: Section 3.1: Development methods

In section 1, we discussed perspectives of modeling and requirements engi-

neering. We looked at the second-generation development method Fusion and

made a comparative study of analysis and design methods. We then discussed

the di�erences between functional and object-oriented development approaches.

In section 2, we discussed the issues that arise in de�ning an object model.

We looked at heuristics for identifying objects, based on a linguistic analysis of

the requirements document, and discussed the evaluation criteria that may be

used for eliminating spurious classes. Also, the CRC method, which approaches

class design by delineating responsibilities and collaborations, was illustrated with

some examples.
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Identifying objects 2

� object-oriented design { decomposition into objects

� object model { objects su�er and require

� heuristics { balance between nouns and verbs

� evaluation { eliminating spurious classes

� class design { class, responsibilities and collaborations
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Slide 3-26: Section 3.2: Identifying objects

Contracts 3

� types { as an organizing principle

� contracts { obligations and bene�ts

� subtyping { the substitutability requirement

� partial types { designed to have subtypes
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Slide 3-27: Section 3.3: Contracts

The object model resulting from an initial exploration may be formalized by

employing types. In section 3, we discussed the notion of contracts as a means

to characterize the behavioral aspects of types, specifying the restrictions and

obligations of an object and its clients. We also looked at the requirements for

subtype re�nement and the re�nement of contractual obligations.

Towards a formal approach 4

� contracts { formal speci�cation

� veri�cation { as a design methodology

� runtime consistency { invariance
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Slide 3-28: Section 3.4: Towards a formal approach

Finally, in section 4, we re
ected on the possible contribution of formal meth-

ods to the software engineering of object-oriented systems, and concluded that

the notion of contracts may play an invaluable role, both as a design methodology

and as a means to establish the runtime consistency of a system.

Questions

1. Describe the Fusion method. How does Fusion compare with other methods
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of OO analysis and design?

2. Give an outline of the steps required in object-oriented design. What

heuristics can you think of for identifying objects?

3. What criteria may be used to eliminate spurious classes from an initial

object model?

4. Explain the methods of CRC cards. Give an example.

5. Explain how you may characterize the behavior of an object by means of a

contract.

6. What bene�ts may design by contract have for system developers? And for

users?

7. Give a detailed account of the issues that arise in re�ning a contract.

8. How may contracts be employed to test object behavior?

9. Discuss how a formal approach may contribute to OO software development.

Further reading

Fowler (1997b) is not only a good introduction to UML, but contains also many

useful insights on the process of object-oriented development. Additionally, Fowler

(1997a) may be read as a source on analysis patterns, which are reusable elements

of analysis and design. For more information on Fusion, consult Coleman et al.

(1994). As earlier references on object-oriented methods, I recommend Booch

(1994), Wirfs-Brock et al. (1990) and Rumbaugh et al. (1991). Also worthwhile

are Henderson (1993) and Champeaux et al. (1993). An overview and compara-

tive study of design representation methods is given in Webster (1988). Meyer

(1997) is the ultimate reference on contracts. A more comprehensive article on

design by contract is Meyer (1992b).
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After studying general issues in the design and software engineering of object-

oriented applications and frameworks, it is time to focus in somewhat more detail

on actual application development.

In this chapter we will look at the drawtool application, as a representative of

a broader category of interactive editing tools.

Application development 4

� the drawtool applications

� guidelines for design

� from speci�cation to implementation

Additional keywords and phrases: hush framework, interactive editors,

law of Demeter, formal speci�cation in Z, abstract systems

4-1

Slide 4-1: Application development

The drawtool application is a Java application using the multiparadigm hush

framework. However, in discussing its development, we will concentrate on spec-

ifying the requirements and issues of design.

After that we will treat some miscellaneous issues in the design of classes. This

chapter will be concluded with a case study, a concise, yet detailed, example of a

more formal approach to the development of an object-oriented application.

107



108 Application development

4.1 The drawtool application

Interactive editors are an interesting category of applications. Interactive editors,

which include word processors and drawing tools, are the kind of applications the

average (end) user is most familiar with. From a software engineering perspective,

interactive editors are interesting because they combine interactive and functional

features. See also Gamma et al. (1994), which provides many patterns for

interactive editors.

In the Software Engineering curriculum at the Vrije Universiteit, we have

repeatedly used interactive editors as a medium-term assignment for CS2 students

(�ve weeks for groups of four or �ve students). One example of such an assignment

is the Interactive Design Assistant discussed in section 1.3.2. Another example

is the musical score editor (see appendix I), which has been chosen by a selected

group of CS3 and CS4 students as a practical assignment for the Object-Oriented

Software Development course.

In this section we will look at the drawtool application, which is a representative

realization of a (rather simple) drawing editor. The implementation of drawtool

presented here is realized in the Java version of the hush framework. The hush

C

++

framework has been used for a number of years in the Software Engineering

curriculum, but has recently been replaced by Java with Swing. The drawtool

application is nevertheless interesting because it acted for many years as the basic

example of an interactive editor for quite a number of students.

Before studying drawtool, we will �rst look at the realization of a drawing

canvas in hush

A simple drawing canvas in hush

The Tcl/Tk toolkit provides a very powerful scripting environment for realizing

graphical user interfaces, Ousterhout (1991). The hush Java/C

++

library gives

convenient access to the Tcl/Tk toolkit in an object-oriented style. See also Eli�ens

(1995).

handler

kit session event widget

widget

button canvas scrollbar

Slide 4-2: The hush class hierarchy

The hush library provides three kinds of classes, namely (a) the widget classes,

which mimic the functionality of Tk, (b) the handler and event classes, which are

involved in the handling of events and the binding of Java/C

++

code to Tcl

commands, and (c) the classes kit and session, which encapsulate the embedded

interpreter and the window management system,
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In the widget class hierarchy depicted on the right in slide 4-2, the widget

class represents an abstract widget, de�ning the commands that are valid for

each of the descendant concrete widget classes. The widget class, however, is not

an abstract class in Java or C

++

terms. It may be used for creating references

to widgets de�ned in Tcl. In contrast, employing the constructor of one of the

concrete widget classes results in actually creating a widget.

Slide 4-3: Drawing canvas

Widgets are the elements from which a GUI is made. They appear as windows

on the screen to display text or graphics and may respond to events such as

motioning the mouse or pressing a key by calling an action associated with that

event. The interface of the widget class may be de�ned by the (pseudo) interface

below.

public interface widget f widget

public String path();

public void eval(String cmd);

public void pack(String s);

public void bind(handler h,String s);

public void bind(String p, handler h,String s);

public void configure(String cmd);

public void geometry(int x, int y);

public void xscroll(widget w);
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public void yscroll(widget w);

public widget self(); to de�ne compound widgets

public void redirect(widget inner);

g;

The function path delivers the path name of a widget object. Each widget

created by Tk actually de�nes a Tcl command associated with the path name of

the widget. In other words, an actual widget may be regarded as an object which

can be asked to evaluate commands. For example a widget `.b' may be asked to

change its background color by a Tcl command like

.b configure -background blue

The function eval enables the programmer to apply Tcl commands to the widget

directly, as does the con�gure command. The function geometry sets the width

and height of the widget.

As an example look at the code for the drawing canvas widget depicted in

slide 4-3.

import hush.dv.api.event;

import hush.dv.widgets.canvas;

class draw extends canvas f draw

boolean dragging;

public draw(String path) f

super(path);

dragging = false;

bind(this);

g

public void press(event ev) f

dragging = true;

g

public void release(event ev) f

dragging = false;

g

public void motion(event ev) f

if (dragging)

circle(ev.x(),ev.y(),2,"-fill black");

g

g;

The class draw has an instance variable dragging, that re
ects whether the

user is actually drawing a �gure. If dragging is true, motions with the mouse will

result in small dots on the screen.
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canvas

draw

handler

press(event)

motion(event)

release(event)

dispatch(event)

Slide 4-4: Drawing canvas

A structural view of the draw class is given in slide 4-4. The draw class is

derived from a canvas, which is itself (indirectly) derived from a handler class.

The handler class dispatches events to prede�ned handler methods, such as press,

motion and release.

For the draw class we must distinguish between a handler and a canvas part.

The handler part is de�ned by the methods press, release and motion. The canvas

part allows for drawing �gures, such as a small circle.

:event

PRESS

MOTION

RELEASE
finish

Draw figure draw/canvas draw/handler

draw

press

drag

release

start drawing

draw dots

finish figure

start

Slide 4-5: Drawing canvas

In slide 4-5 it is depicted how these two parts interact when the user draws a

�gure. Actions of the user result in events that activate the handler. Note that

the UML sequence diagrams are not completely adequate here, since it is di�cult

to express information concerning the events and the state of the draw instance.

Widgets may respond to events. To associate an event with an action, an

explicit binding must be speci�ed for that particular widget. Some widgets

provide default bindings. These may, however, be overruled.

The function bind is used to associate handlers with events. The �rst string

parameter of bind may be used to specify the event type. Common event types

are, for example, ButtonPress, ButtonRelease and Motion, which are the default

events for canvas widgets. Also keystrokes may be de�ned as events, for example

Return, which is the default event for the entry widget.

The function bind(handler ;String) may be used to associate a handler object

with the default bindings for the widget. Concrete widgets may not override the

bind function itself, but must de�ne the protected function install. Typically, the

install function consists of calls to bind for each of the event types that is relevant

to the widget.
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In addition, the widget class o�ers two functions that may be used when

de�ning compound or mega widgets. The function redirect(w) must by used to

delegate the invocation of the eval, con�gure and bind functions to the widget

w. The function self () gives access to the widget to which the commands are

redirected. The function path will still deliver the path name of the outer widget.

Calling redirect when creating the compound widget class su�ces for most situa-

tions. However, when the default events must be changed or the declaration of a

handler must take e�ect for several component widgets, the function install must

be rede�ned to handle the delegation explicitly.

The drawtool application

Slide 4-6: The drawtool interface

In this section we will look at the realization of simple drawing tool. The example

illustrates how to use the hush library widgets, and serves to illustrate in particular

how to construct compound widgets.

A structural view of the drawtool application is given in slide 4-7.

tablet

drawtool

menu

toolbox

button*

Slide 4-7: A (partial) class diagram

Usually, the various widgets constituting the user interface are (hierarchically)

related to each other, such as in the drawtool application which contains a canvas
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to display graphic elements, a button toolbox for selecting the graphic items and

a menubar o�ering various options such as saving the drawing in a �le.

Widgets in Tk are identi�ed by a path name. The path name of a widget

re
ects its possible subordination to another widget. See slide 4-8.

.draw.frame.menu

.draw.frame.menu.help

.draw.frame.tablet.canvas

.draw.frame.tablet

.draw.frame.tablet.scrolly

.draw.frame.tablet.scrollx

.draw.frame

.draw.toolbox

Slide 4-8: Widget containment

Pathnames consist of strings separated by dots. The �rst character of a path

must be a dot. The �rst letter of a path must be lower case. The format of a

path name may be expressed in BNF form as

path ::= '.' j '.'string j path'.'string

For example `.' is the path name of the root widget, whereas `.quit' is the

path name of a widget subordinate to the root widget. A widget subordinate

to another widget must have the path name of that widget as part of its own

path name. For example, the widget `.f.m' may have a widget `.f.m.h'

as a subordinate widget. Note that the widget hierarchy induced by the path

names is completely orthogonal to the widget class inheritance hierarchy. With

respect to the path name hierarchy, when speaking of ancestors we simply mean

superordinate widgets.

Our drawing tool consists of a tablet, which is a canvas with scrollbars to allow

for a large size canvas of which only a part is displayed, a menubar, having a File

and an Edit menu, and a toolbox, which is a collection of buttons for selecting

from among the drawing facilities. In addition, a help facility is o�ered.

:eventmenutablet circle_handler

PRESS

MOTION

RELEASE

Draw circle

choose midpoint

choose radius

finish

press

drag

release

draw center

draw circle*

finish circle

activate
select

select handler

Slide 4-9: An interaction diagram

A typical interaction (or use case) with drawtool is depicted in slide 4-9. On

selecting the circle menu entry (or toolbox button), the circle handler is activated
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to assist in the drawing of a circle. Details will be given when discussing the tablet

widget.

The toolbox component As the �rst component of drawtool, we will look at the

toolbox. The toolbox is a collection of buttons packed in a frame.

import hush.dv.api.*;

import hush.dv.widgets.frame;

public class toolbox extends frame f toolbox

tablet tablet;

public toolbox(widget w, tablet t) f

super(w,"toolbox");

tablet = t;

new toolbutton(this,"draw");

new toolbutton(this,"move");

new toolbutton(this,"box");

new toolbutton(this,"circle");

new toolbutton(this,"arrow");

g

public int operator() f

tablet.mode( event.arg(1)); reset tablet mode

return OK;

g

g;

Each button is an instance of the class toolbutton.

import hush.dv.api.*;

import hush.dv.widgets.button;

public class toolbutton extends button f toolbutton

public toolbutton(widget w, String name) f

super(w,name);

text(name);

bind(w,name);

pack("-side top -fill both -expand 1");

g

g;

When a toolbutton is created, the actual button is given the name of the

button as its path. Next, the button is given the name as its text, the ancestor

widget w is declared to be the handler for the button and the button is packed.

The function text is a member function of the class button, whereas both handler



The drawtool application 115

and pack are common widget functions. Note that the parameter name is used

as a path name, as the text to display, and as an argument for the handler, that

will be passed as a parameter when invoking the handler object.

The toolbox class inherits from the frame widget class, and creates a frame

widget with a path relative to the widget parameter provided by the constructor.

The constructor further creates the �ve toolbuttons.

The toolbox is both the superordinate widget and handler for each toolbutton.

When the operator() function of the toolbox is invoked in response to pressing a

button, the call is delegated to the mode function of the tablet. The argument

given to mode corresponds to the name of the button pressed.

The de�nition of the toolbutton and toolbox illustrates that a widget need not

necessarily be its own handler. The decision, whether to de�ne a subclass which

is made its own handler or to install an external handler depends upon what is

considered the most convenient way in which to access the resources needed. As

a guideline, exploit the regularity of the application.

The menubar component The second component of our drawing tool is the

menubar.

import hush.dv.api.widget;

public class menubar extends hush.dv.widgets.menubar f menubar

public menubar(widget w, tablet t, toolbox b) f

super(w,"bar");

configure("-relief sunken");

new FileMenu(this,t);

new EditMenu(this,b);

new HelpButton(this);

g

g;

The class menubar, given above, is derived from the hush widget menubar.

Its constructor requires an ancestor widget, a tablet and a toolbox. The tablet

is passed as a parameter to the �le menu, and the toolbox to the edit menu. In

addition, a help button is created, which provides online help in a hypertext format

when pressed.

A menubar consists of menubuttons to which actual menus are attached. Each

menu consists of a number of entries, which may possibly lead to cascaded menus.

The second button of the menubar is de�ned by the EditMenu. The EditMenu

requires a toolbox and creates a menubutton. It con�gures the button and de�nes

a menu containing two entries, one of which is a cascaded menu. Both the main

menu and the cascaded menu are given the toolbox as a handler. This makes sense

only because for our simple application the functionality o�ered by the toolbox

and EditMenu coincide.
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canvas handler

draw

handler

circle

handler

move

event
m..n

contains

handler
tool

tablet

Slide 4-10: Tablet

The tablet component The most important component of our drawtool appli-

cation is de�ned by the tablet widget class given below.

import hush.dv.api.*;

import hush.dv.widgets.*;

public class tablet extends canvas f tablet

int mode;

canvas canvas;

handler[] handlers;

final int DRAW = 0;

final int MOVE = 1;

final int CIRCLE = 2;

final int BOX = 3;

final int ARROW = 5;

public tablet(widget w, String name, String options) f

super(w,name,"*");

handlers = new handler[12];

init(options);

redirect(canvas); // to delegate to canvas

bind(this); // to intercept user actions

handlers[DRAW] = new DrawHandler(canvas);

handlers[MOVE] = new MoveHandler(canvas);

handlers[BOX] = new BoxHandler(canvas);

handlers[CIRCLE] = new CircleHandler(canvas);

handlers[ARROW] = new ArrowHandler(canvas);

mode = 0; // drawmode.draw;

g

public int operator() f

handlers[ mode].dispatch( event);

return OK;
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g

public int mode(String s) f

int m = -1;

if ("draw".equals(s)) m = DRAW;

if ("move".equals(s)) m = MOVE;

if ("box".equals(s)) m = BOX;

if ("circle".equals(s)) m = CIRCLE;

if ("arrow".equals(s)) m = ARROW;

if (m >= 0) mode = m;

return mode;

g

void init(String options) f

widget root = new frame(path(),"-class tablet");

canvas = new canvas(root,"canvas",options);

canvas.configure("-relief sunken -background white");

canvas.geometry(200,100);

scrollbar scrollx = new Scrollbar(root,"scrollx");

scrollx.orient("horizontal");

scrollx.pack("-side bottom -fill x -expand 0");

scrollbar scrolly = new Scrollbar(root,"scrolly");

scrolly.orient("vertical");

scrolly.pack("-side right -fill y -expand 0");

canvas.pack("-side top -fill both -expand 1");

canvas.xscroll(scrollx); scrollx.xview(canvas);

canvas.yscroll(scrolly); scrolly.yview(canvas);

g

g;

The various modes supported by the drawing tool are enumerated as �nal

constants. The tablet class itself inherits from the canvas widget class. This

has the advantage that it o�ers the full functionality of a canvas. In addition

to the constructor and operator() function, which delegates the incoming event

to the appropriate handler according to the mode variable, it o�ers a function

mode, which sets the mode of the canvas as indicated by its string argument,

and a function init that determines the creation and geometrical layout of the

component widgets. As instance variables, it contains an integer mode variable

and an array of handlers that contains the handlers corresponding to the modes

supported.
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Although the tablet must act as a canvas, the actual tablet widget is nothing

but a frame that contains a canvas widget as one of its components. This is

re
ected in the invocation of the canvas constructor (super). By convention,

when the options parameter is � instead of the empty string, no actual widget

is created but only an abstract widget, as happens when calling the widget class

constructor. Instead of creating a canvas right away, the tablet constructor creates

a top frame, initializes the actual component widgets, and redirects the eval,

con�gure and bind invocations to the subordinate canvas widget. It then binds

itself to be its own handler, which results in binding itself to be the handler for

the canvas component. Note that reversing the order of calling redirect and bind

would be disastrous. After that it creates the handlers for the various modes and

sets the initial mode to move.

The operator() function takes care of dispatching calls to the appropriate

handler. The dispatch function must be called to pass the tk, argc and argv

parameters.

The drawtool class Having taken care of the basic components of the drawing

tool, that is the toolbox, menubar and tablet widgets, all that remains to be done

is to de�ne a suitable �le handler, appropriate handlers for the various drawing

modes and a help handler.

We will skip these, but look at the de�nition of the drawtool class instead.

In particular, it will be shown how we may grant the drawtool the status of a

veritable Tk widget, by de�ning a drawtool handler class and a corresponding

drawtool widget command.

import hush.dv.api.*;

import hush.dv.widgets.frame;

import hush.dv.widgets.canvas;

public class drawtool extends canvas f drawtool

widget root;

tablet tablet;

public drawtool() f System.out.println("meta handler created"); g

public drawtool(String p, String options) f

super(p,"*"); // create empty tablet

init(options);

g

public int operator() f

System.out.println("Calling drawtool:" + event.args(0) );

String[] argv = event.argv();

if ("self".equals(argv[1])) tk.result(self().path());

else if ("drawtool".equals(argv[0]))

create(argv[1], event.args(2));

else if ("path".equals(argv[1])) tk.result(path());
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else if ("pack".equals(argv[1])) pack( event.args(2));

else self().eval( event.args(1) ); // send through

return OK;

g

void create(String name, String options) f

drawtool m = new drawtool(name,options);

g

void init(String options) f

root = new frame(path(),"-class Meta");

frame frame = new frame(root,"frame");

tablet = new tablet(frame,"tablet",options);

toolbox toolbox = new toolbox(frame,tablet);

menubar menubar = new menubar(root,tablet,toolbox);

toolbox.pack("-side left -fill y -expand 0");

tablet.pack("-side left -fill both -expand 1");

menubar.pack();

frame.pack("-expand 1 -fill both");

redirect( tablet ); // the widget of interest

g

g;

De�ning a widget command involves three steps: (I) the declaration of the

binding between a command and a handler, (II) the de�nition of the operator()

function, which actually de�nes a mini-interpreter, and (III) the de�nition of the

actual creation of the widget and its declaration as a Tcl/Tk command.

Step (I) is straightforward. We need to de�ne an empty handler, which will

be associated with the drawtool command when starting the application. The

functionality o�ered by the interpreter de�ned by the operator() function in (II)

is kept quite simple, but may easily be extended. When the �rst argument of

the call is drawtool, a new drawtool widget is created as speci�ed in (III), except

when the second argument is self. In that case, the virtual path of the widget is

returned, which is actually the path of the tablet's canvas. It is the responsibility

of the writer of the script that the self command is not addressed to the empty

handler. If neither of these cases apply, the function eval is invoked for self (),

with the remaining arguments 
attened to a string. This allows for using the

drawtool almost as an ordinary canvas.

Canvas c = new DrawTool("draw","");

tk.bind("drawtool",c);
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c.circle(20,20,20,"-fill red");

c.rectangle(30,30,70,70,"-fill blue");

c.pack();

In the program fragment above, the Tcl command drawtool is declared, with

an instance of drawtool as its handler. (It is assumed that the tk variable refers

to an instance of kit.) In this way, the drawtool widget is made available as a

command when the program is used as an interpreter. In this case, the actual

drawtool widget is made the handler of the command, to allow for a script to

address the drawtool by calling drawtool self.

4.2 Guidelines for design

Computing is a relatively young discipline. Despite its short history, a number of

styles and schools promoting a particular style have emerged. However, in contrast

to other disciplines such as the �ne arts (including architecture) and musical

composition, there is no well-established tradition of what is to be considered as

good taste with respect to software design. There is an on-going and somewhat

pointless debate as to whether software design must be looked at as an art or must

be promoted into a science. See, for example, Knuth (1992) and Gries (1981).

The debate has certainly resulted in new technology but has not, I am afraid,

resulted in universally valid design guidelines.

The notion of good design in the other disciplines is usually implicitly de�ned

by a collection of examples of good design, as preserved in museums or (art or

music) historical works. For software design, we are still a long way from anything

like a museum, setting the standards of good design. Nevertheless, a compendium

of examples of object-oriented applications such as Pinson and Wiener (1990)

and Harmon and Taylor (1993), if perhaps not setting the standards for good

design, may certainly be instructive.

Development process { cognitive factors

� model ! realize ! re�ne

Design criteria { natural, 
exible, reusable

� abstraction { types

� modularity { strong cohesion (class)

� structure { subtyping

� information hiding { narrow interfaces

� complexity { weak coupling

4-11

Slide 4-11: Criteria for design
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The software engineering literature abounds with advice and tools to measure

the quality of good design. In slide 4-11, a number of the criteria commonly

found in software engineering texts is listed. In software design, we evidently

strive for a high level of abstraction (as enabled by a notion of types and a

corresponding notion of contracts), a modular structure with strongly cohesive

units (as supported by the class construct), with units interrelated in a precisely

de�ned way (for instance by a client/server or subtype relation). Other desirable

properties are a high degree of information hiding (that is narrowly de�ned and

yet complete interfaces) and a low level of complexity (which may be achieved

with units that have only weak coupling, as supported by the client/server model).

An impressive list, indeed.

Design is a human process, in which cognitive factors play a critical role. The

role of cognitive factors is re
ected in the so-called fractal design process model

introduced in Johnson and Foote (1988), which describes object-oriented devel-

opment as a triangle with bases labeled by the phrases model, realize and re�ne.

This triangle may be iterated at each of the bases, and so on. The iterative view

of software development does justice to the importance of human understanding,

since it allows for a simultaneous understanding of the problem domain and the

mechanisms needed to model the domain and the system architecture.

Good design involves taste. My personal de�nition of good design would

certainly also involve cognitive factors (is the design understandable?), including

subjective criteria such as is it pleasant to read or study the design?

4.2.1 Individual class design

A class should represent a faithful model of a single concept, and be a reusable,

plug-compatible component that is robust, well-designed and extensible. In slide

4-12, we list a number of suggestions put forward by McGregor and Sykes (1992).

Class design { guidelines

� only methods public { information hiding

� do not expose implementation details

� public members available to all classes { strong cohesion

� as few dependencies as possible { weak coupling

� explicit information passing

� root class should be abstract model { abstraction

4-12

Slide 4-12: Individual class design

The �rst two guidelines enforce the principle of information hiding, advising

that only methods should be public and all implementation details should be

hidden. The third guideline states a principle of strong cohesion by requiring

that classes implement a single protocol that is valid for all potential clients. A
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principle of weak coupling is enforced by requiring a class to have as few depen-

dencies as possible, and to employ explicit information passing using messages

instead of inheritance (except when inheritance may be used in a type consistent

fashion). When using inheritance, the root class should be an abstract model

of its derived classes, whether inheritance is used to realize a partial type or to

de�ne a specialization in a conceptual hierarchy.

The properties of classes, including their interfaces and relations with other

classes, must be laid down in the design document. Ideally, the design document

should present a complete and formal description of the structural, functional and

dynamic aspects of the system, including an argument showing that the various

models are consistent. However, in practice this will seldom be realized, partly be-

cause object-oriented design techniques are as yet not su�ciently matured to allow

a completely formal treatment, and partly because most designers will be satis�ed

with a non-formal rendering of the architecture of their system. Admittedly,

the task of designing is already su�ciently complex, even without the additional

complexity of a completely formal treatment. Nevertheless, studying the formal

underpinnings of object-oriented modeling based on types and polymorphism is

still worthwhile, since it will sharpen the intuition with respect to the notion of

behavioral conformance and the re�nement of contracts, which are both essential

for developing reliable object models. And reliability is the key to reuse!

4.2.2 Inheritance and invariance

When developing complex systems or class libraries, reliability is of critical im-

portance. As shown in section 3.3, assertions provide a means by which to check

the runtime consistency of objects. In particular, assertions may be used to check

that the requirements for behavioral conformance of derived classes are met.

Invariant properties are often conveniently expressed in the form of algebraic

laws that must hold for an object. Naturally, when extending a class by inher-

itance (to de�ne a specialization or re�nement) the invariants pertaining to the

base class should not be disrupted. Although we cannot give a general guideline

to prevent disruption, the example discussed here clearly suggests that hidden

features should be carefully checked with respect to the invariance properties of

the (derived) class. The example is taken from Bar-David (1992).

In slide 4-13, we have de�ned a class employee. The main features of an

employee are the (protected) attribute sal (storing the salary of an employee) and

the methods to access and modify the salary attribute. For employee objects,

the invariant (expressing that any amount k is equal to the salary of an employee

whose salary has been set to k) clearly holds.

Now imagine that we distinguish between ordinary employees and managers

by adding a permanent bonus when paying the salary of a manager, as shown in

slide 4-14. The reader may judge whether this example is realistic or not.

Then, perhaps somewhat to our surprise, we �nd that the invariant stated

for employees no longer holds for managers. From the perspective of predictable

object behavior this is de�nitely undesirable, since invariants are the cornerstone
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Invariant properties { algebraic laws

class employee f employee

public:

employee( int n = 0 ) : sal(n) f g

employee* salary(int n) f sal = n; return

this; g

virtual long salary() f return sal; g

protected:

int sal;

g;

Invariant

k == (e->salary(k))->salary()

4-13

Slide 4-13: Invariant properties as algebraic laws

Problem { hidden bonus

class manager : public employee f manager

public:

long salary() f return sal + 1000; g

g;

Invariant

k =?= (m->salary(k))->salary()

4-14

Slide 4-14: Violating the invariant

of reliable software. The solution to this anomaly is to make the assignment of a

bonus explicit, as shown in slide 4-15.

Now, the invariant pertaining to managers may be strengthened by including

the e�ects of assigning a bonus. As a consequence, the di�erence in salary no

longer occurs as if by magic but is directly visible in the interaction with a manager

object, as it should be.

4.2.3 An objective sense of style

The guidelines presented by Lieberherr and Holland (1989) were among the �rst,

and they still provide good advice with respect to designing class interfaces.
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Solution { explicit bonus

class manager : public employee f manager'

public:

manager* bonus(int n) f sal += n; return this;

g

g;

Invariant { restored

k + n == ((m->salary(k))->bonus(n))->salary()

4-15

Slide 4-15: Restoring the invariant

Good Object-Oriented Design

� organize and reduce dependencies between classes

Client { A method m is a client of C if m calls a method of C

Supplier { If m is a client of C then C is a supplier of m

Acquaintance { C is an acquaintance of m if C is a supplier of m but

not (the type of) an argument of m or (of) an instance variable of the

object of m

� C is a preferred acquaintance of m if an object of C is created in

m or C is the type of a global variable

� C is a preferred supplier of m if C is a supplier and C is (the type

of) an instance variable, an argument or a preferred acquaintance

4-16

Slide 4-16: Clients, suppliers and acquaintances

In slide 4-16, an explicit de�nition of the dual notions of client and supplier

has been given. It is important to note that not all of the potential suppliers

for a class may be considered safe. Potentially unsafe suppliers are distinguished

as acquaintances, of which those that are either created during a method call or

stored in a global variable are to be preferred.

Although this may not be immediately obvious, this excludes suppliers that

are accessed in some indirect way, for instance as the result of a method call to

some safe supplier. As an example of using an unsafe supplier, consider the call

screen->cursor()->move();

which instructs the cursor associated with the screen to move to its home position.

Although screen may be assumed to be a safe supplier, the object delivered by
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screen ! cursor() need not necessarily be a safe supplier. In contrast, the call

screen->move cursor();

does not make use of an indirection introducing a potentially unsafe supplier.

The guideline concerning the use of safe suppliers is known as the Law of

Demeter, of which the underlying intuition is that the programmer should not be

bothered by knowledge that is not immediately apparent from the program text

(that is the class interface) or founded in well-established conventions (as in the

case of using special global variables). See slide 4-17.

Law of Demeter ignorance is bliss

Do not refer to a class C in a method m unless C is (the type of)

1. an instance variable

2. an argument of m

3. an object created in m

4. a global variable

� Minimize the number of acquaintances!

Class transformations

� lifting { make structure of the class invisible

� pushing { push down responsibility

4-17

Slide 4-17: The Law of Demeter

To remedy the use of unsafe suppliers, two kinds of program transformation

are suggested by Lieberherr and Holland (1989). First, the structure of a class

should be made invisible for clients, to prohibit the use of a component as (an

unsafe) supplier. This may require the lifting of primitive actions to the encom-

passing object, in order to make these primitives available to the client in a safe

way. Secondly, the client should not be given the responsibility of performing (a

sequence of) low-level actions. For example, moving the cursor should not be the

responsibility of the client of the screen, but instead of the object representing

the screen. In principle, the client need not be burdened with detailed knowledge

of the cursor class.

The software engineering principles underlying the Law of Demeter may be

characterized as representing a compositional approach, since the law enforces the

use of immediate parts only. As additional bene�ts, conformance to the law results

in hiding the component structure of classes, reduces the coupling of control and,

moreover, promotes reuse by enforcing the use of localized (type) information.
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4.3 From specification to implementation

Designing an object-oriented system requires the identi�cation of object classes

and the characterization of their responsibilities, preferably by means of contracts.

In addition, one must establish the relationships between the object classes

constituting the system and delineate the facilities the system o�ers to the user.

Such facilities are usually derived from a requirements document and may be

formally speci�ed in terms of abstract operations on the system.

In this section we will look at the means we have available to express the

properties of our object model, and we will study how we may employ abstract

speci�cations of system operations to arrive at the integration of user actions and

the object model underlying a system in a seamless way. The approach sketched

may be characterized as event-centered.

4.3.1 Structural versus behavioral encapsulation

Object-oriented modeling has clearly been inspired by or, to be more careful,

shows signi�cant similarity to the method of semantic modeling that has become

popular for developing information systems. In an amusing paper, King (1989)

discusses how semantic modeling and object-oriented modeling are related. Apart

from a di�erence in terminology, semantic modeling di�ers from object-oriented

modeling primarily by its focus on structural aspects, whereas object-oriented

modeling is more concerned with behavioral aspects, as characterized by the notion

of responsibilities.

Structural versus behavioral encapsulation

semantic model object-oriented

abstraction structural behavioral

inheritance subtypes subclasses

Semantic modeling { constructing types

� aggregation, grouping by association

4-18

Slide 4-18: Semantic modeling

Typically, semantic modeling techniques provide a richer repertoire for con-

structing types, including a variety of methods for aggregation and a notion

of grouping by association. See slide 4-18. The object-oriented counterpart of

aggregation may be characterized as the has-a or part-of relation, that is usually

expressed by including the (part) object as a data member.

Associations between objects cannot be expressed directly in an object-oriented

framework. On an implementation level, the association relation corresponds

to membership of a common collection, or being stored in the same container.

However, the absence of an explicit association relation makes it hard to express

general m-n relations, as, for example, the relation between students and courses.
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Object-oriented modeling

� is-a { inheritance

� has-a, uses { delegation

� uses { templates

4-19

Slide 4-19: Relations between objects

The in
uence of a semantic modeling background can be clearly felt in the

OMT method. The object model of OMT is a rather direct generalization of

the entity-relationship model. Entities in the entity-relationship model may only

contain (non-object) data members, which are called attributes.

In contrast, objects (in the more general sense) usually hide object and non-

object data members, and instead provide a method interface. Moreover, object-

oriented modeling focuses on behavioral properties, whereas semantic modeling

has been more concerned with (non-behavioral) data types and (in the presence

of inheritance) data subtypes.

Relations, as may be expressed in the entity-relationship model, can partly

be expressed directly in terms of the mechanisms supported by object-oriented

languages. For instance, the is-a relation corresponds closely (although not

completely) with the inheritance relation. See slide 4-19. Both the has-a and

uses relation is usually implemented by including (a pointer to) an object as a

data member. Another important relation is the is-like relation, which may exist

between objects that are neither related by the inheritance relation nor by the

subtype relation, but yet have a similar interface and hence may be regarded as

being of analogous types. The is-like relation may be enforced by parametrized

types that require the presence of particular methods, such as a compare operator

in the case of a generic list supporting a sort method.

4.3.2 Model­based specification

Several development methods, including Responsibility Driven Design and Fusion

(see section 3.1.2), allow for the speci�cation of user interactions in a semi-formal

way by means of pre- and post-conditions. These approaches have been inspired

by model-based speci�cation methods such as VDM and Z, which o�er a formal

framework for specifying the requirements of a system. Model-based speci�cation

methods derive their name from the opportunity to specify a mathematical model

capturing the relevant features of the system. Operations, which may correspond

to user actions, can then be speci�ed in a purely logical way.

In the following, an outline of the speci�cation language Z will be given.

More importantly, the speci�cation of a simple library system will be discussed,

illustrating how we may specify user actions in an abstract way. (The use of the

Z speci�cation language is in this respect only of subsidiary importance.) In the

subsequent section, we will look at the realization of the library employing an
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State and operations Z

� state�[decls j constraints]

� op�[�state; decls j constraints]

Change and invariance

� �state�state ^ state

0

� �state�state = state

0

Veri�cation

� state ^ pre(op) ) op

4-20

Slide 4-20: Model-based speci�cation

abstract system of objects and events corresponding to the user actions, which

re
ects the characterization given in the formal speci�cation.

The speci�cation language Z is based on classical (two-valued) logic and set

theory. It has been used in a number of industrial projects, Hayes (1992), and to

specify the architecture of complex intelligent systems, Craig (1991). The central

compositional unit of speci�cation in Z is the schema. A schema may be used to

specify both states and operations in a logical way. The logic employed in Z is

a typed logic. The speci�cation of a schema consists of a number of declarations

followed by constraints specifying conditions on the variables introduced in the

declarations. Declarations may include other schemas, as in the example speci�-

cation of the operation op. The schema �state itself is a compound schema that

results from the logical conjunction of the schema state and its primed version

state

0

, which denotes state after applying op.

Both schema inclusion and schema conjunction are examples of the powerful

schema calculus supported by Z, which enables the user to specify complex systems

in Z.

Moreover, schemas may be decorated to specify the e�ects of an operation.

Invariance may be speci�ed as in �state, which expresses that the state before

applying the operation is the same as the state (denoted by state

0

) after applying

the operation.

Since schemas are speci�ed in a logical manner, both pre- and post-conditions

are implicitly speci�ed by the constraints included in the schema. Hence, to verify

that an operation op is legal for a state it is merely required to verify that the

conditions speci�ed for state hold, and that, together with the pre-conditions

(which are implicitly speci�ed by the schema for op), they imply the logical

formula characterizing op. See slide 4-20.

An important property of Z is that it allows for a graphical layout of schemas,

as illustrated in the speci�cation of a Counter given in slide 4-21. The state

of a Counter is given by the Counter schema declaring an integer variable n,
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State

Counter

Counter

n : N

n � 0

Operations

Incr

�Counter

n

0

= n + 1

Decr

�Counter

n > 0

n

0

= n � 1

4-21

Slide 4-21: The speci�cation of a Counter in Z

which is constrained by the condition n � 0. The operations Incr and Decr are

speci�ed by de�ning the state following the operation by, respectively, n

0

= n +1

and n

0

= n � 1. Both operations require the declaration �Counter to indicate

that the state speci�ed by Counter will be modi�ed. In addition, the operation

Decr requires as a pre-condition that n>0, needed to prevent the violation of the

invariant, which would happen whenever n became less than zero.

An alternative speci�cation of the Counter is given in slide 4-22. To emphasize

that we may regard the Counter as an object, the operations have been pre�xed by

Counter in a C

++

-like manner. This is only a syntactic device, however, carrying

no formal meaning. In addition, both the operations Incr and Decr declare an

integer variable v? which acts, by convention, as an input parameter. Similarly,

the integer variable v ! declared for the operation value acts, again by convention,

as an output parameter.

Since Z allows the inclusion of other schemas in the declaration part of a

schema, we may easily mimic inheritance as illustrated in the speci�cation of

Bounded :: Counter , which is a Counter with a maximum given by an integer

constant Max.

Similarly, we may specify the operations for the Bounded :: Counter by in-

cluding the corresponding operations speci�ed for the Counter, adding conditions

if required.
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Counter Z

� Counter == [n : N j n � 0]

� Counter :: Incr == [�Counter ; v? : N j n

0

= n + v?]

� Counter :: Decr == [�Counter j n>0; n

0

= n � 1]

� Counter :: Value == [�Counter ; v ! : N j v ! = n]

Bounded counter

� Bounded :: Counter == [Counter j n �Max ]

� Bounded :: Incr == [Counter :: Incr j n<Max ]

4-22

Slide 4-22: An alternative speci�cation of the Counter

From a schema we may easily extract the pre-conditions for an operation by

removing from the conditions the parts involving a primed variable. Clearly, the

post-condition is then characterized by the conditions thus eliminated.

For example, the pre-condition of the Counter :: Incr operation is v? � 0,

whereas the post-condition is n

0

= n+v? which corresponds to the implementation

requirement that the new value of the Counter is the old value plus the value of the

argument v?. In a similar way, the pre-condition for applying the Bounded :: Incr

operation is n+v? � Max . Note, however, that this pre-condition is stronger than

the original pre-condition v? � 0, hence to conform with the rules for re�nement

we must specify what happens when n + v?>Max as well. This is left as an

exercise for the reader.

Clearly, although Z lacks a notion of objects or classes, it may conveniently

be employed to specify the behavior of an object. In Stepney et al. (1992), a

number of studies are collected which propose extending Z with a formal notion

of classes and inheritance. The reader interested in these extensions is invited in

particular to study Object-Z, OOZE and Z++. As an historical aside, we may

note that Z has been of signi�cant in
uence in the development of Ei�el (see

Meyer, 1992b). Although the two approaches are quite divergent, they obviously

still share a common interest in correctness.

In contrast to Ei�el, which o�ers only a semi-formal way in which to specify

the behavior of object classes, Z allows for a precise formal speci�cation of the

requirements a system must meet. To have the speci�cation re
ect the object

structure of the system more closely, one of the extensions of Z mentioned above

may be used. An example of using (plain) Z to specify the functionality of a

library system is given below.

The speci�cation of a library Imagine that you must develop a program to

manage a library, that is keep a record of the books that have been borrowed.

Before developing a detailed object model, you may well re
ect on what user

services the library must provide. These services include the borrowing of a book,
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State

Library (1)

Library

books : PBook

borrowed : Book 7! Person

dom borrowed � books

4-23

Slide 4-23: The speci�cation of a library

returning a book and asking whether a person has borrowed any books, and if so

which books. These operations are speci�ed by the schemas Borrow, Return and

Has in slide 4-24.

Operations

Library (2)

Borrow

�Library; b? : Book ; p? : Person

b? 62 dom borrowed

b? 2 books

borrowed

0

=borrowed [ fb? 7! p?g

Return

�Library; b? : Book ; p? : Person

b? 2 dom borrowed

borrowed

0

=borrowed n fb? 7! p?g

Has

�Library; p? : Person; bks : PBook

bks!=borrowed

�1

(j fp?g j)

4-24

Slide 4-24: The library operations

Don't be frightened of the mathematical notation in which these operations

are speci�ed. The notation is only of secondary importance and will be explained

as we go along.
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Since we are only interested in the abstract relations between people and

books, we may assume Book and Person to be primitive types. The speci�cation

given in slide 4-23 speci�es an abstract state, which is actually a partial function

delivering the person that borrowed the book if the function is de�ned for the

book. The function is partial to allow for the situation where a book has not

been borrowed, but still lies on the shelves. The invariant of the library system

states that the domain of the function borrowed must be a subset of the books

available in the library.

Given the speci�cation of the state, and some mathematical intuition, the

speci�cation of the operations is quite straightforward.

When a Borrow action occurs, which has as input a book b? and a person

p?, the function borrowed

0

is de�ned by extending borrowed with the association

between b? and p?, which is expressed as the mapping b? 7! p?. As a pre-condition

for Borrow, we have that borrowed must not be de�ned for b?, otherwise some

person would already have borrowed the book b?.

The Return action may be considered as the reverse of the Borrow action. Its

pre-condition states that borrowed must be de�ned for b? and the result of the

operation is that the association between b? and p? is removed from borrowed

0

.

Finally, the operation Has allows us to query what books are in the possession

of a person p?. The speci�cation of Has employs the mathematical features of Z in

a nice way. The output, which is stored in the output parameter bks !, consists of

all the books related to the person p?. The set of books related to p? is obtained

by taking the relational image of the inversion of borrowed for the singleton set

consisting of p?, that is, each book x for which an association x 7! p? is in borrowed

is included in the set bks !. Again, it is not the notation that is important here,

but the fact that the speci�cation de�nes all top-level user interactions.

4.3.3 Abstract systems and events

User actions may require complex interactions between the objects constituting

the object model of a system. Such interactions are often of an ad hoc character

in the sense that they embody one of the many possible ways in which the

functionality of objects may be used. What we need is a methodology or paradigm

that allows us to express these interactions in a concise yet pragmatically amenable

way. In Henderson (1993), a notion of abstract systems is introduced that seems

to meet our needs to a large extent. See slide 4-25.

Abstract systems { design methodology

� abstract system = abstract data types + protocol

Events { high level glue

� realization of the interaction protocol

4-25

Slide 4-25: Abstract systems and events
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Abstract systems extend the notion of abstract data types to capture the

(possible) interactions between collections of objects. The idea underlying the

notion of an abstract system is to collect the commands available for the client or

user of the system. The collection of commands comprising an abstract system

are usually a (strict) subset of the commands available in the combined interface

of the abstract data types involved. In other words, an abstract system provides

a restricted interface, restricted to safeguard the user from breaking the protocol

of interaction implicitly de�ned by the collection of abstract data types of which

the system consists.

An abstract system in itself merely provides a guideline on how a collection of

objects is to be used, but does not o�er a formal means to check whether a user

plays by the rules. After presenting an example of an abstract system, we will

look at how events may be used to protect the user against breaking the (implicit)

laws governing the interaction.

Example { the library The abstract system comprising a library may be

characterized as in slide 4-26. In essence, it provides an exemplary interface,

that is, it lists the statements that are typically used by a client of the library

software. We use typical identi�ers to denote objects of the various types involved.

Abstract system { exemplary interface library

p = new person();

b = new book();

p = b->borrower;

s = p->books;

tf = b->inlibrary();

b->borrow(p);

p->allocate(b);

p->deallocate(b);

b-> return(p);

For person* p; book* b; set<book>* s; bool tf;

4-26

Slide 4-26: The library system

The commands available to the user of the library software are constructors for

a person and a book, an instruction to get access to the borrower of a particular

book, an instruction to ask what books a particular person has borrowed, an

instruction to query whether a particular book is in the library, and instructions

for a person to borrow or return a book.

To realize the abstract system library, we evidently need the classes book and

person. The class book may be de�ned as follows.

class book f book

public:
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person* borrower;

book() fg

void borrow( person* p ) f borrower = p; g

void return( person* p ) f borrower = 0; g

bool inlibrary() f return !borrower; g

g;

It consists of a constructor, functions to borrow and return a book, a function

to test whether the book is in the library and an instance variable containing the

borrower of the book. Naturally, the class book may be improved with respect to

encapsulation (by providing a method to access the borrower) and may further

be extended to store additional information, such as the title and publisher of the

book.

class person f person

public:

person() f books = new set<book>(); g

void allocate( book* b ) f books->insert(b); g

void deallocate( book* b ) f books->remove(b); g

set<book>* books;

g;

The next class involved in the library system is the class person, given above.

The class person o�ers a constructor, an instance variable to store the set of books

borrowed by the person and the functions allocate and deallocate to respectively

insert and remove the books from the person's collection. A typical example of

using the library system is given below.

book* Stroustrup = new book(); example

book* ChandyMisra = new book();

book* Smalltalk80 = new book();

person* Hans = new person();

person* Cees = new person();

Stroustrup->borrow(Hans);

Hans->allocate(Stroustrup);

ChandyMisra->borrow(Cees);

Cees->allocate(ChandyMisra);

Smalltalk80->borrow(Cees);

Cees->allocate(Smalltalk80);

First, a number of books are de�ned, then a number of persons, and �nally (some

of) the books that are borrowed by (some of) the persons.

Note that lending a book involves both the invocation of book :: borrow and

person :: allocate. This could easily be simpli�ed by extending the function

book :: borrow and book :: return with the statements p ! allocate(this) and

p ! deallocate(this) respectively. However, I would rather take the opportunity
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to illustrate the use of events, providing a generic solution to the interaction

problem noted.

Events Henderson (1993) introduces events as a means by which to control the

complexity of relating a user interface to the functionality provided by the classes

comprising the library system. The idea underlying the use of events is that

for every kind of interaction with the user a speci�c event class is de�ned that

captures the details of the interaction between the user and the various object

classes. Abstractly, we may de�ne an event as an entity with only two signi�cant

moments in its life-span, the moment of its creation (and initialization) and the

moment of its activation (that is when it actually happens). As a class we may

de�ne an event as follows.

class Event f Event

public:

virtual void operator()() = 0;

g;

The class Event is an abstract class, since the application operator that may

be used to activate the event is de�ned as zero.

class Borrow : public Event f Borrow

public:

Borrow( person* p, book* b ) f b = b; p = p; g

void operator()() f

require( b && p ); b and p exist

b->borrow(p);

p->allocate(b);

g

private:

person* p; book* b;

g;

For the library system de�ned above we may conceive of two actual events

(that is, possible re�nements of the Event class), namely a Borrow event and a

Return event.

The Borrow event class provides a controlled way in which to e�ect the

borrowing of a book. In a similar way, a Return event class may be de�ned.

class Return : public Event f Return

public:

Return( person* p, book* b ) f b = b; p = p; g

void operator()() f

require( b && p );

b-> return(p);

p->deallocate(b);

g
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private:

person* p; book* b;

g;

The operation Has speci�ed in the previous section has an immediate coun-

terpart in the person :: books data member and need not be implemented by a

separate event.

Events are primarily used as intermediate between the user (interface) and the

objects comprising the library system. For the application at hand, using events

may seem to be somewhat of an overkill. However, events not only give a precise

characterization of the interactions involved but, equally importantly, allow for

extending the repertoire of interactions without disrupting the structure of the

application simply by introducing additional event types.

Summary

This chapter looked at application development. We started with a simple exam-

ple and subsequently discussed guidelines for class design. We then looked at a

more formal approach, involving the transition from a formal speci�cation to the

actual implementation based on a notion of abstract systems and events.

The drawtool application 1

� drawing canvas { in hush

� drawtool { compound widgets

4-27

Slide 4-27: Section 4.1: The drawtool application

In section 1 we looked at how to develop applications in hush, as a typical

example of inplementing an interactive editor.

Guidelines for design 2

� individual class design

� establishing invariants

� an objective sense of style

4-28

Slide 4-28: Section 4.2: Guidelines for design

In section 2, some guidelines for design were presented. We looked at issues

that may arise when attempting to establish class invariants. Finally, we discussed

the rules imposed by the Demeter method.
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From speci�cation to implementation 3

� structure versus behavior

� model-based speci�cation

� abstract systems

4-29

Slide 4-29: Section 4.3: From speci�cation to implementation

In section 3, we discussed the distinction between structural and behavioral

aspects of a system. We looked at the application of formal methods to specify the

requirements for a system, and we studied an implementation based on abstract

systems and events which was derived from the original formal speci�cation.

Questions

1. Give an example of your choice to describe OO application development.

2. Discuss possible guidelines for individual class design.

3. Discuss how inheritance may a�ect class invariants.

4. What would be your rendering of the Law of Demeter? Can you phrase its

underlying intuition? Explain.

5. De�ne the notions of client, supplier and acquaintance. What restrictions

must be satis�ed to speak of a preferred acquaintance and a preferred

supplier?

6. Characterize the di�erences between semantic modeling and object-oriented

modeling.

7. How would you characterize the notion of abstract systems?

8. Explain how events may be employed to maintain system integrity. Give an

example!

Further reading

The original paper on hush is Eli�ens (1995). A veritable catalogue of object-

oriented applications can be found in Harmon and Taylor (1993). A classical

paper on class design is Johnson and Foote (1988). For the Law of Demeter,

consult Lieberherr and Holland (1989). The notion of abstract systems was

introduced in Henderson (1993), which also gives a good account of a formal

approach to object-oriented design. For an introduction to formal methods and

Z, consult Diller (1994). For object-oriented extensions of Z, see Stepney et al.

(1992).
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When developing an object-oriented system, at some time a choice has to be made

for an actual programming language or environment. It goes without saying

that the optimal environment will be one that is in accord with the method

chosen for design. Naturally, other desiderata (involving e�ciency, portability or

client-imposed constraints) may play an equally signi�cant role.

Object-oriented programming languages 5

� the object paradigm

� language design dimensions

� classless prototypes

� meta-level architectures

Additional keywords and phrases: programming languages, orthogonality,

reliability, complexity, types, delegation, multiple paradigms, prototypes,

re
ection

5-1

Slide 5-1: Object-oriented programming languages

This chapter will present an overview of the numerous languages that exist for

object-oriented development. A comparison of Smalltalk, Ei�el, C

++

and Java

141
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will be given, and we will look at the considerations underlying the design of the

various object-oriented (extensions of) programming languages. Also, some possi-

ble modi�cations and alternatives to the traditional class-based object model will

be discussed, including active objects, prototypes and meta-level architectures.

5.1 The object paradigm

The object paradigm is embodied in numerous programming languages. Saun-

ders (1989) presents a survey of 88 object-oriented languages, of which 69 are

standalone and 19 incorporated into either multi-paradigm or database systems.

(A multi-paradigm system, in this context, means a system embedding an envi-

ronment for window programming or knowledge-based reasoning.)

In this section, we will �rst look at the classi�cation of object-oriented lan-

guages (as given in Saunders, 1989). Most of the languages mentioned are based

on a distinction between classes and objects. However, alternative object models

(without classes) are also being employed. Finally, we will review a number of

object extensions of the languages Lisp, C and Prolog.

On the notion of object Before our comparative study of object-oriented

programming languages, we may well re
ect on some issues of language design

(speci�cally the motivations underlying the development of a programming lan-

guage) and in particular on the notion of object underlying our conception of

object oriented programming languages.

Language design is an intricate issue. The motivation to develop a program-

ming language may come from the desire for experimentation (as it has been

for the author, Eli�ens (1992)), from governmental policy (in the case of Ada),

corporate policy (as for PL-1), the wish to improve programming habits (which

lies at the basis of Pascal and Modula, Wirth (1983)), the wish to provide more

adequate programming constructs (as, for instance, C

++

was originally meant to

be a better C), the e�cient implementation of a theoretically interesting model

of computing (as has been the case for Prolog), or circumstantial forces (of which

Java may be considered an example).

Whatever motivation lies behind the development of a programming language,

every language is meant to serve some purpose. Whether implicitly or explicitly

stated, a programming language is characterized by its design goals and the

applications it is intended to support. A fortiori this holds for object-oriented

programming languages.

The impetus to research in object-oriented programming may be traced back

to the development of Simula, which was originally intended for discrete event

simulation. As observed in Taivalsaari (1993), Simula has since served as a

valuable source of ideas in several research areas in computer science. See slide

5-2.

These areas include abstract data types (that play a prominent role in soft-

ware engineering, Parnas (1972b); Liskov and Zilles (1974)), frames in arti�cial

intelligence (which have become an invaluable mechanism for knowledge repre-
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The notion of object { Simula

� abstract data types { software engineering

� frames { arti�cial intelligence

� semantic data models { database system development

� capability-based computing { distributed systems

5-2

Slide 5-2: The heritage of Simula

sentation, Fikes and Kehler (1985) and Minsky (1975)), semantic data models

(which are widely used to develop information systems, Hammer and McLeod

(1978)), and capability-based computing (that plays a prominent role in distributed

computer systems, Levy (1984)).

The research e�orts in these areas in their turn have had a strong impact

on our conception of object-oriented computing. With regard to object-oriented

programming we may di�erentiate between three (partially distinct) viewpoints

from which to characterize the notion of an object.

object-oriented

structurally

� capability of representing arbitrarily structured complex objects

operationally

� the ability to operate on complex objects through generic operators

behaviorally

� the speci�cation of types and operations (data abstraction)

5-3

Slide 5-3: Perspectives of object orientation

From a structural viewpoint, object-oriented means the capability of represent-

ing arbitrarily complex objects. This viewpoint is of importance for implementing

object-oriented languages and the development of adequate runtime models of

object-oriented computing. From this perspective, an object is (in the end) a

structure in memory.

From an operational viewpoint, object-oriented means the ability to operate

on complex objects through generic operators. This viewpoint is closely related

to the notion of semantic data models, and is of particular importance for con-

ceptual modeling. From this perspective, an object represents (an element of) a

conceptual model.

From a behavioral viewpoint, object-oriented means the support to specify ab-

stract polymorphic types with associated operations. This viewpoint is primarily



144 Object­oriented programming languages

of importance for software engineering and the development of formal methods of

speci�cation and veri�cation. From this perspective an object is like a module,

to be used for data abstraction.

From the inception of Simula, there has been a close relation between object-

orientation and modeling, that is a tendency to regard a program as a physical

model simulating the behavior of either a real or imaginary part of the world,

see Knudsen and Madsen (1988). However, as observed in Taivalsaari (1993),

there seems to be a division between the European interpretation of object ori-

entation (which remains close to the original notion of conceptual modeling) and

the American interpretation (which is of a more pragmatic nature as it stresses

the importance of data abstraction and the reusability of program components).

5.1.1 A classification of object­oriented languages

To be characterized as object-oriented, a language must minimally support an

object creation facility and amessage-passing facility (message-passing in the sense

of method invocation). In addition, many languages provide a mechanism to

de�ne classes together with some form of inheritance. See slide 5-4.

Objects { language characteristics

� object creation facility

� message-passing capability

� class capability

� inheritance features

Classi�cation

� hybrid { C, Lisp, Pascal, Prolog

� frame-based { knowledge-based reasoning

� distributed, concurrent, actor { parallel computing

� alternative object models { prototypes, delegation

5-4

Slide 5-4: A classi�cation of languages

Actually, as we will see in section 5.3, one may have a lively debate on the

proper design dimensions of object-oriented programming languages. An impor-

tant issue in this respect is what makes a language object-oriented as opposed to

object-based. Other issues in this debate are whether an object-oriented language

must support classes (in addition to a mechanism to create objects) and whether

(static) inheritance should be preferred above (dynamic) delegation. This debate

is re
ected in a number of research e�orts investigating alternative object models

and object communication mechanisms. See section 5.4.

Of the 69 (standalone) object-oriented languages surveyed, 53 were research

projects and only 16 were commercial products. Of these, 14 were extensions of
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either Lisp (10) or C (4). Among the remaining languages, quite a number were

derived from languages such as Pascal, Ada or Prolog.

There is a great diversity between the di�erent object-oriented languages.

However, following Saunders (1989), they may be divided among subcategories

re
ecting their origin or the area of application for which they were developed (as

shown above).

Hybrid languages These, having originated out of (an object-oriented extension

of) an already existing language, are likely to be applied in a similar area to

their ancestor. In practice, this category of languages (which includes C

++

and

CLOS) seems to be quite important, partly because their implementation support

is as good as the implementation support for their base languages and, more

importantly, they allow potential software developers a smooth transition from a

non object-oriented to an object-oriented approach.

Frame-based languages in contrast to the previous category, these were ex-

plicitly developed to deal with one particular application area, knowledge-based

reasoning. A frame is a structure consisting of slots that may either indicate a

relation to other frames or contain the value of an attribute of the frame. In fact,

the early frame-based languages such as FRL, Bundy (1986), and KRL, Bobrow

and Winograd (1977), may be considered as object-oriented avant la lettre, that is

before object orientation gained its popularity. Later frame-based systems, such

as KEE, Kunz et al. (1984), and LOOPS, Ste�k and Bobrow (1986), incorporated

explicitly object-oriented notions such as classes and (multiple) inheritance.

Concurrent, distributed and actor languages To promote the use of parallel

processing architectures a number of parallel object-oriented languages have been

developed, among which are the language Hybrid (which supports active objects

with their own thread of control, Nierstrasz (1987)), Concurrent Smalltalk (a

concurrent extension of Smalltalk), Orient-K (a language for parallel knowledge

processing) and POOL-T (which may be characterized as a simpli�ed version of

Ada), see Yonezawa and Tokoro (1987). More recently sC

++

, an extension of

C

++

with synchronous active objects has been proposed in PetitPierre (1998). A

realisation of the same concept in Java has also been proposed, albeit without

compiler support, in PetitPierre (1999).

POOL-T also supports the notion of active objects. Active objects have a

body which allows them to execute their own activity in parallel with other

active objects. To answer a request to execute a method, an active object must

explicitly interrupt its activity (by means of an answer or accept statement as in

Ada). POOL-T is interesting, primarily, because it is complemented by extensive

theoretical research into the semantical foundations of parallel object-oriented

computing. See de Bakker et al. (1990) and also section 10.3.

The idea of simultaneously active objects leads in a natural way to the notion of

distributed object-oriented languages that support objects which may be located

on geographically distinct processors and which communicate by means of (actual)

message passing. Examples of such languages are Distributed Smalltalk (a dis-
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tributed extension of Smalltalk that introduces so-called proxy objects to deal with

communication between objects residing on di�erent processors, Bennett (1987))

and Emerald (that supports primitives to migrate objects across a processor

network, Black and Hutchinson (1986)).

All parallel/distributed object-oriented languages introduced thus far are based

on a traditional object model insofar as an object retains its identity during its

lifetime. In contrast, the so-called actor languages support a notion of object

whereby the parallel activity of an object is enabled by self-replacement of the

object in response to a message. Self-replacement proceeds as follows. Each

actor object has a mail-queue. When a message arrives for the actor object, the

object invokes the appropriate method and subsequently creates a successor object

(which basically is a copy of itself with some modi�cations that may depend upon

the contents of the message). Message handling occurs asynchronously. This

scheme of asynchronous message passing enables an actor system to execute in

parallel, since during the execution of a method the replacement object may

proceed to handle other incoming messages.

In actor systems, object identity is replaced by what may be called mail-

queue or address identity. From a theoretical viewpoint this allows us to treat

actor objects as functions (in a mathematical sense) that deliver an e�ect and

another object in response to a message. However, pragmatically this leads to

a complicated and quite low-level object model which is hard to implement in a

truly parallel way.

5.1.2 Alternative object models

Since the introduction of Smalltalk, the predominant notion of objects has been

based on the distinction between classes and objects. Classes serve to describe

the functionality and behavior of objects, while objects are instance of classes. In

other words, classes serve as templates to create objects. Inheritance, then, may

be regarded as a means by which to share (descriptions of) object behavior. It is

generally de�ned on classes in terms of a derivation mechanism, that allows one

to declare a class to be a subclass of another (super) class.

The distinction between classes and objects leads to a number of di�culties,

both of a pragmatic and theoretical nature. (See also sections 5.3 and 5.5 for a dis-

cussion of the theoretical problems.) For example, the existence of one-of-a-kind

classes, that is classes which have only one instance, is often considered unnatural.

An example of a class-less language is the language Self. Self has a Smalltalk-like

syntax, but in contrast to Smalltalk only supports objects (containing slots) and

messages, and hence no classes. Slots may be designated to be parent-slots which

means that messages that cannot be handled by the object itself are delegated to

the parent object. In contrast to inheritance, which is static since the inherited

functionality is computed at object creation time, delegation to parent objects as

in Self is dynamic, since parent slots may be changed during the lifetime of an

object.

Objects in Self may themselves be used to create other objects (as copies of

the original object) in a similar way as classes may be used to create instances.
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However, the changes made to an object are propagated when cloning object

copies. Single objects, from which copies are taken, may in other words be

regarded as prototypes, approximating in a dynamic way the functionality of their

o�spring, whereas classes provide a more static, so to speak universal, description

of their object instances. Self employs runtime compilation, which is claimed to

result in an e�ciency comparable to C in Ungar and Smith (1987). In section 5.4

we will discuss the use of prototypes and the distinction between inheritance and

delegation.

Alternative object models may also be encountered in object-oriented database

managements systems and in systems embedding objects such as hypertext or

hypermedia systems.

5.1.3 Object extensions of Lisp, C and Prolog

The notion of object is to a certain extent orthogonal to, that is independent of,

language constructs around which programming languages may be constructed,

such as expressions, functions and procedures. Hence, it should come as no

surprise that a number of (popular) object-oriented programming languages were

originally developed as extensions of existing languages or language implementa-

tions. See slide 5-5.

Object extensions

� Lisp { LOOPS, FLAVORS, CLOS, FOOPS

� C { Objective C, C++

� Prolog { SPOOL, VULCAN, DLP

Commercial products { languages

� Smalltalk, Ei�el, C++, Objective C, Object Pascal, Java

5-5

Slide 5-5: Object-oriented languages

The advantage of extending an existing language with object-oriented con-

structs, from the point of view of the user, is that the object-oriented approach can

be gradually learned. However, at the same time this may be a disadvantage, since

a hybrid approach to software development may give rise to sloppy design. Many

proponents of an object-oriented approach, therefore, believe that learning to use

object-oriented constructs is best done in an environment as o�ered by Smalltalk,

where classes and objects are the sole means of developing an application.

It is noteworthy that, with the exception of Smalltalk, Ei�el and Java, many

commercially available languages are actually extensions of existing languages

such as Lisp, C and (to some extent) Prolog.

Lisp-based extensions In Saunders (1989), ten Lisp-based object-oriented lan-

guages are mentioned, among which are LOOPS (introducing a variety of object-
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oriented constructs, see Ste�k and Bobrow (1986)), Flavors (which extends Lisp

by adding generic functions that operate on objects, see Moon (1986)), and CLOS

(which is actually a standardization e�ort of the ANSI X3J13 group to de�ne the

Common Lisp Object Standard). CLOS is a widely used system containing some

non-trivial extensions to the object model and the way in which polymorphic

methods may be de�ned.

C-based extensions Another very important class of object extensions is those

of C-based object-oriented languages, of which the most well-known are Objective-

C and C

++

.

The concepts underlying these two extensions are radically di�erent. Objective-

C introduces objects as an add-on to the constructs (including structs) available

in C, whereas C

++

realizes a close (and e�cient) coupling between the struct

(record) notion of C and the concept of a class.

In other words, in Objective-C there is a clear distinction between conventional

C values and data types such as int, 
oat and struct on the one hand, and objects

on the other hand. Objects have a special data type (id) which allows them to

be treated as �rst class elements. To de�ne an object class, both an interface and

implementation description must be given. These descriptions are preceded by

a special sign to designate Objective-C speci�c code. Also, method declarations

(in the interface description) and method de�nitions (which are to be put in the

implementation section) must be preceded by a special sign to designate them as

methods available for clients of object instances of that class.

The object model of Objective-C is similar to the object model of Smalltalk. In

contrast, C

++

quite radically departs from this object model in order to achieve

an as e�cient as possible implementation of objects. The key to an e�cient

implementation lies in the integration of the struct (record) construct originally

provided by C with the class concept, by allowing functions to be members of a

struct.

As explained in Stroustrup (1991), the equivalences depicted in slide 5-6 hold.

Object structure { e�cient mapping C++

struct A f ... g == class A f public: ... g

class A f ... g == struct A f private: ... g

5-6

Slide 5-6: The equivalence between class and struct

This interpretation allows an e�cient mapping of object structures to the

memory of a computer, provided that the compiler is clever enough.

Nevertheless, the e�ciency of C

++

comes at a price. C

++

does support micro-

e�ciency but does not necessarily lead to the design of e�cient code. In particular,

hand-crafted memory management will not necessarily o�er the most e�cient
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solution when compared with built-in support, but is almost certainly detrimental

to the quality of the code.

Prolog-based extensions A quite di�erent class of object-oriented extensions,

used primarily in research laboratories, consists of attempts to incorporate object-

oriented features in (high-level) logic-based languages, such as Prolog. Among

these are languages such as SPOOL (developed in the context of the Japanese

�fth-generation computing project, see Fukanaga (1986)), Vulcan (that provides

a preprocessor giving syntactic support for embedding objects in concurrent logic

programming languages, see Kahn et al. (1986)) and DLP (a language combining

logic programming with object-oriented features and parallelism developed by

the author, see appendix E). The list of research articles covering the subject of

combining logic programming and object-oriented programming is quite extensive.

An overview and discussion of the various approaches is given in Davison (1993)

and also in Eli�ens (1992).

5.1.4 Script languages – integration with Java

Scripting has become a popular way to create applications, in particular GUI-

based applications and Web applications. Tcl/Tk and Python are extensively

used for GUI-based applications. For Web applications, scripting may be used at

the client-side, for example to customize HTML pages using Javascript, or at the

server-side, for writing CGI-scripts in (for example) Perl.

Script languages Java embedding

� Javascript { Dynamic HTML

� Perl { CGI/Web library JPL

� Tcl/Tk { tclets Jacl, Tcl Blend

� Python { Grail JPython

5-7

Slide 5-7: Script languages

Most of the scripting languages, including Tcl/Tk, Perl and Python, have

an extensive library for creating (server-side) Web applications. For Tcl/Tk,

there exists a Netscape plugin which allows for the inclusion of so-called tclets

(pronounce ticklets), applets written in Tcl/Tk, in a HTML Web page.

Scripting has clear advantages for rapid prototyping. Disadvantages of script-

ing concern the lack of e�ciency, and the absence of compile-time checks.

Script languages may be extended using C/C

++

, and more recently Java.

The impact of Java becomes evident when considering that there exists a Java

implementation for almost each scripting language, including Tcl/Tk, Perl and

Python. JPython, which is the realization of Python in Java, even o�ers the

possibility to integrate Python classes with Java classes, and is announced as a

candidate scripting platform for Java in van Rossum (1998).



150 Object­oriented programming languages

Java has also in other respects stimulated programming language research,

since it appears to be an ideal platform for realising higher level programming

languages.

Objects in Javascript

Originally, objects were not part of the languages Tcl/Tk and Perl. For these

languages, objects have been added in an ad hoc fashion. In contrast, Python has

been developed as an object-oriented language from its inception.

Javascript is a somewhat special case, since it allows for the use of built-in

objects, in particular the objects de�ned by the Document Object Model (DOM),

and its precursors. Nevertheless, due to its dynamic nature, Javascript also allows

for creating user-de�ned objects, as indicated in the example below.

<script language=Javascript> javascript

function object display(msg) f object method

return msg + ' (' + this.variable++ + ')';

g

function object() f object constructor

this.variable=0;

this.display = object display;

return this;

g

var a = new object(); create object

document.write(a.display("a message"));

document.write(a.display("another message"));

</script>

The trick is to de�ne a function that allocates the storage for instance vari-

ables, which may include references to functions. Using the keyword new, a new

structure is created that may be used as an object.

Which objects are available as built-in objects depends on the environment in

which Javascript programs are executed. In the example, there is an invocation

of the write method for a document object. The document object, as well as other

objects corresponding to the browser environment and the contents of the page

loaded, are part of the Document Object Model, which is discussed in more detail

in section 12.2.1.

As an aside, Javascript has become surprisingly popular for writing dynamic

HTML pages, as well as for writing server-side scripts. It is also supported

by many VRML (Virtual Reality Modeling Language) browsers to de�ne script

nodes. See section 11.4.2. A reference implementation of Javascript is available,

for embedding Javascript in C/C

++

applications.
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5.2 Comparing Smalltalk, Eiffel, C++ and Java

The languages Smalltalk, Ei�el, C

++

and Java may be regarded as the four most

important (and popular) representatives of classical object-oriented languages,

classical in the sense of being based on a class/object distinction.

Criteria for comparison

� class libraries

� programming environment

� language characteristics

5-8

Slide 5-8: Criteria for comparison

In this section we will compare these languages with respect to what may be

called their intrinsic language characteristics. Before that, however, we will indi-

cate some other (more external) criteria for comparison such as the availability of

class libraries and the existence of a programming environment. See slide 5-8. Our

discussion is based on (but in some respects disagrees with and extends) Blaschek

et al. (1989).

5.2.1 Criteria for comparison

When choosing a particular programming language as a vehicle for program

development a number of factors play a role, among which are the availability of

a class library, the existence of a good programming environment, and, naturally,

the characteristics of the language itself.

Class libraries An important criterion when selecting a language may be the

availability of su�cient class library support. A general class library, and prefer-

ably libraries suitable for the application domain one is working in, may drastically

reduce development time. Another important bene�t of using (well-tested) class

libraries is an improvement of the reliability of the application.

Smalltalk (that is Smalltalk-80 of ParcPlace Systems) comes with a large

collection of general purpose and graphics programming classes, that are identical

for both MS-DOS and Unix platforms. Also Ei�el comes with a standard collec-

tion of well-documented libraries containing common data structures, container

classes and classes for graphics programming. For both Smalltalk and Ei�el,

the accompanying classes may almost be considered to be part of the language

de�nition, in the sense that they provide a standard means to solve particular

problems.

In contrast, for C

++

there is almost no standard library support (except

for IO stream classes). Even worse, the various C

++

compiler vendors disagree

considerably in what functionality the standard class libraries of C

++

must o�er.

Fortunately, however, there is an increasingly large number of third party libraries
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(commercially and non-commercially) available. The burden of choosing the

appropriate libraries is, however, placed on the shoulders of a user or a company,

which has the advantage that a more optimal solution may be obtained than

possible within the con�nes of standard libraries.

Java, on the other hand, o�ers an overwhelming amount of APIs, including

a Re
ection API, for meta programming, APIs for networking, communication,

and APIs for multimedia and 3D. Perhaps the greatest bene�t of Java is the e�ort

put into the standardization of these APIs.

Programming environments Another selection criterion in choosing a lan-

guage is the existence of a good programming environment. What constitutes a

good programming environment is not as simple as it may seem, since that depends

to a large extent upon the experience and preferences of the user. For example,

with respect to operating systems, many novice users favor a graphical interface

as originally o�ered by the Apple Macintosh computers, while experienced users

often feel constrained by the limitations imposed by such systems. In contrast,

experienced users may delight in the terseness and 
exibility of the command-

based Unix operating system, which leads to outright bewilderment with many

novice users.

Of the object-oriented programming languages we consider, Smalltalk de�-

nitely o�ers the most comprehensive programming environment (including edi-

tors, browsers and debuggers). Ei�el comes with a number of additional tools

(such as a graphical browser, and a program documentation tool) to support

program development (and maintenance).

In contrast, C

++

usually comes with nothing at all. However, increasingly

many tools (including browsers and debuggers) have become available.

For Java there are a number of IDEs (Integrated Development Environments)

available, most of which run only on the PC platform.

Language characteristics Despite the commonality between Smalltalk, Ei�el,

C

++

and Java (which may be characterized by saying that they all support data

abstraction, inheritance, polymorphism and dynamic binding), these languages

widely disagree on a number of other properties, such as those listed in slide 5-9.

These characteristics were used in Blaschek et al. (1989) to compare Smalltalk,

Ei�el and C

++

with the language Oberon, which o�ers what may be called a

minimal (typed) object-oriented language. We will, however, limit our discussion

here to Smalltalk, Ei�el, C

++

, and, additionally, Java.

5.2.2 Language characteristics

Smalltalk, Ei�el, C

++

and Java di�er with respect to a number of language

characteristics. An indication of the di�erences between these languages is given

slide 5-10.

This characterization conforms to the one given in Blaschek et al. (1989),

with which I think the majority of the object-oriented community will agree. It

is further motivated below. However, the places indicated by an asterisk deserve
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Language characteristics

� uniformity of data structures

� documentation value

� reliability

� inheritance mechanisms

� e�ciency

� memory management

� language complexity

5-9

Slide 5-9: Language characteristics

Smalltalk Ei�el C

++

Java

uniformity high medium low medium

documentation medium high medium high

reliability medium medium low* high*

protection no no yes yes

inheritance no yes yes no*

e�ciency low medium high low

garbage yes yes no* yes

complexity low* medium high medium

5-10

Slide 5-10: Comparing Smalltalk, Ei�el, C++ and Java

some discussion. In particular, I wish to stress that I disagree with characterizing

the reliability of C

++

as low. (See below.)

Uniformity In Smalltalk, each data type is described by a class. This includes

booleans, integers, real numbers and control constructs. In Ei�el there is a

distinction between elementary data types (such as boolean, integer and real)

and (user-de�ned) classes. However (in the later versions of Ei�el) the built-in

elementary types behave as if declared by pre-declared classes. For C

++

, the

elementary data types and simple data structures (as may be de�ned in C) do

not behave as objects. To a certain extent, however, programmers may deal with

this non-uniformity by some work-around, for example by overloading functions

and operators or by embedding built-in types in a (wrapper) class. Java may

be regarded as a simpli�ed version of C

++

. Due to its restrictions, such as the

absence of operator overloading and type casts, the language appears to be more

uniform for the programmers.

Documentation value Smalltalk promotes a consistent style in writing pro-

grams, due to the assumption that everything is an object. One of perhaps the

most important features of Ei�el is the use of special keywords for constructs to
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specify the correctness of programs and the behavioral properties that determine

the external interface of objects. Moreover, Ei�el provides a tool to extract

a description of the interface of the method classes (including pre- and post-

conditions associated with a method) which may be used to document (a library

of) classes. To my taste, however, the Ei�el syntax leads to somewhat verbose

programs, at least in comparison with programs written in C

++

.

The issue of producing documentation from C

++

is still open. A number of

tools exist (including a WEB-like system for C

++

and a tool to produce manual

pages from C

++

header �les) but no standard has yet emerged. Moreover, some

people truly dislike the terseness of C/C

++

. Personally, I prefer the C/C

++

syntax

above the syntactical conventions of both Ei�el and Smalltalk, provided that it is

used in a disciplined fashion.

Java programs may be documented using javadoc. The javadoc program may

be regarded as the standard C

++

has been waiting for, in vain.

Reliability Smalltalk is a dynamically typed language. In other words, type

checking, other than detecting runtime errors, is completely absent. Ei�el is

generally regarded as a language possessing all characteristics needed for writing

reliable programs, such as static type checking and constructs for stating cor-

rectness assertions (which may be checked at runtime). Due to its heritage from

C, the language C

++

is still considered by many as unreliable. In contrast to

C, however, C

++

does provide full static type checking, including the signature

of functions and external object interfaces as arise in independent compilation

of module �les. Nevertheless, C

++

only weakly supports type checking across

module boundaries.

Contrary to common belief, Ei�el's type system is demonstrably inconsistent,

due to a feature that enables a user to dynamically de�ne the type of a newly

created object in a virtual way (see section 9.6). This does not necessarily lead

to type-insecure programs though, since the Ei�el compiler employs a special

algorithm to detect such cases.

The type system of C

++

, on the other hand, is consistent and conforms to the

notion of subtype as introduced informally in the previous part. Nevertheless,

C

++

allows the programmer to escape the rigor of the type system by employing

casts.

An important feature of Ei�el is that it supports assertions that may be

validated at runtime. In combinations with exceptions, this provides a powerful

feature for the development of reliable programs.

At the price of some additional coding (for example, to save the current state

to enable the use of the old value), such assertions may be expressed by using the

assert macros provided for C

++

.

In defense of C

++

, it is important to acknowledge that C

++

o�ers adequate

protection mechanisms to shield classes derived by inheritance from the imple-

mentation details of their ancestor classes. Neither Smalltalk nor Ei�el o�er such

protection.

Java was introduced as a more reliable variant of C

++

. Java's reliability

comes partly from the shielded environment o�ered by the Java virtual machine,
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and partly from the absence of pointers and the availability of built-in garbage

collection. Practical experience shows that for the average student/programmer

Java is indeed substantially less error-prone than C

++

.

Inheritance Smalltalk o�ers only single inheritance. In contrast, both Ei�el

and C

++

o�er multiple inheritance. For statically typed languages, compile-time

optimizations may be applied that result in only a low overhead. In principle,

multiple inheritance allows one to model particular aspects of the application

domain in a 
exible and natural way.

As far as the assertion mechanism o�ered by Ei�el is concerned, Meyer (1988)

gives clear guidelines prescribing how to use assertions in derived classes. However,

the Ei�el compiler o�ers no assistance in verifying whether these rules are followed.

The same guidelines apply to the use of assertions in C

++

, naturally lacking

compiler support as well.

The Java language o�ers only single (code) inheritance, but allows for multiple

interface inheritance. The realization of (multiple) interfaces seems to be a fairly

good substitute for multiple (implementation) inheritance.

E�ciency Smalltalk, being an interpreted language, is typically slower than

conventionally compiled languages. Nevertheless, as discussed in section 5.4.2,

interpreted object-based languages allow for signi�cant optimizations, for example

by employing runtime compilation techniques.

The compilation of Ei�el programs can result in programs having adequate

execution speed. However, in Ei�el dynamic binding takes place in principle for all

methods. Yet a clever compiler can signi�cantly reduce the number of indirections

needed to execute a method.

In contrast to C

++

, in Ei�el all objects are created on the heap. The garbage

collection needed to remove these objects may a�ect the execution speed of

programs.

C

++

has been designed with e�ciency in mind. For instance, the availability

of inline functions, and the possibility to allocate objects on the runtime stack

(instead of on the heap), and the possibility to declare friend functions and classes

that have direct access to the private instance variables of a class allow the

programmer to squeeze out the last drop of e�ciency. However, as a drawback,

when higher level functionality is needed (as in automatic garbage collection) it

must be explicitly programmed, and a similar price as when the functionality

would have been provided by the system has to be paid. The only di�erence is

that the programmer has a choice.

At the time of writing there does not exist a truly e�cient implementation of

the Java language. Signi�cant improvements may be expected from the JIT (Just

In Time) compilers that produce native code dynamically, employing techniques

as originally developed for the Self language, discussed in section 5.4.2.

Language complexity Smalltalk may be regarded as having a low language

complexity. Control is primarily e�ected by message passing, yet, many of the
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familiar conditional and iterative control constructs reappear in Smalltalk pro-

grams emulated by sending messages. This certainly has some elegance, but does

not necessarily lead to easily comprehensible programs.

Ei�el contains few language elements that extend beyond object-oriented pro-

gramming. In particular, Ei�el does not allow for overloading method names

(according to signature) within a class. This may lead to unnecessarily elaborate

method names. (The new version of Ei�el (Ei�el-3) does allow for overloading

method names.)

Without doubt, C

++

is generally regarded as a highly complex language. In

particular, the rules governing the overloading of operators and functions are quite

complicated. The confusion even extends to the various compiler suppliers, which

is one of the reasons why C

++

is still barely portable. Somewhat unfortunately,

the rules for overloading and type conversion for C

++

have to a large extent

been determined by the need to remain compatible with C. Even experienced

programmers need occasionally to experiment to �nd out what will happen.

According to Blaschek et al. (1989), C

++

is too large and contains too much

of the syntax and semantics inherited from C. However, the validity of their motto

small is beautiful is not as obvious as it seems. The motivations underlying the

introduction of the various features incorporated in C

++

are quite well explained

in Stroustrup (1997). The main problem, to my mind, in using C

++

(or any

of the object-oriented languages for that matter) lies in the area of design. We

still have insu�cient experience in using abstract data types to de�ne a complete

method and operator interface including its relation to other data types (that is

its behavior under the various operators and type conversions that apply to a

particular type). The problem is hence not only one of language design but of the

design of abstract data types.

Java is certainly less complex than C

++

. For example, it o�ers no templates,

no operator overloading and no type coercion operators. However, although Java

is apparently easier to use, it is far less elegant than C

++

when it comes to creating

user-de�ned types. Class interfaces in Java are usually much more verbose than

similar interfaces in C

++

. And, due to the absence of templates, type casts are

necessary in many places. On the other hand, casts in Java are type safe.

5.3 Design dimensions of object­oriented languages

Despites the widespread adoption of object-oriented terminology in the various

areas of computer science and software development practice, there is considerable

confusion about the precise meaning of the terms employed and the (true) nature

of object-oriented computing. In an attempt to resolve this confusion, Weg-

ner (1987) (in the landmark paper Dimensions of object-based language design)

introduces the distinction between object-based and object-oriented. See slide

5-11. This distinction comes down to, roughly, the distinction between languages

providing only encapsulation (object-based) or encapsulation plus inheritance

(object-oriented). See section 5.3.1. Another issue in the debate about object-

orientation is the relation between classes and types. Wegner (1987) concludes
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that the notions of objects, classes and inheritance (that constitute the classi-

cal object model) are highly interrelated, and instead proposes an orthogonal

approach by outlining the various dimensions along which to design an object-

oriented language. These dimensions may be characterized by the phrases: ob-

jects, types, delegation and abstraction.

Object-oriented language design

� object: state + operations

� class: template for object creation

� inheritance: super/base and subclasses

object-oriented =

objects + classes + inheritance

data abstraction { state accessible by operations

strong typing { compile time checking

5-11

Slide 5-11: Object-based versus object-oriented

In this section we will look at the arguments presented in Wegner (1987) in

somewhat more detail. Also, we will look at the viability of combining seemingly

disparate paradigms (such as the logic programming paradigm) with the object-

oriented language paradigm. In the sections that follow, we will discuss some

alternatives and extensions to the object model.

5.3.1 Object­based versus object­oriented

How would you characterize Ada83? See Barnes (1994). Is Ada object-oriented?

And Modula-2? See Wirth (1983). The answer is no and no. And Ada9X and

Modula-3? See Barnes (1994) and Cardelli et al. (1989). The answer is yes

and yes. In the past there has been some confusion as to when to characterize

a language as object-oriented. For example, Booch (1986) characterizes Ada

as object-oriented and motivates this by saying that Ada can be used as an

implementation language in an object-oriented approach to program development.

Clearly, Ada supports some notion of objects (which are de�ned as packages).

However, although Ada supports objects and generic descriptions of objects (by

generic packages), it does not support code sharing by inheritance. In a later

work, Booch (1991) revises his original (faulty) opinion, in response to Wegner

(1987), who proposed considering inheritance as an essential characteristic of

object orientation.

Similarly, despite the support that Modula-2 o�ers for de�ning (object-like)

abstract data types, consisting of an interface speci�cation and an implementa-

tion (which may be hidden), Modula-2 does not support the creation of derived

(sub)types that share the behavior of their base (super)type. See also section 8.3.
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Classes versus types Another confusion that frequently arises is due to the

ill-de�ned relationship between the notion of a class and the notion of a type.

The notion of types is already familiar from procedural programming languages

such as Pascal and (in an ill-famed way) from C. The type of variables and

functions may be pro�tably used to check for (syntactical) errors. Strong static

type checking may prevent errors ranging from simple typos to using unde�ned

(or wrongly de�ned) functions.

The notion of a class originally has a more operational meaning. Operationally,

a class is a template for object creation. In other words, a class is a description of

the collection of its instances, that is the objects that are created using the class

description as a recipe.

Related to this notion of a class, inheritance was originally de�ned as a

means to share (parts of) a description. Sharing by (inheritance) derivation is,

pragmatically, very convenient. It provides a more controlled way of code sharing

than, for example, the use of macros and �le inclusion (as were popular in the C

community).

Since Wegner (1987) published his original analysis of the dimensions of object-

oriented language design, the phrase object-oriented has been commonly under-

stood as involving objects, classes and inheritance. This is the traditional object

model as embodied by Smalltalk and, to a large extent, by Ei�el, C

++

and Java.

However, unlike Smalltalk, both Ei�el and C

++

have also been strongly in
uenced

by the abstract data type approach to programming. Consequently, in Ei�el and

C

++

classes have been identi�ed with types and derivation by inheritance with

subtyping.

Unfortunately, derivation by inheritance need not necessarily result in the cre-

ation of proper subtypes, that is classes whose instances conform to the behavior

speci�ed by their base class. In e�ect, derived classes may be only distantly related

to their base classes when inheritance is only used as a code sharing device. For

example, a window manager class may inherit from a list container class (an idiom

used in Meyer, 1988).

5.3.2 Towards an orthogonal approach – type extensions

According to Wegner (1987), much of the confusion around the various features

of object-oriented programming languages arises from the fact that these features

are largely interdependent, as for instance the notion of object and class on the

one hand, and the notion of class and inheritance on the other.

To resolve this confusion, Wegner (1987) proposes a more orthogonal approach

to characterize the various features of object-oriented languages, according to

dimensions that are to a large extent independent. See slide 5-12.

The features that constitute an object-oriented programming language in an

orthogonal way are, according to Wegner (1987): objects, types, delegation and

abstraction.
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Orthogonal approach

� objects { modular computing agents

� types { expression classi�cation

� delegation { resource sharing

� abstraction { interface speci�cation

5-12

Slide 5-12: Orthogonal dimensions

Objects are in essence modular computing agents. They correspond to the need

for encapsulation in design, that is the construction of modular units to which a

principle of locality applies (due to combining data and operations).

Object-oriented languages may, however, di�er in the degree to which they

support encapsulation. For example, in a distributed environment a high degree

of encapsulation must be o�ered, prohibiting attempts to alter global variables

(from within an object) or local instance variables (from without). Moreover, the

runtime object support system must allow for what may best be called remote

method invocation.

As far as parallel activity is concerned, only a few languages provide con-

structs to de�ne concurrently active objects. See section 5.3.4 for a more detailed

discussion.

Whether objects support reactiveness, that is su�cient 
exibility to respond

safely to a message, depends largely upon (program) design. Meyer (1988), for

instance, advocates a shopping list approach to designing the interface of an object,

to allow for a high degree of (temporal) independence between method calls.

Types may be understood as a mechanism for expression classi�cation. From

this perspective, Smalltalk may be regarded as having a dynamic typing system:

dynamic, in the sense that the inability to evaluate an expression will lead to a

runtime error. The existence of types obviates the need to have classes, since

a type may be considered as a more abstract description of the behavior of an

object. Furthermore, subclasses (as may be derived through inheritance) are more

safely de�ned as subtypes in a polymorphic type system. See section 9.3.

At the opposite side of the type dimension we �nd the statically typed lan-

guages, which allow us to determine the type of the designation of a variable at

compile-time. In that case, the runtime support system need not carry any type

information, except a dispatch table to locate virtual functions.

Delegation (in its most generic sense) is a mechanism for resource sharing. As

has been shown in Lieberman (1986), delegation subsumes inheritance, since the

resource sharing e�ected by inheritance may easily be mimicked by delegating

messages to the object's ancestors by means of an appropriate dispatching mech-

anism.
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In a narrower sense, delegation is usually understood as a more dynamic

mechanism that allows the redirection of control dynamically. In addition, lan-

guages supporting dynamic delegation (such as Self) do not sacri�ce dynamic

self-reference. This means that when the object executing a method refers to

itself, the actual context will be the delegating object. See section 5.4 for a more

detailed discussion.

In contrast, inheritance (as usually understood in the context of classes) is

a far more static mechanism. Inheritance may be understood as (statically)

copying the code from an ancestor class to the inheriting class (with perhaps

some modi�cations), whereas delegation is truly dynamic in that messages are

dispatched to objects that have a life-span independent of the dispatching object.

Abstraction (although to some extent related to types) is a mechanism that

may be independently applied to provide an interface speci�cation for an object.

For example, in the presence of active objects (that may execute in parallel) we

may need to be able to restrict dynamically the interface of an object as speci�ed

by its type in order to maintain the object in a consistent state. Also for purely

sequential objects we may impose a particular protocol of interaction (as may, for

example, be expressed by a contract) to be able to guarantee correct behavior.

Another important aspect of abstraction is protection. Object-oriented lan-

guages may provide (at least) two kinds of protection. First, a language may

have facilities to protect the object from illegal access by a client (from without).

This is e�ected by annotations such as private and protected. And secondly, a

language may have facilities to protect the object (as it were from within) from

illegal access through delegation (that is by instances of derived object classes).

Most languages support the �rst kind of protection. Only few languages, among

which are C

++

and Java, support the second kind too.

The independence of abstraction and typing may further be argued by pointing

out that languages supporting strong typing need not enforce the use of abstract

data types having a well-de�ned behavior.

5.3.3 Multi­paradigm languages – logic

Object-oriented programming has evolved as a new and strong paradigm of pro-

gramming. Has it? Of the languages mentioned, only Smalltalk has what may be

considered a radically new language design (and to some extent also the language

Self, that we will discuss in the next section). Most of the other languages,

including Ei�el, C

++

(and for that matter also CLOS and Oberon), may be

considered as object-oriented extensions of already existing languages or, to put

it more broadly, language paradigms. Most popular are, evidently, object-oriented

extensions based on procedural language paradigms, closely followed by the (Lisp-

based) extensions of the functional language paradigm. Less well-known are

extensions based on the logic programming paradigm, of which DLP is my favorite

example.

In Wegner (1992), it is argued that the logic programming paradigm does not

�t in with an object-oriented approach. I strongly disagree with this position.



Design dimensions of object­oriented languages 161

However, the arguments given in Wegner (1992) to defend it are worthwhile,

in that they make explicit what desiderata we may impose on object-oriented

languages.

Remaining within the con�nes of a classical object model, the basic ingredients

for an object-oriented extension of any language (paradigm) are: objects, classes

and inheritance. Although the exact meaning of these notions is open for discus-

sion, language designers seem to have no di�culty in applying these concepts to

extend (or design) a programming language.

Open systems

� reactive { 
exible (dynamic) choice of actions

� modular { (static) scalability

Dimensions of modularity

� encapsulation boundary { interface to client

� distribution boundary { visibility from within objects

� concurrency boundary { threads per object, synchronization

5-13

Slide 5-13: Dimensions of modularity

According to Wegner (1992), the principal argument against combining logic

programming and object-oriented programming is that such a combination does

not support the development of open systems without compromising the logical

nature of logic programming. Openness may be considered as one of the prime

goals of object orientation. See slide 5-13.

A software system is said to be open if its behavior can be easily modi�ed

and extended. Wegner (1992) distinguishes between two mechanisms to achieve

openness; dynamically through reactiveness, and statically through modularity.

Reactiveness allows a program to choose dynamically between potential ac-

tions. For sequential object-oriented languages, late binding (that is, the dispatch-

ing mechanism underlying virtual function calls) is one of the mechanisms used to

e�ect the dynamic selection of alternatives. Concurrent object-oriented languages

usually o�er an additional construct, in the form of a guard or accept statement,

to determine dynamically which method call to answer. In both cases, the answer

depends upon the nature of the object and (especially in the latter case) the state

of the object (and its willingness to answer).

Openness through modularity means that a system can safely be extended by

adding (statically) new components. The issue of openness in the latter sense

is immediately related to the notion of scalability, that is the degree to which

a particular component can be safely embedded in a larger environment and

extended to include new functionality. At �rst sight, classes and inheritance

strongly contribute to achieving such (static) openness. However, there is more

to modularity than the encapsulation provided by classes only.
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From a modeling perspective, encapsulation (as provided by objects and classes)

is the basic mechanism to de�ne the elements or entities of a model. The declar-

ative nature of an object-oriented approach resides exactly in the opportunity to

de�ne such entities and their relations through inheritance. However, encapsu-

lation (as typically understood in the context of a classical object model) only

provides protection from illegal access from without. As such, it is a one-sided

boundary.

The other side, the extent to which the outside world is visible for the ob-

ject (from within), may be called the distribution boundary. Many languages,

including Smalltalk and C

++

, violate the distribution boundary by allowing the

use of (class-wide) global variables. (See also section 5.5.) Evidently, this may

lead to problems when objects reside on distinct processors, as may be the case

in distributed systems.

Typically, the message passing metaphor (commonly used to characterize

the interaction between objects) contains the suggestion that objects may be

physically distributed (across a network of processors). Also (because of the

notion of encapsulation), objects are often regarded as autonomous entities, that

in principle may have independent activity. However, most of the languages

mentioned do not (immediately) ful�ll the additional requirements needed for

actual physical distribution or parallel (multi-threaded) activity.

Object-oriented logic programming Logic programming is often character-

ized as relational programming, since it allows the exhaustive exploration of a

search space de�ned by logical relations (for instance, by backtracking as in

Prolog). The advantage of logic programming, from a modeling point of view,

is that it allows us to specify in a logical manner (that is by logical clauses) the

relations between the entities of a particular domain.

A number of e�orts to combine logic programming with object-oriented fea-

tures have been undertaken, among which is the development of the language

Vulcan. Vulcan is based on the Concurrent Prolog language and relies on a way

of implementing objects as perpetual processes. Without going into detail, the

idea (originally proposed in Shapiro and Takeuchi, 1983) is that an object may be

implemented as a process de�ned by one or more (recursive) clauses. An object

may accept messages in the form of a predicate call. The state of an object is

maintained by parameters of the predicate, which are (possibly modi�ed by the

method call) passed to the recursive invocation of one of the clauses de�ning the

object.

To communicate, an object (de�ned as a process) waits until a client asks for

the execution of a method. The clauses de�ning the object are then evaluated

to check which one is appropriate for that particular method call. If there are

multiple candidate clauses, one is selected and evaluated. The other candidate

clauses are discarded. Since the clauses de�ning an object are recursive, after the

evaluation of a method the object is ready to accept another message.

The model of (object) interaction supported by Concurrent Prolog requires

�ne-grained concurrency, which is possible due to the side-e�ect free nature of

logical clauses. However, to restrict the number of processes created during the
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evaluation of a goal, Concurrent Prolog enforces a committed choice between

candidate clauses, thus throwing away alternative solutions.

Wegner (1992) observes, rightly I think, that the notion of committed choice

is in con
ict with the relational nature of logic programming. Indeed, Concurrent

Prolog absolves logical completeness in the form of backtracking, to remain within

the con�nes of the process model adopted. Wegner (1992), however, goes a step

further and states that reactiveness and backtracking are irreconcilable features.

That these features may fruitfully be incorporated in a single language frame-

work is demonstrated by the language DLP. However, to support backtracking

and objects, a more elaborate process model is needed than the process model

supported by Concurrent Prolog (which in a way identi�es an object with a

process). With such a model (sketched in appendix E), there seems to be no

reason to be against the marriage of logic programming and object orientation.

5.3.4 Active objects – synchronous Java/C++

When it comes to combining objects (the building blocks in an object-oriented

approach) with processes (the building blocks in parallel computing), there are

three approaches conceivable. See slide 5-14.

Object-based concurrency

� add processes { synchronization

� multiple active objects { rendezvous

� asynchronous communication { message bu�ers

5-14

Slide 5-14: Objects and concurrency

One can simply add processes as an additional data type. Alternatively, one

can introduce active objects, having activity of their own, or, one can employ

asynchronous communication, allowing the client and server object to proceed

independently.

Processes The �rst, most straightforward approach, is to simply add processes as

a primitive data type, allowing the creation of independent threads of processing.

An example is Distributed Smalltalk (see Bennett, 1987). Another example is

Java, which provides support for threads, synchronized methods and statements

like wait and notify to protect re-entrant concurrent methods. The disadvantage

of this approach, however, is that the programmer has full responsibility for the

most di�cult part of parallel programming, namely the synchronization between

processes and the avoidance of common errors such as simultaneously assigning

a value to a shared variable. Despite the fact that the literature, see Andrews

(1991), abounds with primitives supporting synchronization (such as semaphores,

conditional sections and monitors), such an approach is error-prone and means a

heavy burden on the shoulders of the application developer.
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Active objects A second, and in my view preferable, approach is to introduce ex-

plicitly a notion of active objects. Within this approach, parallelism is introduced

by having multiple, simultaneously active objects. An example of a language

supporting active objects is POOL, described in America (1987). Communication

between active objects occurs by means of a (synchronous) rendezvous. To engage

in a rendezvous, however, an active object must interrupt its own activity by

means of an (Ada-like) accept statement (or answer statement as it is called in

POOL), indicating that the object is willing to answer a message. The advantage

of this approach is, clearly, that the encapsulation boundary of the object (its

message interface) can conveniently be employed as a monitor-like mechanism to

enforce mutual exclusion between method invocations.

Despite the elegance of this solution, however, unifying objects and processes in

active objects is not without problems. First, one has to decide whether to make

all objects active or allow both passive and active objects. Logically, passive

objects may be regarded as active objects that are eternally willing to answer

every message listed in the interface description of the object. However, this gen-

eralization is not without penalty in terms of runtime e�ciency. Secondly, a much

more serious problem is that the message-answering semantics of active objects is

distinctly di�erent from the message-answering semantics of passive objects with

respect to self-invocation. Namely, to answer a message, an active object must

interrupt its own activity. Yet, if an active object (in the middle of answering

a message) sends a message to itself, we have a situation of deadlock. Direct

self-invocation, of course, can be easily detected, but indirect self-invocations

require an analysis of the complete method invocation graph, which is generally

not feasible.

Asynchronous communication Deadlock may come about by synchronous

(indirect) self-invocation. An immediate solution to this problem is provided

by languages supporting asynchronous communication, which provide message

bu�ers allowing the caller to proceed without waiting for an answer. Asyn-

chronous message passing, however, radically deviates from the (synchronous)

message passing supported by the traditional (passive) object model. This has

the following consequences. First, for the programmer, it becomes impossible

to know when a message will be dealt with and, consequently, when to expect

an answer. Secondly, for the language implementor, allocating resources for

storing incoming messages and deciding when to deal with messages waiting in a

message bu�er becomes a responsibility for which it is hard to �nd a general, yet

e�cient, solution. Active objects with asynchronous message passing constitute

the so-called actormodel, which has in
uenced several language designs. See Agha

(1990).

Synchronous C++/Java

In PetitPierre (1998), an extension of C

++

is proposed that supports active

objects, method calls by rendez vous and dynamic checks of synchronization
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conditions. The concurrency model supported by this language, which is called

sC

++

, closely resembles the models supported by CCS, CSP and Ada.

An example of the declaration of an active object in sC

++

is given in slide

5-15.

sC++

active class S f

public:

m () f ... g

private:

@S () f pseudo-constructor

select f

01 -> m(); external call

instructions ...

||

accept m; accept internal method

instructions ...

||

waituntil (date); time-out

instructions ...

||

default default

instructions ...

g

g

g

5-15

Slide 5-15: Synchronization conditions in sC++

The synchronization conditions for instances of the class are speci�ed in a select

statement contained in a constructor-like method, which de�nes the active body

of the object. Synchronization may take place in either (external) calls to another

active object, internal methods that are speci�ed as acceptable, or time-out

conditions. When none of the synchronization conditions are met, a default action

may take place. In addition to the synchronization conditions mentioned, a when

guard-statement may occur in any of the clauses of select, to specify conditions

on the state of the object or real-time constraints.

The sC

++

language is implemented as an extension to the GNU C

++

compiler.

The sC

++

runtime environment o�ers the possibility to validate a program by

executing random walks, which is a powerful way to check the various synchro-

nization conditions. The model of active objects supported by sC

++

has also been

realized as a Java library, see PetitPierre (1999). There is currently, however, no

preprocessor or compiler for Java supporting synchronous active objects.

As argumented in PetitPierre (1998), one of the advantages of synchronous

active objects is that they allow us to do away with event-loops and callbacks.
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Another, perhaps more important, advantage is that the model bears a close

relationship with formal models of concurrency as embodied by CCS and CSP,

which opens opportunities for the veri�cation and validation of concurrent object-

oriented programs. In conclusion, in my opinion, the active object model discussed

deserves to become a standard for both C

++

and Java, not because it uni�es

the concurrency model for these languages, which is for example also done by

JThreads++ described in Orbacus (1998), but because it o�ers a high level of

abstraction suitable for concurrent object-oriented software engineering.

5.4 Prototypes – delegation versus inheritance

The classical object model (which is constituted by classes, objects and inheri-

tance) not only has its theoretical weaknesses (as outlined in the previous section)

but has also been criticized from a more pragmatic perspective because of its

in
exibility when it comes to developing systems.

Code sharing has been mentioned as one of the advantages of inheritance (as it

allows incremental development). However, alternative (read more 
exible) forms

of sharing have been proposed, employing prototypes and delegation instead of

inheritance.

5.4.1 Alternative forms of sharing

A class provides a generic description of one or more objects, its instances. From

a formal point of view, classes are related to types, and hence a class may be

said to correspond to the set of instances that may be generated from it. This

viewpoint leads to some anomalies, as in the case of abstract classes that at

best correspond to partially de�ned sets. As another problem, in the context

of inheritance, behavioral compatibility may be hard to arrive at, and hence the

notion of subtype (which roughly corresponds with the subset relation) may be

too restrictive. In practice, we may further encounter one-of-a-kind objects, for

which it is simply cumbersome to construct an independent class.

In a by now classical paper, Lieberman (1986) proposes the use of prototypes

instead of classes. The notion of prototypes (or exemplars) has been used in cogni-

tive psychology to explain the incremental nature of concept learning. As Lieber-

man (1986) notes, the philosophical distinction between prototypes (which provide

a representative example of an object) and classes (which characterize a set of

similar objects) may have important pragmatical consequences as it concerns

the incremental de�nition of (hierarchies of) related objects. First, it is (claims

Lieberman, 1986) more natural to start from a concrete example than to start

from an abstract characterization as given by a class. And secondly, sharing

information between prototypes and clones (that is, modi�ed copies) thereof is

far more 
exible than the rather static means of sharing code as supported by the

class inheritance mechanism.

Code sharing by inheritance may be characterized as creation time sharing,

which in this respect is similar to creating a copy of the object by cloning. In
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addition, prototypes may also support lifetime resource sharing by means of

delegation. In principle, delegation is nothing but the forwarding of a message.

However, in contrast to the forwarding mechanism as described in sections 2.1.1

and 2.2, delegation in the context of prototypes does not change implicit self-

reference to the forwarding object. In other words, when delegating a message to

a parent object, the context of answering the message remains the same, as if the

forwarding object answers the request directly. See slide 5-16.

Prototypes { exemplars

� cloning { creation time sharing

� delegation { lifetime sharing

5-16

Slide 5-16: Prototypes

An almost classical example used to illustrate prototypical programming is the

example of a turtle object that delegates its request to move itself to a pen object

(which has x and y coordinate attributes and a move method). The 
exibility of

delegation becomes apparent when we de�ne a number of turtle objects by cloning

the pen object and adding an y coordinate private to each turtle. In contrast to

derivation by inheritance, the x coordinate of the pen object is shared dynamically.

When changing the value of x in one of the turtle objects, all the turtle objects

will be a�ected. Evidently, this allows considerable (and sometimes unwished for)


exibility. However, for applications (such as multimedia systems) such 
exibility

may be desirable.

Design issues Strictly speaking, prototype-based delegation is not stronger than

forwarding in languages supporting classes and inheritance. In Dony et al. (1992),

a taxonomy of prototype-based languages is given. (This taxonomy has been

partly implemented in Smalltalk. The implementation, however, employs so-

called class-variables, which are not unproblematic themselves. See section 5.5.)

One of the principal advantages of prototype-based languages is that they o�er

a consistent yet simple model of programming, consisting of objects, cloning and

delegation. Yet, when designing a prototype-based language, a number of design

decisions must be made (as re
ected in the taxonomy given in Dony et al., 1992).

These issues concern the representation of the state of an object, how objects are

created and the way in which delegation is handled. See slide 5-17.

The basic prototype model only features slots which may store either a value

or a piece of code that may be executed as a method. Alternatively, a distinction

may be made between variables and methods. In both cases, late binding must be

employed to access a value. In contrast, instance variable bindings in class-based

languages are usually resolved statically.

When creating a new object by cloning an existing object, we have the choice

between deep copying and shallow copying. Only shallow copying, however, allows
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State

� slots { parents

� variables and methods

Creation

� shallow cloning

� deep cloning

Delegation

� implicit delegation

� explicit delegation

5-17

Slide 5-17: Prototypes { state, creation, delegation

lifetime sharing (since deep copying results in a replica at creation time). Shallow

copying is thus the obvious choice.

Finally, delegation is usually handled implicitly, for instance by means of a

special parent slot, indicating the ancestor of the object (which may be changed

dynamically). Alternatively, it may be required to indicate delegation explicitly

for each method. This gives a programmer more 
exibility since it allows an

object to have multiple ancestors, but at the price of an increase in notational

complexity. Explicit delegation, by the way, most closely resembles the use of

forwarding in class-based systems.

One of the, as yet, unresolved problems of delegation-based computing is how

to deal with what Dony et al. (1992) call split objects. An object may (internally)

consist of a large number of (smaller) objects that are linked to each other by the

delegation relation. It is not clear how to address such a complex object as a single

entity. Also, the existence of a large number of small objects that communicate

by message passing may impose severe performance penalties.

5.4.2 Implementation techniques – Self

A major concern of software developers is (often) the runtime e�ciency of the

system developed. An order of magnitude di�erence in execution speed may,

indeed, mean the di�erence between acceptance and rejection.

There are a number of ways in which to improve on the runtime e�ciency

of programs, including object-oriented programs. For example, Ungar et al.

(1992) mention the reliance on special-purpose hardware (which thus far has

been rapidly overtaken by new general-purpose processor technology), the use

of hybrid languages (which are considered error-prone), static typing (which

for object-oriented programming provides only a partial solution) and dynamic

compilation (which has been successfully applied for Self). See slide 5-18.

As for the use of hybrid languages, of which C

++

is an example, the apparent
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Improving performance

� special-purpose hardware

� hybrid languages

� static typing

� dynamic compilation
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Slide 5-18: Improving performance

impurity of such an approach may (to my mind) even be bene�cial in some

cases. However, the programmer is required to deal more explicitly with the

implementation features of the language than may be desirable.

In general, both with respect to reliability and e�ciency, statically typed lan-

guages have a distinct advantage over dynamically typed (interpreted) languages.

Yet, for the purpose of fast prototyping, interpreted languages (like Smalltalk)

o�er an advantage in terms of development time and 
exibility. Moreover, the

use of (polymorphic) virtual functions and dynamic binding necessitate additional

dynamic runtime support (that is not needed in strictly procedural languages).

Clever compilation reduces the overhead (even in the case of multiple inheritance)

to one or two additional indirections.

Dynamic compilation The language Self is quite pure and simple in design. It

supports objects with slots (that may contain both values and code, representing

methods), shallow cloning, and implicit delegation (via a designated parent slot).

Moreover, the developers of Self have introduced a number of techniques to

improve the e�ciency of prototype-based computing.

Self { prototypes

� objects, cloning, delegation

Dynamic compilation { type information

� customized compilation

� message inlining

� lazy compilation

� message splitting

5-19

Slide 5-19: Dynamic compilation { Self

The optimization techniques are based on dynamic compilation, a technique

that resembles the partial evaluation techniques employed in functional and logic

programming. Dynamic compilation employs the type information gathered dur-

ing the computation to improve the e�ciency of message passing.



170 Object­oriented programming languages

Whenever a method is repeatedly invoked, the address of the recipient object

may be backpatched in the caller. In some cases, even the result may be inlined to

replace the request. Both techniques make it appear that message passing takes

place, but at a much lower price. More complicated techniques, involving lazy

compilation (by delaying the compilation of infrequently visited code) and message

splitting (involving a data
ow analysis and the reduction of redundancies) may

be applied to achieve more optimal results.

Benchmark tests have indicated a signi�cant improvement in execution speed

(up to 60% of optimized C code) for cases where type information could be

dynamically obtained. The reader is referred to Ungar et al. (1992) for further

details.

5.5 Meta­level architectures

Another weakness of the classical object model (or perhaps one of its strengths) is

that the concept of a class easily lends itself to being overloaded with additional

meanings and features such as class variables and metaclasses. These notions

lead to extensions to the original class/instance scheme that are hard to unify in

a single elegant framework. In this section we will study a proposal based on a

re
exive relation between classes and objects.

Depending on one's perspective, a class may either be regarded as a kind of

abstract data type (specifying the operational interface of its object instances)

or, more pragmatically, as a template for object creation (that is, a means to

generate new instances).

The class concept

� abstract data type { interface description

� object generator { template for creation

� repository { for sharing resources

� object { instance of a metaclass

5-20

Slide 5-20: The concept of class

In addition, however, in a number of systems a class may be used as a

repository for sharing class-wide resources. For example, the Smalltalk language

allows the de�nition of class variables that are accessible to all instances of the

class. See slide 5-20.

Class variables Clearly, the use of class variables violates what we have called the

distribution boundary in section 5.3.3, since it allows objects to reach out of their

encapsulation borders. Class variables may also be employed in C

++

and Java

by de�ning data members as static. Apart from class variables, Smalltalk also

supports the notion of class methods, which may be regarded as routines having
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the class and its instances as their scope. Class methods in Smalltalk are typically

used for the creation and initialization of new instances of the class for which they

are de�ned. In C

++

and Java, creation and initialization is taken care of by the

constructor(s) of a class, together with the (system supplied) new operator. Class

methods, in C

++

and Java, take the form of static member functions that are

like ordinary functions (apart from their restricted scope and their calling syntax,

which is of the form class :: member(: : :) in C

++

and class :member(: : :) in Java).

Contrary to classes in C

++

and Java, classes in Smalltalk have a functionality

similar to that of objects. Classes in Smalltalk provide encapsulation (encom-

passing class variables and class methods) and message passing (for example for

the creation and initialization of new instances). To account for this object-like

behavior, the designers of Smalltalk have introduced the notion of metaclass of

which a class is an instance.

Metaclasses In the classical object model, two relations play a role when de-

scribing the architectural properties of a system. The �rst relation is the instance

relation to indicate that an object O is an instance of a class C. The second

(equally important) relation is the inheritance relation, which indicates that a

class C is a subclass (or derived from) a given (ancestor) class P.

When adopting the philosophy everything is an object together with the idea

that each object is an instance of a class (as the developers of Smalltalk did), we

evidently get into problems when we try to explain the nature (and existence) of

a class.

To be an object, a class itself must be an instance of a class (which for

convenience we will call a metaclass). Take, for example, the class Point. This

class must be an instance of a (meta)class (say Class) which in its turn must be

an instance of a (meta) class (say MetaClass), and so on. Clearly, following

the instance relation leads to an in�nite regress. Hence, we must postulate

some system-de�ned MetaClass (at a certain level) from which to instantiate the

(metaclasses of) actual classes such as Point.

Class

ObjectBookObject

Class ListMetaClass

C P
O CMetaClass

(a) Smalltalk meta architecture (b) Reflective meta architecture

Point

subclass

instance

Slide 5-21: Meta architectures

The �gure in slide 5-21(a) is a (more or less) accurate rendering of the solution

provided by Smalltalk. We may add additional 
exibility by allowing user-de�ned

metaclasses that may re�ne the behavior of the system-de�ned metaclass Class.

This is the solution chosen for Loops, see Ste�k and Bobrow (1986).
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Thus far we have traced the instance relation which leads (following the

reversed arrows) from top to bottom, from metaclasses to actual object instances.

As pictured in the diagram (a) above, the inheritance relation (followed in the

same manner) goes in exactly the opposite direction, having the class Object

at the root of the inheritance hierarchy. For example, the class Point (while

being an instance of the metaclass Class) is derived by inheritance from the class

Object. Similarly, the (meta)class Class itself inherits from the class Object, and

in its turn the system-de�ned metaclass MetaClass inherits from Class. As for

the user-de�ned metaclasses, these may be thought of as inheriting from the

system-de�ned metaclass Class. Apart from being slightly confusing, Smalltalk's

meta-architecture is rather inelegant due to the magic (that is system-de�ned)

number of meta levels. In the following, we will study a means to overcome this

inelegancy.

Re
ection Cointe (1987) proposes an architecture that uni�es the notions

of object, class and metaclass, while allowing metaclasses to be de�ned at an

arbitrary level. The key to this solution lies in the postulates characterizing the

behavior of an object-oriented system given in slide 5-22.

Postulates { class-based languages

� everything is an object

� every object belongs to a class

� every class inherits from the class Object

� class variables of an object are instance variables of its class

5-22

Slide 5-22: Class-based languages { postulates

The �rst three postulates are quite straightforward. They agree with the

assumptions underlying Smalltalk. The last postulate, however, stating that a

class variable of an object must be an instance variable of the objects class (taken

as an object), imposes a constraint of a self-recurrent or re
exive nature. This

recurrence is pictured in slide 5-21(b), which displays the object Class as an

instance of itself (that is the class Class). In other respects, the diagram is similar

to the diagram depicting the (meta) architecture of Smalltalk and Loops.

To indicate how such a re
ective relation may be implemented, Cointe (1987)

introduces a representation of objects involving the attributes name (to indicate

the class of the object), supers (to indicate its ancestor(s)), iv (to list the instance

variables of the object) and methods (to store the methods belonging to the

object).

In this scheme of representation, the system-de�ned metaclass Class is pre-

cisely the object re
ecting its own structure in the values of its attributes, as

depicted above. Every instance of Class may assign values to its instance variables

(contained in iv) that are appropriate to the instances that will be created from
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it. In general, a metaclass is an object having at least the attributes of Class (and

possibly more). See slide 5-23.

Re
ective de�nition of Class

name Class

supers (Object)

iv (name supers iv methods)

methods (new ...)

5-23

Slide 5-23: A re
ective de�nition of Class

Using this scheme, an arbitrary towering of metaclasses may be placed on top

of concrete classes, thus allowing the software developer to squeeze out the last

bit of di�erential programming. Elegant indeed, although it is doubtful whether

many programmers will endeavor upon such a route. A nice example of employing

(customized) metaclasses, however, is given in Malenfant et al. (1989), where

metaclasses are used to de�ne the functionality of distribution and communication

primitives employed by concrete classes.

Summary

This chapter presented an overview of object-oriented programming languages.

We discussed the heritage of Simula and the various areas of research and devel-

opment the ideas introduced by Simula has generated.

The object paradigm 1

� notion of object { viewpoints

� classi�cation { object extensions

5-24

Slide 5-24: Section 5.1: The object paradigm

A overview of existing object-oriented languages was given in section 1 and

we noted the prominence of hybrid languages derived from Lisp and C.

Comparing Smalltalk, Ei�el, C++ and Java 2

� criteria { libraries, environments, language characteristics

� comparison { language characteristics

5-25

Slide 5-25: Section 5.2: Comparing Smalltalk, Ei�el, C++ and Java
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In section 2, we looked at a comparison of Smalltalk, Ei�el, C

++

and Java,

including criteria such as the availability of libraries, programming environments

and language characteristics.

Design dimensions of object-oriented languages 3

� object-oriented { object-based + inheritance

� orthogonal dimensions { objects, types, delegation, abstraction

� open systems { dimensions of modularity

5-26

Slide 5-26: Section 5.3: Design dimensions of object-oriented languages

In section 3, we discussed the design dimensions of object-oriented languages

and characterized an orthogonal set of dimensions consisting of objects, types,

delegation and abstraction. We also discussed the notion of open systems and

multi-paradigm languages combining logic programming with object-oriented fea-

tures.

Prototypes { delegation versus inheritance 4

� prototypes { cloning and delegation

� performance { dynamic compilation

5-27

Slide 5-27: Section 5.4: Prototypes { delegation versus inheritance

In section 4, we dealt with classless prototype-based languages, supporting

dynamic delegation instead of inheritance.

We also discussed performance issues and observed that dynamic compilation

based on runtime type information may achieve good results.

Meta-level architectures 5

� class { the concept of class

� meta architecture { subclass and instance hierarchy

� re
ection { postulates

5-28

Slide 5-28: Section 5.5: Meta-level architectures

Finally, in section 5, we re
ected on the concept of class and discussed a

re
ective architecture unifying the interpretation of a class as an object, capable

of answering messages, and as a description of the properties of its instances.
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Questions

1. What are the basic characteristics of object-oriented languages?

2. How would you classify object-oriented languages? Name a few representa-

tives of each category.

3. What do you consider to be the major characteristic of the object model

supported by C

++

? Explain.

4. Why would you need friends?

5. How would you characterize the di�erence between object-based and object-

oriented?

6. Along what orthogonal dimensions would you design an object-oriented

language? Explain.

7. Give a characterisation of active objects. In what situations may active

objects be advantageous?

8. How would you characterize prototype-based languages?

9. What are the di�erences between inheritance and delegation? Does C

++

support delegation? Explain. And Java?

10. How would you characterize the concept of a class?

11. Can you sketch the meta architecture of Smalltalk?

12. How would you phrase the postulates underlying class-based languages?

Can you give a re
ective version of these postulates?

Further reading

A concise treatment of programming languages is given in Bal and Grune (1994).

For a collection of papers on object-oriented concepts, see Kim and Lochovsky

(1989). Further, you may want to consult Wegner (1987), which contains the

original presentation of the discussion concerning the distinction between object-

based and object-oriented. Concurrency is studied in Agha et al. (1993). For

Java, read the original white paper, Gosling and McGilton (1995). An inter-

esting extension of C

++

is described in PetitPierre (1998). At the correspond-

ing web site, http://ltiwww.ep
.ch/sCxx , there is much additional material.

Finally, for an account of the design and evolution of C

++

, read Stroustrup

(1997). For more information on C

++

, visit http://www.accu.org , and for Java,

http://www.javasoft.com.
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Many applications, for example in the area of telecomputing, banking and multi-

media (but also in high performance computing and operating systems), require

support for distribution and concurrency. Due to their complexity, these applica-

tions are likely candidates for an object-oriented approach. However, with regard

to their distributed nature, some marriage between object-oriented computing

and distributed computing must be realized.

Component technology 6

� objects versus components { de�nitions

� interoperability

� requirements for distribution

� a simple workgroup application

� extending hush with CORBA

Additional keywords and phrases: (D)COM, Java, CORBA, OLE,

persistent objects, ODMG, workgroup

6-1

Slide 6-1: Component technology

In this chapter we will study component technology, which combines object-

oriented features such as encapsulation and (interface) inheritance with (logical

and/or physical) distribution. In reality, component technology is not a clear-cut

category but rather, according to Szyperski (1997), a battle�eld in action (with

177



178 Component technology

(D)COM, CORBA and Java as the main players), from which eventually a winner

will arise, or perhaps a merge of technologies. In this chapter, we will explore the

forces at work, and in addition we will look at a case study deploying CORBA and

Java for the creation of a workgroup application, and the integration of CORBA

with an existing framework, hush.

6.1 Objects versus components

As observed in Szyperski (1997), there is some confusion between the notions

of object and component. In this section we will look at the de�nition of com-

ponent and compare it with what we know of objects. We will further explore

the technology matrix, which classi�es a selection of the available (component)

technologies. Finally, we will discuss some of the software engineering issues

involved in component-oriented development, and do away with some of the myths

that surround component technology.

6.1.1 Definitions

Object orientation has not quite ful�lled its promise with respect to reuse. One

of the reasons for this is that objects are generally not as modular as they might

appear. Or, in the words of Szyperski (1997), objects are not a suitable unit of

deployment.

Component substitutability

� unit of independent deployment

� unit of third party composition

� no persistent state

Object identity

� unit of instantiation

� (persistent) state

� encapsulation of state and behavior

6-2

Slide 6-2: De�nitions

Szyperski (1997) proposes components as a suitable unit of deployment in-

stead, and advocates a component-oriented approach to deliver reusable `o�-the-

shelf ' components for a composing large applications.

Let us look at the de�nition of software component given in Szyperski (1997):

A software component is a unit of composition with contractually spec-

i�ed interfaces and explicit context dependencies only. A software
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component can be deployed independently and is subject to composition

by third parties.

This de�nition was the result of an ECOOP96 Workshop on Component-oriented

Computing. Notice that the de�nition itself contains a reusability requirement,

in mentioning composition by third parties. The requirements of explicit context

dependencies, the absence of inherent state and contractually speci�ed interfaces

only strengthen this.

In contrast, an object is not a unit of deployment, but a unit of instantiation.

Objects are not used in isolation. Objects, do have state and identity. Deploying

an object or a collection of objects, moreover, is often subject to (implicit)

assumptions concerning the interaction of objects.

Components as better objects From the characterization above it might

appear that components are just better objects. To some extent this is true,

but there are some important di�erences. First of all, in practice, there is a

di�erence in granularity. Components are usually large grain, such as a text

editor or database component. Objects, on the other hand, may be small grain,

such as dates or text �elds. Secondly, components are opaque, `binary units'

of functionality, interchangeable with units that deliver the same functionality.

Objects, in contrast, carry a state and may be regarded as the living building

blocks of an organic system.

Szyperski (1997) mentions that there is a debate whether inheritance is of

relevance for component technology. No doubt, inheritance, although somewhat

overrated, is an invaluable mechanism, both interface inheritance, to de�ne hie-

rarchies of types, and code reuse or implementation inheritance, to allow for

incremental development.

Reconsidering the de�nitions given, I tend to think of the distinction between

components and objects as a distinction between perspectives. From a deployment

perspective we need components. From a developer's perspective we might prefer

to speak about objects. Unfortunately, matters are not that easy. But we need

to take a closer look at the technology to �nd out why.

6.1.2 The technology matrix

The component technology �eld is currently dominated by three players: Mi-

crosoft (D)COM, OMG CORBA, and (the youngest player) Sun Microsystems

Java. When comparing these technologies with respect to attributes such as

distribution, mobility, language and platform independence, and re
ective capa-

bilities, we see that there are many di�erences.

First of all, notice that component technology does not automatically mean

distribution. For example, JavaBeans and Microsoft COM do not support distri-

bution. Secondly, whereas language independence seemed to be of importance in

the pre-Java era, that is for (D)COM and CORBA, it is not so for the Java-based

solutions. Finally, platform independence is hard to achieve. But, fortunately, it

is on the agenda of all three technologies, including (D)COM.
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distribution mobility language platform re
ection

COM { { * { +/{

DCOM + { * +/{ +/{

CORBA + { * * +/{

Java/Beans { classes Java * +

Java/RMI + classes Java * +

Voyager + objects Java * +

Slide 6-3: The technology matrix

It is worth mentioning that the three major technologies have a rather di�erent

origin. Microsoft (D)COM is primarily a desktop technology, with O�ce as its

killer application, whereas CORBA originated from the need to have an enterprise-

wide solution for distributed objects. Java is a special case. It started as a

Web-based language, but rapidly took position in the desktop and enterprise

world as well.

Java distinguishes itself from the other technologies both with respect to

mobility and re
ection. As a Web-based language, Java allows for downloading

code dynamically, that is class descriptions for instantiating new objects. True

mobile objects, that is instantiated objects that migrate themselves, are only

possible when using a system such as Voyager, or any of the other Java-based agent

ORBs. Java also provides a powerful Re
ection API, which allows for various

kinds of meta-programming, including the creation of new classes. In comparison,

meta-programming facilities of the two other technologies are limited to querying

the availability and functionality of interfaces, dynamic method invocation and

some dynamic typing.

Trends { interoperability It is hard to predict the outcome of the `battle of

component technologies'. However, one can observe a convergence of technologies,

that is bridges between Java and CORBA, CORBA and (D)COM, and Java and

(D)COM/ActiveX. Each of these technologies sets a standard for interoperability.

So, eventually some new standard may arise that encompasses them all. In the

meantime, we may study the strengths of each of these technologies and establish

what major challenges lie ahead. For example, Microsoft COM has demonstrated

itself in an unescapable way in Microsoft O�ce. A related technology, OpenDoc,

failed to gain a market position, but is nevertheless taken on by the OMG as

document-oriented component technology.

An interesting project in this respect is the K-O�ce project, which aims at

developing an O�ce Application Suite for the Unix/X11 desktop. It is built upon

the KDE GUI environment, and employs a CORBA-based component technol-

ogy, (nick)named KOM, to interconnect (embed and link) the various document

components and their associated tools. See http://ko�ce.kde.com.
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6.1.3 Component myths

Component software engineering may be characterized as an approach that relies

on the availability of reusable `o�-the-shelf' components that may be composed

into applications. This includes applications for banking, medical services, corpo-

rate management, entertainment, etcetera.

Components: myths and reality

� component-ware allows for combining components

if semantical issues can be resolved

� component-ware simpli�es software distribution and maintenance

development becomes more complex

� component-ware supports mega applications

it a�ects performance signi�cantly

� component-ware is a revolution

wrong, it is an evolution from OO and C/S

6-4

Slide 6-4: Components: myths and reality

From a market perspective, a successful component-based approach requires

interoperability between components from di�erent vendors, and standards with

respect to the services components o�er. Such standards are necessary to insulate

clients (i.e. corporations) from vendor-speci�c, proprietary solutions. Clearly, on

the technology side, this surpasses the mere wiring or plumbing standards that

form part of (D)COM, ORBs and JavaRMI. In addition, suitable component

standards are required for components to interact, as for example o�ered by

ActiveX, JavaBeans or OpenDoc, as well as general services, as for example

de�ned by the OMG, to manage such systems.

Software engineering perspectives From a software engineering perspective,

we encounter a number of unsolved questions, as phrased in Szyperski (1997):

� How to describe the interaction between components?

� How to manage variety and 
exibility?

� How to guarantee critical system-wide properties?

In addition, we need to deal with the practical aspects of developing component-

oriented applications, that is master the distributed (object) technology involved,

and manage multi-tier architectures.

And, as indicated in slide 6-4, do not underestimate the complexities of devel-

oping such applications. Given the failure of many OO projects, as described

in Cockburn (1997), component-oriented solutions which involve client/server

aspects are not likely to be better o�, see Shimberg and Barnes (1997). An-

other area that needs to be studied is the performance of such systems, see for

example Mowbray and Malveau (1997).
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Yet, in conclusion, just as object orientation may be regarded as a natural

evolution from data-oriented approaches, we may look at component-oriented

approaches as a natural evolution from object orientation into the realm of dis-

tributed systems.

6.2 Standards for interoperability

The potential of an object-oriented approach, obviously, lies in the opportunities

for reuse, both of code and design. However, reuse requires a common under-

standing of the basic principles underlying the technology and its application.

More particularly, the reuse of code requires (a much more strict) agreement with

respect to the components from which an application will be constructed and the

language constructs used to implement them.

In this section, we will look at the object linking and embedding facilities

o�ered by Microsoft OLE, and the standardization e�orts undertaken by the

OMG (Object Management Group) directed towards the interoperability of object

components. In addition, we will look at the e�orts of the ODMG (Object

Database Management Group) undertaken to develop a standard for persistent

objects.

6.2.1 Object linking and embedding – COM

Reuse is not necessarily code sharing. In e�ect, there seems to be a trend towards

sharing components at a higher level of granularity, as possibly independent

applications. This approach has, for example, been taken by the Microsoft object

linking and embedding facility (OLE), which o�ers support for embedding (a

copy) of a component in a (container) component, for including a link to another

component, and for storing compound objects. See slide 6-5.

Object-enabling technology OLE

� document centered { text, graphics, reports

� component software { standard programmatic interface

� distributed object systems { component object model (D)COM

Features

� linking, embedding, storage

Alternatives

� IBM SOM/DSOM, Apple OpenDoc

6-5

Slide 6-5: Object-enabling technology { OLE
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The OLE technology, which builds upon (D)COM technology, is characterized

by its developers as object-enabling technology, to contrast it with a more classical

language-dependent object-oriented approach relying on inheritance.

The object-linking technology allows the user to maintain a link from one

application to another, so that for example a text processor may directly employ

the results of a spreadsheet. Moreover, object linking is dynamic and allows any

updates in the spreadsheet application to be re
ected directly in the outcome of

the text processor. In contrast, object embedding works more as the traditional

cut and paste techniques in that it results in including only a copy of the material.

To be embedded or linked, applications must satisfy a standard programmatic

interface. In e�ect, the interface must provide the facility to request an update of

the display of the information contained in the application. In this respect, the

OLE technology may be characterized as document-centered.

6.2.2 Object Request Brokers – CORBA

The ultimate goal of object technology may be phrased as the development of plug-

compatible software that allows one to construct a particular application from

o�-the-shelf components. To achieve this goal, it is necessary to develop standards

with respect to object interaction and communication interfaces that support

information sharing between distinct components. Such standards are developed

by the OMG (the Object Management Group, in which the leading vendors of

software systems participate, including Digital Equipment Corporation, Hewlett-

Packard Company, HyperDesk Corporation, NCR Corporation, Object Design

Inc. and Sunsoft Inc.). The OMG aims at de�ning standards for information

sharing in widely distributed, heterogeneous (multi-vendor) networks to support

the reusability and portability of commercially available components, and more

generally, to develop the technology and guidelines that allow the interoperability

of applications. See slide 6-6.

Standardization { integration OMG

� information sharing { policy

Object Management Architecture { interface standards IDL

� Object Services

� Object Request Broker CORBA

� Common Facilities { �le manipulation, print queuing, email

� Application Objects { spreadsheets, word processor

6-6

Slide 6-6: The OMG standardization e�ort

The OMG proceeds from the assumption that object technology (including en-

capsulation, polymorphism and inheritance) provides the mechanism necessary for

language-, platform- and vendor-independent, system integration. The OMG has
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proposed an abstract object model and discusses technical and political objectives

in the OMA Guide (Object Management Architecture Guide). The architecture

speci�ed in OMA provides a generic description of the components that constitute

a system and de�nes the interface standards to which the components must

comply.

An important aspect of OMA is the interface description language (IDL) that

is introduced as a standard to describe object interfaces in a language-independent

manner.

According to OMA, a system must support a number of Object Services

(dealing with the lifecycle of objects, persistence, naming an event noti�cation),

and a so-called Object Request Broker (which is an intermediary between the

object providing a service and the client requesting a service). Also a system will

need, generally, Common Facilities (such as �le manipulation and print queuing),

and in addition will contain a number of Application Objects (such as a spreadsheet

or word-processor) that constitute the proper application.

The OMG is primarily concerned with the adoption of technology by the

producers and vendors of common facilities and application objects. Its contri-

bution in this respect is the de�nition of a set of common object services and a

standard interface to invoke such services by means of an object request broker.

This standard has been adopted in CORBA (the Common Object Request Broker

Architecture) which allows for the interaction between an application and distinct

object request brokers.

The object services envisioned in OMA are intended to deal with objects in a

language- and platform-independent manner. See slide 6-7.

Object Services

� life cycle { creation and deletion

� persistence { management of storage

� naming { mapping to references

� event noti�cation { registration

Future

� transactions, concurrency, relationships, ... ,time

6-7

Slide 6-7: The OMG Object Services

These services encompass the creation and deletion of objects, the manage-

ment of object storage, the mapping of names to references and the registration of

events as triggers for actions. In addition, services will be de�ned that allow trans-

actions, concurrency, relationships between objects and time-based properties of

objects to be speci�ed. To a large extent, such services are provided by individual

languages (such as Java, C

++

or Smalltalk) with their accompanying libraries and

development frameworks. However, the e�orts of the OMG are directed towards



Standards for interoperability 185

(the ambitious goal of) providing such services in a generic fashion, independent

of a particular language or environment.

6.2.3 Persistent objects – ODMG

In a similar vein as the OMG, a number of vendors of object database management

systems (including SunSoft, Object Design, Ontos, O

2

Technology, Versant, Ob-

jectivity, Hewlett Packard, POET Software, Itasca, Intellitic, Digital Equipment

Corporation, Servio, Texas Instruments) have participated in the ODMG (Object

Database Management systems Group) to develop a standard for the de�nition

and manipulation of persistent objects.

The standards proposal of the ODMG encompasses an object de�nition lan-

guage ODL, which is intended as an extension of the OMG/IDL standard, an

object manipulation language, OML and an object query language, OQL, that

provides SQL-like facilities for the retrieval of information.

The advantage of employing an object database system over employing a

relational database system is that, in principle, the application programmer may

work within a uni�ed type system, encompassing both persistent and transient

objects. See slide 6-8.

Persistent objects ODMG

� database extension { uni�ed type system

Object De�nition Language ODL

� standard types { objects and literals

� references { Ref< T >

� collections { List< T > , Bag< T >, Set< T >

Object Manipulation Language OML

� create, delete, modify, reference

Object Query Language OQL

� oql(type& value,const char* query,...)

6-8

Slide 6-8: The ODMG-93 standardization e�orts

The extensions to the various languages, which include C

++

and Smalltalk,

involve the de�nition of persistent objects, the creation and use of objects and

facilities to pose queries concerning their attributes and relations. These exten-

sions are proposed as language-speci�c bindings for respectively ODL, OML and

OQL.

The object model proposed by the ODMG supports objects (which may have

attributes and methods), literals (which may be considered as primitive values),

relationships between objects (including m-n relations), extents (which contain
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the collection of instances of a particular type), and named objects (to facilitate

retrieval).

To de�ne objects and literals, the programmer may employ the standard types

o�ered by the language, as well as a number of additional parametrized types to

de�ne references and collections. For references the ODMG-93 proposal employs

a Ref<T> smart pointer construct. For dealing with collections a number of

generic collection classes such as List<T>, Bag<T> and Set<T> must be

provided by a standard library. (To provide a binding for Smalltalk, which

does not have a type system, type annotations must be employed to de�ne the

properties of persistent objects.)

The manipulation of persistent objects conforms with the manipulation of

ordinary objects as far as attribute access and method invocation are concerned.

However, the language-speci�c OML bindings must take precautions for the cre-

ation, deletion and modi�cation of objects. In particular, when employing a

reference to a persistent object, the implementation must check whether the

referenced object has been modi�ed.

The C

++

binding for the object query language OQL in the ODMG-93 pro-

posal is quite simple. It consists merely of a function that allows the programmer

to pass an extended SQL-like query as a string. The query may contain symbolic

variables that are bound in a similar way as allowed by the C printf function.

The design principle guiding the ODMG e�ort has been to promote that the

programmer feels that there is one language. However, there are a number of

di�culties that arise when de�ning a particular language binding for the ODMG

object model, as for example for C

++

. See slide 6-9.

Design principles object model

� the programmer feels that there is one language

Language binding C++ODL/OML

� objects and literals { embedded objects are literals

� relationships { not directly supported by C

++

� extents { must be maintained by programmer

� keys { simulated by C

++

data members

6-9

Slide 6-9: Language binding { C++ ODL/OML

Embedded objects which are de�ned in C

++

as object data members, must

be taken as literals in the ODMG object model, whereas embedded references to

objects are to be taken as objects.

Relationships are not directly supported in C

++

. In the ODMG-93 proposal,

the programmer is required to employ an explicit data structure for updating and

traversing a relation.

Extents, which contain the collection of instances of a type, must explicitly
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be maintained by the programmer. Extents may conveniently be stored in a

collection that is associated with a static data member of the class.

Keys, which are needed for e�cient retrieval, must be simulated by C

++

data

members. Support for indexing and retrieval by key requires additional compiler

support, for which no provision is made in the ODMG-93 proposal.

Other problems that arise in de�ning a binding to C

++

involve the naming of

objects, the restriction that C

++

allows for only one implementation of a particular

type and the duality between arrays and pointers.

Discussion Both the OMG and ODMG standardization e�orts aim at the porta-

bility of software. The ODMG proposal not only entails the portability of design

and source code, but also includes object code, in the form of persistent objects.

The ODMG-93 proposal is inadequate due, partially, to the self-imposed re-

strictions with respect to the compiler support required.

C++ODL/OML binding { future

� no distinction between persistent and transient objects

� better integration of the query sublanguage

Modi�cations to C++

� overloading dot (access operator), r/l values, ...

Standardization e�orts { de facto market share

� PDES/STEP, ODA, PCTE, OSI/NMF, ISO ODP, ANSI X3

6-10

Slide 6-10: Future standardization e�orts

The future C

++

ODL/OML binding will probably no longer distinguish be-

tween references to persistent and transient objects, and will provide a better

integration of the query language OQL. To realize these goals, however, extended

compiler support is needed and perhaps also modi�cations of C

++

to allow the

incorporation of code for integrity checking.

It is worth noting that there are a number of additional e�orts at de�ning a

standard object model. See slide 6-10. The ODMG proposal is explicitly meant

as a superset of the object model proposed by the OMG, in order to become what

they aptly phrase as a standard enforced by a de facto market share.

6.3 The Java platform – technology innovation

Java is the newest wave of technology. It o�ers a distributed object-oriented

platform for the development of Web-aware applications. However, as with any

wave of technology, we must ask ourselves whether it really does provide an answer

to our questions. And, in the line of Lewis (1997), we may well ask ourselves what

the original question was in the �rst place.
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Perspectives

� Internet applications { the dial-tone of the Internet

� Software engineering { long-term maintenance

� Language design { semantic compromises

� System development { lightweight clients, heavyweight servers

� Computer science { towards declarative, veri�able technology

� IT (in) business { standards for business objects and processes

� Global village { virtual world technology

6-11

Slide 6-11: Perspectives

Whether Java does answer answer our needs for technological innovation is a

matter of perspective. The question whether Java will provide an economically

viable solution to corporate IT needs can not be answered at this stage. Yet, Java

frameworks are being developed. See section 11.1.

In this section, we will look at the Java platform from the perspectives listed

in slide 7-12. The rhetoric in these re
ections must not be misunderstood as

dismissing Java, but as a way to get hold of the issues that play a role in adopting

the Java technology, or any of the competing technologies, for business-critical

applications.

Internet applications Java was introduced in 1995 at the WWW3 Conference in

Darmstadt as `the dial-tone of the Internet', with applets as its killer application.

The dial-tone, because Java is platform-neutral and network-aware. In practice,

applets form only a small part of Java applications. Together with the Beans

component technology and RMI, Java seems to be an ideal platform for compa-

nies that wish to employ the Internet and the Web for commercial applications.

However, most developers have no idea how to adopt the Java platform without

sacri�cing their investment in legacy applications, such as a corporate database.

The question is whether there is a migration strategy. In comparison, OMG

CORBA seems to have better answers in this respect, although combinations of

RMI and JNI (the Java Native Interface) have also been suggested as a technical

solution.

Software engineering Lewis (1997) argues that within two decades we will have

Java legacy problems similar to the legacy maintenance problems we have now.

Software development with Java is not an issue. There are excellent tools, there

is a large amount of good documentation, and there are loads of APIs. In general,

software development with Java seems to be easier than, for example, with C

++

.

However, long-term maintenance is a di�erent question altogether. The answer

to this question depends on standardization, and issues such as language and

platform independence. We must consider that Java is a programming technology,
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and a good one in this respect, and not an integration technology such as CORBA,

for which the speci�cation of domain-independent and domain-speci�c standards,

including services and facilities, is the primary issue.

Language design Java may be regarded as a second-generation third-generation

programming language. Complex as this may sound, it is meant to express that

Java is an object-oriented imperative language that shows the in
uence of many of

its predecessors, the minimality of Pascal, threads, the 
avor of C

++

. Personally,

I am somewhat bothered by the semantic compromises in Java. For example,

the equality operator for strings does, against all expectations, not test for string

equality but for reference equality. Threads is another issue. Why only a keyword

synchronized and not an Ada-like select? See, for example, PetitPierre (1998).

Java has been developed in great haste. For example, assertion (like Ei�el) seem

to have been omitted simply because the implementation was buggy at the time

of a delivery deadline.

System development The Java virtual machine is a good idea. It can be realized

on any platform, including computers of all sorts and a variety of gadgets. Java

is easy to learn and there are many tools. However, a survey entitled `Are Java

Tools ready for Prime Time' indicated that all tools still needed improvements.

Now back to the reality of software development. Many Internet applications

are written in script languages. Perl for server-side scripting and Javascript on

the client-side. Given the e�ciency problems of Java (which are a consequence of

the virtual machine approach) and the long download times for applets, Java runs

the risk of being too light for heavy-duty servers and too heavy for lightweight

clients.

Computer science Java has been adopted by many universities as the �rst

programming language, and students like it. That is a good thing, although I am

worried to see C

++

disappear from the curriculum.

In terms of research, what Java o�ers is not really new. Personally, I am

somewhat disappointed that the attention is focused on another third-generation

language, whereas to my mind, we should have a declarative programming tech-

nology on our research agendas, a technology that supports the development of

reliable and veri�able software. Nevertheless, Java appears to be an excellent

platform for Web-related research.

IT (in) business Java is being adopted rapidly. It is nevertheless hard to

establish to what extent this involves mission-critical applications or pilot projects.

After all, at the time of writing, Java is still cutting-edge technology. And

common wisdom has it not to use cutting-edge technology for strategic projects,

see Cockburn (1997).

An example of a business application framework is the IBM San Francisco

framework, discussed in section 11.1, which o�ers generic solutions for the re-

alization of business processes, such as order management and quality control.

Nevertheless, crucial issues in this area do not seem to concern technology per
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se, but rather the standardization of such notions as business objects, business

processes and, of course, business logic. This is also an area of active OMG

interest.

Global village On the Internet we see an increasing number of virtual communi-

ties deploying 3D technology for rendering worlds and their inhabitants. Imagine

a virtual stockmarket. Decisions must be taken quickly. There is an overload of

information, from a variety of sources. Stock prices, political tensions, market

trends, all these must be monitored continuously. In critical situations, direct

actions must be possible. A nice playground for virtual worlds technology. Is the

Java platform ripe for this? It might, given the Java3D and JavaVRML97 e�orts.

And what about the knowledge management?

Discussion In summary, Java is a promising platform, with a wealth of APIs

for the development of a variety of applications. At this stage there might be

problems of e�ciency and problems due to the instability and immaturity of the

APIs o�ered. However, as indicated, there are a number of issues that surpass

the reach of the Java platform since they do not depend on technical solutions

only. The most important issues, I would say, concern the standardization of

(domain-speci�c) business objects and processes, and the migration problems due

to the inescapable existence of legacy applications.

6.4 An Internet­based workgroup application

The goal of the project described in this section was to develop a prototype

for an Internet-based workgroup architecture using CORBA technology. CORBA

provides a means for developing distributed object applications, while the Internet

provides a standard and widely accessible network infrastructure. Users should

not need special client software to use the system, other than a Java-enabled

browser such as Netscape.

AppointmentAgenda

Membership
WorkgroupAgent

Slide 6-12: Object model

The object model guiding the implementation is depicted in slide 6-12. The

most important notion in our system is that of an agent, which is de�ned as a
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representative of a user which can perform simple operations on the user's behalf,

such as sending messages to and making appointments with other agents.

Each user participating is represented by a personal agent, which has an

agenda and a message queue. Each agenda consists of several appointments.

A workgroup has a membership list consisting of zero or more agents present

in the system. An agent can be a member of zero or more workgroups. Possible

operations on agents are sending messages to and making appointments with other

agents, subscribing to a workgroup, making an appointment with a workgroup or

sending a message to all workgroup members.

All interaction of the user with the system is done via Java applets, which

combine a graphical user interface with Internet access and CORBA functionality.

The server is implemented in C

++

. We used Visigenic's (formerly PostModern

Computing) CORBA 2.0-compliant product ORBeline to implement the server

and BlackWidow from the same vendor to implement the Java clients. The server

can run on most UNIX platforms, as well as on Windows NT, while the Java

applets, running on top of a Java Virtual Machine, can theoretically run on every

platform that Java supports. In addition, a C

++

browser/monitor was developed

that can be used to interrogate agents and workgroups and to monitor message


ows.

The Java client applets are �rst transferred to the client by the HTTP server

using a web page and then contact the object server through IIOP, the Internet

Inter-ORB Protocol. The client applets run in Netscape or HotJava and contain

the CORBA client communications software as well as the client application code.

The object server can reside on a di�erent machine than the Web server and is

running an IIOP gatekeeper, for instance on tcp port 15000, that is part of the

ORB. All further communication is done through this gatekeeper.

Discussion During the development of a simple workgroup application using

CORBA, we experienced a number of limitations inherent to the CORBA archi-

tecture.

The most important problem we faced was the distinction between clients and

servers, where distributed objects can only reside on a server. If a client wants to

make its objects available to other programs, it should be con�gured as a server

as well, with an ORB running on the same host. This causes problems regarding

overhead and licensing and is not a feasible situation for the distribution of (Java)

clients over the Internet. The same architecture limitation prevents servers from

notifying clients using callbacks. This feature makes it impossible for clients to

pass distributed object references back to the server, forcing them to work with

other identi�cation mechanisms such as object IDs or human-readable strings.

Other minor problems we observed concern the lack of support for existing

non-CORBA objects in a distributed environment. Possible solutions are con-

verting existing classes to CORBA and making their interface available through

IDL, or to write CORBA object wrappers around these objects.

Finally, not all parts of a CORBA system are compatible among ORBs at the

source-code level. This problem should, however, be alleviated with the Portable

Object Adapter (POA).
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6.5 Crush – extending hush with CORBA

This section describes how the hush toolkit has been extended with CORBA

functionality. The nickname for this e�ort was crush. The major problem that

arises when extending a given toolkit or framework, such as hush, with CORBA

IDL interfaces and classes to implement these interfaces is to provide for a seamless

integration of the already existing code with the CORBA-based extensions. In

crush we have included facilities for object creation and access, as well as client-

side adaptors for the hush CORBA objects, to resolve the type clash between the

original hush class hierarchy and the hush CORBA object classes.

Extending a framework with CORBA

� the legacy problem { granularity of wrappers

� object creation and access { factories and tables

� client-side adaptors { to �t within native type system

� events versus objects { natural interfaces

6-13

Slide 6-13: Extending a framework with CORBA

Extending a given framework with CORBA is not as straightforward as it may

seem. First of all, one has to decide which interfaces may become public, that

is may be exported as IDL interfaces. Secondly, one has to decide how object

references become known to clients, and what rights clients have to create objects

within a particular server. The most important problem, however, concerns the

type clash between the CORBA classes implementing the IDL interfaces and the

`native' class hierarchy o�ered by the framework itself.

The legacy problem { integrating CORBACORBA technology is well suited

to develop distributed applications. For new projects, the restrictions imposed by

CORBA can be taken into consideration from the start. For projects that carry

the legacy of existing code, a decision must be made to what extent the CORBA

functionality is integrated with the legacy code. On one side of the spectrum,

CORBA technology can be used simply for wrapping the legacy code. For example

a database may be embedded in a CORBA server, without a�ecting the database

itself. However, for an object-oriented framework such as hush such a solution is

not very satisfying. Instead, one would like to have the basic interfaces of hush

available to develop distributed components of arbitrary granularity.

Object creation and access The CORBA Naming Service may be used to

provide access to an object residing somewhere on a server. Alternatively, the

server may export a reference to a factory object that allows the client to create

objects within the server.

For giving access to objects within a particular hush component, we have pro-

vided dots (distributed object tables) for both hush and the widgets components.
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Using the dot the client can access an object of a given type by the name it is

given by the server. The object must already exist in the server.

In case clients are allowed to create objects within the server, a factory is

provided for creating hush or widget objects.

Client-side adaptors The intermediary between clients and servers in a CORBA-

based system are the CORBA IDL classes generated by the idl compiler from

the IDL interfaces. These classes (using the C

++

language binding) inherit

directly from the CORBA::Object class and hence do not �t within the given

class hierarchy.

To allow clients the use of CORBA IDL classes wherever one of the original

hush classes is expected, client-side adaptors have been provided for each of the

hush or widgets IDL classes. An additional advantage of client-side adaptors is

that they allow for overcoming the `weaknesses' of IDL with respect to overloading

member functions, parametrized types and operator de�nitions.

Typically, client-side adaptors have their corresponding hush class as a base

class and simply delegate method invocations to the CORBA object they encap-

sulate.

Events versus object method invocation Since GUI components are in some

way typically event-driven, one may be inclined to limit the communication

between such components to exchanging events. The CORBA Event Service

would su�ce for such communications.

Nevertheless, in our opinion events should be used in a very restricted manner.

Events tend to break the `crisp' object interfaces that are one of the bene�ts of

an object-oriented approach to design.

For the hush CORBA extensions, we have chosen for retaining the original

hush object interfaces. Note however that the IDL interfaces are somewhat more

abstract than the corresponding C

++

interfaces. Nevertheless, the event interface

is part of the hush module. Together with the dispatch function of the handler

interface incoming events resulting from user actions may be dispatched directly

to remote components.

Interfaces

The IDL interfaces re
ect to a large extent the functionality of the original hush

and widgets interfaces. In this section a partial listing of the interfaces will be

given. In comparison with the corresponding C

++

/Java classes, the IDL interfaces

are much more abstract in the sense that many member functions required for

the actual implementation of the hush framework may be omitted.

The hush module

The hush module contains interfaces corresponding to the basic hush classes,

handler, event, kit, widget and item, as well as the auxiliary classes for iterators

and containers.
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interface handler f handler

event dispatch( in event data );

g;

The handler interface provides only a method for dispatching events. It may

be extended in the future though. In hush almost every class is derived from

handler. This is directly re
ected in the hush IDL interfaces.

interface event : handler f event

attribute long type;

attribute long x;

attribute long y;

g;

The event interface o�ers attributes to determine the type of event and its

location. Also the event interface will very likely be extended in the future, to

allow for a greater variety of events.

interface kit : handler f kit

void source(in string file);

void eval(in string command);

string result();

widget root();

g;

In hush, a kit provides an interface to some embedded interpreter, such as

a Tcl interpreter or a logic engine. The kit also gives access to the underlying

window environment; in particular it may be asked to provide a reference to the

root window.

interface widget : handler f widget

string path();

void eval( in string cmd );

void configure( in string options );

void pack( in string options );

g;

A widget is a user interface gadget. The widget interface collects the functions

that all these gadgets have in common.
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interface item : handler f item

void move( in long x, in long y );

g;

An item is obtained when creating a graphical object for a canvas. Subse-

quently, the item reference su�ces to manipulate such objects. Also the item

interface will very likely be extended in the future.

Iterators and lists As an alternative for CORBA arrays and sequences, the hush

module o�ers interfaces for iterators and containers.

interface iterator f iterator

Object next();

g;

From a client's perspective, an iterator is a data generator. To deal with

typed iterators, the hush C

++

library o�ers template client-side adaptor classes

encapsulating the untyped CORBA iterators.

interface container f container

long length();

Object first();

Object next();

Object current();

iterator walk();

g;

The container interface o�ers access to the hush list class. It o�ers functions

for cursor-based list traversal as well as the walk function that may be used to

obtain an iterator.

Factories and distributed object tables To obtain references to objects,

clients may use either factory object or distributed object tables.

interface factory f factory

hush::kit kit(in string name);

hush::event event(in long type);

g;

The factory interface allows only for creating a kit and for creating an event.

Note that handler objects may not be created directly.
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interface dot f dot

hush::kit kit(in string name);

hush::container container(in string name);

hush::iterator iterator(in string name);

hush::factory hush(in string name);

g;

Apart from giving access to a hush factory, the dot interface allows for getting

access to a kit, a container and an iterator. When obtaining references through a

dot object, these objects are assumed to exist within the server.

The widgets module

The widgets module provides the actual user interface gadgets for hush. Below

we have included only the (partial) interfaces for a canvas and a message widget.

module widgets f

interface canvas : hush::widget f canvas

canvas create( in hush::widget anc, in string path );

hush::item circle( in long x, in long y, in long radius, in

string options );

// other items ...

g;

interface message : hush::widget f message

message create( in hush::widget anc, in string path );

void text(in string txt);

g;

interface factory : hush::factory f factory

widgets::canvas canvas(in string name, in string options);

widgets::message message(in string name, in string options);

g;

interface dot : hush::dot f dot

widgets::canvas canvas(in string name);

widgets::message message(in string name);
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widgets::factory widgets(in string name);

g;

g;

Note that each widget type has a method create, with which an actual widget

of that type can be created. In e�ect this means that each widget object may act as

a factory for widget objects of that type. (The server may however refuse to create

such objects!) In addition to the speci�c gadget interfaces, the widgets module

provides a factory and dot interface, extending the respective hush interfaces.

Examples

The hush CORBA extensions may be used in a number of ways. For example,

the client does not need to be linked with hush when only the server side is

given a graphical user interface. In the case that also the client has a graphical

user interface, the client side may dispatch incoming events to the server, as

illustrated in the canvas example. The communication between server and clients

can be arbitrarily complex. The �nal example shows how to employ iterators and

containers to give clients accesses to collections of information.

A remote interpreter kit

This example uses a remote kit. It shows how to get access to a message widget

and a kit via a dot (which is a distributed object table). The client access the kit

and the message widget by using a name (hello for the message widget and tk for

the kit). The client can send Tcl/Tk interpreter commands to the kit.

client

hush::dot* hush; // (distributed) object tables

widgets::dot* widgets; // widgets contains hush

hush::kit* tk; // remote kit object

widgets::message* banner;

try f

hush = widgets = widgets::dot:: bind (SERVER, argv[1]);

tk = hush->kit("tk");

banner = widgets->message("hello"); // must exist

g catch (...) f

cerr << "Unexpected exception ..." << endl;

return -1;

g

while (1) f
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char text = readtext(); // from stdin

banner->text( text ); // display text

tk->eval(text);

g

This fragment shows how a distributed object table is obtained via the bind

function. From this table, the client obtains a kit and a message area. Queries

are read in from standard input, displayed in the message area and evaluated.

Queries may be arbitrary Tcl/Tk commands. In this way the client may even

construct a complete user interface through Tk commands.

server

class application : public session f

public:

application(int argc, char* argv[]) : session(argc,argv,"hello") f

g

void corba();

int main() f

tk->trace();

kit::declare("tk",tk);

message* m = new hello(".hello");

m->pack();

message::declare("hello",m);

corba(); // make yourself available as a server

return OK;

g

g;

The server is realized as a standard hush program, except for the call to corba

(for which the code is given below). Note that the calls to declare for both the kit

and message objects is needed to make these objects accessible via the dot.

void application::corba() f

widgets::dot* dw = new widgets dot srv(); // create dot for widgets

try f

CORBA::Orbix.registerIOCallback(it orbix fd open, FD OPEN CALLBACK);

CORBA::Orbix.registerIOCallback(it orbix fd close, FD CLOSE CALLBACK);

CORBA::Orbix.impl is ready(SERVER,0);

CORBA::Orbix.processEvents(0);

g
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catch (...) f

cout << "apparently something went wrong" << endl;

g

In application::corba() a distributed object table is created. This object is

exported as a server by a call to Orbix.impl is ready(SERVER,0), where SERVER

is a macro de�ning the name of the server. Calling registerIOCallback is needed

to merge the (Orbix) CORBA server event loop with the window event loop for

hush.

Evaluating logical queries

With a few minor changes, the client program can be adapted for accessing a

logical query evaluator.

client

try f

tk = hush->kit("bp"); // A kit for BinProlog

tk->eval("consult(facts)");

g

catch(...) f

cout << "An exception ... " << endl;

g

while (1) f

char* text = readtext();

tk->eval(text);

char* q = 0;

while ( (q = tk->result()) )

cout << "Result: " << q << endl;

g

This fragment show how to obtain a kit for BinProlog and consult a facts

database. Since queries may produce multiple answers the client must iterate

over the term resulting from the query.

A remote canvas

This example shows how a client canvas can be used to draw on a remote canvas.

class draw clt : public canvas f draw clt

public:

void plug(widgets::canvas* x) f draw = x; g

int operator()() f

hush::event* e = hush->event( event->type());
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cerr << "Getting event " << e->type() << endl;

e->x( event->x()+10);

e->y( event->y()+10);

hush::event:: duplicate(e); // CORBA 2.0

hush::event* res = draw->dispatch(e);

return canvas::operator()();

g

draw clt(const widget* w, char* path ) : canvas(w,path) f

configure("-background white");

geometry(200,100);

self()->bind(this);

dragging = 0;

g

draw clt(char* path ) : canvas(path) f

configure("-background white");

geometry(200,100);

self()->bind(this);

dragging = 0;

g

void press( event& ) f dragging = 1; g

void motion( event& e) f

if (dragging) f

self()->circle(e.x(),e.y(),2,"-fill black");

draw->circle(e.x(),e.y(),3,"-fill yellow");

g

g

void release( event& ) f dragging = 0; g

protected:

int dragging;

widgets::canvas* draw;

g;

This fragment shows the implementation of a canvas which is simultaneously

the client side of a remote canvas. The method plug allows for declaring the remote

canvas, which is accessed via the instance variable draw in both the operator

method and themotionmethod (when dragging). In the operatormethod an event

is created which is dispatched to the remote canvas. Note that this is possible

since a canvas is a handler. In the motion method, a large yellow dot is drawn on

the remote canvas, whereas the local canvas draws a black dot. Combined, the

actions on the remote canvas result in drawing parallel yellow and black dots.

class draw srv : public canvas f draw srv

public:
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draw srv( const widget* w, char* path ) : canvas(w,path) f

geometry(200,100);

self()->bind(this);

dragging = 0;

g

void press( event& ) f dragging = 1; g

void motion( event& e) f

if (dragging) circle(e.x(),e.y(),10,"-fill black");

g

void release( event& ) f dragging = 0; g

protected:

int dragging;

g;

The canvas implementation on the server side straightforwardly implements

a hush canvas. It is embedded in a CORBA server when an object reference is

given to it via the distributed object table.

Moving items

This example is similar to the canvas example, but shows some additional features,

such as how to manipulate a list of items.

server

list<hush::item>* rlist = new list<hush::item>;

item* it = draw->circle(40,40,10,"-fill yellow");

hush::item* rit = new item srv(it);

rlist->insert(rit);

it = draw->circle(30,30,10,"-fill red");

rit = new item srv(it);

rlist->insert(rit);

hush::container* rx = new list srv<hush::item>(rlist);

list<hush::item>::declare("items",rx); // store server

iter<hush::item>* riter = rlist->walk();

iter<hush::item>::declare("riter",riter);

The fragment above illustrates the creation of a list of items. In addition it

shows how to obtain an iterator and how the iterator may be declared to make it

accessible via the distributed object table.
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Discussion From a design point of view, the hush framework proved to be

su�ciently abstract to allow for recapturing its design by means of IDL interfaces.

Lacking in the current realization of crush though, are proper exceptions to

indicate possible error conditions.

This work shows how to integrate CORBA functionality with an already

existing framework. In particular the need for client-side adaptors for resolving

the type clash between the `native' classes and the CORBA IDL classes has

been amply demonstrated. Enriching hush with CORBA makes crush a potential

competitor of Fresco, the CORBA based GUI toolkit derived from the Interviews

library.

Summary

This chapter has given an overview of component technology. It discussed stan-

dards for interoperability, including (D)COM, CORBA and Java. It gave an ex-

ample application using both Java and CORBA, and discussed the issues involved

in extending an existing library with CORBA.

Objects versus components 1

� de�nitions { components

� the technology matrix

� component myths { (r)evolution

6-14

Slide 6-14: Section 6.1: Objects versus components

In section 1, we looked at some de�nitions of components to clarify how

component technology di�ers from object technology. A brief overview of existing

technology was given and an attempt was made to demystify component-based

development.

Standards for interoperability 2

� Microsoft COM

� OMG CORBA

� ODMG persistency

6-15

Slide 6-15: Section 6.2: Standards for interoperability

In section 2 we looked in somewhat more detail at component technologies

that, each in their own way, set a standard for interoperability.

In section 3, we discussed the Java platform from a variety of perspectives, as
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The Java platform 3

� a matter of perspectives

6-16

Slide 6-16: Section 6.3: The Java platform

listed in slide 6-16. We weighted the pros and cons of Java from each of these

perspectives, and concluded that Java is a promising platform.

An Internet-based workgroup application 4

� agent, workgroup, agenda, appointment

� CORBA server, Java applets

6-17

Slide 6-17: Section 6.4: An Internet-based workgroup application

In section 4, we looked at the outline of a simple workgroup application, that

allows for creating appointments mediated by agents that act as a representative

of a user. The workgroup illustrates the use of Java applets and CORBA servers.

Crush { extending hush with CORBA 5

� factories { (distributed) object tables

� server wrappers { remote objects

� client-side adaptors { transparent typing

6-18

Slide 6-18: Section 6.5: Crush { extending hush with CORBA

Finally, in section 5, we discussed the issues involved in extending a framework

such as hush with CORBA. Apart from the de�nition of interfaces and server

wrappers, we de�ned client-side adaptors to attain a transparent integration of

CORBA object handles and the types native to the framework.

Questions

1. Give a de�nition of the notion of components. How is this related to a

de�nition of objects? Explain the di�erence between these de�nitions.

2. What actual component technologies can you think of? How would you

compare them?

3. Describe Microsoft (D)COM, OMG CORBA, ODMG Persistent Objects. Is

there any relation between these standards?
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4. Discuss the Java platform. What perspectives can you think of? Discuss

pros and cons.

5. Describe the architecture of an Internet-based workgroup application. What

technology would you use?

6. What issues may arise in extending a given library or framework with

CORBA? Can you think of any solutions?

Further reading

I recommend Szyperski (1997), both as an introduction to component-technology,

and as a reference for more advanced readers. For an introduction to CORBA,

you may read Siegel (1996). A readable account of the ODMG standard is given

in Cattell (1994). For more information on Java, again, visit . For information on

(D)COM, look at www.microsoft.com/com. Learning how to program CORBA

applications is probably best learned from the manuals that come with your

CORBA distribution. For an evaluation of object store management and naming

schemes see Chennupati and Saiedian (1997).
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To get an overall idea of the structure of a software system is intrinsically di�cult.

The notion of architecture has proven to be a powerful metaphor for describing

the structure of a system, that is the components and their interrelations, in a

su�ciently abstract way.

Software architecture 7

� architecture { components and boundaries

� case study { a framework for multimedia feature detection

� native objects { the language boundary

� embedded logic { the paradigm boundary

� architectural styles { distributed object technology

� cross-platform development { Unix versus Windows

Additional keywords and phrases: components, information architecture,

multimedia information retrieval, feature detection, portability

7-1

Slide 7-1: Software architecture

In this chapter we will explore the notion of software architecture. We will �rst

look at some de�nitions. As a preliminary to some technical explorations that

illustrate a variety of ways to couple heterogeneous components, we will look at a

case study involving a framework for multimedia feature detection, which is to be

205
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used for the indexing and retrieval of multimedia objects on the Web. In particular

we will look at how to deploy embedded logic for managing meta-information and

knowledge, and how to de�ne corresponding collections of objects across language

boundaries. As an example, we will discuss the Java and C

++

coupling in hush

in some detail. Finally, we will discuss some architectural patterns and styles, as

well as some solutions for cross-platform development.

7.1 Elements of architecture

Software architecture has become an area of research in its own right. The seminal

work of Shaw and Gorlan (1996) introduced the notion of software architecture

as a means to describe how the various elements of a software system interact to

achieve some computational goal. For example, at a high level we can distinguish

between a pipe-lined architecture, common to many compilers, and event-driven

computation, as it occurs for example in GUI-based systems.

Elements of architecture Perry and Wolf (1992)

� processing elements { transformation on data

� data elements { contain information

� connections { glue that holds elements together

Models and views Kruchten (1995)

� logical { functional requirements

� process { performance, availability, distribution

� physical { scalability, con�guration

� development { organization of software modules

� scenarios { instances of use cases

De�nitions

� http://www.sei.cmu.edu/architecture/de�nitions.html

7-2

Slide 7-2: Elements of architecture { models and views

In the de�nition given in Perry and Wolf (1992), a software architecture is

described as consisting of processing elements, which operate on data, and data

elements, which somehow contain the information being processed. In addition

there are connection elements that glue the processing and data elements together.

Such an abstract view allows for describing a software system at a high level of

abstraction and to indicate choice points and alternatives.

A later de�nition, given in Kruchten (1995), makes a distinction between the

levels of abstraction, or points of view, from which a description of a system is

possible. It distinguishes between a logical view, which captures the functional

requirements, a process view, which indicates non-functional aspects such as per-
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formance, availability and distribution, a physical view, which deals with issues

such as scalability and con�guration, and a development view, which describes the

organization of the software modules. In addition, Kruchten (1995) distinguishes

a scenario view, which may be used for formulating tests based on properly

instantiated use cases. The scenario view may be regarded as orthogonal to

the logical, process, physical and development models since it does not a�ect the

structure of the system itself, but rather the way the structure is validated against

proper usage tests.

An exhaustive list of de�nitions of the notion of software architecture is given

at the Web site of the Software Engineering Institute (SEI), of which the url is

given in slide 7-2.

At the time of writing, the most comprehensive book concerning software

architectures is Bass et al. (1998). As a de�nition it proposes:

The software architecture of a program or computing system is the

structure of the system, which comprises software components, the

externally visible properties of those components, and their interrela-

tionships.

Note the stress on externally visible properties here. It is meant to express that

both components and their relations must be described at a suitable level of

abstraction. Also note that the phrase relationships between components may

cover quite a lot. For example, when considering the architecture of a Web

application, issues such as communication protocols and document standards

must be considered as well. In addition, the technological infrastructure, elements

of which are given in slide 7-3, must also be taken into account.

Technological infrastructure Shimberg and Barnes (1997)

� client-platform { hardware, OS

� presentation services { windows, multimedia

� application software { code, business logic

� network { communication support

� middleware { distribution, (object) brokers

� server platform { hardware, OS

� database { data management system

7-3

Slide 7-3: Technological infrastucture

One may wonder whether the architecture metaphor, which is derived from

the construction of buildings, is really appropriate for software systems. Software

systems are much more dynamic than buildings, so it might perhaps be more ap-

propriate to focus on dynamic, behavioral aspects rather than structural aspects.

As a metaphor, I would prefer for example one related to an ecological system,
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to stress the dynamic growth that seems to be characteristic of software systems

nowadays.

In the de�nition or rather collection of de�nitions, given by the IEEE Architec-

ture Working Group, for the terms architect, architectural description, stakeholder

and viewpoint, utmost care is taken to suppress the phrase structure. Instead, the

notion of architecting is de�ned as de�ning, maintaining, improving and certifying

proper implementation of an architecture, and an architecture as a collection of

views relevant to the stakeholders of a system.

Distributed object architectures When considering the architecture of a

system, invariably the technological infrastructure plays a role. In particular,

when considering client/server or distributed object systems the choice for re-

spectively a particular client and server platform, middleware and communication

infrastructure may to a large extent determine the characteristics of the software

architecture.

Explicit attention for the architecture of a system becomes increasingly rele-

vant as the complexity of the system grows. As argued in Mowbray and Malveau

(1997), an architecture is an abstraction that allows for mastering complexity and

managing change.

Distributed object patterns Mowbray and Malveau (1997)

� Framework (class hierarchies)

� Applications (wrappers)

� System (horizontal, vertical, metadata)

� Enterprise (reference models, infrastructure, policies)

� Intra/Internet (standards)

7-4

Slide 7-4: Distributed object patterns

Mowbray and Malveau (1997) present a number of patterns based on the

Common Object Request Broker Architecture (CORBA). The patterns di�er in

scale, ranging from frameworks and systems to enterprise-level and intra/Internet-

level infrastructures. According to Mowbray and Malveau (1997), software prob-

lems are due to inadequate de�nition and transfer of software boundaries. They

criticize traditional object-oriented analysis and design methods for not paying

su�cient attention to the actual interfaces that de�ne these boundaries which may

be regarded as a contract between the supplier of a service and its clients. At

the higher enterprise and intra/internet levels, policies and standards are perhaps

more important than interfaces per se. However, at the framework and system

level interface de�nitions delineate stable boundaries between the components

that constitute the system.

In business applications a distinction can be made between horizontal compo-

nents (covering general functionality, such as GUI-aspects and document inter-
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operability), vertical components (covering domain-speci�c functionality for one

area of business, such as �nance), and meta-data, representing the more volatile,

knowledge-level aspects of a system. Mowbray and Malveau (1997) observe that

each of these component types may cover one third of a system. When to consider

information or a service as part of the meta-data must be determined by the

extent to which that particular information or service may be considered stable.

Architectural decisions must strive for an ecology of change, that is a 
exible

arrangement of components to promote changes in business-logic and adaptiveness

to a changing environment.

7.2 Case study – multimedia feature detection

In this section, we will look at the indexing and retrieval of musical fragments.

This study is primarily aimed at establishing the architectural requirements for the

detection of musical features and to indicate directions for exploring the inherently

di�cult problem of �nding proper discriminating features and similarity measures

in the musical domain. In this study we have limited ourselves to the analysis of

music encoded in MIDI, to avoid the technical di�culties involved in extracting

basic musical properties from raw sound material. Currently we have a simple

running prototype for extracting higher level features from MIDI �les. In our

approach to musical feature detection, we extended the basic grammar-based

ACOI framework with an embedded logic component to facilitate the formulation

of predicates and constraints over the musical structure obtained from the input.

The ACOI framework

The ACOI framework is intended to accomodate a broad spectrum of classi�cation

schemes, manual as well as (semi) automatic, for the indexing and retrieval of

multimedia objects, Kersten et al. (1998).

What are stored are not the actual multimedia objects themselves, but struc-

tural descriptions of these objects (including their location) that may be used for

retrieval.

The ACOI model is based on the assumption that indexing an arbitrary

multimedia object is equivalent to deriving a grammatical structure that provides

a namespace to reason about the object and to access its components. However,

there is an important di�erence with ordinary parsing in that the lexical and gram-

matical items corresponding to the components of the multimedia object must be

created dynamically by inspecting the actual object. Moreover, in general, there

is not a �xed sequence of lexicals as in the case of natural or formal languages.

To allow for the dynamic creation of lexical and grammatical items the ACOI

framework supports both black-box and white-box (feature) detectors. Black-box

detectors are algorithms, usually developed by a specialist in the media domain,

that extract properties from the media object by some form of analysis. White-box

detectors, on the other hand, are created by de�ning logical or mathematical
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Slide 7-5: The extended ACOI architecture

expressions over the grammar itself. In this paper we will focus on black-box

detectors only.

As an example, look at the (simple) feature grammar below, specifying the

structure of a hypothetical community.

detector world; �nds the name of the world

detector people; checks name, eliminates institutes

detector company; looks if there are at least two persons

atom str name;

community: world people company;

world: name;

people: person*;

person: name;

A community consists of people, and is a community only if it allows for the

people to be in each other's company.

A community has a name. The actual purpose of this grammar is to select

the persons that belong to a particular community from the input, which consists
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of names of potential community members. Note that the grammar speci�es

three detectors. These detectors correspond to functions that are invoked when

expanding the corresponding non-terminal in the grammar. An example of a

detector function is the personDetector function partially speci�ed below.

int personDetector(tree *pt, list *tks )f

...

q = query query("kit=pl src=check.pl");

while (t = next token(tks)) f

sprintf(buf,"person(

sigma )",t);

query eval(q,buf);

if (query result(q,0)) // put name(person) on tokenstream

putAtom(tks,"name",t);

g

...

g

The personDetector function checks for each token on the input tokenstream

tks as to whether the token corresponds to the name of a person belonging to

the community. The check is performed by an embedded logic component that

contains the information needed to establish whether a person is a member of the

community. Note that the query for a single token may result in adding multiple

names to the token stream.

The companyDetector di�ers from the personDetector in that it needs to

inspect the complete parse tree to see whether the (implicit) company predicate

is satis�ed.

When parsing succeeds and the company predicate is satis�ed a given input

may result in a sequence of updates of the underlying database, as illustrated

below.

V0 := newoid();

V1 := newoid();

community world.insert(oid(V0),oid(V1));

world name.insert(oid(V1),"casa");

community people.insert(oid(V0),oid(V1));

V2 := newoid();

people person.insert(oid(V1),oid(V2));

person name.insert(oid(V2),"alice");

people person.insert(oid(V1),oid(V2));

person name.insert(oid(V2),"sebastiaan");

...

Evidently, the updates correspond to assigning appropriate values to the at-

tributes of a structured object, re
ecting the properties of the given community.
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The overall architecture of the ACOI framework is depicted in slide 7-5. Taking

a feature grammar speci�cation, such as the simple community grammar, as a

point of reference, we see that it is related to an actual feature detector (possibly

containing an embedded logic component) that is invoked by the Feature Detector

Engine (FDE) when an appropriate media object is presented for indexing. The

feature grammar and its associated detector further result in updating respectively

the data schemas and the actual information stored in the (Monet) database. The

Monet database, which underlies the ACOI framework, is a customizable, high-

performance, main-memory database developed at the CWI and the University

of Amsterdam, see Boncz and Kersten (1995).

At the user end, a feature grammar is related to a View, Query and Report

component, that respectively allow for inspecting a feature grammar, expressing

a query, and delivering a response to a query. Some examples of these compo-

nents are currently implemented as applets in Java 1.1 with Swing, as described

in Kersten et al. (1998).

Formal speci�cation Formally, a feature grammar G may be de�ned as G =

(V ;T ;P ;S ), where V is a collection of variables or non-terminals, T a collection

of terminals, P a collection of productions of the form V ! (V [ T ) and S a

start symbol. A token sequence ts belongs to the language L(G) if S

�

�! ts .

Sentential token sequences, those belonging to L(G) or its sublanguages L(G

v

) =

(V

v

;T

v

;P

v

; v) for v 2 (T [ V ), correspond to a complex object C

v

, which is

the object corresponding to the parse tree for v, as illustrated in the community

example. The parse tree de�nes a hierarchical structure that may be used to

access and manipulate the components of the multimedia object subjected to the

detector.

The anatomy of a MIDI feature detector

Automatic indexing for musical data is an inherently di�cult problem. Existing

systems rely on hand-crafted solutions, geared towards a particular group of users,

such as for example composers of �lm music, see Subrahmanian (1998). In this

section, we will look at a simple feature detector for MIDI-encoded musical data.

It provides a skeleton for future experimentation.

The hierarchical information structure that we consider is depicted in slide

7-6. It contains only a limited number of basic properties and must be extended

with information along the lines of a musical ontology including genre, mood and

the like. However, the detector presented here provides a skeleton solution that

accommodates an extension with arbitrary predicates over the musical structure

in a transparent manner.

The grammar given below corresponds in an obvious way with the structure

depicted in slide 7-6.

detector song; to get the �lename

detector lyrics; extracts lyrics
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song

composer melody lyrics score

file

kortjakje.midkortjakje.gif"anonymous" note note phrase phrase

Slide 7-6: MIDI features

detector melody; extracts melody

atom str name;

atom str text;

atom str note;

song: file lyrics melody;

file: name;

lyrics: text*;

melody: note*;

The start symbol is a song. The detector that is associated with song reads

in a MIDI �le. The musical information contained in the MIDI �le is then stored

a a collection of Prolog facts. This translation is very direct. In e�ect the MIDI

�le header information is stored, and events are recorded as facts, as illustrated

below for a note on and note o� event.

event('kortjakje',2,time=384, note on:[chan=2,pitch=72,vol=111]).

event('kortjakje',2,time=768, note off:[chan=2,pitch=72,vol=100]).

After translating the MIDI �le into a Prolog format, the other detectors will

be invoked, that is the composer, lyrics and melody detector, to extract the

information related to these properties.

The actual processing is depicted in slide 7-7. The input is a MIDI �le. As

indicated in the top line, the MIDI �le itself may be generated from a lilypond

�le. Lilypond is a L

A

T

E

X-like formatting language for musical scores that also

supports the generation of MIDI, described in Lilypond (1999). As indicated on

the bottom line, processing a MIDI �le results in a collection of features as well

as in a MIDI �le and lilypond �le. The (result) MIDI �le contains an extract

of the original (input) MIDI �le and the lilypond �le contains a score for this

extract, which may be presented to the (end) user as the result of a query. This
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midi

Prolog facts

midi lilypondfeatures

Original:

Representation:

Processed:

lilypond

Slide 7-7: Processing MIDI �le

setup allows us to verify whether our extract or abstraction of the original musical

structure is e�ective, simply by comparing the input (midi or lilypond) musical

structure with the output (midi or lilypond) extract.

To extract relevant fragments of the melody we use the melody detector, of

which a partial listing is given below.

int melodyDetector(tree *pt, list *tks )f

char buf[1024]; char* result;

void* q = query;

int idq = 0;

idq = query eval(q,"X:melody(X)");

while (( result = query result(q,idq)) ) f

printf("note:

sigma ", result);

putAtom(tks,"note", result);

g

return SUCCESS;

g

The embedded logic component is given the query X:melody(X), which results

in the notes that constitute the (relevant fragment of the) melody. These notes

are then added to the tokenstream. A similar detector is available for the lyrics.

Parsing a given MIDI �le, for example kortjakje.mid, results in updating the

Monet database.

The updates re
ect the structure of the musical information object that cor-

responds to the properties de�ned in the grammar.

Implementation status Currently, we have a running prototype of the MIDI

feature detector. It uses an adapted version of public domain MIDI processing

software. The embedded logic component is part of the hush framework. It uses

an object extension of Prolog that allows for the de�nition of native objects to

interface with the midi processing software. The logic component allows for the

de�nition of arbitrary predicates to extract the musical information, such as the

melody and the lyrics.
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Queries – the user interface

Assuming that we have an adequate solution for indexing musical data, we need

to de�ne how end users may access these data, that is search for musical objects

in the information space represented by the database, for the ACOI project the

World Wide Web.

Slide 7-8: Keyboard interface

For a limited category of users, those with some musical skills, a direct interface

such as a keyboard or a score editor, as provided by the hush framework, might

provide a suitable interface for querying the musical database. Yet, for many

others, a textual description, or a form-based query will be more appropriate.

partial melody features

keyboard score text

thumbnail midi matches

Input:

Representation:

Output:

Slide 7-9: User Query Processing

In processing a query, we may in some cases derive a partial melody or

rhythmic structure from the query, as well as some additional features or criteria.

As explained, the output of indexing MIDI �les consists of both information

concerning features as well as a musical rendering of some of these features. These
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features can be used to match against the criteria formulated in the query. The

musical renderings, which include a partial score, may be presented to the user

in response to a query, to establish whether the result is acceptable.

7.3 Crossing boundaries

It is futile to hope for a single language or paradigm to solve all problems.

Therefore, as our small case study concerning multimedia feature extraction

indicates, components may di�er in how they are realized. Some components are

better implemented using knowledge-based systems technology, whereas other

components require the use of a systems programming language such as C

++

.

Even within components it may be necessary to transgress the language boundary.

For example in Java applications, wrapping legacy applications or operating

system-dependent code is usually done using the native language interface.

In this section we will look at some studies (executed within the hush frame-

work) that exemplify a multi-paradigm and multi-lingual approach. We will �rst

look at the issues that arise when embedding a logic (that is Prolog) interpreter.

Then we will extend the embedded logic with objects that may correspond to

(native) objects in the host language, that is C

++

. These sections may safely be

skipped by readers not interested in logic programming. Finally, we will look at

how to realize corresponding collections of objects in (native) C

++

and Java.

7.3.1 Embedded logic – crossing the paradigm boundary

Knowledge is a substantial ingredient in many applications. By knowledge we

mean information and rules operating on that information, to obtain derived in-

formation. As in any (software) engineering e�ort, maintenance, that is knowledge

maintenance, is of crucial importance. When we do not avoid the dispersion of

knowledge and information in the actual code of the system, maintenance will

be di�cult. Put di�erently, for reasons of 
exibility and maintenance we need to

factor out the (volatile) knowledge and information components.

Traditionally, the information components are often taken care of by a database

that allows for the formulation of views to obtain (possibly aggregate) information.

Logic or logic programming is a strictly more powerful mechanism to deal with

information and knowledge. In our group, we have been studying the use of logic

programming in knowledge-intensive software engineering applications.

embedded logic

<query kit=pl src=local.pl cmd=X:email address(X)>

<param format="

sigma ">

<param result="">

<param display="<h4>The query</h4>">

<param header="<h4>The adresses</h4> <ul>">

<param footer="</ul>">
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email address(E) :-

person(X),

property(X,name:N),

property(X,familyname:F),

email(X,E),

cout(['<li>', N,' ',F,' has email adress ']),

cout([ '<a href=mailto:', E, '>', E, '</a>',nl]).

</query>

As an example, consider the query above, which is expressed in an SGML/XML

like syntax. The query command X:email address(X) asks for all X for which

the predicate email address(X) holds. The predicate email address is de�ned

between the query begin and end tags.

The query tag is an element of one of the text processing �lters to provide hy-

permedia support for software engineering described in Eli�ens (1998). Processing

the fragment above results in an HTML list of names and email addresses. The

collection of �lters itself is written in lex, yacc and C

++

. To process the query, an

embedded logic programming interpreter is invoked. To merge the output from

the query, a handler is installed for the cout command.

The query example was motivated by the need to maintain Web pages for

the administration of a colloquium within our group. The actual knowledge base

consists of a list of people and some rules to determine their a�liations and email

addresses. The knowledge base is made available by consulting the �le local.pl.

As concerns the implementation, the Java fragment below indicates how to

access the logic programming interpreter from a (Java) program.

query pl = new query("kit=pl src=remote.pl"); logic.java

pl.eval("X:assistant(X)");

String res = null;

while ( (res = pl.result()) != null ) f

System.out.println("<li> " + res);

g

After creating a query object, the goal X:assistant(X) is invoked, which can be

taken to mean, give me every X for which the predicate assistant(X) holds. The

�nal output is obtained by iterating over the results of the evaluation of that goal.

As a comment, multiple results may be obtained in Prolog by backtracking over

the possible choice points.

Distributed knowledge servers

Maintaining knowledge is di�cult. As a rule of thumb, avoid the replication of

knowledge as much as possible. However, this means that we may need to access

knowledge from remote sources. One (obvious) solution that presents itself is to

allow for url-enabled consults, as illustrated in the fragment below.
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remote.pl

:- source('http://www.cs.vu.nl/�eliens/db/se/people.pl').

:- source('http://www.cs.vu.nl/�eliens/db/se/institute.pl').

:- source('http://www.cs.vu.nl/�eliens/db/se/property.pl').

:- source('http://www.cs.vu.nl/�eliens/db/se/query.pl').

This solution has (indeed) be implemented in our �lters, since the url addressing

scheme is straightforward and easy to implement.

However, processing the information accessed by url is still done locally. So,

the next step that may be suggested is to distribute the knowledge processing

itself, for example by using CORBA.

interface query f query.idl

void source(in string file);

long eval(in string cmd);

string result(in long id);

oneway void halt();

g;

Exploiting the integration of CORBA and hush, we have de�ned an interface

for query in IDL and implemented query client and query server objects. These

objects may be created by giving appropriate parameters to the query constructor

invocation. This approach allows for embedding remote knowledge processing

transparently in our collection of �lters. Nevertheless, although we showed that

this approach is feasible, we have not addressed the problems that may occur due

to the unavailability or faults of the server.

7.3.2 Native objects – crossing the language boundary

Embedding (script) language interpreters is becoming standard practice, as testi-

�ed by the existence of embeddable interpreters for Tcl, Perl, Python, Javascript,

Java, and Prolog. Each of these languages also supports calling native code, that

is code written in C or C

++

, to allow for accessing system resources or simply for

reasons of e�ciency.

Native bindings for these languages are available only on the level of functions.

Even for Java, native methods of an object are de�ned as functions that receive

a handle to the invoking object. Given a language with objects, possibly by

adopting an object extension for the languages without objects, the problem is

to �nd a proper correspondence between objects de�ned in the high-level (script)

language and the native objects de�ned in C/C

++

.

In this (sub)section we will �rst study an extension of Prolog with objects, and

then indicate a solution to establish a close correspondence between the (Prolog)

objects and their native counterparts. In the next (sub)section, we will apply this

approach to establish a correspondence between Java and C

++

objects.



Crossing boundaries 219

Objects in Prolog

� representation { object(Handler,Class,ID,REF,Ancestors)

� object de�nition { class method(This,...)

� object invocation { self(This):method(...)

� state variables representation { value(ID,Key,Value)

� state variable access { var(Key) = Value, Var = value(key)

� native binding - native(Handler,Method,Result)

7-10

Slide 7-10: Objects in Prolog

In slide 7-10 our proposed object extension for Prolog (in particular SWI-

Prolog, Wielemaker (1999)) is presented. Actually, there are many object ex-

tensions of Prolog around, for example the well-known Sicstus Objects. Our

extension is motivated by the following considerations:

requirements

� low overhead, especially when not needed

� natural syntax for object clause de�nitions

� support for native objects

In our solution, objects are represented by dynamic fact clauses, containing a

Handler, indicating how native calls are to be dealt with, a Class, and object

identity ID, possibly a reference REF to a native C/C

++

object, and a list of

Ancestors.

Objects (or classes of objects, if you prefer) are de�ned by a collection of

clauses with a head predicate of the form class method(This,...), specifying the

class, method and object identity parameter. The actual invocation of the method

takes the form self(This):method(...), where the colon acts as the familiar dot

object access parameter. Note that the identity parameter (This) does not occur

among the method parameters, but is instead contained in the object speci�er.

Instead of the keyword self, we may also use a class name to enforce a cast to

speci�c object type when invoking the method. In the actual object extension,

we also support object state instance variables, which are however not relevant

for our discussion here.

Object methods may be de�ned as native by including a goal of the form

native(Handler, Method, Result), where Handler speci�es the (native) handler to

be invoked, Method the actual request, and Result a variable to store the possible

outcome of the request. When the Handler parameter is left unspeci�ed, the

handler de�ned for the object will be taken to e�ect the native call.

Let's look at some examples �rst, to augment this admittedly concise descrip-

tion.
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midi(This):midi, create midi object

Self = self(This),

Self:open('a.mid'),

Self:header(0,1,480),

Self:track(start),

Self:melody([48,50,51,53,55]), // c d es f g, minor indeed

Self:track(end), end track

In the fragment above we see how a midi object is created and how a simple

melody is written to a �le. Note that we use a variable Self for indicating the

object speci�er self(This). Below, the actual de�nition of the midi object (class)

is given.

midi

:- use(library(midi:[midi,lily,music,process])).

:- declare(midi:object,class(midi),[handler]).

midi midi(This) :- constructor

midi(This):handler(H), // gets Handler from class

declare(H,new(midi(This)),[],[], ).

The constructor for the midi object, for which the method name is equal to the

class name, asks whether there is a Handler for midi objects. This handler, which

is speci�ed in the declare command above, is then passed to the declare command

for the object. Since there is a handler, the constructor for the native midi object

(de�ned in C

++

) is automatically invoked.

native methods

midi read(This,F) :- native( ,This,read(F), ).

midi analyse(This,I,O) :- native( ,This,analyse(I,O), ).

midi open(This,F) :- native( ,This,open(F), ).

midi header(This,M) :- native( ,This,header(M,0,480), ).

midi track(This,X) :- native( ,This,track(X), ).

midi tempo(This,X) :- native( ,This,tempo(X), ).

midi event(This,D,C,M,T,V) :- native( ,This,event(D,C,M,T,V), ).

All the methods listed above are implemented using the native midi C

++

object.

Note that both the Handler and the Result parameter are left unspeci�ed. The

handler is by default taken from the class declaration for the midi object class.

There is no result when invoking these native methods.

midi note(This,D,C,T,V) :-

Self = midi(This), cast to midi

Self:event(D,C,note on,T,V),

Self:event(D,C,note off,T,V).
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midi melody(This,L) :- self(This):melody(480,1,L,64).

midi melody( This, , ,[], ).

midi melody(This,D,C,[X|R],V) :-

Self = self(This),

Self:note(D,C,X,V),

midi melody(This,D,C,R,V). direct invocation

The midi object clauses given above augment the native methods by de�ning

additional predicates, such as note and melody. These clauses also illustrate the

liberty we have in casting the object speci�er to a speci�c class or bypassing

dynamic method invocation. Clearly, a native binding for the midi object is

necessary, since Prolog is highly inappropriate for reading or writing midi �les

directly. It is however very appropriate for specifying rules for analyzing MIDI

�les!

C++ bindings

To redirect native method calls for our (Prolog) objects to their native C

++

counterparts we need some additional machinery. First of all, we have to translate

a (Prolog) method call to a format that can be passed to a C

++

handler, so that

the C

++

handler may decide which method to invoke for what object. To get

a direct correspondence between objects in Prolog and objects in C

++

, we store

a reference to the C

++

object in the REF variable of the Prolog object. When

a native method is called, this reference is converted into an object handler or

pointer in C

++

, to which the (native) method invocation will be addressed. We

use a smart pointer to encapsulate this reference and to allow for directly invoking

(native) methods for the corresponding object type.

As outlined in section 2.4.1, in the hush framework we use an event-based

mechanism to e�ect foreign language bindings. This means that the information

concerning the native call is stored in an event object that is passed to a handler,

which invokes the operator function on the occurrence of an event. In the code

fragment below it is shown how native method dispatching is taken care of in the

operator function of a C

++

kit object, for which a corresponding object in Prolog

is assumed to exist.

int kit object::operator()() f

event* e = event;

vm<kit> self(e); smart pointer

string method = e-> method();

if (method == "kit") f constructor

kit* q = new kit(e->arg(1));

register(q);

result( reference((void*)q) );
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g else if (method == "eval") f

long res = self->eval(e->arg(1));

result( itoa(res) );

g else if (method == "result") f

char* res = self->result( atoi(e->arg(1)) );

result(res);

g else f // dispatch up in the hierarchy

return handler object::operator()();

g

return 0;

g

Before checking which method is invoked, which is recorded in the event, we

create a smart pointer (self) by instantiating a vm instance for the kit class. (The

acronym vm is somewhat inappropriately derived from virtual machine.) If the

method is a constructor, the result is a reference, that is an integer encoding of

the actual pointer. Otherwise, the method is invoked, simply by addressing the

smart pointer self. As a comment, the use of smart pointers is a C

++

speci�c tech-

nique based on rede�ning the dereference operator, as illustrated below. When

no matching method can be found, the operator method for a handler object

higher up in the hierarchy is invoked. In our example, both the kit object and

the midi object are directly derived from handler object. This hierarchy, which

is intended to encapsulate the native objects, parallels the original hush class

hierarchy in a straightforward way.

The smart pointer vm class, that we need for our binding of Prolog objects to

native C

++

objects, is relatively straightforward.

template <class T>

class vm f smart pointer class

public:

vm(event* e) f

int p = 0;

char* id = e->option("ref");

if (id) f

p = atoi(id);

g

self = (T*) p;

g

virtual inline T* operator ->() f return self; g

private:

T* self;

g;
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In summary, the constructor converts the event argument to a reference to

the parameterized object type T, which is used as the result of the dereference

operator. This allows for invoking methods for object type T without further ado.

As a comment, our presentation here is somewhat simpli�ed, since we do not take

into account the possibility of upcalls, that is the invocation of Prolog code from

C

++

. We will deal with these additional details when discussing the Java/C

++

binding in the next (sub)section.

7.3.3 Combining Java and C++

The designers of the Java language have created an elegant facility for incor-

porating native C/C

++

code in Java applications, the Java Native Interface

(JNI). Elegant, since native methods can be mixed freely with ordinary methods.

When qualifying methods as native, the implementer must provide a dynami-

cally loadable library that contains functions, of which the names and signatures

must comply with the JNI standard, de�ning the functionality of the methods.

Nevertheless, the JNI does not provide for generic means to establish a direct cor-

respondence between an object class hierarchy in C

++

that (partially) implements

a corresponding object class hierarchy in Java. In this section, we will study how

such a correspondence is realized in the hush framework, using the Java Native

Interface.

The solution to establishing corresponding object class hierarchies in Java

and C

++

that we have adopted relies on storing a reference to the native C

++

object in the Java object and the conversion of this reference to a smart pointer

encapsulating access to the native C

++

object. Upcalls, which occur for example

when Java handlers are invoked in response to an event, require some additional

machinery, as will be explained shortly.

Each Java class in hush is derived from the obscure class, which contains an

instance variable self that may store a C

++

object reference, encoded as an

integer.

package hush.dv.api;

class obscure f obscure

public int self; peer object pointer

...

g;

The class obscure has been introduced so as not to pollute the handler class,

which is the base class for almost every hush class. The (Java) handler class is

derived from obscure.

As an example, look at the (partial) Java class description for kit below.

package hush.dv.api;

public class kit extends handler f kit



224 Software architecture

public kit() f self = init(); g

protected kit(int x) f g

private native int init();

public native void source(String cmd);

public native void eval(String cmd);

public String result() f

String result = getresult();

if ( result.equals("-")) return null;

else return result;

g

private native String getresult();

public native void bind(String cmd, handler h);

...

g;

Recall that the kit class is used to encapsulate an embedded interpreter, such as

a Tcl or Prolog interpreter. When a kit is constructed, the instance variable self

is initialized with the reference obtained from the native init method, which will

be given below. The other methods of kit are either native or result in invoking a

native method, possibly with some additional processing.

Each native method must be implemented as a function, of which the name

and signature are �xed by the JNI conventions, as illustrated below.

kit.c

#include <hush/hush.h>

#include <hush/java.h>

#include <native/hush dv api kit.h>

#define method(X) Java hush dv api kit # #X

JNIEXPORT jint JNICALL method(init)(JNIEnv *env, jobject obj)

f

jint result = (jint) kit:: default; // (jint) new kit();

if (!result) f

kit* x = new kit("tk");

session:: default-> register(x);

result = (jint) x;

g

return result;

g



Crossing boundaries 225

The init method, the full name of which is obtained by expanding the macro

call method(init), results in an integer-encoded reference to a kit object, which is

newly created if it doesn't already exist.

JNIEXPORT jstring JNICALL method(getresult)(JNIEnv *env, jobject obj)

f

java vm<kit> vm(env,obj);

char *s = vm->result();

if (s) return vm.string(s);

else return vm.string("-");

g

In the getresult method, we see how a smart pointer, instantiated for the kit class,

is used to obtain the result from the C

++

kit object. The smart pointer takes care

of converting the reference stored in the Java object to an appropriate pointer.

JNIEXPORT void JNICALL method(bind)(JNIEnv *env, jobject obj,

jstring s, jobject o)

f

java vm<kit> vm(env,obj);

java vm<handler>* vmp = new java vm<handler>(env,o,"Handler");

const char *str = vm.get(s);

handler* h = new handler();

session:: default-> register(h);

h-> vmp = vmp;

h-> register(vmp);

vm->bind(str,h);

vm.release(s, str);

g

In the bind method, which is used to bind a (Java) handler object to some (Tcl

or Prolog) command, a new C

++

handler is created. This handler is modi�ed

to contain a reference to the smart pointer, which (indeed) also gives access to

the Java handler object. Notice that calling the Java handler object is an upcall,

when viewed from the native implementation.

In somewhat more detail, the Java handler object is invoked through the

C

++

handler object created in the bind method of the kit. The C

++

handler is

activated when an event occurs, or a Tcl or Prolog command is given. Activating

the handler amounts to calling the dispatch method with an appropriate event. To

decide whether the activation must be passed through to the Java handler object,

the handler::dispatch method checks for the availability of a smart pointer, as

illustrated below.

handler::dispatch

event* handler::dispatch(event* e) f

event = e;
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if ( vmp) f

return ((vm<handler>*) vmp)->dispatch(e);

g else f

int result = this->operator()();

if (result != OK) return 0;

else return event;

g

g

When the C

++

handler contains a smart pointer, the dispatch method is called

for that pointer.

The Java smart pointer template class for the Java/C

++

binding is derived

from the smart pointer template class introduced in the previous (sub)section.

#include <hush/vm.h>

#include <jni.h>

template< class T >

class java vm : public vm< T > f java vm

public:

java vm(JNIEnv* env , jobject obj ) f

env = env ;

obj = obj ;

self = self();

g

...

event* dispatch(event* e) f java dispatch

call("dispatch",(int)e);

return e;

g

T* operator ->() f return self; g

T* self() f

jfieldID fid = fieldID(" self","I");

return (T*) env->GetIntField( obj, fid);

g

void call(const char* md, int i) f // void (*)(int)

jmethodID mid = methodID(md,"(I)V");

env->CallVoidMethod( obj, mid, i);

g



Architectural patterns and styles 227

private:

JNIEnv* env;

jobject obj;

T* self;

g;

Notice how the value of the self reference �eld is obtained from the self

attribute of the Java object. Also notice that calling dispatch for the Java handler

is mediated by an additional call function, which obtains an explicit reference to

the method that must be invoked. In general, there are many possible method

signatures for which such a call function could be supplied, but in our case we

only need one, to invoke dispatch.

Discussion Interfacing Java and C

++

is at �rst sight not very di�cult, especially

not when the majority of calls consists of downcalls (from Java to C

++

) only. The

smart pointer device may then be used as a handy abbreviation. The problems

occur, however, when upcalls come into play. Due to the simple design of hush,

upcalls occur (almost) exclusively through the dispatch method. This is not the

result of explicit design, but in retrospect just sheer luck. When upcalls are

spread over the code and may vary in signature, they will most likely bring along

signi�cant software engineering and maintenance e�ort.

7.4 Architectural patterns and styles

When constructing a system, how does one determine an appropriate style? There

is no simple answer to this question. According to Bass et al. (1998), several

forces play a role, for example quality requirements concerning availability and

performance and technological constraints that have to do with the platform on

which the system is intended to run. Also, as frankly admitted in Bass et al.

(1998), personal experiences and preferences of the architect play a role.

Architectural choices lead to a particular decomposition into components and

a characterization of the relation between components. Classifying groups of

software architectures, we may speak of architectural styles, which may be de�ned,

following Shaw and Gorlan (1996), as descriptions of component types and patterns

of runtime control and data transfer.

In this section we will look at architectural styles for distributed object sys-

tems. Three styles will be introduced, and we will discuss how these styles are

related to technological constraints imposed by particular component technolo-

gies. Then we will investigate how these styles work out in practice, by a simple

case study in which we explore the consequences of a particular style for the

solution of a speci�c problem, in our case the problem of dynamically changing a

viewpoint or perspective in an interactive visualization system.
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7.4.1 From technology to style

We distinguish between three di�erent architectural styles:

� the distributed objects style

� the (dynamically) downloadable code style

� the mobile objects style

This distinction is arbitrary, in the sense that other distinctions are conceivable.

However, the distinction above is well motivated by the technology matrix intro-

duced in section 6.1.2, as re
ected in the feature-based description given below.

distributed objects downloadable code mobile objects

Component object object/class agent

Connector ORB various methods

Creation server client any

Location server client any

Client �xed extensible extensible

Server extensible �xed extensible

Slide 7-11: Feature classi�cation

The distributed objects style comprises software architectures which consist

of software components providing services to client applications. Each object is

located at a single, �xed place. Objects on di�erent machines are connected

by an ORB (Object Request Broker). Example technologies supporting this

architectural style are CORBA and DCOM.

The second architectural style is the (dynamically) downloadable code style.

Classes may be downloaded, to be used on client machines for instantiating

objects, which will run on the client machine. Example technologies supporting

this style are Java applets, JavaBeans, and ActiveX controls.

Finally, in the mobile objects style, objects may migrate from host to host,

carrying both functionality and data when they move. Consequently, mobile ob-

jects may communicate with the local objects of the host they currently reside on.

Mobile objects are a means to implement agents which wander through a network,

collecting information, negotiating with other agents, periodically reporting back

results to the user who launched the agents. Technologies supporting the mobile

object style are agent ORBs such as Voyager.

Features In slide 7-11, an overview is given of the characteristic features of

each style. Clearly, the styles di�er in what are considered as constituent parts

(components and connectors), location issues (which determine where objects are

created and where they are located during their lifetime), and functionality issues

(that is whether either the client or server is functionally extensible).

We may regard the location issues as the prime discriminators of the architec-

tural styles discussed. Adopting the distributed objects architectural style, new

objects can be added at the server-side, where they will stay for the remainder
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of their lifetime. In contrast, adopting the downloadable code style, objects may

be created at the client-side, from classes obtained from the server. Most 
exible

is the mobile objects style, which allows for objects to reside on either server or

client machines.

The location properties directly a�ect the way that the system is extensible

with new functionality. Clearly, the mobile code style o�ers the maximum of


exibility and functional extensibility. Nevertheless, as we will discuss shortly,

there are tradeo�s involved. The maximum in 
exibility and extensibility does

not necessarily o�er the optimal solution!

7.4.2 Case study – perspectives in visualization

To determine which architectural style to use, or which mix of styles, is to a

large extent determined by practical experience. Nevertheless, at the end of this

section, we will discuss some rules of thumb that may guide you in the choice

of a particular style. However, �rst we will look at an example that illustrates

the consequences of the choice of a particular style. The example comes from the

distributed visualization architecture (DIVA) that is explained in more detail

in section 11.4.2. DIVA is being developed in cooperation with ASZ/GAK,

the largest social security provider in the Netherlands, for experimenting with

business visualization to support decision making. Our case study focuses on

how to support the sharing of perspectives in visualizing shared information. For

example, one of the users discovers a new way to display information, uncovering

aspects that would otherwise remain hidden. This new perspective must then be

shared with other users to coerce them, so to speak, to this new point of view.

What we will look at, here, is how the choice of a particular style a�ects the

solution for the sharing of perspectives problem.

Perspective Perspective PerspectiveUser User User

object object agent agent

1

2

3

1

2

3

1

2

(a) distributed objects

class

(b) downloadable code (c) mobile objects

Slide 7-12: Exchanging perspectives

Distributed objects style New functionality can be added by creating a new

object at the server. In this case, slide 7-12(a), the user discovering a new

perspective acts as the server. Then, assuming that the discovery of a new

perspective is somehow announced to the other users, a user can connect to the

server and request for that particular perspective (1). Then, a new visualization

object is created (2), which is made accessible to the user requesting for the new

perspective (3).
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Downloadable code style When a new visualization perspective is discovered,

a class is created that can be downloaded by the interested user, slide 7-12(b).

The user connects to the server that contains the new visualization class (1),

downloads the class, and instantiates a new visualization object (2). Finally,

the information is retrieved from the shared information server and accordingly

visualized (3).

Mobile objects style Similar as in the downloadable code style, the new vi-

sualization perspective is downloaded from a server to the client, slide 7-12(c).

However, in this case, when a user requests for a new perspective (1), it is not

a class, but an object, actually a clone of the object residing at the server, that

is transferred to the client's machine (2). The clone, which contains all relevant

information, does not have to contact the shared information server to update the

user's visualization with a fresh viewpoint.

Guidelines for selecting a style

In the DIVA system, we have experimented with all these styles. In our system,

we eventually made a choice of the mobile object style for sharing perspectives,

since it turned out to provide the most 
exible solution. It was also the most

natural solution to create display agents for managing perspectives. See section

11.4.2.

Nevertheless, for other parts of the system we were forced to choose a di�erent

solution. For example, since we use a C

++

simulation library for obtaining

the information, we had to use distributed objects (read CORBA) for making

the information available. And for developing control applets, agent technology

seemed to be a bit of an overkill so we restricted ourselves to plain Java technology,

that is the downloadable code style.

Generalizing, from our experience we can formulate the following rules of

thumb, listed in slide 7-13.

Rules of thumb { selecting an architectural style

� Dedicated hardware or legacy code distributed objects

� Strategic or secret code distributed objects

� Many users downloadable code

� Periodic updates downloadable code

� Communication and negotiation mobile objects

7-13

Slide 7-13: Rules of thumb

Because interoperability is a key feature of distributed objects, the distributed

objects style is particularly recommended for wrapping dedicated hardware or
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legacy software systems. Additionally, distributed objects only expose the in-

terface and do not give away the implementation. This may be necessary for

strategic or security reasons.

When a large amount of clients is running an application on a server, the server

can easily become overloaded. In this case, moving the processing to the client, by

deploying dynamically downloadable classes, is a natural solution. Additionally,

when (parts of) an application are updated often, for example because of changing

legislation, architectures based on downloadable code are much easier to keep

up-to-date. Clients are then automatically using the latest version of the available

software.

The latter guidelines hold for the mobile objects style as well. However, agent

technology is much more complex. And there is, generally, an e�ciency price to

pay. So, it is reasonable to introduce agent technology only when real bene�ts can

be expected from the migration of objects, for example when the communication

and negotiation with local objects is substantial.

Concluding, we may state that the adoption of a style will often be dictated

by the technological constraints a system must satisfy. Nevertheless, a word of

warning is in place here. Choosing a style may well have consequences for the

overall complexity of the system. Minimalism is to be strived for, in this respect.

For example, adopting the mobile object style, that is the use of agents, may

signi�cantly complicate the semantics of the system, and consequently induce an

increased veri�cation and validation e�ort.

7.5 Cross­platform development

Platform dependencies form an important category of architectural constraints. In

particular, the opportunities o�ered by one platform may prohibit the deployment

of software on other platforms. Nowadays, there are a number of (
avors of)

competing platforms, as there are the Unix 
avors (of which Linux is becoming

a strong contender) and the Windows family, including 3.1 (almost extinct),

Windows 95, NT, 98 and (in beta release) Windows 2000. Unix (for example Sun

Solaris and SGI IRIX) has by tradition a strong position in the server market.

However, Windows NT is growing rapidly in importance. The Windows family,

clearly, dominates the (client) desktop market.

Nevertheless, the need to support a variety of platforms will exist at least

for some time, and consequently questions with regard to portability and cross-

platform development may be important architectural issues.

Considering the opportunities for platform-independent or cross-platform de-

velopment, we may distinguish between three approaches:

� deploying platform-independent toolkits

� porting applications from Unix to Windows

� porting applications from Windows to Unix
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Cross-platform development Unix vs NT

� open toolkits and standards { OMG CORBA

Research/GNU

� AT&T U/WIN { Posix for 95/NT

� Cygnus { GNU-win32

Commercial

� NuTCracker/MKS { porting Unix applications to Windows

� Wind/U, Mainwin { porting Windows applications to Unix

� Tributary { developing Unix applications from Windows IDE

7-14

Slide 7-14: Cross-platform development

As we have discussed previously, many of the open standards, such as OMG

CORBA, and proprietary standards such as Sun Java, aim at platform inde-

pendence. Also, there are numerous GUI toolkits available that o�er platform-

independent support. A possible disadvantage of this approach is that the plat-

form speci�c technology can usually not be pro�ted from.

When it comes to porting applications from Unix to Windows 95/98/NT, we

may look at AT&T U/WIN, which provides a POSIX extension for Win32, or

Cygnus GNU-win32 support, which o�ers many of the GNU utilities and libraries

for the Windows platform. Similar functionality, as well as support for Motif/X11

GUI capabilities, is o�ered by the (commercial) NuTCracker environment. (A

detailed discussion of the technical merits of the various o�erings is beyond the

scope of this book. However, the interested reader may �nd more information in

the online version of this book.)

The Windows platform is not only popular with end-users but also with many

developers, who enjoy using the Microsoft Visual Studio suite of tools and (object-

oriented) frameworks such as MFC. Recently, toolkits have entered the market

that allow for porting Microsoft technologies (including Visual Basic, ActiveX and

MFC applications) to the Unix platform, in particularWind/U from bristol.com

and Mainwin from mainsoft.com. As a word of warning, these toolkits are still

terribly expensive. Yet for more information, consult the online version of this

book.

For those who wish to develop directly on the Unix platform, but using

Microsoft Visual Studio, there is Tributary, from bristol.com, which o�ers a

Unix-server and client-extensions to Visual Studio.

Discussion From an architectural perspective, it should not matter what plat-

form is used for the actual development, nor for what target platform the software

is being developed. In practice, however, given the preferences of the developers,

the particularities of the platforms, and the instability of the (beta) software

running on these platforms, the actual choice may make a big di�erence. As an
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admittedly weak advice, tune your strategy to your needs and experience! (And

your budget.)

Summary

This chapter explored the notion of software architecture, and in particular how

both problem-related issues and technological constraints determine the adoption

of a particular architectural style.

Elements of architecture 1

� processing elements { transformation on data

� data elements { contain information

� connections { glue that holds elements together

7-15

Slide 7-15: Section 7.1: Elements of architecture

In section 1, we looked at a number of de�nitions of the notion of software

architecture, including the de�nition given in Bass et al. (1998). We also looked

at the technological infrastructure underlying client/server architectures and dis-

cussed some selected distributed object patterns.

Case study { multimedia feature detection 2

� feature grammar { structure

� embedded logic { rules for recognition

� architecture { multimedia information system

7-16

Slide 7-16: Section 7.2: Case study { multimedia feature detection

In section 2, we looked at an experimental musical feature detector, as an ex-

ample architecture, that uses both a grammar to describe the structural properties

of the media items involved, and (embedded) logic to express the rules governing

the determination of properties and the retrieval of speci�ed media items.

Crossing boundaries 3

� embedded logic { crossing the paradigm boundary

� native objects { crossing the language boundary

� combining Java and C++

7-17

Slide 7-17: Section 7.3: Crossing boundaries
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In section 3, we discussed some of the implications of the architecture sketched

in section 2. We looked at embedded logic, as an example of crossing paradigm

boundaries, and native objects, as an example of crossing language boundaries. In

addition, some of the technical details involved in coupling (native) C

++

objects

to Java objects were presented.

Architectural patterns and styles 4

� technology matrix { from technology to style

� case study { visualization perspectives

7-18

Slide 7-18: Section 7.4: Architectural patterns and styles

In section 4, we discussed how to decide which architectural style to adopt,

based on technological constraints on the one hand and application requirements

on the other hand. As an illustration, we discuss the alternatives that may arise

when realizing an extension to a distributed visualization architecture.

Cross-platform development 5

� from Unix to Windows { AT&T U/Win, Cygnus GNU-win32

� from Windows to Unix { Wind/U, Mainwin

7-19

Slide 7-19: Section 7.5: Cross-platform development

Finally, in section 5 we discussed some of the solutions that are available for

platform-independent and cross-platform development.

Questions

1. What are the elements of a software architecture? What role does a software

architecture description play in development?

2. Give a de�nition of software architecture. Can you think of alternative

de�nitions?

3. What kind of patterns can you think of for distributed object architectures?

4. Give an example of a complex software architecture. Can you relate the

description of the architecture to the de�nition given earlier?

5. Discuss the possible motivations for deploying embedded logic.

6. How would you extend a given imperative or declarative language with

objects?
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7. Discuss the Java Native Interface. Does it provide a solution for the problem

posed in the previous question? Explain.

8. What determines the choice for an architectural style? Give an example!

Further reading

An excellent book on software architectures is Bass et al. (1998). You may also

want to visit the SEI architecture site at www.sei.cmu.edu/architecture, which

provides de�nitions, and a wealth of other information. As a discussion of the

software engineering implications of CORBA, you may want to read Mowbray

and Malveau (1997). If you are interested in multimedia information systems,

read Subrahmanian (1998). For more information on ACOI, visit the ACOI

website on http://www.cwi.nl/�acoi.
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The history of programming languages may be characterized as the genesis of

increasingly powerful abstractions to aid the development of reliable programs.

Abstract data types 8

� abstraction and types

� algebraic speci�cation

� modules versus classes

� types as constraints

Additional keywords and phrases: control abstractions, data abstractions,

compiler support, description systems, behavioral speci�cation, imple-

mentation speci�cation

8-1

Slide 8-1: Abstract data types

In this chapter we will look at the notion of abstract data types, which may be

regarded as an essential constituent of object-oriented modeling. In particular,

we will study the notion of data abstraction from a foundational perspective,

that is based on a mathematical description of types. We start this chapter

by discussing the notion of types as constraints. Then, we look at the (�rst

order) algebraic speci�cation of abstract data types, and we explore the trade-

o�s between the traditional implementation of abstract data types by employing

239
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modules and the object-oriented approach employing classes. We conclude this

chapter by exploring the distinction between classes and types, as a preparation

for the treatment of (higher order) polymorphic type theories for object types and

inheritance in the next chapter.

8.1 Abstraction and types

The concern for abstraction may be regarded as the driving force behind the

development of programming languages (of which there are astoundingly many).

In the following we will discuss the role of abstraction in programming, and

especially the importance of types. We then brie
y look at what mathematical

means we have available to describe types from a foundational perspective and

what we may (and may not) expect from types in object-oriented programming.

8.1.1 Abstraction in programming languages

In Shaw (1984), an overview is given of how increasingly powerful abstraction

mechanisms have shaped the programming languages we use today. See slide 8-2.

Abstraction { programming methodology

� control abstractions { structured programming

� data abstraction { information hiding

The kind of abstraction provided by ADTs can be supported by any

language with a procedure call mechanism (given that appropriate

protocols are developed and observed by the programmer). Danforth and

Tomlinson (1988)

8-2

Slide 8-2: Abstraction and programming languages

Roughly, we may distinguish between two categories of abstractions: abstrac-

tions that aid in specifying control (including subroutines, procedures, if-then-else

constructs, while-constructs, in short the constructs promoted by the school of

structured programming in their battle against the goto); and abstractions that

allow us to hide the actual representation of the data employed in a program

(introduced to support the information hiding approach, originally advocated

in Parnas (1972a)).

Although there is clearly a pragmatic interest involved in developing and

employing such abstractions, the concern with abstraction (and consequently

types) is ultimately motivated by a concern with programming methodology

and, as observed in Danforth and Tomlinson (1988), the need for reliable and

maintainable software. However, the introduction of language features is also

often motivated by programmers' desires for ease of coding and naturalness of

expression.

In the same vein, although types were originally considered as a convenient

means to assist the compiler in producing e�cient code, types have rapidly
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been recognized as a way in which to capture the meaning of a program in an

implementation independent way. In particular, the notion of abstract data types

(which has, so to speak, grown out of data abstraction) has become a powerful

device (and guideline) to structure large software systems.

In practice, as the quotation from Danforth and Tomlinson (1988) in slide

8-2 indicates, we may employ the tools developed for structured programming to

realize abstract data types in a program, but with the obvious disadvantage that

we must rely on conventions with regard to the reliability of these realizations.

Support for abstract data types (support in the sense as discussed in section 1.2)

is o�ered (to some extent) by languages such as Modula-2 and Ada by means

of a syntactic module or package construct, and (to a larger extent) by object-

oriented languages in the form of object classes. However, both realizations are of

a rather ad hoc and pragmatic nature, relying in the latter case on the metaphor

of encapsulation and message passing. The challenge to computer science in this

area is to develop a notion of types capturing the power of abstract data types

in a form that is adequate both from a pragmatic point of view (in the sense of

allowing e�cient language support) and from a theoretical perspective (laying the

foundation for a truly declarative object-oriented approach to programming).

8.1.2 A foundational perspective – types as constraints

Object-oriented programming may be regarded as a declarative method of pro-

gramming, in the sense that it provides a computation model (expressed by the

metaphor of encapsulation and message passing) that is independent of a particu-

lar implementation model. In particular, the inheritance subtype relation may be

regarded as a pure description of the relations between the entities represented by

the classes. Moreover, an object-oriented approach favors the development of an

object model that bears close resemblance to the entities and their relations living

in the application domain. However, the object-oriented programming model is

rarely introduced with the mathematical precision characteristic of descriptions

of the other declarative styles, for example the functional and logic programming

model. Criticizing, Danforth and Tomlinson (1988) remark that OOP is generally

expressed in philosophical terms, resulting in a proliferation of opinions concerning

what OOP really is.

From a type-theoretical perspective, our interest is to identify abstract data

types as elements of some semantic (read mathematical) domain and to charac-

terize their properties in an unambiguous fashion. See slide 8-3.

There seems to be almost no limit to the variety and sophistication of the

mathematical models proposed to characterize abstract data types and inher-

itance. We may make a distinction between �rst order approaches (based on

ordinary set theory) and higher order approaches (involving typed lambda calculus

and constructive logic).

The algebraic approach is a quite well-established method for the formal

speci�cation of abstract data types. A type (or sort) in an algebra corresponds

to a set of elements upon which the operations of the algebra are de�ned. In
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Abstract data types { foundational perspective

� unambiguous values in some semantic domain

Mathematical models { types as constraints

� algebra { set oriented

� second order lambda calculus { polymorphic types

� constructive mathematics { formulas as types

8-3

Slide 8-3: Mathematical models for types

the next section, we will look at how equations may be used to characterize the

behavioral aspects of an abstract data type modeled by an algebra.

Second order lambda calculus has been used to model information hiding and

the polymorphism supported by inheritance and templates. In the next chapter

we will study this approach in more detail.

In both approaches, the meaning of a type is (ultimately) a set of elements

satisfying certain restrictions. However, in a more abstract fashion, we may regard

a type as specifying a constraint. The better we specify the constraint, the

more tightly the corresponding set of elements will be de�ned (and hence the

smaller the set). A natural consequence of the idea of types as constraints is

to characterize types by means of logical formulas. This is the approach taken

by type theories based on constructive logic, in which the notion of formulas as

types plays an important role. Although we will not study type theories based

on constructive logic explicitly, our point of view is essentially to regard types

as constraints, ranging from purely syntactical constraints (as expressed in a

signature) to semantic constraints (as may be expressed in contracts).

From the perspective of types as constraints, a typing system may contribute

to a language framework guiding a system designer's conceptualization and sup-

porting the veri�cation (based on the formal properties of the types employed)

of the consistency of the descriptive information provided by the program. Such

an approach is to be preferred (both from a pragmatic and theoretical point of

view) to an ad hoc approach employing special annotations and support mecha-

nisms, since these may become quite complicated and easily lead to unexpected

interactions.

Formal models There is a wide variety of formal models available in the litera-

ture. These include algebraic models (to characterize the meaning of abstract

data types), models based on the lambda-calculus and its extensions (which

are primarily used for a type theoretical analysis of object-oriented language

constructs), algebraic process calculi (which may be used to characterize the

behavior of concurrent objects), operational and denotational semantic models

(to capture structural and behavioral properties of programs), and various spec-

i�cation languages based on �rst or higher-order logics (which may be used to
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specify the desired behavior of collections of objects).

We will limit ourselves to studying algebraic models capturing the properties

of abstract data types and objects (section 8.2.4), type calculi based on typed

extensions of the lambda calculus capturing the various 
avors of polymorphism

and subtyping (sections 9.3{9.6), and an operational semantic model characteriz-

ing the behavior of objects sending messages (section 10.3).

Both the algebraic and type theoretical models are primarily intended to

clarify the means we have to express the desired behavior of objects and the

restrictions that must be adhered to when de�ning objects and their relations.

The operational characterization of object behavior, on the other hand, is intended

to give a more precise characterization of the notion of state and state changes

underlying the veri�cation of object behavior by means of assertion logics.

Despite the numerous models introduced there are still numerous approaches

not covered here. One approach worth mentioning is the work based on the pi-

calculus. The pi-calculus is an extension of algebraic process calculi that allow for

communication via named channels. Moreover, the pi-calculus allows for a notion

of migration and the creation and renaming of channels. A semantics of object-

based languages based on the pi-calculus is given in Walker (1990). However,

this semantics does not cover inheritance or subtyping. A higher-order object-

oriented programming language based on the pi-calculus is presented in Pierce at

al. (1993).

Another approach of interest, also based on process calculi, is the object calcu-

lus (OC) described in Nierstrasz (1993). OC allows for modeling the operational

semantics of concurrent objects. It merges the notions of agents, as used in process

calculi, with the notion of functions, as present in the lambda calculus.

For alternative models the reader may look in the comp.theory newsgroup to

which information concerning formal calculi for OOP is posted by Tom Mens of

the Free University, Brussels.

8.1.3 Objectives of typed OOP

Before losing ourselves in the details of mathematical models of types, we must

re
ect on what we may expect from a type system and what not (at least not

currently).

From a theoretical perspective our ideal is, in the words of Danforth and

Tomlinson (1988), to arrive at a simple type theory that provides a consistent

and 
exible framework for system descriptions (in order to provide the program-

mer with su�cient descriptive power and to aid the construction of useful and

understandable software, while allowing the e�cient utilization of the underlying

hardware).

The question now is, what support does a typing system provide in this respect.

In slide 8-4, a list is given of aspects in which a typing system may be of help.

One important bene�t of regarding ADTs as real types is that realizations of

ADTs become so-called �rst class citizens, which means that they may be treated

as any other value in the language, for instance being passed as a parameter. In
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Objectives of typed OOP { system description

� packaging in a coherent manner

� 
exible style of associating operations with objects

� inheritance of description components { reuse, understanding

� separation of speci�cation and implementation

� explicit typing to guide binding decisions

8-4

Slide 8-4: Object orientation and types

contrast, syntactic solutions (such as the module of Modula-2 and the package of

Ada) do not allow this.

Pragmatically, the objective of a type system is (and has been) the prevention

of errors. However, if the type system lacks expressivity, adequate control for

errors may result in becoming over-restrictive.

In general, the more expressive the type system the better the support that

the compiler may o�er. In this respect, associating constructors with types may

help in relieving the programmer from dealing with simple but necessary tasks

such as the initialization of complex structures. Objects, in contrast to modules or

packages, allow for the automatic (compiler supported) initializations of instances

of (abstract) data types, providing the programmer with relief from an error-prone

routine.

Another area in which a type system may make the life of a programmer easier

concerns the association of operations with objects. A polymorphic type system

is needed to understand the automatic dispatching for virtual functions and the

opportunity of overloading functions, which are useful mechanisms to control the

complexity of a program, provided they are well understood.

Reuse and understanding are promoted by allowing inheritance and re�nement

of description components. (As remarked earlier, inheritance and re�nement may

be regarded as the essential contribution of object-oriented programming to the

practice of software development.) It goes without saying that such reuse needs

a �rm semantical basis in order to achieve the goal of reliable and maintainable

software.

Another important issue for which a powerful type system can provide support

is the separation of speci�cation and implementation. Naturally, we expect our

type system to support type-safe separate compilation. But in addition, we may

think of allowing multiple implementations of a single (abstract type) speci�ca-

tion. Explicit typing may then be of help in choosing the right binding when the

program is actually executed. For instance in a parallel environment, behavior

may be realized in a number of ways that di�er in the degree to which they a�ect

locality of access and how they a�ect, for example, load balancing. With an eye

to the future, these are problems that may be solved with a good type system

(and accompanying compiler).
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One of the desiderata for a type system for OOP, laid down in Danforth

and Tomlinson (1988), is the separation of a behavioral hierarchy (specifying

the behavior of a type in an abstract sense) and an implementation hierarchy

(specifying the actual realization of that behavior). Separation is needed to

accommodate the need for multiple realizations and to resolve the tension between

subtyping and inheritance (a tension we have already noted in sections 1.1.3 and

3.3).

Remark In these chapters we cannot hope to do more than get acquainted

with the material needed to understand the problems involved in developing

a type system for object-oriented programming. For an alternative approach,

see Palsberg and Schwartzback (1994).

8.2 Algebraic specification

Algebraic speci�cation techniques have been developed as a means to specify the

design of complex software systems in a formal way. The algebraic approach has

been motivated by the notion of information hiding put forward in Parnas (1972a)

and the ideas concerning abstraction expressed in Hoare (1972). Historically,

the ADJ-group (see Goguen et al., 1978) provided a signi�cant impetus to the

algebraic approach by showing that abstract data types may be interpreted as

(many sorted) algebras. (In the context of algebraic speci�cations the notion of

sorts has the same meaning as types. We will, however, generally speak of types.)

As an example of an algebraic speci�cation, look at the module de�ning the

data type Bool, as given in slide 8-5.

Algebraic speci�cation { ADT Bool

adt bool is

functions

true : bool

false : bool

and, or : bool * bool -> bool

not : bool -> bool

axioms

[B1] and(true,x) = x

[B2] and(false,x) = false

[B3] not(true) = false

[B4] not(false) = true

[B5] or(x,y) = not(and(not(x),not(y)))

end

8-5

Slide 8-5: The ADT Bool
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In this speci�cation two constants are introduced (the zero-ary functions true

and false), three functions (respectively and, or and not). The or function is

de�ned by employing not and and, according to a well-known logical law. These

functions may all be considered to be (strictly) related to the type bool. Equations

are used to specify the desired characteristics of elements of type bool. Obviously,

this speci�cation may mathematically be interpreted as (simply) a boolean alge-

bra.

Mathematical models The mathematical framework of algebras allows for a

direct characterization of the behavioral aspects of abstract data types by means

of equations, provided the speci�cation is consistent. Operationally, this allows

for the execution of such speci�cations by means of term rewriting, provided that

some (technical) constraints are met. The model-theoretic semantics of algebraic

speci�cations centers around the notion of initial algebras, which gives us the

preferred model of a speci�cation.

To characterize the behavior of objects (that may modify their state) in an

algebraic way, we need to extend the basic framework of initial algebra models

either by allowing so-called multiple world semantics or by making a distinction

between hidden and observable sorts (resulting in the notion of an object as an

abstract machine). As a remark, in our treatment we obviously cannot avoid the

use of some logico-mathematical formalism. If needed, the concepts introduced

will be explained on the 
y. Where this does not su�ce, the interested reader is

referred to any standard textbook on mathematical logic for further details.

8.2.1 Signatures – generators and observers

Abstract data types may be considered as modules specifying the values and

functions belonging to the type. In Dahl (1992), a type T is characterized as a

tuple specifying the set of elements constituting the type T and the collection

of functions related to the type T. Since constants may be regarded as zero-ary

functions (having no arguments), we will speak of a signature � or �

T

de�ning

a particular type T. Also, in accord with common parlance, we will speak of the

sorts s 2 �, which are the sorts (or types) occurring in the declaration of the

functions in �. See slide 8-6.

A signature speci�es the names and (function) pro�les of the constants and

functions of a data type. In general, the pro�le of a function is speci�ed as

� f : s

1

� : : :� s

n

! s

where s

i

(i = 1::n) are the sorts de�ning the domain (that is the types of the

arguments) of the function f, and s is the sort de�ning the codomain (or result

type) of f. In the case n = 0 the function f may be regarded as a constant. More

generally, when s

1

; : : : ; s

n

are all unrelated to the type T being de�ned, we may

regard f as a relative constant. Relative constants are values that are assumed to

be de�ned in the context where the speci�cation is being employed.

The functions related to a data type T may be discriminated according to

their role in de�ning T. We distinguish between producers g 2 P

T

, that have
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Signature { names and pro�les �

� f : s

1

� : : :� s

n

! s

Functions { for T

� constants { c :! T C

� producers { g : s

1

� : : :� s

n

! T P

� observers { f : T ! s

i

O

Type { generators

� �

T

= P

T

[O

T

, C

T

� P

T

, P

T

\O

T

= ?

8-6

Slide 8-6: Algebraic speci�cation

the type T under de�nition as their result type, and observers f 2 O

T

, that

have T as their argument type and deliver a result of a type di�erent from T. In

other words, producer functions de�ne how elements of T may be constructed. (In

the literature one often speaks of constructors, but we avoid this term because

it already has a precisely de�ned meaning in the object-oriented programming

language C

++

.) In contrast, observer functions do not produce values of T, but

give instead information on some particular aspect of T.

The signature �

T

of a type T is uniquely de�ned by the union of producer

functions P

T

and observer functions O

T

. Constants of type T are regarded as

a subset of the producer functions P

T

de�ning T. Further, we require that the

collection of producers is disjoint from the collection of observers for T, that is

P

T

\O

T

= ?.

Generators The producer functions actually de�ning the values of a data type

T are called the generator basis of T, or generators of T. The generators of T may

be used to enumerate the elements of T, resulting in the collection of T values

that is called the generator universe in Dahl (1992). See slide 8-7.

The generator universe of a type T consists of the closed (that is variable-free)

terms that may be constructed using either constants or producer functions of T.

As an example, consider the data type Bool with generators t and f. Obviously,

the value domain of Bool, the generator universe GU

Bool

consists only of the

values t and f.

As another example, consider the data type Nat (representing the natural

numbers) with generator basis G

Nat

= f0;Sg, consisting of the constant 0 and

the successor function S : Nat ! Nat (that delivers the successor of its argument).

The terms that may be constructed by G

Nat

is the set GU

Nat

= f0;S0;SS0; : : :g,

which uniquely corresponds to the natural numbers f0; 1; 2; : : :g. (More precisely,

the natural numbers are isomorphic with GU

Nat

.)

In contrast, given a type A with element a, b, ..., the generators of Set

A

result
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Generators { values of T T

� generator basis { G

T

= fg 2 P

T

g

� generator universe { GU

T

= fv

1

; v

2

; : : :g

Examples

� G

Bool

= ft; f g, GU

Bool

= ft; f g

� G

Nat

= f0;Sg, GU

Nat

= f0;S0;SS0; : : :g

� G

Set

A

= f?; addg, GU

Set

A

= f?; add(?; a); : : :g

8-7

Slide 8-7: Generators { basis and universe

in a universe that contains terms such as add(?; a) and add(add(?; a); a) which

we would like to identify, based on our conception of a set as containing only

one exemplar of a particular value. To e�ect this we need additional equations

imposing constraints expressing what we consider as the desired shape (or normal

form) of the values contained in the universe of T. However, before we look at

how to extend a signature � de�ning T with equations de�ning the (behavioral)

properties of T we will look at another example illustrating how the choice of a

generator basis may a�ect the structure of the value domain of a data type.

In the example presented in slide 8-8, the pro�les are given of the functions

that may occur in the signature specifying sequences. (The notation is used to

indicate parameter positions.)

Sequences Seq

� " : seqT empty

� B : seqT � T ! seqT right append

� C : T � seqT ! seqT left append

� � : seqT � seqT ! seqT concatenation

� h i : T ! seqT lifting

� h ; : : : ; i : T

n

! seqT multiple arguments

Generator basis { preferably one-to-one

� G

seqT

= f";Bg, GU

seqT

= f"; " B a; " B b; : : : ; " B a B b; : : :g

� G

0

seqT

= f";Cg, GU

0

seqT

= f"; a C "; b C "; : : : ; b C a C "; : : :g

� G

00

seqT

= f"; �; h ig, GU

00

seqT

= f"; hai; hbi; ; : : : ; " � "; : : : ; " � hai; : : :g

In�nite generator basis

� G

000

seqT

= f"; h i; h ; i; : : :g, GU

000

seqT

= f"; hai; hbi; ; : : : ; ha; ai; : : :g

8-8

Slide 8-8: The ADT Seq
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Dependent on which producer functions are selected to generate the universe of

T, the correspondence between the generated universe and the intended domain is

either one-to-one (as for G and G

0

) or many-to-one (as for G

00

). Since we require

our speci�cation to be �rst-order and �nite, in�nite generator bases (such as G

000

)

must be disallowed, even if they result in a one-to-one correspondence. See Dahl

(1992) for further details.

8.2.2 Equations – specifying constraints

The speci�cation of the signature of a type (which lists the syntactic constraints to

which a speci�cation must comply) is in general not su�cient to characterize the

properties of the values of the type. In addition, we need to impose semantic

constraints (in the form of equations) to de�ne the meaning of the observer

functions and (very importantly) to identify the elements of the type domain

that are considered equivalent (based on the intuitions one has of that particular

type).

The equivalence relation { congruence

� x = x re
exivity

� x = y ) y = x symmetry

� x = y ^ y = z ) x = z transitivity

� x = y ) f (: : : ; x ; : : :) = f (: : : ; y; : : :)

Equivalence classes { representatives

� abstract elements { GU

T

=�

8-9

Slide 8-9: Equivalence

Mathematically, the equality predicate may be characterized by the properties

listed above, including re
exivity (stating that an element is equal to itself),

symmetry (stating that the orientation of the formula is not important) and

transitivity (stating that if one element is equal to another and that element is

equal to yet another, then the �rst element is also equal to the latter). In addition,

we have the property that, given that two elements are equal, the results of the

function applied to them (separately) are also equal. (Technically, the latter

property makes a congruence of the equality relation, lifting equality between

elements to the function level.) See slide 8-9.

Given a suitable set of equations, in addition to a signature, we may identify

the elements that can be proved identical by applying the equality relation. In

other words, given an equational theory (of which the properties stated above

must be a part), we can divide the generator universe of a type T into one or

more subsets, each consisting of elements that are equal according to our theory.

The subsets of GU =�, that is GU factored with respect to equivalence, may be

regarded as the abstract elements constituting the type T, and from each subset
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we may choose a concrete element acting as a representative for the subset which

is the equivalence class of the element.

Operationally, equations may be regarded as rewrite rules (oriented from left to

right), that allow us to transform a term in which a term t

1

occurs as a subterm

into a term in which t

1

is replaced by t

2

if t

1

= t

2

. For this procedure to be

terminating, some technical restrictions must be met, amounting (intuitively) to

the requirement that the right-hand side must in some sense be simpler than the

left-hand side.

Also, when de�ning an observer function, we must specify for each possible

generator case an appropriate rewriting rule. That is, each observer must be able

to give a result for each generator. The example of the natural numbers, given

below, will make this clear. Identifying spurious elements by rewriting a term

into a canonical form is somewhat more complex, as we will see for the example

of sets.

Equational theories To illustrate the notions introduced above, we will look at

speci�cations of some familiar types, namely the natural numbers and sets.

In slide 8-10, an algebraic speci�cation is given of the natural numbers (as

�rst axiomatized by Peano).

Natural numbers Nat

functions

0 : Nat

S : Nat -> Nat

mul : Nat * Nat -> Nat

plus : Nat * Nat -> Nat

axioms

[1] plus(x,0) = x

[2] plus(x,Sy) = S(plus(x,y))

[3] mul(x,0) = 0

[4] mul(x,Sy) = plus(mul(x,y),x)

end

8-10

Slide 8-10: The ADT Nat

In addition to the constant 0 and successor function S we also introduce a

function mul for multiplication and a function plus for addition. (The notation Sy

stands for application by juxtaposition; its meaning is simply S (y).) The reader

who does not immediately accept the speci�cation in slide 8-10 as an adequate

axiomatization of the natural numbers must try to unravel the computation

depicted in slide 8-11.

Admittedly, not an easy way to compute with natural numbers, but fortu-

nately term rewriting may, to a large extent, be automated (and actual calcula-

tions may be mimicked by semantics preserving primitives).
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mul(plus(S 0,S 0),S 0) -[2]->

mul(S(plus(S 0,0)), S 0) -[1]->

mul(SS 0,S 0) -[4]->

plus(mul(SS0,0),SS0) -[3]->

plus(0,SS0) -[2*]-> SS0

8-11

Slide 8-11: Symbolic evaluation

Using the equational theory expressing the properties of natural numbers, we

may eliminate the occurrences of the functions mul and plus to arrive (through

symbolic evaluation) at something of the form S

n

0 (where n corresponds to the

magnitude of the natural number denoted by the term).

The opportunity of symbolic evaluation by term rewriting is exactly what has

made the algebraic approach so popular for the speci�cation of software, since it

allows (under some restrictions) for executable speci�cations.

Since they do not reappear in what may be considered the normal forms

of terms denoting the naturals (that are obtained by applying the evaluations

induced by the equality theory), the functions plus and mul may be regarded as

secondary producers. They are not part of the generator basis of the type Nat.

Since we may consider mul and plus as secondary producers at best, we can

easily see that when we de�ne mul and plus for the case 0 and Sx for arbitrary x,

that we have covered all possible (generator) cases. Technically, this allows us to

prove properties of these functions by using structural induction on the possible

generator cases. The proof obligation (in the case of the naturals) then is to

prove that the property holds for the function applied to 0 and assuming that the

property holds for applying the function to x, it also holds for Sx.

As our next example, consider the algebraic speci�cation of the type Set

A

in

slide 8-12.

Sets Set

� G

Set

A

= f?; addg

� GU

Set

A

= f0; add(0; a); : : : ; add(add(0; a); a); : : :g

Axioms

[S1] add(add(s; x); y) = add(add(s; y); x) commutativity

[S2] add(add(s; x); x) = add(s; x) idempotence

8-12

Slide 8-12: The ADT Set

In the case of sets we have the problem that we do not start with a one-to-one

generator base as we had with the natural numbers. Instead, we have a many-
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to-one generator base, so we need equality axioms to eliminate spurious elements

from the (generator) universe of sets.

Equivalence classes GU

Set

A

=�

� f?g

� fadd(0; a); add(add(0; a); a); : : :g

� : : :

� fadd(add(0; a); b); add(add(0; b); a); : : :g

8-13

Slide 8-13: Equivalence classes for Set

The equivalence classes of GU

Set

A

=� (which is GU

Set

A

factored by the equiv-

alence relation), each have multiple elements (except the class representing the

empty set). To select an appropriate representative from each of these classes

(representing the abstract elements of the type Set

A

) we need an ordering on

terms, so that we can take the smaller term as its canonical representation. See

slide 8-13.

8.2.3 Initial algebra semantics

In the previous section we have given a rather operational characterization of

the equivalence relation induced by the equational theory and the process of term

rewriting that enables us to purge the generator universe of a type, by eliminating

redundant elements. However, what we actually strive for is a mathematical model

that captures the meaning of an algebraic speci�cation. Such a model is provided

(or rather a class of such models) by the mathematical structures known as (not

surprisingly) algebras.

A single sorted algebra A is a structure (A;�) where A is a set of values, and

� speci�es the signature of the functions operating on A. A multi-sorted algebra

is a structure A = (fA

s

g

s 2 S

;�) where S is a set of sort names and A

s

the set

of values belonging to the sort s. The set S may be ordered (in which case the

ordering indicates the subtyping relationships between the sorts). We call the

(multi-sorted) structure A a �-algebra.

Mathematical model { algebra

� �-algebra { A = (fA

s

g

s 2 S

;�)

� interpretation { eval : T

�

!A

� adequacy { A j= t

1

= t

2

() E ` t

1

= t

2

8-14

Slide 8-14: Interpretations and models
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Having a notion of algebras, we need to have a way in which to relate an

algebraic speci�cation to such a structure. To this end we de�ne an interpretation

eval : T

�

! A which maps closed terms formed by following the rules given in the

speci�cation to elements of the structure A. We may extend the interpretation

eval to include variables as well (which we write as eval : T

�

(X ) ! A), but

then we also need to assume that an assignment � : X ! T

�

(X ) is given, such

that when applying � to a term t the result is free of variables, otherwise no

interpretation in A exists. See slide 8-14.

Interpretations As an example, consider the interpretations of the speci�cation

of Bool and the speci�cation of Nat, given in slide 8-15.

Booleans

� B = (ftt;� g; f:;^;_g)

� eval

B

: T

Bool

! B = for 7! _; and 7! ^;not 7! :g

Natural numbers

� N = (N; f++;+; ?g)

� eval

N

: T

Nat

! N = fS 7! ++;mul 7! ?; plus 7! +g

8-15

Slide 8-15: Interpretations of Bool and Nat

The structure B given above is simply a boolean algebra, with the operators

:, ^ and _. The functions not, and and or naturally map to their semantic

counterparts. In addition, we assume that the constants true and false map to

the elements tt and �.

As another example, look at the structure N and the interpretation eval

N

,

which maps the functions S, mul and plus speci�ed in Nat in a natural way.

However, since we have also given equations for Nat (specifying how to eliminate

the functions mul and plus) we must take precautions such that the requirement

N j= eval

N

(t

1

) =

N

eval

N

(t

2

)() E

Nat

` t

1

= t

2

is satis�ed if the structure N is to count as an adequate model of Nat. The

requirement above states that whenever equality holds for two interpreted terms

(in N ) then these terms must also be provably equal (by using the equations given

in the speci�cation of Nat), and vice versa.

As we will see illustrated later, many models may exist for a single speci�ca-

tion, all satisfying the requirement of adequacy. The question is, do we have a

means to select one of these models as (in a certain sense) the best model. The

answer is yes. These are the models called initial models.

Initial models A model (in a mathematical sense) represents the meaning of a

speci�cation in a precise way. A model may be regarded as stating a commitment
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with respect to the interpretation of the speci�cation. An initial model is intu-

itively the least committing model, least committing in the sense that it imposes

only identi�cations made necessary by the equational theory of a speci�cation.

Technically, an initial model is a model from which every other model can be

derived by an algebraic mapping which is a homomorphism.

Initial algebra

� �E -algebra {M = (T

�

=�;�=�)

Properties

� no junk { 8 a : T

�

=� 9 t � eval

M

(t) = a

� no confusion {M j= t

1

= t

2

() E ` t

1

= t

2

8-16

Slide 8-16: Initial models

The starting point for the construction of an initial model for a given speci�ca-

tion with signature � is to construct a term algebra T

�

with the terms that may

be generated from the signature � as elements. The next step is then to factor the

universe of generated terms into equivalence classes, such that two terms belong

to the same class if they can be proven equivalent with respect to the equational

theory of the speci�cation. We will denote the representative of the equivalence

class to which a term t belongs by [t ]. Hence t

1

= t

2

(in the model) i� [t

1

] = [t

2

].

So assume that we have constructed a structureM = (T

�

=�;�) then; �nally,

we must de�ne an interpretation, say eval

M

: T

�

! M, that assigns closed

terms to appropriate terms in the term model (namely the representatives of the

equivalence class of that term). Hence, the interpretation of a function f in the

structure M is such that

f

M

([t

1

]; : : : ; [t

n

]) = [f (t

1

; : : : ; t

n

)]

where f

M

is the interpretation of f in M. In other words, the result of applying f

to terms t

1

; : : : ; t

n

belongs to the same equivalence class as the result of applying

f

M

to the representatives of the equivalence classes of t1; : : : ; t

n

. See slide 8-16.

An initial algebra model has two important properties, known respectively as

the no junk and no confusion properties. The no junk property states that for

each element of the model there is some term for which the interpretation inM is

equal to that element. (For the T

�

=� model this is simply a representative of the

equivalence class corresponding with the element.) The no confusion property

states that if equality of two terms can be proven in the equational theory of

the speci�cation, then the equality also holds (semantically) in the model, and

vice versa. The no confusion property means, in other words, that su�ciently

many identi�cations are made (namely those that may be proven to hold), but

no more than that (that is, no other than those for which a proof exists). The

latter property is why we may speak of an initial model as the least committing

model; it simply gives no more meaning than is strictly needed.
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The initial model constructed from the term algebra of a signature � is

intuitively a very natural model since it corresponds directly with (a subset of)

the generator universe of �. Given such a model, other models may be derived

from it simply by specifying an appropriate interpretation. For example, when

we construct a model for the natural numbers (as speci�ed by Nat) consisting of

the generator universe f0;S0;SS0; : : :g and the operators f++;+; ?g (which are

de�ned as S

n

+ + = S

n+1

, S

n

� S

m

= S

n�m

and S

n

+ S

m

= S

n+m

) we may

simply derive from this model the structure (f0; 1; 2; : : :g; f++;+; ?g) for which

the operations have their standard arithmetical meaning. Actually, this structure

is also an initial model for Nat, since we may also make the inverse transformation.

More generally, when de�ning an initial model only the structural aspects

(characterizing the behavior of the operators) are important, not the actual con-

tents. Technically, this means that initial models are de�ned up to isomorphism,

that is a mapping to equivalent models with perhaps di�erent contents but an

identical structure. Not in all cases is a structure derived from an initial model

itself also an initial model, as shown in the example below.

Example Consider the speci�cation of Bool as given before. For this speci�cation

we have given the structure B and the interpretation eval

B

which de�nes an initial

model for Bool. (Check this!)

Structure { B = (ftt;� g; f:;^;_g) B

� eval

B

: T

�

Bool

! B = for 7! _;not 7! :g

� eval

B

: T

�

Nat

! B = fS 7! :;mul 7! ^; plus 7! xorg

8-17

Slide 8-17: Structure and interpretation

We may, however, also use the structure B to de�ne an interpretation of Nat.

See slide 8-17. The interpretation eval

B

: T

Nat

! B is such that eval

B

(0) =

� , eval

B

(Sx ) = :eval

B

(x ), eval

B

(mul(x ; y)) = eval

B

(x ) ^ eval

B

(y) and

eval

B

(plus(x ; y)) = xor(eval

B

(x ); eval

B

(y)), where xor(p; q) = (p_q)^(:(p^q)).

The reader may wish to ponder on what this interpretation e�ects. The answer

is that it interprets Nat as specifying the naturals modulo 2, which discriminates

only between odd and even numbers. Clearly, this interpretation de�nes not an

initial model, since it identi�es all odd numbers with � and all even numbers with

tt. Even if we replace � by 0 and tt by 1, this is not what we generally would

like to commit ourselves to when we speak about the natural numbers, simply

because it assigns too much meaning.

8.2.4 Objects as algebras

The types for which we have thus far seen algebraic speci�cations (including Bool,

Seq, Set and Nat) are all types of a mathematical kind, which (by virtue of being

mathematical) de�ne operations without side-e�ects. Dynamic state changes, that
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is side-e�ects, are often mentioned as determining the characteristics of objects in

general. In the following we will explore how we may deal with assigning meaning

to dynamic state changes in an algebraic framework.

Let us look �rst at the abstract data type stack. The type stack may be

considered as one of the `real life' types in the world of programming. See slide

8-18.

Abstract Data Type { applicative Stack

functions

new : stack;

push : element * stack -> stack;

empty : stack -> boolean;

pop : stack -> stack;

top : stack -> element;

axioms

empty( new ) = true

empty( push(x,s) ) = false

top( push(x,s) ) = x

pop( push(x,s) ) = s

preconditions

pre: pop( s : stack ) = not empty(s)

pre: top( s : stack ) = not empty(s)

end

8-18

Slide 8-18: The ADT Stack

Above, a stack has been speci�ed by giving a signature (consisting of the

functions new, push, empty, pop and top). In addition to the axioms characterizing

the behavior of the stack, we have included two pre-conditions to test whether

the stack is empty in case pop or top is applied. The pre-conditions result in

conditional axioms for the operations pop and top. Conditional axioms, however,

do preserve the initial algebra semantics.

The speci�cation given above is a maximally abstract description of the be-

havior of a stack. Adding more implementation detail would disrupt its nice

applicative structure, without necessarily resulting in di�erent behavior (from a

su�ciently abstract perspective).

The behavior of elements of abstract data types and objects is characterized

by state changes. State changes may a�ect the value delivered by observers

or methods. Many state changes (such as the growing or shrinking of a set,

sequence or stack) really are nothing but applicative transformations that may

mathematically be described by the input-output behavior of an appropriate

function.

An example in which the value of an object on some attribute is dependent

on the history of the operations applied to the object, instead of the structure of
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the object itself (as in the case of a stack) is the object account, as speci�ed in

slide 8-19. The example is taken from Goguen and Meseguer (1986).

Dynamic state changes { objects account

object account is

functions

bal : account -> money

methods

credit : account * money -> account

debit : account * money -> account

error

overdraw : money -> money

axioms

bal(new(A)) = 0

bal(credit(A,M)) = bal(A) + M

bal(debit(A,M)) = bal(A) - M if bal(A) >= M

error-axioms

bal(debit(A,M)) = overdraw(M) if bal(A) < M

end

8-19

Slide 8-19: The algebraic speci�cation of an account

An account object has one attribute function (called bal) that delivers the

amount of money that is (still) in the account. In addition, there are two method

functions, credit and debit that may respectively be used to add or withdraw

money from the account. Finally, there is one special error function, overdraw,

that is used to de�ne the result of balance when there is not enough money left to

grant a debit request. Error axioms are needed whenever the proper axioms are

stated conditionally, that is contain an if expression. The conditional parts of the

axioms, including the error axioms, must cover all possible cases.

Now, �rst look at the form of the axioms. The axioms are speci�ed as

fn(method(Object ;Args)) = expr

where fn speci�es an attribute function (bal in the case of account) and method

a method (either new, which is used to create new accounts, credit or debit). By

convention, we assume that method(Object ; : : :) = Object , that is that a method

function returns its �rst argument. Applying a method thus results in rede�ning

the value of the function fn. For example, invoking the method credit(acc; 10)

for the account acc results in modifying the function bal to deliver the value

bal(acc)+ 10 instead of simply bal(acc). In the example above, the axioms de�ne

the meaning of the function bal with respect to the possible method applications.

It is not di�cult to see that these operations are of a non-applicative nature, non-

applicative in the sense that each time a method is invoked the actual de�nition

of bal is changed. The change is necessary because, in contrast to, for example,



258 Abstract data types

the functions employed in a boolean algebra, the actual value of the account may

change in time in a completely arbitrary way. A �rst order framework of (multi

sorted) algebras is not su�ciently strong to de�ne the meaning of such changes.

What we need may be characterized as a multiple world semantics, where each

world corresponds to a possible state of the account. As an alternative semantics

we will also discuss the interpretation of an object as an abstract machine, which

resembles an (initial) algebra with hidden sorts.

Multiple world semantics From a semantic perspective, an object that changes

its state may be regarded as moving from one world to another, when we see a

world as representing a particular state of a�airs. Take for example an arbitrary

(say John's) account, which has a balance of 500. We may express this as

balance(accountJohn) = 500. Now, when we invoke the method credit, as in

credit(accountJohn; 200), then we expect the balance of the account to be raised

to 700. In the language of the speci�cation, this is expressed as

bal(credit(accountJohn; 200)) = bal(accountJohn) + 200

Semantically, the result is a state of a�airs in which bal(accountJohn) = 700.

In Goguen and Meseguer (1986) an operational interpretation is given of a

multiple world semantics by introducing a database D (that stores the values of

the attribute functions of objects as �rst order terms) which is transformed as

the result of invoking a method, into a new database D

0

(that has an updated

value for the attribute function modi�ed by the method). The meaning of each

database (or world) may be characterized by an algebra and an interpretation as

before.

The rules according to which transformations on a database take place may

be formulated as in slide 8-20.

Multiple world semantics { inference rules

� hf (t

1

; : : : ; t

n

);Di ! hv ;Di attribute

� hm(t

1

; : : : ; t

n

);Di ! ht

1

;D

0

i method
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i
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Slide 8-20: The interpretation of change

The �rst rule (attribute) describes how attribute functions are evaluated.

Whenever a function f with arguments t

1

; : : : ; t

n

evaluates to a value (or expres-

sion) v, then the term f (t

1

; : : : ; t

n

) may be replaced by v without a�ecting the

databaseD. (We have simpli�ed the treatment by omitting all aspects having to do

with matching and substitutions, since such details are not needed to understand

the process of symbolic evaluation in a multiple world context.) The next rule

(method) describes the result of evaluating a method. We assume that invoking

the method changes the database D into D

0

. Recall that, by convention, a method
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returns its �rst argument. Finally, the last rule (composition) describes how we

may glue all this together.

No doubt, the reader needs an example to get a picture of how this machinery

actually works.

Example - a counter object

object ctr is ctr

function n : ctr -> nat

method incr : ctr -> ctr

axioms

n(new(C)) = 0

n(incr(C)) = n(C) + 1

end

8-21

Slide 8-21: The object ctr

In slide 8-21, we have speci�ed a simple object ctr with an attribute function

value (delivering the value of the counter) and a method function incr (that may

be used to increment the value of the counter).

Abstract evaluation

<n(incr(incr(new(C)))),f C g> -[new]->

<n(incr(incr(C))),f C[n:=0] g> -[incr]->

<n(incr(C)),f C[n:=1] g> -[incr]->

<n(C), f C[n:=2] g> -[n]->

<2, f C[n:=2] g>

8-22

Slide 8-22: An example of abstract evaluation

The end result of the evaluation depicted in slide 8-22 is the value 2 and a

context (or database) in which the value of the counter C is (also) 2. The database

is modi�ed in each step in which the method incr is applied. When the attribute

function value is evaluated the database remains unchanged, since it is merely

consulted.

Objects as abstract machines Multiple world semantics provide a very pow-

erful framework in which to de�ne the meaning of object speci�cations. Yet, as

illustrated above, the reasoning involved has a very operational 
avor and lacks

the appealing simplicity of the initial algebra semantics given for abstract data

types. As an alternative, Goguen and Meseguer (1986) propose an interpretation

of objects (with dynamic state changes) as abstract machines.
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Recall that an initial algebra semantics de�nes a model in which the elements

are equivalence classes representing the abstract values of the data type. In e�ect,

initial models are de�ned only up to isomorphism (that is, structural equivalence

with similar models). In essence, the framework of initial algebra semantics allows

us to abstract from the particular representation of a data type, when assigning

meaning to a speci�cation. From this perspective it does not matter, for example,

whether integers are represented in binary or decimal notation.

The notion of abstract machines generalizes the notion of initial algebras in

that it loosens the requirement of (structural) isomorphism, to allow for what

we may call behavioral equivalence. The idea underlying the notion of behavioral

equivalence is to make a distinction between visible sorts and hidden sorts and

to look only at the visible sorts to determine whether two algebras A and B are

behaviorally equivalent. According to Goguen and Meseguer (1986), two algebras

A and B are behaviorally equivalent if and only if the result of evaluating any

expression of a visible sort in A is the same as the result of evaluating that

expression in B.

Now, an abstract machine (in the sense of Goguen and Meseguer, 1986) is

simply the equivalence class of behaviorally equivalent algebras, or in other words

the maximally abstract characterization of the visible behavior of an abstract data

type with (hidden) states.

The notion of abstract machines is of particular relevance as a formal frame-

work to characterize the (implementation) re�nement relation between objects.

For example, it is easy to determine that the behavior of a stack implemented

as a list is equivalent to the behavior of a stack implemented by a pointer array,

whereas these objects are clearly not equivalent from a structural point of view.

Moreover, the behavior of both conform (in an abstract sense) with the behavior

speci�ed in an algebraic way. Together, the notions of abstract machine and

behavioral equivalence provide a formalization of the notion of information hiding

in an algebraic setting. In the chapters that follow we will look at alternative for-

malisms to explain information hiding, polymorphism and behavioral re�nement.

8.3 Decomposition – modules versus objects

Abstract data types allow the programmer to de�ne a complex data structure and

an associated collection of functions, operating on that structure, in a consistent

way. Historically, the idea of data abstraction was originally not type-oriented

but arose from a more pragmatic concern with information hiding and represen-

tation abstraction, see Parnas (1972b). The �rst realization of the idea of data

abstraction was in the form of modules grouping a collection of functions and

allowing the actual representation of the data structures underlying the values of

the (abstract) type domain to be hidden, see also Parnas (1972a).

In Cook (1990), a comparison is made between the way in which abstract data

types are realized traditionally (as modules) and the way abstract data types may

be realized using object-oriented programming techniques. According to Cook

(1990), these approaches must be regarded as being orthogonal to one another



Decomposition – modules versus objects 261

and, being to some extent complementary, deserve to be integrated in a common

framework.

After presenting an example highlighting the di�erences between the two

approaches, we will further explore these di�erences and study the trade-o�s with

respect to possible extensions and reuse of code.

Decomposition { matrix data abstraction

nil cons(h,t)

empty(l) true false

head(l) error h

tail(l) error t

Modules { operation oriented ADT

� organized around observers { representation hiding

Objects { data oriented OOP

� organized around generators { method interface

8-23

Slide 8-23: Decomposition and data abstraction

Recall that abstract data types may be completely characterized by a �nite

collection of generators and a number of observer functions that are de�ned with

respect to each possible generator. Following this idea, we may approach the

speci�cation of a data abstraction by constructing a matrix listing the generators

column-wise and the observers row-wise, which for each observer/generator pair

speci�es the value of the observer for that particular generator. Incidentally, the

de�nition of such a matrix allows us to check in an easy way whether we have

given a complete characterization of the data type. Above, an example is given of

the speci�cation of a list, with generators nil and cons, and observers empty, head

and tail. (Note that we group the secondary producer tail with the observers.)

Now, the traditional way of realizing abstract data types as modules may be

characterized as operation oriented, in the sense that the module realization of the

type is organized around the observers, resulting in a horizontal decomposition of

the matrix.

On the other hand, an object-oriented approach may be characterized as

data oriented, since the object realization of a type is based on specifying a

method interface for each possible generator (sub)type, resulting in a vertical

decomposition of the matrix. See slide 8-23.

Note, however, that in practice, di�erent generators need not necessarily

correspond to di�erent (sub)classes. Behavior may be subsumed in variables,

as an object cannot change its class/type.
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8.3.1 Abstract interfaces

When choosing for the module realization of the data abstraction list in C style,

we are likely to have an abstract functional interface as speci�ed in slide 8-24.

Modules { a functional interface ADT

typedef int element;

struct list;

extern list* nil();

extern list* cons(element e, list* l);

extern element head(list* l);

extern list* tail(list* l);

extern bool equal(list* l, list* m);

8-24

Slide 8-24: Modules { a functional interface

For convenience, the list has been restricted to contain integer elements only.

However, at the expense of additional notation, we could also easily de�ne a

generic list by employing template functions as provided by C

++

. This is left as

an exercise for the reader.

The interface of the abstract class list given in slide 8-25 has been de�ned

generically by employing templates.

Objects { a method interface OOP

template< class E >

class list f

public:

list() f g

virtual �list() f g

virtual bool empty() = 0;

virtual E head() = 0;

virtual list<E>* tail() = 0;

virtual bool operator ==(list<E>* m) = 0;

g;

8-25

Slide 8-25: Objects { a method interface

Note that the equal function in the ADT interface takes two arguments,

whereas the operator == function in the OOP interface takes only one, since the

other is implicitly provided by the object itself.
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8.3.2 Representation and implementation

The realization of abstract data types as modules with functions requires addi-

tional means to hide the representation of the list type. In contrast, with an

object-oriented approach, data hiding is e�ected by employing the encapsulation

facilities of classes.

Modules { representation hidingModules provide a syntactic means to group

related pieces of code and to hide particular aspects of that code. In slide 8-26

an example is given of the representation and the generator functions for a list of

integers.

Modules { representation hiding ADT

typedef int element;

enum f NIL, CONS g;

struct list f

int tag;

element e;

list* next;

g;

Generators

list* nil() f nil

list* l = new list; l->tag = NIL; return l;

g

list* cons( element e, list* l) f cons

list* x = new list;

x->tag = CONS; x->e = e; x->next = l;

return x;

g

8-26

Slide 8-26: Data abstraction and modules

For implementing the list as a collection of functions (ADT style), we employ

a struct with an explicit tag �eld, indicating whether the list corresponds to nil

or a cons.

The functions corresponding with the generators create a new structure and

initialize the tag �eld. In addition, the cons operator sets the element and next

�eld of the structure to the arguments of cons.

The implementation of the observers is given in slide 8-27.
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Modules { observers ADT

int empty(list* lst) f return !lst || lst->tag

== NIL; g

element head(list* l) f head

require( ! empty(l) );

return l->e;

g

list* tail(list* l) f tail

require( ! empty(l) );

return l->next;

g

bool equal(list* l, list* m) f equal

switch( l->tag) f

case NIL: return empty(m);

case CONS: return !empty(m) &&

head(l) == head(m) &&

tail(l) == tail(m);

g

g

8-27

Slide 8-27: Modules { observers

To determine whether the list is empty it su�ces to check whether the tag of

the list is equal to NIL. For both head and tail the pre-condition is that the list

given as an argument is not empty. If the pre-condition holds, the appropriate

�eld of the list structure is returned.

The equality operator, �nally, performs an explicit switch on the tag �eld,

stating for each case under what conditions the lists are equal.

Below, a program fragment is given that illustrates the use of the list.

list* r = cons(1,cons(2,nil()));

while (!empty(r)) f

cout << head(r) << endl;

r = tail(r);

g

Note that both the generator functions nil and cons take care of creating a new

list structure. Writing a function to destroy a list is left as an exercise for the

reader.

Objects { method interface The idea underlying an object-oriented decom-

position of the speci�cation matrix of an abstract type is to make a distinction
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between the (syntactic) subtypes of the data type (corresponding with its gener-

ators) and to specify for each subtype the value of all possible observer functions.

(We speak of syntactic subtypes, following Dahl (1992), since these subtypes

correspond to the generators de�ning the value domain of the data type. See Dahl

(1992) for a more extensive treatment.)

Method interface { list OOP

template< class E >

class nil : public list< E > f nil

public:

nil() fg

bool empty() f return 1; g

E head() f require( false ); return E(); g

list< E >* tail() f require( 0 ); return 0; g

bool operator ==(list<E>* m) f return

m->empty(); g

g;

template< class E >

class cons : public list< E > f cons

public:

cons(E e, list<E>* l) : e(e), next(l) fg

�cons() f delete next; g

bool empty() f return 0; g

E head() f return e; g

list<E>* tail() f return next; g

bool operator ==(list<E>* m);

protected:

E e;

list<E>* next;

g;

8-28

Slide 8-28: Data abstraction and objects

In the object realization in slide 8-28, each subtype element is de�ned as a

class inheriting from the list class. For both generator types nil and cons the

observer functions are de�ned in a straightforward way. Note that, in contrast to

the ADT realization, the distinction between the various cases is implicit in the

member function de�nitions of the generator classes.

As an example of using the list classes consider the program fragment below.

list<int>* r = new cons<int>(1, new cons<int>(2, new nil<int>));

while (! r->empty()) f

cout << r->head() << endl;

r = r->tail();

g



266 Abstract data types

delete r;

For deleting a list we may employ the (virtual) destructor of list, which recursively

destroys the tail of a list.

8.3.3 Adding new generators

Abstract data types were developed with correctness and security in mind, and

not so much from a concern with extensibility and reuse. Nevertheless, it is

interesting to compare the traditional approach of realizing abstract data types

(employing modules) and the object-oriented approach (employing objects as

generator subtypes) with regard to the ease with which a speci�cation may be

extended, either by adding new generators or by adding new observers.

Adding new generators { representation ADT

typedef int element;

enum f NIL, CONS, INTERVAL g;

struct list f

int tag;

element e;

union f element z; list* next; g;

g;

Generator

list* interval( element x, element y ) f

list* l = new list;

if ( x <= y ) f

l->tag = INTERVAL;

l->e = x; l->z = y;

g

else l->tag = NIL;

return l;

g

8-29

Slide 8-29: Modules and generators

Let us �rst look at what happens when we add a new generator to a data type,

such as an interval list subtype, containing the integers in the interval between

two given integers.

For the module realization of the list, adding an interval(x ; y) generator will

result in an extension of the (hidden) representation types with an additional
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representation tag type INTERVAL and the de�nition of a suitable generator

function.

To represent the interval list type, we employ a union to select between the

next �eld, which is used by the cons generator, and the z �eld, which indicates

the end of the interval.

Modifying the observers ADT

element head(list* l) f head

require( ! empty(l) );

return l->e; for both CONS and INTERVAL

g

list* tail(list* l) f tail

require( ! empty(l) );

switch( l->tag ) f

case CONS: return l->next;

case INTERVAL:

return interval((l->e)+1,l->z);

g

g

8-30

Slide 8-30: Modifying the observers

Also, we need to modify the observer functions by adding an appropriate case

for the new interval representation type, as pictured in slide 8-30.

Clearly, unless special constructs are provided, the addition of a new generator

case requires disrupting the code implementing the given data type manually, to

extend the de�nition of the observers with the new case.

In contrast, not surprisingly, when we wish to add a new generator case to the

object realization of the list, we do not need to disrupt the given code, but we

may simply add the de�nition of the generator subtype as given in slide 8-31.

Adding a new generator subtype corresponds to de�ning the realization for an

abstract interface class, which gives a method interface that its subclasses must

respect.

Observe, however, that we cannot exploit the fact that a list is de�ned by an

interval when testing equality, since we cannot inspect the type of the list as for

the ADT implementation.

8.3.4 Adding new observers

Now, for the complementary case, what happens when we add new observers

to the speci�cation of a data type? Somewhat surprisingly, the object-oriented

approach now seems to be at a disadvantage.
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Adding new generators OOP

class interval : public list<int> f interval

public:

interval(int x, int y) : x(x), y(y) f require(

x <= y ); g

bool empty() f return 0; g

int head() f return x; g

list< int >* tail() f

return ( x+1 <= y)?

new interval( x+1, y):

new nil<int>;

g

bool operator ==(list@lt;int>* m) f

return !m->empty() &&

x == m->head() && tail() == m->tail();

g

protected:

int x; int y;

g;

8-31

Slide 8-31: Objects and generators

Since in a module realization of an abstract data type the code is organized

around observers, adding a new observer function amounts simply to adding a

new operation with a case for each of the possible generator types, as shown in

slide 8-32.

Adding new observers ADT

int length( list* l ) f length

switch( l->tag ) f

case NIL: return 0;

case CONS: return 1 + length(l->next);

case INTERVAL: return l->z - l->e + 1;

g;

g

8-32

Slide 8-32: Modules and observers

When we look at how we may extend a given object realization of an abstract

data type with a new observer we are facing a problem.

The obvious solution is to modify the source code and add the length function
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to the list interface class and each of the generator classes. This is, however,

against the spirit of object orientation and may not always be feasible.

Another, rather awkward solution, is to extend the collection of possible

generator subtypes with a number of new generator subtypes that explicitly

incorporate the new observer function. However, this also means rede�ning the

tail function since it must deliver an instance of a list with length class.

As a workaround, one may de�ne a function length and an extended version

of the list template class supporting only the length (observer) member function

as depicted in slide 8-33.

Adding new observers OOP

template< class E >

int length(list< E >* l) f length

return l->empty() ? 0 : 1 + length(

l->tail() );

g

template< class E >

class listWL : public list<E> f listWL

public:

int length() f return ::length( this ); g

g;

8-33

Slide 8-33: Objects and observers

A program fragment illustrating the use of the listWL class is given below.

list<int>* r = new cons<int>(1,new cons<int>(2,new interval(3,7)));

while (! r->empty()) f

cout << ((listWL< int >*)r)->length() << endl;

r = r->tail();

g

delete r;

Evidently, we need to employ a cast whenever we wish to apply the length observer

function. Hence, this seems not to be the right solution.

Alternatively, we may use the function length directly. However, we are then

forced to mix method syntax of the form ref ! op(args) with function syntax of

the form fun(ref ; args), which may easily lead to confusion.

Discussion We may wonder why an object-oriented approach, that is supposed

to support extensibility, is at a disadvantage here when compared to a more

traditional module-based approach.

As observed in Cook (1990), the problem lies in the fact that neither of the

two approaches re
ect the full potential and 
exibility of the matrix speci�cation
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of an abstract data type. Each of the approaches represents a particular choice

with respect to the decomposition of the matrix, into either an operations-oriented

(horizontal) decomposition or a data-oriented (vertical) decomposition.

The apparent misbehavior of an object realization with respect to extending

the speci�cation with observer functions explains why in some cases we prefer the

use of overloaded functions rather than methods, since overloaded functions allow

for implicit dispatching to take place on multiple arguments, whereas method

dispatching behavior is determined only by the type of the object.

However, it must be noted that the dispatching behavior of overloaded func-

tions in C

++

is of a purely syntactic nature. This means that we cannot exploit

the information speci�c for a class type as we can when using virtual functions.

Hence, to employ this information we would be required to write as many variants

of overloaded functions as there are combinations of argument types.

Dynamic dispatching on multiple arguments is supported by multi-methods in

CLOS, see Paepcke (1993). According to Cook (1990), the need for such methods

might be taken as a hint that objects only partially realize the true potential of

data abstraction.

8.4 Types versus classes

Types are primarily an aid in arriving at a consistent system description. Most

(typed) object-oriented programming languages o�er support for types by employ-

ing classes as a device to de�ne the functionality of objects. Classes, however, have

originated from a far more pragmatic concern, namely as a construct to enable the

de�nition and creation of objects. Concluding this chapter, we will re
ect on the

distinction between types and classes, and discuss the role types and classes play

in reusing software through derivation by inheritance. This discussion is meant to

prepare the ground for a more formal treatment to be given in the next chapter.

It closely follows the exposition given in Wegner and Zdonik (1988).

Types must primarily be understood as predicates to guide the process of type

checking, whereas classes have come into being originally as templates for object

creation.

It is interesting to note how (and how easily) this distinction may be obscured.

In practice, when compiling a program in Java or C

++

, the compiler will notify

the user of an error when a member function is called that is not listed in the

public interface of the objects class. As another example, the runtime system

of Smalltalk will raise an exception, notifying the user of a dynamic type error,

when a method is invoked that is not de�ned in the object's class or any of its

superclasses. Both kinds of errors have the 
avor of a typing error, yet they rely

on di�erent notions of typing and are based on a radically di�erent interpretation

of classes as types.

To put types into perspective, we must ask ourselves what means we have to

indicate the type of an expression, including expressions that somehow reference

a class description.

InWegner and Zdonik (1988), three attitudes towards typing are distinguished:
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(1) typing may be regarded as an administrative aid to check for simple typos

and other administrative errors, (2) typing may be regarded as the ultimate

solution to de�ning the behavior of a system, or (3) typing may (pragmatically)

be regarded as a consequence of de�ning the behavior of an object. See slide

8-34. Before continuing, the reader is invited to sort the various programming

languages discussed into the three slots mentioned.

Types versus classes

� types { type checking predicates

� classes { templates for object creation

Type speci�cation

� syntactically { signature (under)

� semantically { behavior (right)

� pragmatically { implementation (over)

8-34

Slide 8-34: Types and classes

Typing as an administrative aid is typically a task for which we rely on a

compiler to check for possible errors. Evidently, the notion of typing that a

compiler employs is of a rather syntactic nature. Provided we have speci�ed

a signature correctly, we may trust a compiler with the routine of checking for

errors. As languages that supports signature type checking we may (obviously)

mention Java and C

++

.

Evidently, we cannot trust the compiler to detect conceptual errors, that is in-

complete or ill-conceived de�nitions of the functionality of an object or collections

of objects. Yet, ultimately we want to be able to specify the behavior of an object

in a formal way and to check mechanically for the adequacy of this de�nition. This

ideal of semantic types underlies the design of Ei�el, not so much the Ei�el type

system as supported by the Ei�el compiler, but the integration of assertions in the

Ei�el language and the notion of contracts as a design principle. Pragmatically,

we need to rely on runtime (consistency) checks to detect erroneous behavior,

since there are (theoretically rather severe) limits on the extent to which we may

verify behavioral properties in advance. (Nevertheless, see section 10.4 for some

attempts in this direction.)

Finally, we can take a far more pragmatic view towards typing, by regarding

the actual speci�cation of a class as an implicit characterization of the type of

the instances of the class. Actually, this is the way (not surprisingly, I would say)

types are dealt with in Smalltalk. Each object in Smalltalk is typed, by virtue of

being an instance of a class. Yet, a typing error may only be detected dynamically,

as the result of not responding to a message.

A distinction between perspectives on types (respectively syntactic, behavioral

and pragmatic) may seem rather academic at �rst sight. However, the di�erences
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Modi�cations

� types -(predicate constraints)! subtypes

� classes -(template modi�cation)! subclasses

Varieties of (compatible) modi�cations

� behaviorally { algebraic, axiomatic (type)

� signature { type checking (signature)

� name { method search algorithm (classes)

8-35

Slide 8-35: Type modi�cations

are, so to speak, ampli�ed when studied in the context of type modi�cations, as

for example e�ected by inheritance.

Wegner and Zdonik (1988) make a distinction between three notions of

compatible modi�cations, corresponding to the three perspectives on types, re-

spectively signature compatible modi�cations (which require the preservation of

the static signature), behaviorally compatible modi�cation (which rely on a mathe-

matical notion of de�nability for a type) and name compatible modi�cations (that

rely on an operationally de�ned method search algorithm). See slide 8-35.

Signature compatible modi�cations The assumption underlying the notion of

types as signatures is that behavior is approximated by a (static) signature. Now

the question is: to what extent can we de�ne semantics preserving extensions to

a given class or object?

Signature compatible modi�cations

� behavior is approximated by signature

Semantics preserving extensions

� horizontal { Person = Citizen + age : 0..120

� vertical { Retiree = Person + age : 65..120

Principle of substitutability

� an instance of a subtype can always be used in any context in which

an instance of a supertype can be used

Retiree 6 <

subtype

Person subsets are not subtypes

Read-only substitutability

� subset subtypes, isomorphically embedded subtypes

8-36

Slide 8-36: The principle of substitutability
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When we conceive of an object as a record consisting of (data and method)

�elds, we may think of two possible kinds of modi�cations. We may think of a

horizontal modi�cation when adding a new �eld, and similarly we may think of a

modi�cation as being vertical when rede�ning or constraining a particular �eld.

For example, when we de�ne Citizen as an entity with a name, we may de�ne (at

the risk of being somewhat awkward) a Person as a Citizen with an age and a

Retiree as a Person with an age that is restricted to the range 65..120.

The principle by which we may judge these extensions valid (or not) may be

characterized as the principle of substitutability, which may be phrased as: an

instance of a subtype can always be used in any context in which an instance of a

supertype can be used.

Unfortunately, for the extension given here we have an easy counterexample,

showing that syntactic signature compatibility is not su�cient. Clearly, a Person

is a supertype of Retiree (we will demonstrate this more precisely in section 9.2).

Assume that we have a function

set age : Person * Integer -> Void

that is de�ned as set age(p,n) p.age = n; . Now consider the following

fragment of code:

Person* p = r; r refers to some Retiree

p->set age(40);

where we employ object reference notation when calling set age. Since we have

assigned r (which is referring to a Retiree) to p, we know that p now points to

a Retiree, and since a Retiree is a person we may apply the function set age.

However, set age sets the age of the Retiree to 40, which gives (by common

standards) a semantic error. The lesson that we may draw from this is that

being a subset is no guarantee for being a subtype as de�ned by the principle of

substitutability. However, we may characterize the relation between a Retiree and

a Person as being of a weaker kind, namely read-only substitutability, expressing

that the (value of) the subtype may be used safely everywhere an instance of the

supertype is expected, as long as it is not modi�ed. Read-only substitutability

holds for a type that stands in a subset relation to another type or is embeddable

(as a subset) into that type. See slide 8-36.

Behaviorally compatible modi�cations If the subset relation is not a su�-

cient condition for being in a subtype relation, what is? To establish whether

the (stronger) substitutability relation holds we must take the possible functions

associated with the types into consideration as well. First, let us consider what

relations may exist between types. Recall that semantically a type corresponds to

a set together with a collection of operations that are de�ned for the set and that

the subtype relation corresponds to the subset relation in the sense that (taking a

type as a constraint) the de�nition of a subtype involves adding a constraint and,

consequently, a narrowing of the set of elements corresponding to the supertype.

Complete compatibility is what we achieve when the principle of substitutabil-

ity holds. Theoretically, complete compatibility may be assured when the behav-
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ior of the subtype fully complies with the behavior of the supertype. Behavioral

compatibility, however, is a quite demanding notion. We will deal with it more

extensively in chapter 10, when discussing behavioral re�nement. Unfortunately,

in practice we must often rely on the theoretically much weaker notion of name

compatibility.

Name compatible modi�cations

� operational semantics { no extra compile/run-time checks

procedure search(name, module)

if name = action then do action

elsif inherited = nil

then undefined

else search(name, inherited)

8-37

Slide 8-37: The inheritance search algorithm

Name compatible modi�cations Name compatible modi�cations approximate

behaviorally compatible modi�cations in the sense that substitutability is guar-

anteed, albeit not in a semantically veri�able way.

Operationally, substitutability can be enforced by requiring that each subclass

(that we may characterize as a pragmatic subtype) provides at least the operations

of its superclasses (while giving a sensible result on all argument types allowed

by its superclasses). Actually, name compatibility is an immediate consequence

of the overriding semantics of derivation by inheritance, as re
ected in the search

algorithm underlying method lookup. See slide 8-37. Although name compatible

modi�cations are by far the most 
exible, from a theoretical point of view they are

the least satisfying since they do not allow for any theory formation concerning

the (desired) behavior of (the components of) the system under development.

Summary

This chapter has presented an introduction to the theoretical foundations of

abstract data types. In particular, a characterization was given of types as

constraints.

Abstraction and types 1

� abstraction { control and data

� abstract data types { values in a semantic domain

� types as constraints { mathematical models

8-38

Slide 8-38: Section 8.1: Abstraction and types
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In section 1, we discussed the notion of abstraction in programming languages

and distinguished between control and data abstractions. Abstract data types

were characterized as values in some domain, and we looked at the various ways

in which to de�ne mathematical models for types.

Algebraic speci�cation 2

� signature { producers and observers

� generator universe { equivalence classes

� initial model { no junk, no confusion

� objects { multiple world semantics

8-39

Slide 8-39: Section 8.2: Algebraic speci�cation

In section 2, we studied the algebraic speci�cation of abstract data types by

means of a signature characterizing producers and observers. We discussed the

notions of equivalence classes and initial models, which consist of precisely the

equivalence classes that are needed. ,p> Also, we looked at the interpretation

of objects as algebras, and we discussed a multiple world semantics allowing for

dynamic state changes.

Decomposition { modules versus objects 3

� data abstraction { generators/observers matrix

� modules { operation-oriented

� objects { data-oriented

8-40

Slide 8-40: Section 8.3: Decomposition { modules versus objects

In section 3, we looked at the various ways we may realize data abstractions

and we distinguished between a modular approach, de�ning a collection of oper-

ations, and a data-oriented approach, employing objects.

Types versus classes 4

� types { syntactically, semantically, pragmatically

� compatible modi�cations { type, signature, class

8-41

Slide 8-41: Section 8.4: Types versus classes

Finally, in section 4, we discussed the di�erences between a syntactic, semantic

and operational interpretation of types, and how these viewpoints a�ect our notion

of re�nement or compatible modi�cation.
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Questions

1. Characterize the di�erences between control abstractions and data abstrac-

tions. Explain how these two kinds of abstractions may be embodied in

programming language constructs.

2. How can you model the meaning of abstract data types in a mathematical

way? Do you know any alternative ways?

3. Explain how types may a�ect object-oriented programming.

4. Explain how you may characterize an abstract data type by means of a

matrix with generator columns and observer rows. What bene�ts does such

an organization have?

5. How would you characterize the di�erences between the realization of ab-

stract data types by modules and by objects? Discuss the trade-o�s in-

volved.

6. How would you characterize the distinction between types and classes?

Mention three ways of specifying types. How are these kinds related to

each other?

7. How would you characterize behavior compatible modi�cations? What

alternatives can you think of?

Further reading

There is a vast amount of literature on the algebraic speci�cation of abstract data

types. You may consult, for example, Dahl (1992).
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From a theoretical perspective, object orientation may be characterized as com-

bining abstract data types and polymorphism. These notions may be considered

as the theoretical counterparts of the more operational notions of encapsulation

and inheritance.

Polymorphism 9

� abstract inheritance

� subtypes

� type abstraction

� self-reference

Additional keywords and phrases: exceptions, type calculi, parametric

types, coercion, ad hoc polymorphism, universal types, existential types,

unfolding, intersection types

9-1

Slide 9-1: Polymorphism

In this chapter we will study the notion of polymorphism. We start our

exploration by looking at the role of inheritance in knowledge representation.

Then we will formally characterize the (signature) subtype relation and explain

the contravariance rule for function subtypes. To better understand polymor-

phism and its relation to inheritance, we will develop a type calculus, allowing

277
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us to de�ne abstract types using universally and existentially quanti�ed type

expressions. In a similar way, we will look at polymorphism due to overloading

and generic type de�nitions. Finally, we will look at the role of self-reference in

typing object descriptions derived by inheritance. Together with developing the

calculi, examples will be given that illustrate the properties of the C

++

and Ei�el

type systems.

9.1 Abstract inheritance

Inheritance hierarchies play a role both in knowledge representation systems

and object-oriented programming languages, see Lenzerini et al. (1990). In

e�ect, historically, the notions of frames and is-a hierarchies (that play a role in

knowledge representation) and the notions of classes and inheritance (that have

primarily been developed in a programming language context) have mutually

in
uenced each other.

In object-oriented programming languages, classes and inheritance are strongly

related to types and polymorphism, and directed towards the construction of

reliable programming artifacts. In contrast, the goal of knowledge representation

is to develop a semantically consistent description of some real world domain,

which allows us to reason about the properties of the elements in that domain.

Abstract inheritance

� declarative relation among entities

Inheritance networks

� isa-trees { partial ordering

� isa/is-not { bipolar, is-not inference

Non-monotonic reasoning

Nixon is-a Quaker

Nixon is-a Republican

Quakers are Pacifists

Republicans are not Pacifists

Incremental system evolution is in practice non-monotonic!

9-2

Slide 9-2: Knowledge representation and inheritance

One of the �rst formal analyses of the declarative aspects of inheritance

systems was given in Touretzky (1986). The theoretical framework developed

in Touretzky (1986) covers the inheritance formalisms found in frame systems

such as FRL, KRL, KLONE and NETL, but also to some extent the inheritance

mechanisms of Simula, Smalltalk, Flavors and Loops. The focus of Touretzky

(1986), however, is to develop a formal theory of inheritance networks including
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defaults and exceptions. The values of attributes play a far more important role

in such networks than in a programming context. In particular, to determine

whether the relationships expressed in an inheritance graph are consistent, we

must be able to reason about the values of these attributes. In contrast, the use

of inheritance in programming languages is primarily focused on sharing instance

variables and overriding (virtual) member functions, and is not so much concerned

with the actual values of instance variables.

Inheritance networks in knowledge representation systems are often non mono-

tonic as a result of having is-not relations in addition to is-a relations and also

because properties (for example can-
y) can be deleted.

Monotonicity is basically the requirement that all properties are preserved,

which is the case for strict inheritance satisfying the substitution principle. It is

a requirement that should be adhered to at the risk of jeopardizing the integrity

of the system. Nevertheless, strict inheritance may be regarded as too in
exible

to express real world properties in a knowledge representation system.

The meaning of is-a and is-not relations in a knowledge representation inher-

itance graph may equivalently be expressed as predicate logic statements. For

example, the statements

� 8 x :Quaker(x )! Human(x )

� 8 x :Republican(x )! Human(x )

express the relation between, respectively, the predicates Quaker and Republican

to the predicate Human in the graph above. In addition, the statements

� 8 x :Quaker(x )! Paci�st(x )

� 8 x :Republican(x )! :Paci�st(x )

introduce the predicate Paci�st that leads to an inconsistency when considering

the statement that Nixon is a Quaker and a Republican.

Some other examples of statements expressing relations between entities in a

taxonomic structure are given in slide 9-3.

Taxonomic structure

� 8 x :Elephant(x) !Mammal(x)

� 8 x :Elephant(x) ! color(x) = gray

� 8 x :Penguin(x)! Bird(x) ^ :CanFly(x)

9-3

Slide 9-3: Taxonomies and predicate logic

The latter is often used as an example of non-monotonicity that may occur

when using defaults (in this case the assumption that all birds can 
y).

The mathematical semantics for declarative taxonomic hierarchies, as given

in Touretzky (1986), are based on the notion of constructible lattices of predi-

cates, expressing a partial order between the predicates involved in a taxonomy



280 Polymorphism

(such as, for example, Quaker and Human). A substantial part of the analysis

presented in Touretzky (1986), however, is concerned with employing the graph

representation of inheritance structures to improve on the e�ciency of reasoning

about the entities populating the graph. In the presence of multiple inheritance

and non-monotonicity due to exceptions and defaults, care must be taken to follow

the right path through the inheritance graph when searching for the value of a

particular attribute. Operationally, the solution presented by Touretzky (1986)

involves an ordering of inference paths (working upwards) according to the number

of intermediate nodes. Intuitively, this corresponds to the distance between the

node using an attribute and the node de�ning the value of the attribute. In

strictly monotonic situations such a measure plays no role, however!

9.2 The subtype relation

In this section, we will study the subtype relation in a more formal manner. First

we investigate the notion of subtypes in relation to the interpretation of types as

sets, and then we characterize the subtype relation for a number of constructs

occurring in programming languages (such as ranges, functions and records).

Finally, we will characterize objects as records and correspondingly de�ne the

subtype relation for simple record (object) types. These characterizations may

be regarded as a preliminary to the type calculi to be developed in subsequent

sections.

9.2.1 Types as sets

A type, basically, denotes a set of elements. A type may be de�ned either

extensionally, by listing all the elements constituting the type, or descriptively, as

a constraint that must be satis�ed by an individual to be classi�ed as an element

of the type.

Types as sets of values

� V � Int [ : : : [V � V [V ! V

Ideals { over V

� subtypes { ordered by set inclusion

� lattice { Top = V , Bottom = ?

Type system subtypes correspond to subsets

� a collection of ideals of V

9-4

Slide 9-4: The interpretation of types as sets
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Formally, we may de�ne the value set of a type with subtypes as an isomor-

phism of the form

V � Int [ : : : [V �V [ V ! V

which expresses that the collection of values V consists of (the union of) basic

types (such as Int) and compound types (of which V itself may be a component)

such as record types (denoted by the product V �V ) and function types (being

part of the function space V ! V ).

Within this value space V, subtypes correspond to subsets that are ordered

by set inclusion. Technically, the subsets corresponding to the subtypes must be

ideals, which comes down to the requirement that any two types have a maximal

type containing both (in the set inclusion sense).

Intuitively, the subtype relation may be characterized as a re�nement relation,

constraining the set of individuals belonging to a type. The subtype re�nement

relation may best be understood in terms of improving our knowledge with respect

to (the elements of) the type. For a similar view, see Ghelli and Orsini (1990).

In case we have no knowledge of a particular element we simply (must) assume

that it belongs to the value set V. Having no knowledge is represented by the

maximal element of the lattice Top, which denotes the complete set V. Whenever

we improve our knowledge, we may be more speci�c about the type of the element,

since fewer elements will satisfy the constraints implied by our information. The

bottom element Bottom of our type lattice denotes the type with no elements,

and may be taken to consist of the elements for which we have contradictory

information. See slide 9-4.

Mathematically, a type system is nothing but a collection with ideals within

some lattice V. In our subsequent treatment, however, we will primarily look

at the re�nement relation between two elements, rather than the set inclusion

relation between their corresponding types.

9.2.2 The subtype refinement relation

In determining whether a given type is a subtype of another type, we must make a

distinction between simple (or basic) types built into the language and compound

(or user-de�ned) types explicitly declared by the programmer. Compound types,

such as integer subranges, functions, records and variant records, themselves make

use of other (basic or compound) types. Basic types are (in principle) only a

subtype of themselves, although many languages allow for an implicit subtyping

relation between for example integers and reals. The rules given in slide 9-5

characterize the subtyping relation for the compound types mentioned.

We use the relation symbol 6 to denote the subtype relation. Types (both

basic and compound) are denoted by � and � . For subranges, a given (integer)

subrange � is a subtype of another subrange � if � is (strictly) included in � as a

subset. In other words, if � = n

0

::m

0

and � = n::m then the subtyping condition

is n 6 n

0

and m

0

6 m. We may also write n

0

::m

0

� n::m in this case.

For functions we have a somewhat similar rule, a function f

0

: �

0

! �

0

(with

domain �

0

and range or codomain �

0

) is a subtype of a function f : � ! �
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Sub-range inclusion 6

�

n 6 n

0

and m

0

6 m

n

0

::m

0

6 n::m

Functions contravariance

�

� 6 �

0

and �

0

6 �

�

0

! �

0

6 � ! �

Records

�

�

i

6 �

i

for i = 1::m (m 6 n)

a

1

: �

1

; : : : ; a

n

: �

n

6 a

1

: �

1

; : : : ; a

m

: �

m

Variants

�

�

i

6 �

i

for i = 1::m (m 6 n)

[a

1

: �

1

_ : : : _ a

m

: �

m

] 6 [a

1

: �

1

_ : : : _ a

n

: �

n

]

9-5

Slide 9-5: The subtype re�nement relation

(with domain � and codomain �) if the subtype condition � 6 �

0

and �

0

6 � is

satis�ed. Note that the relation between the domains is contravariant, whereas

the relation between the ranges is covariant. We will discuss this phenomenon of

contravariance below.

Records may be regarded as a collection of labels (the record �elds) that may

have values of a particular type. The subtyping rule for records expresses that a

given record (type) may be extended to a (record) subtype by adding new labels,

provided that the types for labels which occur in both records are re�ned in the

subtype. The intuition underlying this rule is that by extending a record we

add, so to speak, more information concerning the individuals described by such

a record, and hence we constrain the set of possible elements belonging to that

(sub)type.

Variants are (a kind of) record that leave the choice between a (�nite) number

of possible values, each represented by a label. The subtyping rules for variants

states that we may create a subtype of a given variant record if we reduce the

choice by eliminating one or more possibilities. This is in accord with our notion of

re�nement as improving our knowledge, since by reducing the choice we constrain

the set of possible individuals described by the variant record.

The subtyping rules given above specify what checks to perform in order to

determine whether a given (compound) type is a subtype of another type. In the

following we will look in more detail at the justi�cation underlying these rules,

and also hint at some of the restrictions and problems implied. However, let us

�rst look at some examples. See slide 9-6.

As a �rst example, when we de�ne a function f

0

: 8::12! 3::5 and a function

f : 9::11 ! 2::6 then, according to our rules, we have f

0

6 f . Recall that we

required subtypes to be compatible with their supertypes, compatible in the sense

that an instance of the subtype may be used at all places where an instance of the

supertype may be used. With regard to its signature, obviously, f

0

may be used
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Examples subtyping

� 8::12! 3::5 6 9::11! 2::6

� fage : int; speed : int; fuel : intg 6 fage : int; speed : intg

� [yellow _ blue]<[yellow _ blue _ green]

9-6

Slide 9-6: Examples of subtyping

everywhere where f may be used, since f

0

will deliver a result that falls within the

range of the results expected from f and, further, any valid argument for f will

also be accepted by f

0

(since the domain of f

0

is larger, due contravariance, than

the domain of f).

As another example, look at the relation between the record types fage :

int ; speed : int ; fuel : intg and fage : int ; speed : intg. Since the former has an

additional �eld fuel it delimits so to speak the possible entities falling under its

description and hence may be regarded as a subtype of the latter.

Finally, look at the relation between the variant records [yellow : color _blue :

color ] and [yellow : color _ blue : color _ green : color ]. The former leaves us the

choice between the colors yellow and blue, whereas the latter also allows for green

objects and, hence, encompasses the set associated with [yellow : color _ blue :

color ].

Contravariance rule The subtyping rules given above are all rather intuitive,

except possibly for the function subtyping rule. Actually, the contravariance

expressed in the function subtyping rule is somewhat of an embarrassment since

it reduces the opportunities for specializing functions to particular types. See

slide 9-7.

Function re�nement

� f

0

: Nat ! Nat 66 f : Int ! Int

Functions { as a service contravariance

� domain { restrictions for the client

� range { obligations for server

9-7

Slide 9-7: The function subtype relation

Consider, for example, that we have a function f : Int ! Int , then it seems

quite natural to specialize this function into a function f

0

: Nat ! Nat (which

may make use of the fact that Nat only contains the positive elements of Int).

However, according to our subtyping rule f

0

66 f , since the domain of f

0

is smaller

than the domain of f.
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For an intuitive understanding of the function subtyping rule, it may be

helpful to regard a function as a service. The domain of the function may

then be interpreted as characterizing the restrictions imposed on the client of the

service (the caller of the function) and the codomain of the function as somehow

expressing the bene�ts for the client and the obligations for the (implementor

of the) function. Now, as we have already indicated, to re�ne or improve on a

service means to relax the restrictions imposed on the client and to strengthen

the obligations of the server. This, albeit in a syntactic way, is precisely what is

expressed by the contravariance rule for function subtyping.

9.2.3 Objects as records

Our interest in the subtype relation is primarily directed towards objects. How-

ever, since real objects involve self-reference and possibly recursively de�ned

methods, we will �rst study the subtyping relation for objects as (simple) records.

Our notion of objects as records is based on the views expressed in Cardelli (1984).

Objects may be regarded as records (where a record is understood as a �nite

association of values to labels), provided we allow functions to occur as the value

of a record �eld.

Objects as records

� record = �nite association of values to labels

Field selection { basic operation

� (a = 3; b = true):a�3

Typing rule

�

e

1

: �

1

and ... and e

n

: �

n

fa

1

= e1; : : : ; a

n

= e

n

g : fa

1

: �

1

; : : : ; a

n

: �

n

g

9-8

Slide 9-8: The object subtype relation

The basic operation with records is �eld selection which, when the value of the

�eld accessed is a function, may be applied for method invocation. The typing

rule for records follows the construction of the record: the type of a record is

simply the record type composed of the types of the record's components. See

slide 9-8.

In the previous section we have already characterized the subtyping relation

between records. This characterization is repeated in slide 9-9. The following is

meant to justify this characterization.

Let us �rst look at a number of examples that illustrate how the subtype

relation �ts into the mechanism of derivation by inheritance.

Suppose we de�ne the type any as the record type having no �elds. In our

view of types as constraints, the empty record may be regarded as imposing no

constraints. This is in agreement with our formal characterization of subtyping,
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Subtyping { examples

type any = f g

type entity = f age : int g

type vehicle = f age : int, speed : int g

type machine = f age : int, fuel : string g

type car = f age : int, speed : int, fuel :

string g

Subtyping rules

� � 6 �

�

�

1

6 �

1

; : : : ; �

n

6 �

n

fa

1

: �

1

; : : : ; a

n+m

: �

n+m

g 6 fa

1

: �

1

; : : : ; a

n

: �

n

g

9-9

Slide 9-9: Examples of object subtyping

since according to the record subtyping rule the record type any is a supertype of

any other record type.

Subtyping in the sense of re�nement means adding constraints, that is infor-

mation that constrains the set of possible elements associated with the type. The

record type entity, which assumes a �eld age, is a subtype of any, adding the

information that age is a relevant property for an entity. Following the same line

of reasoning, we may regard the types vehicle and machine as subtypes of the

type entity.

Clearly, we may have derived the respective types by applying inheritance.

For example, we may derive vehicle from entity by adding the �eld speed, and

machine from entity by adding the �eld fuel. Similarly, we may apply multiple

inheritance to derive the type car from vehicle and machine, where we assume

that the common �eld age (ultimately inherited from entity) only occurs once.

Obviously, the type car is a subtype of both vehicle and machine.

Each of the successive types listed above adds information that constrains the

possible applicability of the type as a descriptive device. The other way around,

however, we may regard each object of a particular (sub)type to be an instance

of its supertype simply by ignoring the information that speci�cally belongs to

the subtype. Mathematically, we may explain this as a projection onto the �elds

of the supertype. Put di�erently, a subtype allows us to make �ner distinctions.

For example, from the perspective of the supertype two entities are the same

whenever they have identical ages but they may be di�erent when regarded as

vehicles (by allowing di�erent speeds).

Conformance The importance of subtyping for practical software development

comes from the conformance requirement (or substitutability property) stating

that any instance of a subtype may be used when an instance of a supertype is

expected. This property allows the programmer to express the functionality of
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a program in a maximally abstract way, while simultaneously allowing for the

re�nement of these abstract types needed to arrive at an acceptable implementa-

tion.

For objects as records, the re�nement relation concerns both attributes and

functions (as members of the object record). For attributes, re�nement means

providing more information. Syntactically, with respect to the (signature) type

of the attribute, this means a restriction of its range. In other words, the possible

values an attribute may take may only be restricted. Alternatively, the re�nement

relation may be characterized as restricting the non-determinism contained in the

speci�cation of the supertype, by making a more speci�c choice. For example, if

we specify the speed range of a vehicle initially as 0::300:000 then we may restrict

the speed range of a car safely to 0::300. However, to stay within the regime

of subtyping we may not subsequently enlarge this range by de�ning a subtype

racing car with a speed range of 0::400. Intuitively, subtyping means enforcing

determinism, the restriction of possible choices.

Our (syntactic) characterization of the subtyping relation between object types

does not yet allow for data hiding, generics or self-reference. These issues will

be treated in sections 9.5 and 9.6. However, before that, let us look at the

characterization of the subtyping relation between object types as de�ned (for

example) for the language Emerald. The characterization given in slide 9-10 is

taken from Danforth and Tomlinson (1988).

Subtyping in Emerald { S conforms to T

� S provides at least the operations of T

� for each operation in T, the corresponding operation in S has the

same number of arguments

� the type of the result of operations of S conform to those of the

operations of T

� the types of arguments of operations of T conform to those of the

operations of S

9-10

Slide 9-10: The subtype relation in Emerald

The object subtyping relation in Emerald is characterized in terms of con-

formance. The rules given above specify when an object type S conforms to an

object (super) type T. These rules are in agreement with the subtyping rules

given previously, including the contravariance required for the argument types

of operations. Taken as a guideline, the rules specify what restrictions to obey

(minimally) when specifying a subtype by inheritance. However, as we will discuss

in the next section, polymorphism and subtyping is not restricted to object types

only. Nor are the restrictions mentioned a su�cient criterion for a semantically

safe use of inheritance.
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9.3 Flavors of polymorphism

Polymorphism is not a feature exclusive to object-oriented languages. For example

the ML language is a prime example of a non object-oriented language supporting

a polymorphic type system (see Milner et al., 1990). Also, most languages, includ-

ing Fortran and Pascal, support implicit conversion between integers and 
oats,

and backwards from 
oats to integers, and (in Pascal) from integer subranges to

integers. Polymorphism (including such conversions) is a means to relieve the

programmer from the rigidity imposed by typing. Put di�erently, it's a way in

which to increase the expressivity of the type system.

Typing { protection against errors

� static { type checking at compile time

� strong { all expressions are type consistent

Untyped { 
exibility

� bitstrings, sets, �-calculus

Exceptions to monomorphic typing:

� overloading, coercion, subranging, value-sharing (nil)

9-11

Slide 9-11: The nature of types

Typing, as we have argued before, is important as a means to protect against

errors. We must distinguish between static typing (which means that type check-

ing takes place at compile time) and strong typing (which means that each ex-

pression must be type consistent). In other words, strong typing allows illegal

operations to be recognized and rejected. Object-oriented languages (such as

Ei�el, and to a certain extent C

++

) provide strong typing which is a mixture

of static typing and runtime checks to e�ect the dynamic binding of method

invocations. See slide 9-11.

Typed languages impose rather severe constraints on the programmer. It may

require considerable e�ort to arrive at a consistently typed system and to deal

with the additional notational complexity of de�ning the appropriate types. In

practice, many programmers and mathematicians seem to have a preference for

working in an untyped formalism, like bitstrings, (untyped) sets or (untyped)

lambda calculus. We may further note that languages such as Lisp, Prolog and

Smalltalk are popular precisely because of the 
exibility due to the absence of

static type checking.

For reliable software development, working in an untyped setting is often

considered as not satisfactory. However, to make typing practical, we need to

relieve the typing regime by supporting well-understood exceptions to monomor-

phic typing, such as overloaded functions, coercion between data types and value

sharing between types (as provided by a generic nil value). More importantly,
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Flavors of polymorphism

polymorphism

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

universal

n

parametric (generics)

inclusion (inheritance)

ad-hoc

�

overloading intersection

coercion

� inclusion polymorphism { to model subtypes and inheritance

� parametric polymorphism { uniformly on a range of types

� intersection types { coherent overloading

9-12

Slide 9-12: Flavors of polymorphism

however, we must provide for controlled forms of polymorphism.

In Cardelli and Wegner (1985), a distinction is made between ad hoc polymor-

phism (which characterizes the mechanisms mentioned as common exceptions to

monomorphic typing) and universal polymorphism (which allows for theoretically

well-founded means of polymorphism). Universal polymorphism may take the

form of inclusion polymorphism (which is a consequence of derivation by inheri-

tance) or parametric polymorphism (which supports generic types, as the template

mechanism o�ered by C

++

). See slide 9-12. The term inclusion polymorphism

may be understood by regarding inheritance as a means to de�ne the properties

of a (sub)type incrementally, and thus (by adding information) delimiting a

subset of the elements corresponding to the supertype. When overloading is

done in a systematic fashion we may speak of intersection types, which allows for

polymorphism based on a �nite enumeration of types. See section 9.4.1.

Inheritance as incremental modification

The notion of inheritance as incremental modi�cation was originally introduced

in Wegner and Zdonik (1988). Abstractly, we may characterize derivation by

inheritance in a formula as R = P + M , where R is the result obtained by

modifying the parent P by (modi�er) M. See slide 9-13.

For example, we may de�ne the record consisting of attributes a

1

: : : a

n

by

adding fa

2

; a

3

g to the parent fa

1

; a

2

g. Clearly, we must make a distinction

between independent attributes (that occur in either P or M) and overlapping

attributes (that occur in both P and M and are taken to be overruled by the

de�nition given in M).

An important property of objects, not taken into account in our interpretation
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Inheritance { incremental modi�cation

� Result = Parent + Modi�er

Example: R = fa1; a2g + fa2; a3g = fa1; a2; a3g

Independent attributes: M disjoint from P

Overlapping attributes: M overrules P

Dynamic binding

� R = : : : ;P

i

: self !A; : : :+ f: : : ;M

j

: self !B ; : : :g

9-13

Slide 9-13: Inheritance as incremental modi�cation

of object as records given before, is that objects (as supported by object-oriented

languages) may be referring to themselves. For example, both in the parent

and the modi�er methods may be de�ned that refer to a variable this or self

(denoting the object itself). It is important to note that the variable self is

dynamically bound to the object and not (statically) to the textual module in

which the variable self occurs. Wegner and Zdonik (1988) make a distinction

between attributes that are rede�ned in M, virtual attributes (that need to be

de�ned in M) and recursive attributes (that are de�ned in P). Each of these

attributes may represent methods which (implicitly) reference self. (In many

object-oriented languages, the variable self or this is implicitly assumed whenever a

method de�ned within the scope of the object is invoked.) Self-reference (implicit

or explicit) underlies dynamic binding and hence is where the power of inheritance

comes from. Without self-reference method calls would reduce to statically bound

function invocation.

Generic abstract data types

Our goal is to arrive at a type theory with su�cient power to de�ne generic (poly-

morphic) abstract data types. In the following section, we will develop a number

of type calculi (following Pierce, 1993) that enable us to de�ne polymorphic types

by employing type abstraction.

Type abstraction may be used to de�ne generic types, data hiding and (in-

heritance) subtypes. The idea is that we may characterize generic types by

quantifying over a type variable. For example, we may de�ne the identity function

id generically as 8T :id(x : T ) = x , stating that for arbitrary type T and element

x of type T, the result of applying id to x is x. Evidently this holds for any T.

In a similar way, we may employ type parameters to de�ne generic abstract

data types. Further, we may improve on our notion of objects as records by

de�ning a packaging construct that allows for data hiding by requiring merely

that there exists a particular type implementing the hidden component.

Also, we may characterize the (inheritance) subtyping relation in terms of

bounded quanti�cation, that is quanti�cation over a restricted collection of types
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(restricted by imposing constraints with respect to the syntactic structure of the

type instantiating the type parameter).

9.4 Type abstraction

In this section we will study type calculi that allow us to express the various

forms of polymorphism, including inclusion polymorphism (due to inheritance),

parametric polymorphism (due to generics) and intersection types (due to over-

loading), in a syntactic way, by means of appropriate type expressions.

The type calculi are based on the typed lambda calculus originally introduced

in Cardelli (1984) to study the semantics of multiple inheritance. We will �rst

study some simple extensions to the typed lambda calculus and then discuss

examples involving universal quanti�cation (de�ning parametric types), existen-

tial quanti�cation (hiding implementation details) and bounded quanti�cation

(modeling subtypes derived by inheritance). For those not familiar with the

lambda calculus, a very elementary introduction is given below. For each calculus,

examples will be given to relate the insights developed to properties of the C

++

type system.

The lambda calculus The lambda calculus provides a very concise, yet powerful

formalism to reason about computational abstraction. The introduction given

here has been taken from Barendrecht (1984), which is a standard reference on

this subject.

Lambda calculus { very informal �

� variables, abstractor �, punctuation (; )

Lambda terms { �

� x 2 � variables

� M 2 �) � x :M 2 � abstraction

� M 2 � and N 2 �)MN 2 � application

9-14

Slide 9-14: The lambda calculus { terms

Syntactically, lambda terms are built from a very simple syntax, �guring

variables, the abstractor � (that is used to bind variables in an expression), and

punctuation symbols. Abstractors may be used to abstract a lambda term M

into a function � x :M with parameter x. The expression � x :M must be read as

denoting the function with body M and formal parameter x. The variable x is

called the bound variable, since it is bound by the abstractor �. In addition to

function abstraction, we also have (function) application, which is written as the

juxtaposition of two lambda terms. See slide 9-14.
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Behaviorally, lambda terms have a number of properties, as expressed in the

laws given in slide 9-15.

Laws

� (� x :M )N = M [x := N ] conversion

� M = N )MZ = NZ and ZM = ZN

� M = N ) � x :M = � x :N

9-15

Slide 9-15: The lambda calculus { laws

The most important rule is the beta conversion rule, which describes in a

manner of speaking how parameter passing is handled. In other words function

call, that is the application (� x :M )N , results in the function body M in which N

is substituted for x. Two other laws are the so-called extensionality axioms, which

express how equality of lambda terms is propagated into application and function

abstraction. These laws impose constraints upon the models characterizing the

meaning of lambda terms.

Substitution

� x [x := N ]�N

� y[x := N ]�y if x 6= y

� (� y:M )[x := N ]�� y:(M [x := N ])

� (M

1

M

2

)[x := N ] � (M

1

[x := N ])(M

2

[x := N ])

9-16

Slide 9-16: The lambda calculus { substitution

Substitution is de�ned by induction on the structure of lambda terms. A

variable y is replaced by N (for a substitution [x := N ]) if y is x and remains y

otherwise. A substitution [x := N ] performed on an abstraction � y :M results in

substituting N for x in M if x is not y. If x is identical to y, then y must �rst be

replaced by a fresh variable (not occurring in M). A substitution performed on

an application simply results in applying the substitution to both components of

the application. See slide 9-16.

Some examples of beta conversion are given in slide 9-17. In the examples,

for simplicity we employ ordinary arithmetical values and operators. This does

not perturb the underlying �-theory, since both values and operations may be

expressed as proper �-terms.

Note that the result of a substitution may still contain free variables (as in

the third example) that may be bound in the surrounding environment (as in the

fourth example).

Lambda calculus may be used to state properties of functions (and other

programming constructs) in a general way.
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Examples

(�x :x)1 = x [x := 1] = 1

(�x :x + 1)2 = (x + 1)[x := 2] = 2 + 1

(�x :x + y + 1)3 = (x + y + 1)[x := 3] = 3 + y + 1

(�y :(�x :x + y + 1)3)4) =

((�x :x + y +1)3)[y := 4] = 3+4+1

9-17

Slide 9-17: Beta conversion { examples

Properties

� 8M (� x :x)M =M identity

� 8F 9X :FX = X �xed point

Proof: take W = � x :F (xx) and X = WW , then

X =WW = (�x :F (xx))W = F (WW ) = FX

9-18

Slide 9-18: The lambda calculus { properties

Consider, for example, the statement that the identity function works for each

lambda term as expected. The quanti�cation with respect to M indicates that

in each possible model for the lambda calculus (that respects the extensionality

axioms given above) the identity (� x :x )M =M holds. See slide 9-18.

As another example, consider the statement that each function F has a �xed

point, that is a value X for which FX = X . The proof given above, however, does

not give us any information concerning the actual contents of the �xed point, but

merely proves its existence. In the following (see section 9.6) we will write Y (F )

for the �xed point of a function F.

In Barendrecht (1984), an extensive account is given of how to construct

mathematical models for the lambda calculus. A semantics of our type calculus

may be given in terms of such models; however we will not pursue this any further

here.

9.4.1 A simple type calculus

In our �rst version of a type calculus we will restrict ourselves to a given set of

basic types (indicated by the letter �) and function types (written � ! � , where

� stands for the domain and � for the range or codomain). This version of the

typed lambda calculus (with subtyping) is called �

6

in Pierce (1993) from which

most of the material is taken. The �

6

calculus is a �rst order calculus, since it

does not involve quanti�cation over types. See slide 9-19.
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The structure of type expressions is given by the de�nition

� ::= � j �

1

! �

2

where we use � as a type identi�er and � as a meta variable for basic types. The

expressions of our language, that we indicate with the letter e, are similar to

lambda terms, except for the typing of the abstraction variable in � x : �:e.

A simple type calculus { subtypes �

6

� � ::= � j �

1

! �

2

� e ::= x j � x : �:e j e

1

e

2

Type assignment

�

� ` x : � � ` e : �

� ` � x : �:e 2 � ! �

�

� ` e

1

: � ! �; e

2

: �

� ` e

1

e

2

2 �

Re�nement

�

� ` e : � � ` � 6 �

� ` e : �

9-19

Slide 9-19: The subtype calculus

To determine whether an expression e is correctly typed (with some type

expression �) we need type assignment rules, as given above. Typing is usually

based on a collection of assumptions �, that contains the typing of expressions

occurring in the expression for which we are determining the type. In the type

assignment rules and the (subtyping) re�nement rules, the phrase � ` e : � means

that the expression e has type � , under the assumption that the type assignments

in � are valid. When � is empty, as in ` e : � , the type assignment holds

unconditionally. Occasionally, we write � ` e 2 � instead of � ` e : � for

readability. These two expressions have identical meaning.

The premises of a type assignment rule are given above the line. The type

assignment given below the line states the assignment that may be made on the

basis of these premises.

For example, the �rst type assignment rule states that, assuming � ` x : � (x

has type �) and � ` e : � (e has type �) then � ` � x : �:e 2 � ! � , in other

words the abstraction � x : �:e may be validly typed as � ! � .

Similarly, the second type assignment rule states that applying a function

e

1

: � ! � to an expression e

2

of type � results in an (application) expression

e

1

e

2

of type � .

We may assume the basic types denoted by � to include (integer) subranges,

records and variants. As a consequence, we may employ the subtyping rules

given in section 9.2 to determine the subtyping relation between these types. The

(subtyping) re�nement rule repeated here expresses the substitutability property
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of subtypes, which allows us to consider an expression e of type �, with � 6 � , as

being of type � .

In slide 9-20, some examples are given illustrating the assignment of types

to expressions. Type assignment may to a certain extent be done automatically,

by type inference, as for example in ML, see Milner et al. (1990). However,

in general, typing is not decidable when we include the more powerful type

expressions treated later. In those cases the programmer is required to provide

su�cient type information to enable the type checker to determine the types.

Examples

� S = � x : Int:x + 1

S : Int ! Int

� twice = � f : Int ! Int : � y : Int :f (f (y))

twice : (Int ! Int)! Int ! Int

Application

� S0 = 1 2 Int

� twice(S) = � x :SSx 2 Int ! Int

9-20

Slide 9-20: Subtypes { examples

When we de�ne the successor function S as � x : Int :x +1 then we may type S

straightforwardly as being of type Int ! Int . Similarly, we may type the (higher

order) function twice as being of type (Int ! Int) ! Int ! Int . Note that

the �rst argument to twice must be a function. Applying twice to a function

argument only results in a function. When applied to S it results in a function

of type Int ! Int that results in applying S twice to its (integer) argument.

The subtyping rules (partly imported from section 9.2) work as expected. We

may de�ne, for example, a function + : Real � Real ! Int as a subtype of

+ : Int�Int ! Int (according to the contra-variant subtyping rule for functions).

Subtyping in C++ Subtyping is supported in C

++

only to a very limited

extent. Function subtypes are completely absent. However, class subtypes due

to derivation by inheritance may be employed. Also, built-in conversions are

provided, some of which are in accordance with the subtyping requirements,

and some of which, unfortunately, violate the subtyping requirements. Built-in

conversions exist, for example, between double and int, in both ways. However,

whereas the conversion from int to double is safe, the other way around may cause

loss of information by truncation.

The type system sketched in slide 9-19 is quite easily mapped to a C

++

context.

For example, we may mimic the functions S and twice as given in slide 9-20 in

C

++

as:

int S(int x) f return x+1; g

int twice(int f(int), int y) f return f(f(y)); g
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int twice S(int y) f return twice(S,y); g

Nevertheless, the type system of C

++

imposes some severe restrictions. For

example, functions may not be returned as a value from functions. (Although we

may provide a workaround, when we employ the operator() function for objects.)

The absence of function subtyping becomes clear when, for example, we call

the function twice with the function SD, which is de�ned as:

int SD(double x) f return x+1; g

According to the subtyping rules and in accordance with the substitutability

requirement, we employ SD whenever we may employ S. But not so in C

++

.

We run into similar limitations when we try to re�ne an object class descrip-

tions following the object subtype re�nement rules.

class P f P

public:

P() f self = 0; g

virtual P* self() f

return self? self->self():this;

g

virtual void attach(C* p) f

self = p;

g

private:

P* self;

g;

class C : public P f C 6 P

public:

C() : P(this) f g

C* self() f ANSI/ISO

return self? self->self():this;

g

void attach(P* p) f rejected

p->attach(self());

g

void redirect(C* c) f self = c; g

private:

C* self;

g;

9-21

Slide 9-21: Subtyping in C++

Suppose we have a parent class P which o�ers the member functions self and

attach, as in slide 9-21. The meaning of the function self is that it de-references
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the self variable if it is non-zero and delivers this otherwise. (See section 4.1 for

an example of its use.) The function attach may be used to connect an instance

of C to the self variable.

The class C in its turn inherits from P and rede�nes self and attach. Syn-

tactically, both re�nements are allowed, due to the function subtype re�nements

rules. The function self is rede�ned to deliver a more tightly speci�ed result, and

the attach function is allowed to take a wider range of arguments.

In a number of compilers for C

++

, both rede�nitions are considered illegal.

However, in the ANSI/ISO standard of C

++

, rede�ning a member function to

deliver a subtype (that is, derived class) pointer will be allowed. Rede�ning

attach, as has been done for C is probably not a wise thing to do, since it changes

the semantics of attach as de�ned for the parent class P. In e�ect, it allows us

to write c ! attach(p) instead of p ! attach(c ! self ()), for P � p and C � c.

Nevertheless, from a type theoretical perspective, there seem to be no grounds

for forbidding it.

9.4.2 Intersection types

We de�ne our second version of the typed lambda calculus (�

^

) as an exten-

sion of the �rst version (�

6

), an extension which provides facilities for (ad hoc)

overloading polymorphism. Our extension consists of adding a type expression

V

[�

1

; : : : ; �

n

] which denotes a �nite conjunction of types. Such a conjunction of

types, that we will also write as �

1

^ : : : ^ �

n

is called an intersection type. The

idea is that an expression e of type

V

[�

1

; : : : ; �

n

] is correctly typed if e : �

i

for

some i in 1::n. This is expressed in the type assignment rule given in slide 9-22.

Intersection types { overloading �

^

� � ::= � j �

1

! �

2

j

V

[�

1

::�

n

]

Type assignment

�

� ` e : �

i

(i 2 1::n)

� ` e :

V

[�

1

::�

n

]

Re�nement

�

� ` � 6 �

i

(i 2 1::n)

� ` � 6

V

[�

1

::�

n

]

�

V

[�

1

::�

n

] 6 �

i

� � `

V

[� ! �

1

::� ! �

n

] 6 � !

V

[�

1

::�

n

]

9-22

Slide 9-22: The intersection type calculus

The subtyping rule for intersection types states that any subtype of a type oc-

curring in the intersection type

V

[�

1

; : : : ; �

n

] is itself a subtype of the intersection

type.
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In addition we have two subtyping rules without premises, the �rst of which

says that the intersection type itself may be regarded as a subtype of any of its

components. In other words, from a typing perspective an intersection type is

equal (hence may be replaced by) any of its component types.

Also, we may re�ne a function, with domain �, which has an intersection type

V

[�

1

; : : : ; �

n

] as its range into an intersection type consisting of functions � ! �

i

for i = 1::n.

Intersection types allow us to express a limited form of overloading, by enumer-

ating a �nite collection of possible types. Since the collection of types comprising

an intersection type is �nite, we do not need a higher order calculus here, although

we might have used type abstraction to characterize intersection types.

Examples

� + :

V

[Int � Int ! Int ;Real �Real ! Real ]

� Int ! Int 6

V

[Int ! Int ;Real ! Real ]

� Msg ! Obj1^Msg ! Obj2 6 Msg !

V

[Obj1;Obj2]

9-23

Slide 9-23: Intersection types { examples

A typical example of an intersection type is presented by the addition operator,

overloaded for integers and reals, which we may de�ne as

+ :

V

[Int � Int ! Int ;Real � Real ! Real ]

According to our re�nement rule, we may specialize an intersection type into any

of its components. For example, when we have an intersection type de�ning a

mapping for integers and a mapping for reals, we may choose the one that �ts

our purposes best. This example illustrates that intersection types may be an

important tool for realizing optimizations that depend upon (dynamic) typing.

Similarly, we may re�ne a generic function working on objects into a collection

of (specialized) functions by dividing out the range type. See slide 9-23. The

resulting intersection type itself may subsequently be specialized into one of the

component functions. In Castagna et al. (1993), a similar kind of type is used to

model the overloading of methods in objects, that may but need not necessarily be

related by inheritance. The idea is to regard message passing to objects as calling

a polymorphic function that dispatches on its �rst argument. When the type of

the �rst argument is compatible with multiple functions (which may happen for

methods that are re�ned in the inheritance hierarchy) the most speci�c function

component is chosen, that is the method with the minimal object type. A similar

idea is encountered in CLOS, which allows for the de�nition of multi-methods

for which dynamic dispatching takes place for all arguments. (A problem that

occurs in modeling methods as overloaded functions is that the subtyping relation

between methods no longer holds, due to the domain contravariance requirement.

See Castagna et al. (1993) for a possible solution.)
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Overloading in C++ Although C

++

does not provide support for subtyping,

it does provide extensive support for function overloading. Given a collection

of functions (overloading a particular function name) C

++

employs a system of

matches to select the function that is most appropriate for a particular call.

Overloaded function selection rules C++

1 no or unavoidable conversions { array->pointer, T -> const T

2 integral promotion { char->int, short->int, float->double

3 standard conversions { int->double, double->int, derived* ->

base*

4 user-de�ned conversions { constructors and operators

5 ellipsis in function declaration { ...

Multiple arguments { intersect rule

� better match for at least one argument and at least as good a match

for every other argument

9-24

Slide 9-24: Overloading in C++

Matches may involve built-in or user-de�ned conversions. The general rule

underlying the application of conversions is that conversions that are considered

less error-prone and surprising are to be preferred over the others. This rule is

re
ected in the ordering of the C

++

overloading selection rules depicted in slide

9-24.

According to the rules, the absence of conversions is to be preferred. For

compatibility, with C, array to pointer conversions are applied automatically, and

also T to const T conversions are considered as unproblematic. Next, we have

the integral promotion rules, allowing for the conversion of char to int and short

to int, for example. These conversions are also directly inherited from C, and are

safe in the sense that no information loss occurs. Further, we have the standard

conversions such as int to double and derived* to base*, user-de�ned conversions

(as determined by the de�nition of one-argument constructors and conversion

operators), and the ... ellipsis notation, which allows us to avoid type-checking in

an arbitrary manner.

For selecting the proper function from a collection of overloaded functions

with multiple arguments, the so-called intersect rule is used, which states that

the function is selected with a better match for at least one argument and at least

as good a match for every other argument. In the case that no winner can be

found because there are multiple candidate functions with an equally good match,

the compiler issues an error, as in the example below:

void f(int, double);

void f(double, int);
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f(1,2.0); f(int, double);

f(2.0,1); f(double,int);

f(1,1); error: ambiguous

The reason that C

++

employs a system of matches based on declarations

and actual parameters of functions is that the graph of built-in conversions (as

inherited from C) contains cycles. For example, implicit conversions exist from

int to double and double to int (although in the latter case the C

++

compiler gives

a warning). Theoretically, however, the selection of the best function according

to the subtype relation would be preferable. However, the notion of best is not

unproblematic in itself. For example, consider the de�nition of the overloaded

function f and the classes P and C in slide 9-25.

class P;

class C;

void f(P* p) f cout << "f(P*)"; g (1)

void f(C* c) f cout << "f(C*)"; g (2)

class P f

public:

virtual void f() f cout << "P::f"; g (3)

g;

class C : public P f

public:

virtual void f() f cout << "C::f"; g (4)

g;

9-25

Slide 9-25: Static versus dynamic selection

What must be considered the best function f, given a choice between (1), (2),

(3) and (4)?

P* p = new P; static and dynamic P*

C* c = new C; static and dynamic C*

P* pc = new C; static P*, dynamic C*

f(p); f(P*)

f(c); f(C*)

f(pc); f(P*)

p->f(); P::f

c->f(); C::f

pc->f(); C::f
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In the example given above, we see that for the functions f (corresponding to

(1) and (2)) the choice is determined by the static type of the argument, whereas

for the member functions f (corresponding to (3) and (4)) the choice is determined

by the dynamic type.

We have a dilemma. When we base the choice of functions on the dynamic

type of the argument, the function subtype re�nement rule is violated. On the

other hand, adhering to the domain contravariance property seems to lead to

ignoring the potentially useful information captured by the dynamic type of the

argument.

9.4.3 Bounded polymorphism

Our next extension, which we call F

6

, involves (bounded) universal quanti�cation.

For technical reasons we need to introduce a primitive type Top, which may be

considered as the supertype of all types (including itself). Also we need type

abstraction variables, that we will write as � and �. Our notation for a universally

quanti�ed (bounded) type is 8� 6 �:� , which denotes the type � with the type

variable � replaced by any subtype �

0

of �. In a number of cases, we will simply

write 8�:� , which must be read as 8� 6 Top:� . Recall that any type is a subtype

of Top. Observe that, in contrast to �

6

and �

^

, the calculus F

6

is second order

(due to the quanti�cation over types).

In addition to the (value) expressions found in the two previous calculi, F

6

introduces a type abstraction expression of the form �� 6 �:e and a type instantia-

tion expression of the form e[� ]. The type abstraction expression �� 6 �:e is used

in a similar way as the function abstraction expression, although the abstraction

involves types and not values. Similar to the corresponding type expression,

we write ��:e as an abbreviation for �� 6 Top:e. The (complementary) type

instantiation statement is written as e[� ], which denotes the expression e in which

the type identi�er � is substituted for the type variable bound by the �rst type

abstractor.

The type assignment rule for type abstraction states that, when we may type

an expression e as being of type � (under the assumption that � 6 �), then we

may type �� 6 �:e as being of type 8� 6 �:� .

The type assignment rule for type instantiation characterizes the relation

between type instantiation and substitution (which is notationally very similar).

When we have an expression e of type 8� 6 �:� and we have that �

0

6 �, then

e[�

0

] is of type � [� := �

0

], which is � with �

0

substituted for �. See slide 9-26.

The re�nement rule for bounded types states the subtyping relation between

two bounded types. We have that 8� 6 �

0

:�

0

is a subtype of 8� 6 �:� whenever

� 6 �

0

and �

0

6 � . Notice that the relation is contravariant with respect to the

types bounding the abstraction, similar as for the domains of function subtypes

in the function subtyping rule.

In contrast to the polymorphism due to object type extensions and overload-

ing, bounded polymorphism (employing type quanti�ers) is an example of what

we have called parametric polymorphism. In e�ect, this means that we must
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Bounded polymorphism { abstraction F

6

� � ::= Top j � j � j �

1

! �

2

j 8� 6 �

1

:�

2

� e ::= x j � x : �:e j e

1

e

2

j �� 6 �:e j e[� ]

Type assignment

�

�; � 6 � ` e : �

� ` �� 6 �:e 2 8� 6 �:�

�

�; e : 8� 6 �:� � ` �

0

6 �

� ` e[�

0

] 2 � [� := �

0

]

Re�nement

�

� ` � 6 �

0

� ` �

0

6 �

� ` 8� 6 �

0

:�

0

6 8� 6 �:�

9-26

Slide 9-26: The bounded type calculus

explicitly give a type parameter to instantiate an object or function of a bounded

(parametric) type, similar to when we use a template in C

++

.

The examples given in slide 9-27 illustrate how we may de�ne and subsequently

type parametric functions. In these examples, we employ the convention that in

the absence of a bounding type we assume Top as an upper limit. The examples

are taken from Cardelli and Wegner (1985).

Examples

� id = ��: � x : �:x

id : 8�:�! �

� twice1 = ��: � f : ��:� ! �: � x : �:f [�](f [�](x))

twice1 : 8�: 8�:(� ! �)! �! �

� twice2 = ��: � f : �! �: � x : �:f (f (x))

twice2 : 8�:(�! �)! �! �

Applications

� id [Int](3) = 3

� twice1[Int](id)(3) = 3

� twice1[Int](S) = illegal

� twice2[Int](S)(3) = 5

9-27

Slide 9-27: Parametrized types { examples

The (generic) identity function id is de�ned as ��: � x : �:x , which states that

when we supply a particular type, say Int, then we obtain the function � x : Int :x .

Since the actual type used to instantiate id is not important, we may type id as

being of type 8�:� ! �. In a similar way, we may de�ne and type the two
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(generic) variants of the function twice. Notice the di�erence between the two

de�nitions of twice. The �rst variant requires the function argument itself to be

of a generic type, and fails (is incorrectly typed) for the successor function S which

is (non generic) of type Int ! Int . In contrast, the second variant accepts S, and

we may rely on the automatic conversion of id : 8�:�! � to id [Int ] : Int ! Int

(based on the second type assignment rule) to accept id as well.

The interplay between parametric and inclusion polymorphism is illustrated

in the examples presented in slide 9-28. Recall that inclusion polymorphism is

based on the subtyping relation between records (which states that re�nement of a

record type involves the addition of components and/or re�nement of components

that already belong to the super type).

Bounded quanti�cation

� g = �� 6 fone : Intg: � x : �:(x :one)

g : 8� 6 fone : intg:�! Int

� g

0

= ��:�� 6 fone : �g: � x : �:(x :one)

g

0

: 8�:8� 6 fone : �g:�! �

� move = �� 6 Point: � p : �:� d : Int :(p:x := p:x + d); p

move : 8� 6 Point: �! Int ! �

Application

� g

0

[Int][fone : Int; two : Boolg](fone = 3; two = trueg) = 3

� move[fx : Int; y : Intg](fx = 0; y = 0g)(1) = fx = 1; y = 0g

9-28

Slide 9-28: Bounded quanti�cation { examples

The �rst example de�nes a function g that works on a record with at least

one component one and delivers as a result the value of the component one of

the argument record. The function g

0

is a generalized version of g that abstracts

from the particular type of the one component. Notice that both g and g

0

may

be applied to any record that conforms to the requirement stated in the bound,

such as the record fone = 3; two = trueg.

As another example of employing bounds to impose requirements, look at the

function move that is de�ned for subtypes of Point (which we assume to be a

record containing x and y coordinates). It expects a record (that is similar to or

extends Point) and an (integer) distance, and as a result delivers the modi�ed

record.

Discussion Parametric polymorphism is an important means to incorporate

subtyping in a coherent fashion. Apart from Pierce (1993), from which we

have taken most of the material presented here, we may mention Plotkin and

Abadi (1993) as a reference for further study. In Pierce (1993) a calculus F

^

is

also introduced in which intersection polymorphism is expressed by means of an

explicit type variable. The resulting type may be written as 8� 2 f: : :g, where
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f: : :g denotes a �nite collection of types. As already mentioned, intersection types

may also be used to model inclusion polymorphism (see Castagna et al., 1993).

It is an interesting research issue to explore the relation between parametric

polymorphism and inclusion polymorphism further along this line. However, we

will not pursue this line here. Instead, in the next section we will look at another

application of parametric polymorphism, namely existential types that allow us

to abstract from hidden component types. This treatment is based on Cardelli

and Wegner (1985). In the last section of this chapter, we will look in more detail

at the role of self-reference in de�ning (recursive) object types, following Cook et

al. (1990). We will conclude this chapter with some observations concerning the

relevance of such type theories for actual programming languages. In particular,

we will show that Ei�el is not type consistent.

Type abstraction in C++ Type abstraction in C

++

may occur in various

guises. One important means of type abstraction is to employ what we have called

polymorphic base class hierarchies. For example, the function move, which was

somewhat loosely characterized in slide 9-28, may be de�ned in C

++

as follows:

Point* move(Point* p, int d); require int Point::x

Point* move(Point* p, int d) f p.x += d; return p; g

In e�ect, the function move accepts a pointer to an instance of Point, or any class

derived from Point, satisfying the requirement that it has a public integer data

member x.

Similar restrictions generally hold when instantiating a template class, but

in contrast to base class subtyping requirements, these restrictions will only be

veri�ed at link time.

template< class T > requires T::value()

class P f

public:

P(T& r) : t(r) fg

int operator ==( P<T>& p) f

return t.value() == p.t.value();

g

private:

T& t;

g;

9-29

Slide 9-29: Type abstraction in C++

Consider the template class de�nition given in slide 9-29. Evidently, for the

comparison function to operate properly, each instantiation type substituted for

the type parameter T must satisfy the requirement that it has a public member

function value.
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template< class T >

class A f A<T>

public:

virtual T value() = 0;

g;

class Int : public A<int> f Int 6 A<int>

public:

Int(int n = 0) : n(n) fg

int value() f return n; g

private:

int n;

g;

9-30

Slide 9-30: Type instantiation

Such a requirement may also be expressed by de�ning an abstract class A

de�ning a pure virtual member function value. See slide 9-30. The restrictions

on instantiating P may then be stated informally as the requirement that each

instantiation type T must be a subtype of A<X> for arbitrary type X. The class

Int is an example of a type complying with the implicit requirements imposed by

the de�nition of P. An example of using P is given below

Int i1, i2;

P<Int> p1(i1), p2(i2);

if ( p1 == p2 ) cout << "OK" << endl; OK

Note, however, that the derivation of A<int> is by no means necessary or in any

way enforced by C

++

.

9.5 Existential types – hiding

Existential types were introduced in Cardelli and Wegner (1985) to model aspects

of data abstraction and hiding. The language introduced in Cardelli and Wegner

(1985) is essentially a variant of the typed lambda calculi we have looked at

previously.

Our new calculus, that we call F

9

, is an extension of F

6

with type expressions

of the form 9� 6 �:� (to denote existential types) and expressions of the form

pack [� = � in � ] (to denote values with hidden types). Intuitively, the meaning of

the expression pack [� = � in � ] is that we represent the abstract type � occurring

in the type expression � by the actual type � (in order to realize the value e).

Following the type assignment rule, we may actually provide an instance of a

subtype of the bounding type as the realization of a hidden type. See slide 9-31.
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Existential types { hiding F

9

� � ::= : : : j 9� 6 �

1

:�

2

� e ::= : : : j pack [� = � in � ]:e

Type assignment

�

� ` �

0

6 � � ` e : �

pack [� = �

0

in � ]:e 2 9� 6 �:�

Re�nement

�

� ` � 6 �

0

� ` �

0

6 �

� ` 9� 6 �

0

:�

0

6 9� 6 �:�

9-31

Slide 9-31: The existential type calculus

The subtyping re�nement rule is similar to the re�nement rule for univer-

sally quanti�ed types. Notice also here the contravariance relation between the

bounding types.

More interesting is what bounding types allow us to express. (As before,

we will write 9�:� to denote 9� 6 Top:� .) First, existential types allow us to

indicate that the realization of a particular type exists, even if we do not indicate

how. The declaration e : 9�:� tells us that there must be some type � such that

e of type � can be realized. Apart from claiming that a particular type exists,

we may also provide information concerning its structure, while leaving its actual

type undetermined.

Structure { indeterminacy

� Top = 9�:� (the biggest type)

� AnyPair = 9� 9�:�� � (any pair)

� (3; 4) : 9�:� { does not provide su�cient structure!

� (3; 4) : 9�:�� �

Information hiding

� 9�:�� (�! Int) object, operation

� x : 9�:�� (�! Int) ; snd(x)(fst(x))

9-32

Slide 9-32: Existential types { examples

For example, the type 9�:� (which may clearly be realized by any type) carries

no information whatsoever, hence it may be considered to be equal to the type

Top. More information, for example, is provided by the type 9� 9�:�� � which

de�nes the product type consisting of two (possibly distinct) types. (A product

may be regarded as an unlabeled record.) The type 9�:� � � gives even more
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information concerning the structure of a product type, namely that the two

components are of the same type. Hence, for the actual product (3; 4) the latter

is the best choice. See slide 9-32.

Existential types may be used to impose structure on the contents of a value,

while hiding its actual representation. For example, when we have a variable

x of which we know that it has type 9�:� � (� ! Int) then we may use the

second component of x to produce an integer value from its �rst component, by

snd(x )(fst(x )), where fst extracts the �rst and snd the second component of a

product. Clearly, we do not need to know the actual representation type for �.

A similar idea may be employed for (labeled) records. For example, when we

have a record x of type 9�:fval : �; op : �! Intg then we may use the expression

x :op(x :val) to apply the operation op to the value val. Again, no knowledge of

the type of val is required in this case. However, to be able to use an element of an

existential type we must provide an actual representation type, by instantiating

the type parameter in a pack statement.

Abstract data types { packages

� x : 9�:fval : �; op : �! Intg

� x = pack [� = Int in fval : �; op : �! Intg]((3; S))

� x :op(x :val) = 4

Encapsulation pack [representation in interface](contents)

� interface { type 9�:fval : �; op : �! Intg

� representation { � = Int (hidden data type)

� contents { (3;S)

9-33

Slide 9-33: Packages { examples

The pack statement may be regarded as an encapsulation construct, allowing

us to protect the inner parts of an abstract data type. When we look more

closely at the pack statement, we can see three components. First, we have an

interface speci�cation corresponding to the existential type associated with the

pack expression. Secondly, we need to provide an actual representation of the

hidden type, Int in the example above. And �nally, we need to provide the actual

contents of the structure. See slide 9-33.

In combination with the notion of objects as records, existential types provide

us with a model of abstract data types. Real objects, however, require a notion of

self-reference that we have not captured yet. In the next section we will conclude

our exploration of type theories by discussing the F

�

calculus that supports

recursive (object) types and inheritance.

Hiding in C++ Naturally, the classical way of data hiding in C

++

is to employ

private or protected access protection. Nevertheless, an equally important means
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is to employ an abstract interface class in combination with forwarding.

class event f event

protected:

event(event* x) : ev(x) fg

public:

int type() f return ev->type(); g

void* rawevent() f return ev; g

private:

event* ev;

g;

class xevent : public event f X

public:

int type() f return X->type(); g

private:

struct XEvent* X;

g;

9-34

Slide 9-34: Hiding in C++

For example, as depicted in slide 9-34, we may o�er the user a class event

which records information concerning events occurring in a window environment,

while hiding completely the underlying implementation. The actual xevent class

realizing the type event may itself need access to other structures, as for example

those provided by the X window environment. Yet, the xevent class itself may

remain entirely hidden from the user, since events are not something created

directly (note the protected constructor) but only indirectly, generally by the

system in response to some action by the user.

9.6 Self­reference

Recursive types are compound types in which the type itself occurs as the type

of one of its components. Self-reference in objects clearly involves recursive types

since the expression self denotes the object itself, and hence has the type of the

object. In F

�

, our extension of F

6

taken from Cook et al. (1990), recursive

types are written as ��:� [�], where � is the recursion abstractor and � a type

variable. The dependence of � on � is made explicit by writing � [�]. We

will use the type expressions ��:� [�] to type object speci�cations of the form

�(self ):fa

1

= e

1

; : : : ; a

n

= e

n

g as indicated by the type assignment rule below.

Object speci�cations may be regarded as class descriptions in C

++

or Ei�el.

The subtype re�nement rule for recursive types states that ��:�[�] 6 ��:� [�]

if we can prove that � 6 � assuming that � 6 �.
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Self-reference { recursive types F

�

� � ::= : : : j ��:� [�]

� e ::= : : : j �(self ):fa1 = e

1

; : : : ; a

n

= e

n

g

Type assignment

�

� ` e

i

: �

i

(i = 1::n)

� ` �(self ):fa1 = �

1

; ::; a

n

= �

n

g 2 ��:fa1 : �

1

; ::; a

n

: �

n

g[�]

Re�nement

�

�; � 6 � ` � 6 �

� ` ��:�[�] 6 ��:� [�]

9-35

Slide 9-35: A calculus for recursive types

An object speci�cation �(self ):f: : :g is a function with the type of the actual

object as its domain and (naturally) also as its range. For convenience we will

write an object speci�cation as �(self ):F , where F denotes the object record, and

the type of an object speci�cation as ��:F [�], where F [�] denotes the (abstract)

type of the record F.

To obtain from an object speci�cation �(self ):F the object that it speci�es,

we need to �nd some type � that types the record speci�cation F as being of

type � precisely when we assign the expression self in F the type �. Technically,

this means that the object of type � is a �xed point of the object speci�cation

�(self ):F (self ) which is of type � ! �. We write this as Y (�(self ):F (self )) : �,

which says that the object corresponding to the object speci�cation is of type �.

See slide 9-35.

Object semantics { �xed point � = F [�]

� Y (�(self ):F (self )) : �

Unrolling { unraveling a type

� ��:F [�] = F [��:F [�]]

Example

T = ��:fa : int ; c : �; b : �! �g

T

1

= fa : int ; c : T ; b : T ! T ; d : boolg

T

2

= ��:fa : int ; c : �; b : T ! T ; d : boolg

T

3

= ��:fa : int ; c : �; b : �! �; d : boolg

T

1

;T

2

6 T , T

3

66 T (contravariance)

9-36

Slide 9-36: Recursive types { examples
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Finding the �xed point of a speci�cation involves technically a procedure

known as unrolling, which allows us to rewrite the type ��:F [�] as F [��:F [�]].

Notice that unrolling is valid, precisely because of the �xed point property. Namely,

the object type � is equal to ��:F [�], due to the type assignment rule, and we

have that � = F [�]. See slide 9-36.

Unrolling allows us to reason on the level of types and to determine the

subtyping relation between recursive subtypes. Consider, for example, the type

declarations T and T

i

(i = 1::3) above. Based on the re�nement rules for object

records, functions and recursive types, we may establish that T

1

6 T , T

2

6 T

but T

3

66 T . To see that T

1

6 T , it su�ces to substitute T for � in F, where

F = fa : Int ; c : �; b : � ! �g. Since F [T ] = fa : Int ; c : T ; b : T ! Tg we

immediately see that T

1

only extends T with the �eld d : Bool , hence T

1

6 T .

A similar line of reasoning is involved to determine that T

2

6 T , only we need to

unroll T

2

as well. We must then establish that c : T

2

6 c : T , which follows from

an application of the re�nement rule.

To show that T

3

66 T , let G [�] = fa : Int ; c : �; b : � ! �; d : Boolg and

T

3

= ��:G [�]. Then, by unrolling, T

3

= G [T

3

] = fa : Int ; c : T

3

; b : T

3

!

T

3

; d : Boolg. Now, suppose that T

3

6 T , then G [T

3

] 6 F [T

3

] and consequently

b : T

3

! T

3

must re�ne b : T ! T . But from the latter requirement it follows

that T

3

6 T and that T 6 T

3

(by the contravariance rule for function subtyping).

However, this leads to a contradiction since T is clearly not equal to T

3

because

T

3

contains a �eld d : Bool that does not occur in T.

Although analyses of this kind are to some extent satisfactory in themselves,

the reader may wonder where this all leads to. In the following we will apply

these techniques to show the necessity of dynamic binding and to illustrate that

inheritance may easily violate the subtyping requirements.

Inheritance In section 9.3 we have characterized inheritance as an incremental

modi�cation mechanism, which involves a dynamic interpretation of the expres-

sion self. In the recursive type calculus F

�

we may characterize this more pre-

cisely, by regarding a derived object speci�cation C as the result of applying

the modi�er M to the object speci�cation P. We employ the notation C =

�(self ):P(self ) with fa

0

1

= e

0

1

; : : : ; a

0

k

= e

0

k

g to characterize derivation by inheri-

tance, and we assume the modi�er M corresponding with fa

0

1

= e

0

1

; : : : ; a

0

k

= e

0

k

g

to extend the record associated with P in the usual sense. See slide 9-37.

The meaning of an object speci�cation C is again a �xed point Y (C ), that is

Y (�(self ):M (self )(P(self ))). Now when we assume that the object speci�cation

is of type � ! � (and hence Y (P) of type �), and that C is of type � ! � (and

hence Y (C ) of type �), then we must require that � 6 � to obtain a properly

typed derivation. We write C 6 P whenever � 6 � .

A �rst question that arises when we characterize inheritance as incremental

modi�cation is how we obtain the meaning of the composition of two object

speci�cations.

Let (parent) P and (child) C be de�ned as above. Now, if we know that

the type of Y (P) is � then we may simply characterize Y (C ) as being of type

� = fi : Bool ; id : �; b : Boolg. However, when we delay the typing of the P
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Inheritance { C = P + M

� P = �(self ):fa1 = e1; : : : ; a

n

= e

n

g

� C = �(self ):P(self ) with fa1

0

= e1

0

; : : : ; a

0

k

= e

0

k

g

Semantics { Y (C ) = Y (�(self ):M (self )(P(self )))

� P : � ! � ) Y (P) : �

� C = �(s):M (s)(P(s)) : � ! � ) Y (C ) : �

9-37

Slide 9-37: Inheritance semantics { self-reference

Object inheritance { dynamic binding

P = �(self ):fi = 5; id = self g

C = �(self ):P(self ) with fb = trueg

Y (P) : � where � = ��:fi : int; id : �g and P : � ! �

Simple typing { Y (C ) : � = fi : int; id : �; b : boolg

Delayed { Y (C ) : �

0

= ��:fi : int; id : �; b : boolg

We have �

0

6 � (more information)

9-38

Slide 9-38: Object inheritance { dynamic binding

component (by �rst composing the record speci�cations before abstracting from

self) then we may obtain �

0

= ��:fi : Int ; id : �; b : Boolg as the type of Y (C ).

By employing the re�nement rule and unrolling we can show that �

0

6 �. Hence,

delayed typing clearly provides more information and must be considered as the

best choice. Note, however, that both �

0

6 � and � 6 � hold. See slide 9-38.

A second, important question that emerges with respect to inheritance is how

self-reference a�ects the subtyping relation between object speci�cations related

by inheritance.

Consider the object speci�cations P and C given in slide 9-39. In the (derived)

speci�cation C, the method eq is rede�ned to include an equality test for the b

component. However, when we determine the object types corresponding to the

speci�cations P and C we observe that C 66 P .

The reasoning is as follows. For Y (P) : � and Y (C ) : �, we have that

� = ��:fi : Int ; id : � ! Bool ; b : Boolg which is (by unrolling) equal to

fi : Int ; id : � ! Bool ; b : Boolg. Now suppose that � 6 � , then we have that

fi : Int ; eq : � ! Bool ; b : Boolg is a subtype of fi : Int ; eq : � ! Boolg which is

true when eq : � ! Bool 6 eq : � ! Bool and hence (by contravariance) when

� 6 � . Clearly, this is impossible. Hence � 66 � .

We have a problem here, since the fact that C 66 P means that the type

checker will not be able to accept the derivation of C from P, although C is

clearly dependent on P. The solution to our problem lies in making the type

dependency involved in deriving C from P explicit. Notice, in this respect, that
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Contravariance

� P = �(self ):fi = 5; eq = �(o):(o:i = self :i)g

C = �(self ):P(self ) with fb = true,

eq = �(o):(o:i = self :i and

o:b = self :b)

g

Y (P) : � where � = ��:fi : int; eq : �! boolg

Y (C ) : � where � = ��:fi : int; id : �! bool ; b : boolg

However � 66 � (subtyping error)

9-39

Slide 9-39: Object inheritance { contravariance

in the example above we have omitted the type of the abstraction variable in the

de�nition of eq, which would have to be written as � x : Y (P):x :i = self :i (and

in a similar way for C ) to do it properly.

Type dependency The expression self is essentially of a polymorphic nature.

To make the dependency of object speci�cation on self explicit, we will employ

an explicit type variable similar as in F

6

.

Let F [�] stand for fa

1

: �

1

; : : : ; a

n

: �g as before. We may regard F [�] as a

type function, in the sense that for some type � the expression F [� ] results in a

type. To determine the type of an object speci�cation we must �nd a type � that

satis�es both � 6 F [�] and F [�] 6 �.

Type dependency { is polymorphic

� Let F [�] = fm

1

: �

1

; : : : ;m

j

: �

j

g (type function)

� P : 8� 6 F [�]:t ! F [�]

� P = �� 6 F [�]: �(self : �):fm

1

: e1; : : : ;m

j

: e

j

g

F-bounded constraint � 6 F [�]

Object instantiation: Y (P [�]) for � = � t:F [t]

We have P [�] : � ! F [�] because F [�] = �

9-40

Slide 9-40: Bounded type constraints

Wemay write an object speci�cation as �� 6 F [�]: �(self : �):fa

1

= e

1

; : : : ; a

n

= e

n

g, which is typed as 8� 6 F [�]:� ! F [�]. The constraint that � 6 F [�],

which is called an F-bounded constraint, requires that the subtype substituted for

� is a (structural) re�nement of the record type F [�]. As before, we have that

Y (P [�]) = � with � = ��:F [�], which di�ers from our previous de�nition only

by making the type dependency in P explicit. See slide 9-40.

Now, when applying this extended notion of object speci�cation to the char-



312 Polymorphism

acterization of inheritance, we may relax our requirement that Y (C ) must be a

subtype of Y (P) into the requirement that G [�] 6 F [�] for any �, where F is

the record speci�cation of P and G the record speci�cation of C.

Inheritance

P = �� 6 F [�]:�(self : �):f: : :g

C = �� 6 G[�]:�(self : �):P [�](self ) with f: : :g

with recursive types

F [�] = fi : int; id : �! boolg

G[�] = fi : int; id : �! bool ; b : boolg

Valid, because G[�] 6 F [�]

However Y (C [�]) 66

subtype

Y (P [� ])

9-41

Slide 9-41: Inheritance and constraints

For example, when we declare F [�] and G [�] as in slide 9-41, we have that

G [�] 6 F [�] for every value for �. However, when we �nd types � and � such

that Y (C [�]) : � and Y (P [� ]) : � we (still) have that � 66 � . Conclusion,

inheritance allows more than subtyping. In other words, our type checker may

guard the structural application of inheritance, yet will not guarantee that the

resulting object types behaviorally satisfy the subtype relation.

Discussion { Ei�el is not type consistentWe have limited our exploration of

the recursive structure of objects to (polymorphic) object variables. Self-reference,

however, may also occur to class variables. The interested reader is referred

to Cook et al. (1990). The question that interests us more at this particular

point is what bene�ts we may have from the techniques employed here and what

lessons we may draw from applying them.

One lesson, which should not come as a surprise, is that a language may

allow us to write programs that are accepted by the compiler yet are behaviorally

incorrect. However, if we can determine syntactically that the subtyping relations

between classes is violated we may at least expect a warning from the compiler.

So one bene�t, possibly, is that we may improve our compilers on the basis of the

type theory presented in this chapter. Another potential bene�t is that we may

better understand the trade-o�s between the particular forms of polymorphism

o�ered by our language of choice.

The analysis given in Cook et al. (1990) indeed leads to a rather surprising

result. Contrary to the claims made by its developer, Cook et al. (1990)

demonstrate that Ei�el is not type consistent. The argument runs as follows.

Suppose we de�ne a class C with a method eq that takes an argument of a type

similar to the type of the object itself (which may be written in Ei�el as like

Current). We further assume that the class P is de�ned in a similar way, but with

an integer �eld i and a method eq that tests only on i. See slide 9-42.

We may then declare variables v and p of type P. Now suppose that we have
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Inheritance != subtyping Ei�el

class C inherit P rede�ne eq

feature

b : Boolean is true;

eq( other : like Current ) : Boolean is

begin

Result := (other.i = Current.i) and

(other.b = Current.b)

end

end C

9-42

Slide 9-42: Inheritance and subtyping in Ei�el

an object c of type C, then we may assign c to v and invoke the method eq for v,

asking whether p is equal to v, as in

p,v:P, c:C

v:=c;

v.eq(p); error p has no b

Since v is associated with an instance of C, but syntactically declared as being

of type P, the compiler accepts the call. Nevertheless, when p is associated with

an instance of P trouble will arise, since (due to dynamic binding) the method eq

de�ned for C will be invoked while p not necessarily has a �eld b.

When we compare the de�nition of C in Ei�el with how we may de�ne C in

C

++

, then we are immediately confronted with the restriction that we do not have

such a dynamic typing mechanism as like Current in C

++

. Instead, we may use

overloading, as shown in slide 9-43.

class C : public P f C++

int b;

public:

C() f ... g

bool eq(C& other) f return other.i == i &&

other.b == b; g

bool eq(P& other) f return other.i == i; g

g;

9-43

Slide 9-43: Inheritance and subtyping in C++

When we would have omitted the P variant of eq, the compiler complains about

hiding a virtual function. However, the same problem arises when we de�ne eq
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to be virtual in P, unless we take care to explicitly cast p into either a C or P

reference. (Overloading is also used in Liskov and Wing (1993) to solve a similar

problem.) In the case we choose for a non-virtual de�nition of eq, it is determined

statically which variant is chosen and (obviously) no problem occurs.

Considering that determining equality between two objects is somehow or-

thogonal to the functionality of the object proper, we may perhaps better employ

externally de�ned overloaded functions to express relations between objects. This

observation could be an argument to have overloaded functions apart from objects,

not as a means to support a hybrid approach but as a means to characterize

relations between objects in a type consistent (polymorphic) fashion.

Summary

This chapter has treated polymorphism from a foundational perspective.

In section 1, we looked at abstract inheritance as employed in knowledge

representation.

Abstract inheritance 1

� abstract inheritance { declarative relation

� inheritance networks { non-monotonic reasoning

� taxonomic structure { predicate calculus

9-44

Slide 9-44: Section 9.1: Abstract inheritance

We discussed the non-monotonic aspects of inheritance networks and looked

at a �rst order logic interpretation of taxonomic structures.

The subtype relation 2

� types { sets of values

� the subtype relation { re�nement rules

� functions { contravariance

� objects { as records

9-45

Slide 9-45: Section 9.2: The subtype relation

In section 2, a characterization of types as sets of values was given. We looked

at a formal de�nition of the subtype relation and discussed the re�nement rules

for functions and objects.

In section 3, we discussed types as a means to prevent errors, and distinguished

between various 
avors of polymorphism, including parametric polymorphism,
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Flavors of polymorphism 3

� typing { protection against errors

� 
avors { parametric, inclusion, overloading, coercion

� inheritance { incremental modi�cation mechanism

9-46

Slide 9-46: Section 9.3: Flavors of polymorphism

inclusion polymorphism, overloading and coercion. Inheritance was characterized

as an incremental modi�cation mechanism, resulting in inclusion polymorphism.

Type abstraction 4

� subtypes { typed lambda calculus

� overloading { intersection types

� bounded polymorphism { generics and inheritance

9-47

Slide 9-47: Section 9.4: Type abstraction

In section 4, some formal type calculi were presented, based on the typed

lambda calculus. These included a calculus for simple subtyping, a calculus for

overloading, employing intersection types, and a calculus for bounded polymor-

phism, employing type abstraction. Examples were discussed illustrating the (lack

of) features of the C

++

type system.

Existential types 5

� hiding { existential types

� packages { abstract data types

9-48

Slide 9-48: Section 9.5: Existential types

In section 5, we looked at a calculus employing existential types, modeling

abstract data types and hiding by means of packages and type abstraction.

Finally, in section 6, we discussed self-reference and looked at a calculus

employing recursive types. It was shown how object semantics may be determined

by unrolling, and we studied the semantic interpretation of dynamic binding.

Concluding this chapter, an example was given showing an inconsistency in the

Ei�el type system.
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Self-reference 6

� self-reference { recursive types

� object semantics { unrolling

� inheritance { dynamic binding

� subtyping { inconsistencies

9-49

Slide 9-49: Section 9.6: Self-reference

Questions

1. How would you characterize inheritance as applied in knowledge represen-

tation? Discuss the problems that arise due to non-monotony.

2. How would you render the meaning of an inheritance lattice? Give some

examples.

3. What is the meaning of a type? How would you characterize the relation

between a type and its subtypes?

4. Characterize the subtyping rules for ranges, functions, records and variant

records. Give some examples.

5. What is the intuition underlying the function subtyping rule?

6. What is understood by the notion of objects as records? Explain the sub-

typing rule for objects.

7. Discuss the relative merits of typed formalisms and untyped formalisms.

8. What 
avors of polymorphism can you think of? Explain how the various


avors are related to programming language constructs.

9. Discuss how inheritance may be understood as an incremental modi�cation

mechanism.

10. Characterize the simple type calculus �

6

, that is the syntax, type assign-

ment and re�nement rules. Do the same for F

^

and F

6

.

11. Type the following expressions: (a) fa = 1; f = � x : Int :x + 1g, (b) � x :

Int :x � x , and (c) � x : fb : Bool ; f : fa : Boolgg ! Int :x :f (x ).

12. Verify whether: (a) f

0

: 2::5 ! Int 6 f : 1::4 ! Int , (b) fa : Bool ; f :

Bool ! Intg 6 fa : Int ; f : Int ! Intg, and (c) � x : fa : Boolg ! Int 6

� x : fa : Bool ; f : Bool ! Intg ! Int .

13. Explain how you may model abstract data types as existential types.
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14. What realizations of the type 9�:fa : �; f : � ! Boolg can you think of?

Give at least two examples.

15. Prove that ��:fc : �; b : �! �g 66 ��:fb : �! �g.

16. Prove that ��:fc : �; b : � ! �g 6 � , for � = ��:fb : �! �g.

Further reading

As further reading I recommend Cardelli and Wegner (1985) and Pierce (1993).

As another source of material and exercises consult Palsberg and Schwartzback

(1994). Bezem en Grootte (1993) contains a number of relevant papers. An

exhaustive overview of the semantics of object systems, in both �rst order and

second order calculi, is further given in Abadi and Cardelli (1996).
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Ultimately, types are meant to specify behavior in an abstract way. To capture

behavioral properties, we will generalize our notion of types as constraints to

include behavioral descriptions in the form of logical assertions.

Behavioral re�nement 10

� types as behavior

� veri�cation

� abstraction and representation

� behavioral compositions

Additional keywords and phrases: behavioral subtypes, state transform-

ers, correctness formulae, assertion logic, transition systems, invariants,

formal speci�cation

10-1

Slide 10-1: Behavioral re�nement

In this chapter we will explore the notion of behavioral (sub)types. First we

characterize the trade-o�s between statically imposed (typing) constraints and

dynamic constraints resulting from the speci�cation of behavioral properties. We

will provide a brief introduction to the assertion logic underlying the veri�cation

of behavioral constraints. Also, we look at how we may characterize the behavior

of object-based systems in a mathematical way. Then we will describe the duality

between abstraction and representation in de�ning behavioral subtypes that de�ne

319
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concrete realizations of abstract speci�cations. In particular, we specify the

correspondence requirements for behavioral subtypes. We will conclude this

chapter by discussing the problems involved in specifying behavioral compositions,

and explore what speci�cation techniques are available to model the behavior of

object-based systems.

10.1 Types as behavior

In the previous chapter we have developed a formal de�nition of types and the

subtyping relation. However, we have restricted ourselves to (syntactic) signa-

tures only, omitting (semantic) behavioral properties associated with function

and object types.

Subtype requirements { signature and behavior

� preservation of behavioral properties

Safety properties { nothing bad

� invariant properties { true of all states

� history properties { true of all execution sequences

10-2

Slide 10-2: Subtyping and behavior

From a behavioral perspective, the subtype requirements (implied by the sub-

stitutability property) may be stated abstractly as the preservation of behavioral

properties. According to Liskov and Wing (1993), behavioral properties encom-

pass safety properties (which express that nothing bad will happen) and liveness

properties (which express that eventually something good will happen). For safety

properties we may further make a distinction between invariant properties (which

must be satis�ed in all possible states) and history properties (which hold for all

possible execution sequences). See slide 10-2.

Behavioral properties (which are generally not captured by the signature only)

may be important for the correct execution of a program. For example, when we

replace a stack by a queue (which both have the same signature if we rename

push and insert into put, and pop and retrieve into get) then we will get incorrect

results when our program depends upon the LIFO (last-in �rst-out) behavior of

the stack.

As another example, consider the relation between a type FatSet (which sup-

ports the methods insert, select and size) and a type IntSet (which supports the

methods insert, delete, select and size). See slide 10-3.

With respect to its signature, IntSet merely extends FatSet with a delete

method and hence could be regarded as a subtype of FatSet. However, consider

the history property stated above, which says that for any (FatSet) s, when an

integer x is an element of s in state � then x will also be an element of s in any
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Example { IntSet 66 FatSet

� FatSet { insert, select, size

� IntSet { insert, delete, select, size

History property { not satis�ed by IntSet

� 8 s : FatSet:8�; : State:�< ^ s 2 dom( ):

8 x : Int :x 2 s

�

) x 2 s

 

10-3

Slide 10-3: History properties { example

state  that comes after �. This property holds since instances of FatSet do not

have a method delete by which elements can be removed. Now if we take this

property into account, IntSet may not be regarded as a subtype of FatSet, since

instances of IntSet may grow and shrink and hence do not respect the FatSet

history property.

This observation raises two questions. Firstly, how can we characterize the

behavior of an object or function and, more importantly, how can we extend our

notion of types to include a behavioral description? And secondly, assuming that

we have the means to characterize the behavior of a function or object type, how

can we verify that a subtype respects the behavioral constraints imposed by the

supertype?

The answer to the �rst question is suggested by the observation that we may

also express the constraints imposed by the signature by means of logical formulae

that state the constraints as assertions which must be satis�ed.

Types as behavior { constraints

� x : 9::11 () x : Int ^ 9 6 x 6 11

Behavioral constraints { signature versus assertions

� f (x : 9::11) : 3::5f: : :g

int f(int x) f

require( 9 <= x && x <= 11 );

...

promise( 3 <= result && result <= 5);

return result;

g

10-4

Slide 10-4: Types and behavioral constraints

For example, we may express the requirement imposed by typing a variable as
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an element of an integer subrange also by stating that the variable is an integer

variable that respects the bounds of the subrange. Similarly, we can express the

typing constraints on the domain and range of a function by means of pre- and

post-conditions asserting these constraints. See slide 10-4.

More generally, we may characterize the behavior of a function type by means

of pre- and post-conditions and the behavior of an object type by means of pre- and

post-conditions for its methods and an invariant clause expressing the invariant

properties of its state and behavior. Recall that this is precisely what is captured

in our notion of contract, as discussed in section 3.3.

With regard to the second question, to verify behavioral properties (expressed

as assertions) we need an assertion logic in the style of Hoare. Such a logic will be

discussed in the next section. In addition, we need a way in which to verify that

(an instance of) a subtype respects the behavioral properties of its supertype.

In section 10.4.2 we will give precise guidelines for a programmer to check the

behavioral correspondence between two types.

10.2 Verifying behavioral properties

The concern with program correctness stems from a period when projects were

haunted by what was called the software crisis. Projects delivered software that

contained numerous bugs and large programs seemed to become unmanageable,

that is never error-free. One of the most radical ideas proposed to counteract the

software crisis was to require that programs should formally be proven correct

before acceptance. The charm of the idea, I �nd personally, is that programming

in a way becomes imbued with the 
avor of mathematics, which may in itself be

one of the reasons that the method never became very popular.

10.2.1 State transformers

Proving the correctness of (imperative) programs is based on the notion of states

and the interpretation of programs as state transformers. A state, in a mathe-

matical sense, is simply a function that records a value for each variable in the

program. For example, having a program S in which the (integer) variable i

occurs, and a state �, we may have �(i) = 3. States may be modi�ed by actions

that result from executing the program, such as by an assignment of a value to

a variable. We employ substitutions to modify a state. As before, substitutions

may be de�ned by an equation, as given in slide 10-5.

Substitutions

�[x := v ](y)=

n

v if x = y

�(y) otherwise

10-5

Slide 10-5: Substitution
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A substitution �[x := v ](y) states that modifying � by assigning the value v

to the variable x then, for a variable y, the state � will deliver v whenever y is

identical to x and �(y) otherwise.

When we have, for example, an assignment i = 5 then we have as the

corresponding transition � � i = 5 ! �

0

where �

0

= �[i := 5], that is �

0

is

like � except for the variable i for which the value 5 will now be delivered.

Whenever we have a sequence of actions a

1

; : : : ; a

n

then, starting from a state

�

0

we have corresponding state transformations resulting in states �

1

; : : : ; �

n�1

as intermediary states and �

n

as the �nal state. Often the states �

0

and �

n

are

referred to as respectively the input and output state and the program that results

in the actions a

1

; : : : ; a

n

as the state transformer modifying �

0

into �

n

.

Program state { �

� � 2 � : Var ! Value

State transformations { operations a

1

; a

2

; : : : ; a

n

� �

0

� a

1

! �

1

: : :� a

n

! �

n

Correctness formulae { Hoare logic

� fPgSfQg

Veri�cation

� �

i

a

�! �

j

^ �

i

j= P ) �

j

j= Q

10-6

Slide 10-6: The veri�cation of state transformations

To characterize the actions that result from executing a program, we need an

operational semantics that relates the programming constructs to the dynamic

behavior of a program. We will study such a semantics in section 10.3.

The requirements a program (fragment) has to meet may be expressed by

using predicates characterizing certain properties of a program state. Then, all

we need to do is check whether the �nal state of a computation satis�es these

requirements.

Predicates characterizing the properties of a state before and after executing

a program (fragment) may be conveniently stated by correctness formulae of the

form fPgSfQg where S denotes a program (fragment) and P and Q respectively

the pre-condition and post-condition associated with S.

A formula of the form fPgSfQg is true if, for every initial state � that

satis�es P and for which the computation characterized by S terminates, the

�nal state �

0

satis�es Q. This interpretation of fPgSfQg characterizes partial

correctness, partial since the truth of the formula is dependent on the termination

of S (which may, for example, for a while statement, not always be guaranteed).

When termination can be guaranteed, then we may use the stronger notion of

total correctness, which makes the truth of fPgSfQg no longer dependent on the



324 Behavioral refinement

termination of S.

Pre- and post-conditions may also be used to check invariance properties. As

an example, consider the following correctness formula: fs = i � (i + 1)=2gi =

i + 1; s = s + i ; fs = i � (i + 1)=2g It states that the begin and end state of the

computation characterized by i = i +1; s = s + i is invariant with respect to the

condition s = i � (i +1)=2. As an exercise, try to establish the correctness of this

formula!

To verify whether for a particular program fragment S and (initial) state �

i

satisfying P the correctness formula fPgSfQg holds, we need to compute the

(�nal) state �

j

and check that Q is true for �

j

. In general, for example in the case

of non-deterministic programs, there may be multiple (�nal) states resulting from

the execution of S. For each of these states we have to establish that it satis�es

(the post-condition) Q. We call the collection of possible computation sequences

of a program fragment S the traces of S. Traces characterize the (operational)

behavior of a program.

10.2.2 Assertion logic

Reasoning about program states based on the traces of a program may be quite

cumbersome. Moreover, a disadvantage is that it relies to a great extent on our

operational intuition of the e�ect of a program on a state. Instead, Hoare (1969)

has proposed using an axiomatic characterization of the correctness properties

of programming constructs. An axiomatic de�nition allows us to prove the cor-

rectness of a program with respect to the conditions stating its requirements by

applying the appropriate inference rules.

Axioms

� assignment { fQ[x := e]gx = efQg

� composition { fPgS1fRg ^ fRgS2fQg ) fPgS1; S2fQg

� conditional { fP ^ bgSfQg ) fPgif(b)SfQg

� iteration { fI ^ bgSfIg ) fIgwhile(b)SfI ^ :bg

Consequence rules

� P ! R ^ fRgSfQg ) fPgSfQg

� R! Q ^ fPgSfRg ) fPgSfQg

Procedural abstraction

� m(x) 7! S(x) ^ fPgS(e)fQg ) fPgm(e)fQg

10-7

Slide 10-7: The correctness calculus

In slide 10-7 correctness axioms have been given for assignment, sequential

composition, conditional statements and iteration. These axioms rely on the side-

e�ect free nature of expressions in the programming language. Also, they assume



Verifying behavioral properties 325

convertibility between programming language expressions and the expressions

used in the assertion language.

The assignment axiom states that for any post-condition Q we can derive the

(weakest) pre-condition by substituting the value e assigned to the variable x for

x in Q. This axiom is related to the weakest pre-condition calculus introduced

by Dijkstra (1976). It is perhaps the most basic axiom in the correctness calculus

for imperative programs. As an example, consider the assignment x = 3 and the

requirement fPg x = 3 fy = xg. Applying the assignment axiom we have fy =

3g x = 3 fy = xg. Consequently, when we are able to prove that P implies y = 3,

we have, by virtue of the �rst consequence rule, proved that fPg x = 3 fx = yg.

The next rule, for sequential composition, allows us to break a program (frag-

ment) into parts. For convenience, the correctness formulae for multiple program

fragments that are composed in sequential order are often organized as a so-called

proof outline of the form fPg S1 fRg S2 fQg. When su�ciently detailed, proof

outlines may be regarded as a proof. For example, the proof outline fs =

i � (i + 1)=2g i = i + 1; fs + i = i � (i + 1)=2g s = s + i ; fs = i � (i + 1)=2g

constitutes a proof for the invariance property discussed earlier. Clearly, the

correctness formula for the two individual components can be proved by applying

the assignment axiom. Using the sequential composition rule, these components

can now be easily glued together.

As a third rule, we have a rule for conditional statements of the form if(b)S .

As an example, consider the correctness formula ftrueg if (x>y) z = x ; fz>yg.

All we need to prove, by virtue of the inference rule for conditional statements, is

that fx>yg z = x fz>yg which (again) immediately follows from the assignment

axiom.

As the last rule for proving correctness, we present here the inference rule for

iterative (while) statements. The rule states that whenever we can prove that a

certain invariant I is maintained when executing the body of the while statement

(provided that the condition b is satis�ed) then, when terminating the loop, we

know that both I and :b hold. As an example, the formula ftrueg while (i>0)

i--; fi 6 0g trivially follows from the while rule by taking I to be true.

Actually, the while rule plays a crucial role in constructing veri�able algorithms

in a structured way. The central idea, advocated among others by Gries (1981),

is to develop the algorithm around a well-chosen invariant. Several heuristics may

be applied to �nd the proper invariant starting from the requirements expressed

in the (output) predicate stating the post-condition.

In addition to the assignment axiom and the basic inference rules related to

the major constructs of imperative programming languages, we may use so-called

structural rules to facilitate the actual proof of a correctness formula. The �rst

structural (consequence) rule states that we may replace a particular pre-condition

for which we can prove a correctness formula (pertaining to a program fragment

S) by any pre-condition of which the original pre-condition is a consequence,

in other words which is stronger than the original pre-condition. Similarly, we

may replace a post-condition for which we know a correctness formula to hold

by any post-condition that is weaker than the original post-condition. As an

example, suppose that we have proved the formula fx > 0g S fx<0g then we
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may, by simultaneously applying the two consequence rules, derive the formula

fx>0gS fx 6 0g which amounts to strengthening the pre-condition and weakening

the post-condition. The intuition justifying this derivation is that we can safely

promise less and require more, as it were.

Finally, the rule most important to us in the present context is the inference

rule characterizing correctness under procedural abstraction. Assuming that we

have a function m with formal parameter x (for convenience we assume we have

only one parameter, but this can easily be generalized to multiple parameters), of

which the (function) body consists of S (x ). Now, moreover, assume that we can

prove for an arbitrary expression e the correctness formula fPg S (e) fQg, with

e substituted for the formal parameter x in both the conditions and the function

body, then we also have that fPgm(e)fQg, provided that P and Q do not contain

references to local variables of the function m.

In other words, we may abstract from a complex program fragment by de�ning

a function or procedure and use the original (local) correctness proof by properly

substituting actual parameters for formal parameters. The procedural abstraction

rule, which allows us to employ functions to perform correct operations, may

be regarded as the basic construct needed to verify that an object embodies a

(client/server) contract.

10.3 On the notion of behavior

The assertion logic presented in the previous section allows us to reason about the

behavior of a system without explicitly generating the possible sequences of states

resulting from the execution of the program. However, underlying the inference

rules of our assertion logic we need a mathematical model for the operational

behavior of a system.

An operational model is needed to prove the soundness of the inference rules.

Further, an operational model may aid in understanding the meaning of particular

language constructs and their associated correctness rules. In the following we

will sketch the construction of a transition system modeling the behavior of an

object-based program. Studying the formal semantics is relevant to understanding

object orientation only in so far as it provides a means with which to characterize

the desired behavior of object creation and message passing in an unambiguous

manner.

Transition system A transition system for a program is a collection of rules

that collectively describe the e�ect of executing the statements of the program.

A labeled transition system is one that enables us to label the transition from one

state to another by some label indicating the observable behavior of a program

step.

In the transition system de�ned below, we will employ states �, which may be

decorated by object identi�ers �, as in �

�

. Object identi�ers are created when

creating a new instance of an object type � . We assume newly created object

identi�ers to be unique.
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We assume that each object type � has a constructor (which is a, possibly

empty, statement that we write as S

�

) and an arbitrary number of methods m.

Each method m is assumed to be de�ned by some statement, which we write as

S

m

(e), for method calls of the form m(e). Also we allow an object � of type �

to have attributes or instance variables v that may be accessed (read-only) as �:v

for an object identi�er � or x :v for an object variable x (which must have � as

its value).

To determine the visible behavior of a program, we will employ labels of the

form � (to denote the creation of an object �) and m

�

(to indicate the invocation

of a method m for object �). We allow transitions to be labeled by sequences of

labels that we write as � and which are concatenated in the usual way.

We will de�ne a transition system for a simple language of which the syntax

is de�ned in slide 10-8.

Expressions syntax

� e ::= v j x :v

Elementary statements

� s ::= v = e j x = new � j x :m(e)

Compound statement

� S ::= " j s j S1; S2 j if (b)S j while (b)S

10-8

Slide 10-8: The syntax of a simple OO language

Expressions are either local variables v or object instance variables that we

write as x :v , where x is an object variable. As elementary statements we have

v = e (indicating the assignment of (the value of) an expression e to a local

variable v), x = new � (which stands for the creation of a new object of type

�), and x :m(e) (which calls a method m with arguments e for object x). The

object variable x is associated with an object identi�er � by the state � in which

the statement in which x occurs is executed. As compound statements we have

an empty statement " (which is needed for technical reasons), an elementary

statement s (as de�ned above), a sequential composition statement, a conditional

statement and an iteration statement, similar to that in the previous section. The

transition rules for elementary statements are given in slide 10-9.

The assignment rule states that the assignment of (the value of) an expression

e to a (local) variable v in state � decorated by an object identi�er � results in the

empty statement and the state � modi�ed by assigning the value of e in � (which

is written as e

�

) to the instance variable v of object �. Hence, decorations allow

us to work in the local environment of the object indicated by the decoration.

The object creation rule states that if we assume a transition hS

�

; �

�

i

�

�!

h"; �

0

i (which states that the constructor for type � executed in state � decorated

by � results in the state �

0

with behavior �) then we may interpret the creation
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Assignment rules

� hv = e; �

�

i ! h"; �[�:v := e

�

]i

Object creation

�

hS

�

; �

�

i

�

�! h"; �

0

i

hx=new �; �i

���

�!h"; �

0

[x := �]i

Method call

�

hS

m

(e); �

�

i

�

�! h"; �

0

i

hx :m(e); �i

m

�

��

�! h"; �

0

i

10-9

Slide 10-9: Transition system { rules

of a new � object to result in behavior � � � (where � is the newly created object

identi�er) and state �

0

in which the object variable x has the value �.

Finally, in a similar way, the method call rule states that if we assume a

transition hS

m

(e); �

�

i

�

�! h"; �

0

i (which states that executing the statement

S

m

(e), that is the code associated with method m and arguments e, for object �

in state �, results in behavior � and state �

0

) then we may interpret the method

call x :m(e) in � as a transition to state �

0

displaying behavior m

�

� �.

The rules for object creation and method call already indicate that transition

rules may be used to construct a complex transition from elementary steps. In

other words, a transition system de�nes a collection of proof rules that allow us to

derive (state) transitions and to characterize the behavior that may be observed.

To obtain a full derivation, we need in addition to the rules for elementary

statements the rules for compound statements listed in slide 10-10.

The composition rule states that if a statement S

1

transforms � into �

0

with

behavior �

1

and S

2

transforms �

0

into �

00

with behavior �

2

then the compound

statement S

1

; S

2

transforms � into �

00

with behavior �

1

��

2

.

The conditional rules state that, dependent on the value of the boolean b, the

statement if (b) S has either no e�ect or results in a state �

0

assuming that S

transforms � into �

0

with behavior �.

The iteration rules state that dependent on the value of the boolean b the

statement while (b) S has either no e�ect or results in a state �

0

assuming that

S transforms � into �

0

with behavior �. In contrast to the conditional, an

iteration statement is repeated when b is true, in accordance with our operational

understanding of iteration.

Example In our rules we have made a distinction between unadorned states �

and states �

�

decorated with an object identi�er �. This re
ects the distinction

between the execution of a program fragment in a global context and a local

context, within the con�nes of a particular object �.

Assume, for example, that we have de�ned a counter type ctr with a method
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Composition compound

�

hS

1

; �i

�

1

�! h"; �

0

i hS

2

; �

0

i

�

2

�! h"; �

00

i

hS

1

; S

2

; �i

�

1

��

2

�! h"; �

00

i

Conditional

� hif (b) S ; �i ! h"; �i if �(b)�false

�

hS ; �i

�

�! h"; �

0

i

hif (b) S ; �i

�

�! h"; �

0

i

if �(b)�true

Iteration

� hwhile (b) S ; �i ! h"; �i if �(b)�false

�

hS ; �i

�

�! h"; �

0

i

hwhile (b) S ; �i

�

�! hwhile (b) S ; �

0

i

if �(b)�true

10-10

Slide 10-10: Transition system { compound statement

inc that adds one to an instance variable n. In slide 10-11, a derivation is given

of the behavior resulting from a program fragment consisting of the creation of

an instance of ctr, a method call to inc and the assignment of the value of the

attribute n of the counter to a variable v.

Program

� x = new ctr ; x :inc(); v = x :n

Transitions

� hx = new ctr ; �

1

i

ctr

1

�! h"; �

1

[x := ctr

1

]i [1]

� hn = n + 1; �

�

2

i ! h"; �

2

[�:n = �:n + 1]i [2]

� hx :inc(); �

2

i

inc

�

�! h"; �

2

[�

2

(x):n := �

2

(x):n]i [2

0

]

� hv = x :n; �

3

i ! h"; �

3

[v := �

3

(x):n]i [3]

Trace

� �

�

�! �

0

with � = �

1

, �

0

= �

3

and � = ctr

1

� inc

�

10-11

Slide 10-11: Transitions { example

To derive the transition �

�

�! �

0

corresponding with the program fragment

x = new ctr ; x :inc(); v = x :n we must dissect the fragment and construct

transitions for each of its (elementary) statements as shown in [1], [2] and [3].

The second statement, the method call x :inc(), needs two transitions [2] and [2

0

],
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of which the �rst represents the execution of the body of inc in the local context

of the object created in [1] and the second represents the e�ect of the method

call from a global perspective. For the �rst statement, we have assumed that the

constructor for ctr is empty and may hence be omitted. Notice that the object

identi�er � (introduced in [1]) is assumed in [2] to e�ect the appropriate local

changes to n.

After constructing the transitions for the individual statements we may com-

pose these transitions by applying the composition rule and, in this case, identi-

fying �

2

with �

1

[x := �] and �

3

with �

2

[�:n := �:n +1]. As observable behavior

we obtain ctr

1

� inc

�

(where ctr

1

= �), which represents the creation of a counter

and its subsequent modi�cation by inc.

Discussion Transition systems, such as the one given above, were originally

introduced as a means to model the behavior of CSP. They have been extensively

used to model the operational semantics of programming languages, including

concurrent and object-oriented languages. See, for example, America et al. (1989)

and Eli�ens (1992).

In Apt and Olderog (1991), transition systems have been used as a model

to prove the soundness and completeness of correctness rules for concurrent pro-

gramming constructs. Also in America and de Boer (1993), transition systems are

used to demonstrate the validity of a proof system for a parallel object-oriented

programming language. The interested reader is invited to explore the sources

mentioned for further study.

10.4 Objects as behavioral types

A syntax-directed correctness calculus as presented in section 10.2 provides, in

principle, excellent support for a problem-oriented approach to program develop-

ment, provided that the requirements a program has to meet can be made explicit

in a mathematical, logical framework.

When specifying requirements, we are primarily interested in the abstract

properties of a program, as may be expressed in some mathematical domain.

However, when actually implementing the program (and verifying its correctness)

we mostly need to take recourse to details we do not wish to bother with when

reasoning on an abstract level. In this section we will discuss how we may verify

that an abstract type is correctly implemented by a behavioral (implementation)

subtype, following America (1990). Also, we will de�ne precise guidelines for

determining whether two (behavioral) types satisfy the (behavioral) subtype re-

lation, following Liskov and Wing (1993).

10.4.1 Abstraction and representation

In America (1990) a proposal is sketched to de�ne the functionality of objects by

means of behavioral types. Behavioral types characterize the behavioral properties

of objects in terms of (possible) modi�cations of an abstract state. So as to be able
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to ignore the details of an implementation when reasoning about the properties of

a particular program, we may employ a representation abstraction function which

maps the concrete data structures and operations to their counterparts in the

abstract domain.

Abstract data types { representation function

6 6

-

-

� �

0

�(�) �(�

0

)

� �

�

�(�)

Representation function { abstraction

� �(�)(�(�)) = �(�

0

) () �(�) = �

0

10-12

Slide 10-12: Abstraction and representation

The diagram in slide 10-12 pictures the reasoning involved in proving that

a particular implementation is correct with respect to a speci�cation in some

abstract mathematical domain. Assume that we have, in the concrete domain,

an action a that corresponds with a state transformation function �. Now assume

that we have a similar operation in the abstract domain, that we will write as

�(a), with a corresponding state transformation function �(�). To prove that

the concrete operation a correctly implements the abstract operation �(a), we

must prove that the concrete state modi�cation � resulting from a corresponds

with the modi�cation that occurs in the abstract domain. Technically speaking,

we must prove that the diagram above commutes, that is, that �(�) = �

0

()

�(�)(�(�)) = �(�

0

) whenever we have that �

a

�! �

0

.

To prove that a particular implementation a respects the abstract operation

�(a), for which we assume that it has abstract pre- and post-conditions �(P)

and �(Q), we must �nd a representation invariant I and (concrete) pre- and

post-conditions P and Q for which we can prove that �(P) ^ I ) P and that

�(Q)^ I ) Q . Furthermore, the representation invariant I must hold before and

after the concrete operation a.

The proof strategy outlined above is of particular relevance for object-oriented

program development, since the behavior of objects may, as we have already seen,

be adequately captured by contracts. As an additional advantage, however, the

method outlined enables us to specify the behavior of an object in a more abstract

way than allowed by contracts as supported by Ei�el.

Realization As an example, consider the speci�cation of a generic stack as given
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in slide 10-13. The speci�cation of the stack is based on the (mathematically)

well-known notion of sequences. We distinguish between empty sequences, that

we write as hi, and non-empty (�nite) sequences, that we write as hx1; : : : ; x

n

i.

Further, we assume to have a concatenation operator for which we de�ne s � hi =

hi � s = s and hx1; : : : ; x

n

i � hy1; : : : ; y

m

i = hx1; : : : ; x

n

; y

1

; : : : ; y

m

i. A sequence is

employed to represent the state of the stack.

Sequences { abstract domain

� empty sequence { hi

� concatenation { hx1; ::; x

n

i � hy1; ::; y

m

i = hx1; ::; x

n

; y1; ::;y

m

i

Speci�cation

type stack T f

s : seq T;

axioms:

ftruegpush(t : T )fs

0

= s � htig

fs 6= higpop()fs = s

0

� hresultig

g;

10-13

Slide 10-13: The speci�cation of a stack

The operations push and pop may conveniently be de�ned with reference to

the sequence representing the (abstract) state of the stack. We use s and s

0

to

represent the state respectively before and after the operation. The operations

themselves are completely speci�ed by their respective pre- and post-conditions.

Pushing an element e results in concatenating the one-element sequence hei to

the stacks state. For the operation pop we require that the state of the stack

must be non-empty. The post-condition speci�es that the resulting state s

0

is a

pre�x of the original state, that is the original state with the last element (which

is returned as a result) removed.

To prove that a particular implementation of the stack is conformant with

the type de�nition given above we must prove that fI ^ pre(�(m(e)))gm(e)fI

0

^

post(�(m(e)))g for both methods push and pop. These proofs involve both an

abstraction function � and a representation invariant I, relating the abstract state

of the stack to the concrete state of the implementation.

Now consider an implementation of the generic stack in C

++

, as given in slide

10-14.

To prove that this implementation may be regarded as an element of the

(abstract) type stack, we must �nd a representation (abstraction) function to

map the concrete implementation to the abstract domain, and further we must

specify a representation invariant that allows us to relate the abstract properties

to the properties of the implementation.

For the implementation in slide 10-14, the abstraction function � simply cre-
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template<class T > implementation

class as f

int t;

T a[MAX];

public:

as() f t = 0; g

void push(T e) f

require(t<MAX-1); a[t++] = e;

g

T pop() f require(t>0); return a[--t]; g

invariant:

0 <= t && t < MAX;

g;

10-14

Slide 10-14: The realization of a stack

ates the sequence of length t, with elements a[0]; : : : ; a[t � 1]. The representation

invariant, moreover, gives an explicit de�nition of this relation. See slide 10-15.

Abstraction function

� �(a; t) = <a[0]; : : : ; a[t]>

Representation invariant

� I (a; t; s)�t = length(s) ^ t > 0 ^ s = �(a; t)

10-15

Slide 10-15: Abstraction function and representation invariant

In order to verify that our implementation of the abstract data type stack is

correct (that is as long as the bound MAX is not exceeded), we must show, given

that the representation invariant holds, that the pre-conditions of the concrete

operations imply the pre-conditions of the corresponding abstract operations,

and, similarly, that the post-conditions of the abstract operations imply the

post-conditions of the concrete operations.

First, we show that for the operation push the post-condition of the abstract

type speci�cation is indeed stronger than the (implicit) post-condition of the

implementation. This is expressed by the following formula.

s

0

= s �<e> ^ I (a

0

; t

0

; s

0

)) t

0

= t + 1 ^ a

0

[t

0

] = e

Since we know that I (a

0

; t

0

; s

0

), we may derive that t

0

= t + 1 and a

0

[t

0

] = e.
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To establish the correctness of the operation pop, we must prove that the

pre-condition speci�ed for the abstract operation is indeed stronger than the pre-

condition speci�ed for the concrete operation, as expressed by the formula

I (a; t ; s) ^ s 6= <>) t>0

It is easy to see that t>0 immediately follows from the requirement that the

sequence is non-empty.

Finally, to prove that the operator pop leaves the stack in a correct state, we

must prove that s = s

0

�<result>^ I (a

0

; t

0

; s

0

)) result = a

0

[t ]^ t

0

= t � 1 which

is done in a similar manner as for push.

10.4.2 The correspondence relation

Behavioral re�nement is not restricted to the realization of abstract speci�cations.

We will now look at a de�nition of behavioral re�nement, following Liskov and

Wing (1993), that may serve as a guideline for programmers to de�ne behavioral

subtypes, both abstract and concrete, including subtypes extending the behavioral

repertoire of their supertypes.

In Liskov and Wing (1993) the relation between behavioral types is explained

by means of a so-called correspondence mapping, that relates a subtype to its

(abstract) supertype.

Correspondence h�; �; �i

� � abstraction { maps � values to � values

� � renaming { maps subtype to supertype methods

� � extension { explains e�ects of extra methods

10-16

Slide 10-16: The subtype correspondence mapping

A correspondence mapping is a triple consisting of an abstraction function �

(that projects the values of the subtype on the value domain of the supertype),

a renaming � (that de�nes the relation between methods de�ned in both types)

and an extension map � (that de�nes the meaning of additional methods). See

slide 10-16. Technically, the function � must be onto, that is each value of the

supertype domain must be representable by one or more values of the subtype

domain. Generally, when applying the abstraction function, we loose information

(which is irrelevant from the perspective of the supertype), for example the speci�c

ordering of items in a container.

To determine whether a type � is a (behavioral) subtype of a type � , one

has to de�ne a correspondence mapping h�; �; �i and check the issues listed in

slide 10-17. First, syntactically, we must check that the signature of � and �

satisfy the (signature) subtyping relation de�ned in the previous chapter. In

other words, for each method m associated with the object type � (which we

call m

�

), and corresponding method m

�

(which is determined by applying the
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Signature � 6 �

� dom(m

�

) 6 dom(m

�

)

� ran(m

�

) 6 ran(m

�

)

Behavior

� pre(m

�

)[x

�

:= �(x

�

)]) pre(m

�

)

� post(m

�

)) post(m

�

)[x

�

:= �(x

�

)]

� invariant(�) ) invariant(�)[x

�

:= �(x

�

)]

Extension { diamond rule �(x :m(a)) = �

m

� �

x :m(a)

�! �

0

^ �

�

m

�! 	 ) �(x

�

) = �(x

	

)

10-17

Slide 10-17: Behavioral subtyping constraints

renaming �) we must check the (contravariant) function subtyping rule, that is

dom(m

�

) 6 dom(m

�

) and ran(m

�

) 6 ran(m

�

), where ran is the range or result

type of m.

Secondly, we must check that the behavioral properties of � respect those

of � . In other words, for each method m occurring in � we must check that

pre(m

�

)[x

�

:= �(x

�

)] ) pre(m

�

) and that post(m

�

) ) post(m

�

)[x

�

:= �(x

�

)].

Moreover, the invariant characterizing � must respect the invariant characterizing

� , that is invariant(�) ) invariant(�)[x

�

:= �(x

�

)]. The substitutions [x

�

:=

�(x

�

)] occurring in the behavioral rules are meant to indicate that each variable

of type � must be replaced by a corresponding variable of type � to which the

abstraction function is applied (in order to obtain a value in the (abstract) domain

of �).

And thirdly, in the �nal place, it must be shown that the extension map � is

well-de�ned. The extension map must be de�ned in such a way that each method

call for an object x of type �, which we write as x :m(a) where a represents the

arguments to the call, is mapped to a program �

m

in which only calls appear to

methods shared by � and � (modulo renaming) or external function or method

calls. In addition the diamond rule must be satis�ed, which means that the states

�

0

and  resulting from applying respectively x :m(a) and �

m

in state � must

deliver identical values for x from the perspective of � , that is after applying the

abstraction function. In other words, extension maps allow us to understand the

e�ect of adding new methods and to establish whether they endanger behavioral

compatibility.

In Liskov and Wing (1993) a distinction is made between constructors (by

which objects are created), mutators (that modify the state or value of an object)

and observers (that leave the state of an object una�ected). Extension maps are

only needed for mutator methods. Clearly, for observer methods the result of � is

empty, and constructors are taken care of by the abstraction function.
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Behavioral subtypes The behavioral subtyping rules de�ned above are applica-

ble to arbitrary (sub)types, and not only to (sub)types de�ned by inheritance. As

an example, we will sketch (still following Liskov and Wing (1993)) that a stack

may be de�ned as a behavioral subtype of the type bag. Recall that a bag is a set

allowing duplicates. See slide 10-18.

Behavioral subtypes stack 6 bag

� bag { put, get

� stack { push, pop, settop

Representation

� bag { helems; boundi multiset

� stack { hitems; limiti sequence

Behavior { put/push

put(i) :

require size(b:elems)<b:bound

promise b

0

= hb:elems ] fig; b:boundi

push(i) :

require length(s:items)<s:limit

promise s

0

= hs:items � i ; s:limiti

10-18

Slide 10-18: Behavioral subtypes { example

Let the type bag support the methods put(i : Int) and get() : Int and assume

that the type stack supports the methods push(i : Int), pop() : Int and in addition

a method settop(i : Int) that replaces the top element of the stack with its

argument. Now, assume that a bag is represented by a pair helems ; boundi, where

elems is a multiset (which is a set which may contain multiple elements of the

same value) and bound is an integer indicating the maximal number of elements

that may be in the bag. Further, we assume that a stack is represented as a pair

hitems ; limiti, where items is a sequence and limit is the maximal length of the

sequence. For example hf1; 2; 7; 1g; 12i is a legal value of bag and h1 � 2 � 7 � 1; 12i

is a legal value of stack.

The behavioral constraints for respectively the method put for bag and push for

stack are given as pre- and post-conditions in slide 10-18. To apply put, we require

that the size of the multiset is strictly smaller than the bound and we ensure that

the element i is inserted when that pre-condition is satis�ed. The multi-set union

operator ] is employed to add the new element to the bag. Similarly, for push we

require the length of the sequence to be smaller than the limit of the stack and

we then ensure that the element is appended to the sequence. As before, we use
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the primed variables b

0

and s

0

to denote the value of respectively the bag b and

the stack s after applying the operations, respectively put and push.

Proceeding from the characterization of bag and stack we may de�ne the

correspondence mapping h�; �; �i as in slide 10-19.

Correspondence stack ! bag

� �(hitems; limiti) = hmk set(items); limiti

where

mk set(") = ?

mk set(e � s) = mk set(s) ] feg

� �(push) = put, �(pop) = get

� �(s:settop(i)) = s:pop(); s:push(i);

10-19

Slide 10-19: Behavioral subtypes { correspondence

To map the representation of a stack to the bag representation we use the

function mk set (which is inductively de�ned to map the empty sequence to the

empty set and to transform a non-empty sequence into the union of the one-

element multiset of its �rst element and the result of applying mk set to the

remaining part). The stack limit is left unchanged, since it directly corresponds

with the bound of the bag.

The renaming function � maps push to put and pop to get, straightforwardly.

And, the extension map describes the result of settop(i) as the application of

(subsequently) pop() and push(i).

Proof obligations { push/put

� size(�(s):elems)<�(s):bound

)

length(s:items)<s:limit

� s

0

= hs:items � i; s:limiti

)

�(s

0

) = h�(s):elems ] fig; �(s):boundi

10-20

Slide 10-20: Behavioral subtypes { proof obligations

With respect to the behavioral de�nitions given for push and put we have

to verify that pre(put(i))[b := �(s)] ) pre(push(i)) and that post(push(i)) )

post(put(i))[b := �(s)]. These conditions, written out fully in slide 10-20, are

easy to verify.

Generally, a formal proof is not really necessary to check that two types

satisfy the behavioral subtype relation. As argued in Liskov and Wing (1993),
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the de�nition of the appropriate behavioral constraints and the formulation of a

correspondence mapping is already a signi�cant step towards verifying that the

types have the desired behavioral properties.

10.5 Specifying behavioral compositions

The notion of behavioral types may be regarded as the formal underpinning of the

notion of contracts specifying the interaction between a client and server (object);

cf. Meyer (1993). Due to the limited power of the (boolean) assertion language,

contracts as supported by Ei�el are more limited in what may be speci�ed than

(a general notion of) behavioral types. However, some of the limitations are due,

not to limitations on the assertion language, but to the local nature of specifying

object behavior by means of contracts. See also Meyer (1993).

To conclude this chapter, we will look at an example illustrating the need to

specify global invariants. Further we will brie
y look at alternative formalisms for

specifying the behavior of collections of objects, and in particular we will explore

the interpretation of contracts as behavioral compositions.

Global invariants Invariants specify the constraints on the state of a system

that must be met for the system to be consistent. Clearly, as elementary logic

teaches us, an inconsistent system is totally unreliable.

Some inconsistencies cannot be detected locally, within the scope of an object,

since they may be caused by actions that do not involve the object directly. An

example of a situation in which an externally caused inconsistent object state

may occur is given in slide 10-21. (The example is taken from Meyer (1993), but

rephrased in C

++

.)

When creating an instance of A, the forward pointer to an instance of B is still

empty. Hence, after creation, the invariant of the object is satis�ed. Similarly

when, after creating an instance of B, this instance is attached to the forward

pointer, and as a consequence the object itself is attached to the backward pointer

of the instance of B. After this, the invariant is still satis�ed. However, when a

second instance of A is created, for which the same instance of B is attached to

the forward pointer, the invariant for this object will hold, but as a result the

invariance for the �rst instance of A will become violated. See below.

A a1, a2; B b;

a1.attach(b);

a2.attach(b); // violates invariant a1

This violation cannot be detected by the object itself, since it is not involved

in any activity. Of course, it is possible to check externally for the objects

not directly involved whether their invariants are still satis�ed. However, the

cost of exhaustive checking will in general be prohibitive. Selective checking is

feasible only when guided by an adequate speci�cation of the possible interferences

between object states.
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Problem { dynamic aliasing

class A f

public:

A() f forward = 0; g

attach(B* b) f forward = b; b->attach(this); g

bool invariant() f

return !forward || forward->backward ==

this;

g

private:

B* forward;

g;

class B f

public:

B() f backward = 0; g

attach(A* a) f backward = a; g

bool invariant() f

return !backward || backward->forward ==

this;

g

private:

A* backward;

g;

10-21

Slide 10-21: Establishing global invariants

Specifying interaction Elementary logic and set-theory provide a powerful

vehicle for specifying the behavior of a system, including the interaction between

its components. However, taking into account that many software developers

prefer a more operational mode of thinking when dealing with the intricacies of

complex interactions, we will brie
y look at formalisms that allow a more explicit

speci�cation of the operational aspects of interaction and communication, yet

support to some extent to reason about such speci�cations. See slide 10-22.

In Helm et al. (1990), a notion of behavioral contracts is introduced that allows

for characterizing the behavior of compositions of objects. Behavioral contracts �t

quite naturally in the object oriented paradigm, since they allow both re�nement

and (type) conformance declarations. See below. Somewhat unclear, yet, is what

speci�cation language the behavioral contracts formalism is intended to support.

On the other hand, from an implementation perspective the interactions captured

by behavioral contracts seem to be expressible also within the con�nes of a class

system supporting generic classes and inheritance.

A similar criticism seems to be applicable to the formalism of (role) scripts

as proposed in Francez et al. (1989). Role scripts allow the developer to specify

the behavior of a system as a set of roles and the interaction between objects as
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Contracts { behavioral compositions interaction

� speci�cation, re�nement, conformance declarations

Scripts { cooperation by enrollment

� roles, initialization/termination protocols, critical role set

Multiparty interactions { communication primitive

� frozen state, fault-tolerance, weakening synchrony

Joint action systems { action-oriented

� state charts, re�nement, superposition

10-22

Slide 10-22: Specifying interactions

subscribing to a role. In contrast to behavioral contracts, the script formalism

may also be applied to describe the behavior of concurrently active objects. In

particular, the script formalism allows for the speci�cation of prede�ned initial-

ization and termination policies and for the designation of a so-called critical

role set, specifying the number and kind of participants minimally required for a

successful computation.

Also directed towards the speci�cation of concurrent systems is the multi-party

interactions formalism proposed in Evangelist et al. (1989), which is centered

around a (synchronous) communication primitive allowing multiple objects to

interact simultaneously. The notion of frozen state (which may be understood

as an invariance requirement that holds during the interaction) may be useful in

particular for the speci�cation of fault-tolerant systems. An interesting research

issue in this respect is to what extent the assumption of synchrony may be

weakened in favor of e�ciency.

A rather di�erent orientation towards specifying the interaction between col-

lections of concurrently active objects is embodied by the joint action systems

approach described in Kurki-Suonio and Jarvinen (1989). Instead of relying on

the direct communication between objects, joint action systems proceed from the

assumption that there exists some global decision procedure that decides which

actions (and interactions) are appropriate.

Joint action systems

action service() by client c; server s is

when c.requesting && s.free do

<body>

10-23

Slide 10-23: Specifying actions { example
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An example of an action speci�cation is given in slide 10-23. Whether the

service is performed depends upon the state of both the client and the server object

selected by the action manager. Kurki-Suonio and Jarvinen (1989) characterize

their approach as action-oriented to stress the importance of specifying actions

in an independent manner (as entities separate from classes and objects). An

interesting feature of the joint action systems approach is that the behavior of

individual objects is speci�ed by means of state charts, a visual speci�cation

formalism based on Harel (1987). The speci�cation formalism adopted gives rise

to interesting variants on the object-oriented repertoire, such as inheritance and

re�nement by superposition. From a pragmatic viewpoint, the assumption of a

global manager seems to impose high demands on system resources. Yet, as a

speci�cation technique, the concept of actions may turn out to be surprisingly

powerful.

In summary, this brief survey of speci�cation formalisms demonstrates that

there is a wide variety of potentially useful constructs that all bear some relevance

to object-oriented modeling, and as such may enrich the repertoire of (object-

oriented) system developers.

Contracts as protocols of interaction Contracts as supported by Ei�el and

Annotated C

++

are a very powerful means of characterizing the interaction be-

tween a server object and a client object. However, with software becoming

increasingly complex, what we need is a mechanism to characterize the behavior

of collections or compositions of objects as embodied in the notion of behavioral

contracts as introduced in Helm et al. (1990).

A contract (in the extended sense) lists the objects that participate in the

task and characterizes the dependencies and constraints imposed on their mutual

interaction. For example, the contract model-view, shown below (in a slightly

di�erent notation than the original presentation in Helm et al. (1990)), introduces

the object model and a collection of view objects. Also, it characterizes the

minimal assumptions with respect to the functionality these objects must support

and it gives an abstract characterization of the e�ect of each of the supported

operations.

To indicate the type of variables, the notation v : type is used expressing that

variable v is typed as type. The object subject of type model has an instance

variable state of type V that represents (in an abstract fashion) the value of the

model object. Methods are de�ned using the notation

� method 7! action

Actions may consist either of other method calls or conditions that are considered

to be satis�ed after calling the method. Quanti�cation as for example in

� 8 v � views � v.update()

is used to express that the method update() is to be called for all elements in

views.

The model-view contract speci�es in more formal terms the MV part of the

MVC paradigm discussed in section ??. Recall, that the idea of a model-view
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contract model-view< V > f MV(C)

subject : model supports [

state : V;

value( val : V ) 7! [state = val]; notify();

notify() 7! 8 v 2 views � v.update();

attach( v : view ) 7! v � views;

detach( v : view ) 7! v 6 � views;

]

views : set<view> where view supports [

update() 7! [view reflects state];

subject( m : model ) 7! subject = m;

]

invariant:

8 v � views � [v reflects subject.state]

instantiation:

8 v � views � subject.attach(v) &

v.subject(subject);

subject.notify();

g

10-24

Slide 10-24: The Model-View contract

pair is to distinguish between the actual information (which is contained in the

model object) and the presentation of that information, which is taken care of by

possibly multiple view objects.

The actual protocol of interaction between a model and its view objects is

quite straightforward. Each view object may be considered as a handler that must

minimally have a method to install a model and a method update which is invoked,

as the result of themodel object calling notify, whenever the information contained

in the model changes. The e�ect of calling notify() is abstractly characterized as

a universal quanti�cation over the collection of view object. Calling notify() for

subject results in calling update() for each view. The meaning of update() is

abstractly represented as

� update() 7! [view reflects state];

which tells us that the state of the subject is adequately re
ected by the view

object.

The invariant clause of the model-view contract states that every change of

the (state of the) model will be re
ected by each view. The instantiation clause

describes, in a rather operational way, how to initialize each object participating

in the contract.

In order to instantiate such a contract, we need to de�ne appropriate classes

realizing the abstract entities participating in the contract, and further we need

to de�ne how these classes are related to their abstract counterparts in the
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contract by means of what we may call, following Helm et al. (1990), conformance

declarations. Conformance declarations specify, in other words, how concrete

classes embody an abstract role, in the same sense as in in the realization of a

partial type by means of inheritance.

Summary

This chapter extended the notion of subtyping to include behavioral properties.

In section 1, we discussed the interpretation of types as behavior and we looked

at the issues involved in preserving invariance and history properties.

Types as behavior 1

� subtype requirements { preservation of behavioral properties

� behavioral properties { invariance, history

� duality { static versus dynamic constraints

10-25

Slide 10-25: Section 10.1: Types as behavior

Also, we discussed the duality between static and dynamic type constraints.

In section 2, a brief characterization of an assertion logic for verifying behav-

ioral properties was given.

Verifying behavioral properties 2

� states { transformations

� veri�cation { correctness formulae

� axioms { consequence rules, abstraction

10-26

Slide 10-26: Section 10.2: Verifying behavioral properties

We looked at a formal characterization of states and state transitions and

correctness formulae were introduced as a means to verify the correctness of

transitions. We also looked at an axiomatic characterization of the correctness

properties of programming language constructs.

On the notion of behavior 3

� syntax { expressions, statements

� rules { assignment, object creation, method call

� compound rules { composition, conditional, iteration

10-27

Slide 10-27: Section 10.3: On the notion of behavior
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In section 3, we looked at how the behavior of an object may be de�ned in a

formal way by means of a transition system. A transition system for an object-

based language speci�es the rules for assignment, object creation and method

call, as well as the computation steps resulting from the evaluation of compound

statements.

Objects as behavioral types 4

� abstract data types { representation function

� correspondence { abstraction, renaming, extension

� behavioral subtypes { correspondence

10-28

Slide 10-28: Section 10.4: Objects as behavioral types

In section 4, it was shown how actual objects may be related to abstract

types by means of a representation abstraction function. Further, we discussed

explicit guidelines for de�ning a subtype correspondence relation between behav-

ioral types.

Specifying behavioral compositions 5

� global invariants { dynamic aliasing

� model-based speci�cation { state and operations

� compositions { contracts, scripts, interaction, joint actions

10-29

Slide 10-29: Section 10.5: Specifying behavioral compositions

Finally, in section 5, we looked at the problems involved in determining global

invariants and we discussed what formal means we have available to specify

behavioral properties of a collection of objects.

Questions

1. How would you characterize the conformance requirements for subtyping?

Explain what properties are involved.

2. Give an example of signature-compatible types not satisfying the history

property.

3. Explain the duality between imposing constraints statically and dynami-

cally.

4. How would you formally characterize program states and state transforma-

tions?
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5. Explain how you may verify the behavior of a program by means of correct-

ness formulae.

6. Characterize how the behavior of objects may be modeled by means of a

transition system and specify a transition system for a simple object-oriented

language.

7. How would you characterize the relation between an abstract data type and

its realizations?

8. Give an example of an abstract speci�cation of a stack. De�ne a realiza-

tion and show that the realization is correct with respect to its abstract

speci�cation.

9. Explain the notion of correspondence for behavioral subtypes.

10. Show that a stack is a behavioral subtype of a bag by de�ning an appropriate

correspondence relation. What proof obligations must be met?

11. Discuss the problems involved in satisfying global invariance properties.

12. What formal methods do you know that deal with specifying the behavior

of collections of objects?

Further reading

As further reading with respect to the veri�cation of programs, I recommend

Apt and Olderog (1991) and Dahl (1992). An assertion logic for a parallel object-

oriented language is presented in America and de Boer (1993).
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Adopting an object-oriented approach is ultimately motivated by the need to

develop applications. In this chapter we will look at business applications.

Business process redesign 11

� business objects { the SanFrancisco framework

� business process modeling { simulation

� visualization support { collaboration and decision making

� migrating from legacy applications { business objects

Additional keywords and phrases: business objects, business logistics,

frameworks, object-oriented simulation

11-1

Slide 11-1: Business process redesign

We will start by discussing the San Franscisco framework, which o�ers tem-

plate business objects and business processes for developing (business) applica-

tions. Since IT is becoming the spine around which business is organized, we will

explore methods for modeling and simulating business processes. We will then

brie
y describe an object-oriented simulation toolkit, and discuss support for the

visualization of business processes and its potential role in collaborative decision

making. Finally, we will re
ect on the need to migrate from legacy applications.

349
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11.1 Business objects – SanFrancisco framework

What are business objects? From the perspective of typical business end-users,

that is accountants, engineers, managers, business objects provide access to corpo-

rate information. Traditionally, corporate information resides in legacy databases,

and access means looking at tables and pasting these into documents.

Business objects

� access to (relational) data

Designer { de�ne data model

� universes, classes, objects { shield from tables

Business user { deploy views

� select, order, summarize, aggregate, tabulate

11-2

Slide 11-2: Business objects

Even within this kind of limited usage, it makes sense to speak of business

objects, as a way to shield the user from the actual structure of the underlying

(relational) database and the use of query languages such as SQL to obtain the

actual data, see Jackson (1998). Business objects, as a metaphor for bringing

information to the desktop, allow for accessing corporate databases in a transpar-

ent manner, and for building the tools that allow business end-users to extract

information from the database in a 
exible way, and to use this information

for further analysis and manipulation. In Jackson (1998), a distinction is made

between three types of end-users involved in the construction and use of business

objects. The designer, who creates the objects that act as an interface to the

database, the actual end user, who uses these objects to obtain information (and

thus implicitly creates queries), and the supervisor, who provides users with access

to the various regions or universes de�ned for the database. The actual business

objects toolset, described in Jackson (1998), provides a GUI-based drawing tool

to create queries by composing objects and creating relations between objects.

Business objects, then, are a means to access corporate data. This is a �rst,

but nonetheless important, step. An immediate advantage, obviously, is that

business objects may be de�ned according to actual business needs, instead of

being dictated by (relational) technology. More generally, business objects may

be regarded as abstractions underlying the de�nition of business processes. In

the following we will explore whether we can generically de�ne business processes

and whether there is a collection of abstractions that we may denote as business

objects.
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The SanFrancisco framework

The SanFrancisco framework (IBM) is an example of a framework meant to

develop business applications. A business application, as we understand it here,

is an application that deploys business objects to (partially) automate business

processes, such as order or warehouse management.

(Business) frameworks

� collection of components

� generic solution for a class of problems

� frame of mind for solving problems

� set of architectural constraints

11-3

Slide 11-3: Business frameworks

A framework is a collection of components, but may also be considered as

a generic solution for a class of problems. It sets a frame of mind for solving

problems and provides the means to realize solutions in software. In practice,

adopting a framework means accepting a set of architectural constraints.
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User Interface

Business rules

Industry uniqueness

Country uniqueness

Competitive differentiators

Ledger

frameworks

applications

commercial

sharable

core business processes

common business objects

foundation layer

SanFrancisco

Slide 11-4: The SanFrancisco framework

As a framework, SanFrancisco aims at providing both a software solution for

implementing business applications, as well as a collection of concepts or strategies

to develop e�ective business applications.

In the white paper accompanying the introduction of the SanFrancisco frame-

work, we read that the project was started when several software vendors asked

IBM to help in modernizing their application products. These vendors asked for

help because there were several barriers that prevented them from modernizing

their applications themselves. Barriers such as (1) the risk in moving to new

technologies (such as client/server and the Web), (2) the need to retrain their
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development sta� to e�ectively use an object-oriented approach, (3) the cost of

change. As the white paper states, as software developers they needed some basic

infrastructure, and most companies could not a�ord to develop this infrastructure

themselves.

The SanFrancisco framework provides such an infrastucture, and moreover, the

white paper claims, an object-oriented infrastructure that provides a consistent

application programming model, with many well-tested services and a collection

of core business process components and common business objects.

core business processes

� Accounts Receivable/Payable

� General Ledger

� Sales Order Management

� Purchase Order Management

common business objects

� Business Partner, Address, Number, Currency

foundation object model classes

� Command, Entity, Dependent, Collection/Iterator, Factory

11-5

Slide 11-5: SanFrancisco object layers

The SanFrancisco framework o�ers three layers of functionality, business pro-

cesses, business objects, and foundation classes, each of which may be used and

extended by developers to build their applications. The process layer itself may

be regarded as a collection of frameworks, as indicated in slide 11-5, which build

upon the business objects and foundation layers. Note that the foundation layer

contains realizations of the by now familiar patterns, see chapter 2.

Receipt

Status

Quality accepted

Inspection required?

Perform inspection

Receipt

Inspection required?

   Order Line
   Quality inspect
   is Yes

   check if

  check supplier table
  check previous results from supplier
  inspect when hazardous

*

  inspect high-value products

Purchase Order Line

Quality inspect (Y/N)

Inspect quality?

...

Slide 11-6: Re�ning quality control

The SanFrancisco framework is an object-oriented framework. It allows for the

classical way of extending the framework, by inheritance. As an example, think
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of a Receipt object which may contain an arbitrary number of Purchase Order

Line instances, see slide 11-6. Purchase Order Line has an attribute Quality

inspect which is read by Receipt to determine whether quality control is needed.

This re
ects the default (business) logic for processing orders as de�ned by the

framework.

To enhance this logic, that is to be able to execute more strict quality control,

one may derive a new Receipt class from the old Receipt class and override the

method by which to determine whether quality inspection is required, for example

by including a check on the supplier, previous outcomes of quality control, or

whether it concerns hazardous materials or high-value products.

As a remark, note that this approach assumes that the business logic is to a

large extent hardwired in the (structure of the) classes of the framework, whereas

a decoupling of the logic and the actual processing might be preferable.

Discussion The SanFrancisco framework is based on Java technology. Its in-

troduction marks the transition towards client/server and Web technology, and

clearly addresses the need for many companies to migrate to the new technology.

Apart from technological considerations, however, the major issue in adopting a

framework such as the SanFrancisco framework is whether it su�ciently re
ects

emerging consensus and standards concerning the de�nition and utilization of

business objects and processes. Related e�orts of business object standardization

are undertaken by the OMG. On the technology side, it is di�cult to establish

who will win the component war, Java, OMG CORBA, or Microsoft (D)COM

and ActiveX.

11.2 Business process modeling

Having looked at business objects, we may well ask ourselves what business

processes are, and what role IT plays in business processes. Following Davenport

and Short (1995) we de�ne a business process as `a set of logically related tasks

performed to achieve some well-de�ned business outcome'. Following Davenport

and Short (1995) we may observe that IT plays a dual role. On the one hand,

IT is an enabler of new process structures, since it allows for automating (parts

of) business processes. And on the other hand, IT provides support for the

(re)design of business processes, as a means to model and simulate various aspects

of business processes. In this section we will look at an approach to modeling

business processes supporting the simulation and evaluation of logistic aspects

of business processes. Simulation may help in determining the e�ectiveness of

business process (re)designs.

11.2.1 Logistics­based modeling

Improvements in business performance and productivity may be achieved by

critically examining some of the rules that govern a business process. Business

process redesign (BPR) is the generic label for many emerging methodologies
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aimed at producing these improvements. Re-design implies that the current state

of a�airs is no longer acceptable and can no longer be re�ned or evolved.

Despite the importance of qualitative assessments in BPR, as noted in Hammer

(1990), for modeling we favor a more quantitative approach for which we provide

support by means of a simulation library (BPSIM) based on the logistics-based

business modeling method (LBM) presented in Gerrits (1995).

Logistics-based modeling { criteria for redesign

� the time spent in executing a business process.

Product lead time { time between order and delivery

� processing time { actual working time

� queue time { waiting for a resource

� setup time { for the job to get started

� wait time { waiting for a job to complete

� transport time { between resources or operations

11-7

Slide 11-7: Logistics-based business models

Logistics-based modeling allows for analysing the time spent in executing a

business process. The product lead time is de�ned as the time that passes between

the moment a customer orders a product and the moment a product is delivered.

In more detail, we can distinguish between processing time (the time actually

worked on a job or operation), queue time (the time a jobs waits for a resource

to become available), setup time (the time that passes between the moment a

resource becomes available and the moment work on the job is started), wait time

(the time that is spent waiting for another job to complete), and transport time

(the time that is needed to move a job from a resource at a certain location to a

resource at another location).

For a particular model, measurements may be obtained by running a series of

simulations. Based on an analysis of the simulation results, alternative models

may be proposed. For example, when the setup time for a job is relatively large,

combining jobs into a single task for an employee may be more e�cient.

The LBM method o�ers a number of primitives, with associated graphic icons,

from which a business process model may be constructed as a network of resources

connected by transport arcs.

The primitive entities o�ered by LBM are listed in slide 11-8. Operations are

atomic in the sense that wait time, queue time and transport time may not be

part of an operation. Only setup time and process time are part of an operation.

Tasks are introduced to allow for a series of jobs or operations to be processed, for

example by one employee, in order to reduce the setup time needed. Transport

entities represent the time it takes for information to 
ow from one resource

(that is operation or task) to another. Transport implicitly de�nes the sequential
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Logistics-based modeling primitives

� operation { processing component

� task { a series of consecutive operations

� transport { transport of information

� choice { a�ects 
ow of information

� organizational units { to represent departmental boundaries

� external agents { opaque entities

� archives { paper-based storage facilities

11-8

Slide 11-8: Logistics-based modeling primitives

structure of a process. However, duplications of information, and consequently

parallel operations, are allowed. In addition to the primitives mentioned above,

LBM allows us to characterize organizational units to represent departmental

boundaries, external agents to represent opaque information producing or con-

suming entities, and archives to represent paper-based storage facilities. Also,

employees may need additional means to engage in an operation or task.

11.2.2 Business process simulation

The classes provided by the business process simulation library BPSIM re
ect

the entities provided by the logistics-based business modeling method LBM. The

BPSIM library is an extension of the simulation library SIM, described in Bolier

and Eli�ens (1994). SIM is a C

++

library, which is part of the hush framework,

o�ering classes supporting discrete event simulation, based on standard simulation

techniques, developed in Watkins (1993). It will be described in the next section.

On a somewhat more abstract level, one may regard a business process sim-

ulation as consisting of data, 
owing through the process, and handlers { data-

handlers { performing some action on the data, such as transportation or speci�c

operations.

Accordingly, BPSIM provides two base classes underlying the classes corre-

sponding to LBM entities:

� data { which represents the product or case, i.e. the information, that 
ows

through the process.

� datahandler { which is the basis for all classes that handle information.

As an aside, LBM contains no symbol for data as it only depicts the objects

that handle the information.

The classes depicted in slide 11-9 are derived from the datahandler class. They

realize the corresponding entities in LBM.
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Derived from datahandler class:

� operation { executed by employee

� transport { connects datahandlers

� waitqueue { wait for processing

� choice { to model alternatives

� archive { for storage of resources

� external agent { blackbox entity

11-9

Slide 11-9: Classes derived from datahandler

An operation takes time, and is executed by an employee. Sometimes an

operation results in more than one outgoing data
ow, for instance when it issues

a request for additional information from a di�erent department.

A waitqueue functions as a regular queue if it has one incoming data
ow, i.e.

transport. When there are more incoming 
ows, it functions as a synchronized

queue. Data from one 
ow is not passed on to the next datahandler until the

data from the other 
ow has arrived. This happens for instance when work on a

case cannot continue until additional information has arrived.

An external agent can either generate data according to some random number

distribution, or take data, process it and pass it on to the next datahandler. In

the latter case the agent functions as a black box: we only care how long the

processing takes, not how it is exactly performed.

In addition, BPSIM o�ers the classes means (which can be used to model

resources that are necessary to perform certain operations), and employee (which

models the di�erent people that perform the operations).

As one can see, the entities task and organization unit from LBM have no

speci�c counterpart in BPSIM. The reason for this is that having no other data-

handler between two operations already implies that those operations belong to

the same task. Consequently they are executed with no time in between and by

the same employee. Also, the fact that tasks are executed in di�erent organization

units does not add any information that changes the behaviour of the simulation.

If it takes time to transport information between di�erent units, then that time

can be represented by the object of class transport between those units.

For the gathering and analyzing of results, the SIM classes histogram and

analysis are used. The class agent, for example, can be given a histogram to track

the lead time of data it has generated.

A script interface for BPSIM Employing the facilities of the hush library

a script interface has been de�ned for BPSIM that allows the user, that is the

designer of business models, to construct and run business simulation models

with a short turnaround time. Each class in the BPSIM library corresponds

to a command in the script language. As illustrated in the next section, script
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commands allow for a graphic representation of the model, which may be displayed

in a Web page as an applet.

11.2.3 Example – requests for loans

Now let us take a look at an example business process model based on the objects

made available in BPSIM. The example will detail possible situations before and

after business process redesign has taken place.

process request

(clerk)

���
���
���
���

��������������������������

���
���
���
���

��������������������������

approve

approve

(computer)

(clerk)
handle request

(clerk)
process request

(clerk)
handle request

(manager)

request for loan request for loan

Slide 11-10: Processing alternatives

Current situation: Our �rst model, slide 11-10 (left), which represents the

current situation, consists of a client producing, for example, requests for a

loan at a bank. The requests are initially handled by a clerk whose task is

to send requests for amounts greater than $10,000 to the boss. The boss,

whose task is to approve or deny the loan, sends the result back to the clerk

for processing. If the amount is less than $10,000, the clerk has authority

to process the request himself.

Redesign alternative: In our second model, slide 11-10(right), which is the

result of a redesign e�ort, requests are handled by a clerk who enters the data

into a computer. The computer now makes the decision as to whether the

loan is improved { for loans of value less than and greater than 10,000. The

clerk then passes the results on to another clerk for the task of dispatching

loans.

In slide 11-11 the visual representation of the model resulting from the redesign

e�ort is shown, embedded in a Web page. In addition to the model, the page

contains some results obtained by running a simulation. For example, the text

indicates that an employee is busy handling incoming requests only 33% of the

time. The histogram depicts the distribution of the lead times of incoming loan
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Slide 11-11: Presenting a redesign alternative

requests, that is the time that passes between receiving a request and giving an

answer. The Web page further contains a button to start a simulation run, a

description of the model and links to alternative models.

The script In the fragment below, a histogram for recording leadtimes is created

as well as an agent generating requests and a transport to a clerk handling the

requests.

histogram leadtimes

agent client generate leadtimes

client -duration 60 poisson

transport t1

t1 -duration 20

employee clerk

operation receive clerk

receive -duration 20.0 5.0 normal

The duration of the agent is speci�ed using a poisson distribution with � = 60.

The clerk is declared to perform a receive operation, the duration of which takes

values from a normal distribution with means = 20 and standard deviation = 5:0.

After de�ning the components of the model and their connection a simulation

may be started by pressing the start button. If desired, users may change the
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parameters concerning for example setup and wait time, to explore the various

scenarios a model has to satisfy.

Discussion As observed in Wastell et al. (1994), organizational change is a

`highly threatening and stressful experience for many participants and ... high

levels of stress can have a pernicious e�ect on individuals, group processes and

organizational learning'. Hence, directly involving the users in the modeling phase

of the BPR project may be an important step towards capturing the human

aspects that are necessary for the production of an optimal model. It may also

help to lessen the anxiety of employees.

On a technological level, we advocate the use of business process simulation.

Nevertheless, to accomodate the social aspects, it is important to support the

visualization of such models and their integration in an arbitrarily complex in-

formation context, such as the World Wide Web. Developing visualisation and

animation support for simulation models is a topic of ongoing research. See section

11.4.2.

11.3 Object­oriented simulation

Historically, there is a close connection between simulation and object-orientation.

The �rst object-oriented language, SIMULA, was a programming language meant

for discrete event simulation, see Dahl and Nygaard (1966).

In Hill (1996), an overview is given of what is required for complex system

modeling, and more in particular how object-oriented analysis and design may

aid in de�ning models that lend themselves to performance evaluation by means

of simulation studies. Performance evaluation belongs traditionally to the �eld

of statistics and operations research. However, according to Hill (1996), for a

clear understanding of the behavior of complex systems and the interpretation

of measurement results, we need to derive our action models, which are used to

perform the simulations, from domain and system object models, describing the

structure of the system and its relation to reality. In other words, an object-

oriented approach may help us in arriving at better models, provided that we

have the stochastic support needed to perform reliable performance studies.

In this section, we will brie
y discuss the SIM library, as an example of object-

oriented support for discrete event simulation. See Hill (1996) for a great many

alternatives.

The SIM library

SIM is a C

++

library o�ering classes supporting discrete event simulation, based

on standard simulation techniques described in Watkins (1993). In discrete event

simulation, the components of the model consists of events, which are activated

at certain points in time and in this way a�ect the overall state of the system.

The simulation library consists of the classes as listed in slide 11-12.
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Simulation classes

� simulation { the scheduler

� event { representing the events

� entity { process consisting of events

� generator { random distributions

� resource { to model passive objects

� queue { to hold waiting events

� histogram { to plot the results

� analysis { for statistical analyses

11-12

Slide 11-12: Simulation classes

The SIM library is integrated with the hush library, which may be used for

de�ning a script interface to the simulation package, for developing a graphical

user interface and for visualizing simulation models.

The event scheduling strategy In its most simple form, a simulation runs

until there are no events left. Events are user-de�ned objects that represent the

functionality of the system to be modeled. At the time an event is due to be

activated, it is extracted from the scheduler and the main simulation routine

executes the code from the operator() method of that event.

���
���
���
���

closed conditional

active

queued

pending

passive

reinstate

withdraw

passivate
hold

activate
passivate

append
remove

schedule
passivate

activate

hold

activate

wait

terminate

terminate

Slide 11-13: State diagram for event

The scheduling algorithm extracts all events with the same activation time.

It activates the events in priority order with the highest scheduling priority �rst.

Before executing the events, the simulation clock is updated to the activation time

of the current events. Furthermore, a FIFO conditional list (containing events

that occur when some condition is met) is traversed in priority order with highest

scheduling priority �rst. Events that can run now are executed. Events that are

not used anymore should be terminated to prevent the system from over
ow.

In slide 11-13 a state-diagram is given, which depicts the states (see slide

11-14) an event object can be in. The state of an event can be a�ected both
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Event states

� passive - currently not available for any processing

� active - this is the event currently being processed

� queued - the event is in a queue

� pending - the event is in the scheduler

� conditional - the event is on the conditional list

� closed - on the conditional list but unavailable

11-14

Slide 11-14: Event states

by the scheduler as well as from within the user-de�ned methods of the event.

The labels on the arrows indicate the methods that result in a state transition.

(As a convention, the methods above the arrows indicate a transition from left

to right, the methods below the arrow a transition from right to left, in case of a

bi-directional relation between states.)

Example – dining philosophers

Consider the following (classical) problem. Five philosophers sit around a table

with �ve chopsticks in between. They think, and if they are hungry and if two

chopsticks are available, they eat. If a philosopher gets hungry and s/he cannot

acquire a chopstick, the philosopher waits until s/he can. The philosopher does

not think, if s/he is waiting or eating. We are interested in the fraction of the

time, that a philosopher actually thinks.

In slide 11-15 a graphical rendering is given of a simulation at work. The applet

displayed in the hush browser is written with the Tcl/Tk command binding to

the SIM library.

We will now look at two methods to de�ne the actual simulation mode, an

event-based method and a process-based method.

The event-based approach With the event-based approach of writing a simu-

lation program we �rst identify the events in the model. The behavior of an event

is implemented by deriving it from the class event and overriding the function

operator of this class.

We develop this program in the following steps. First, the library is included

as sim.h. The declarations of the global variables and constants follow after that.

The time unit in this simulation is an hour, so a philosopher has a mean eating

time of two hours and a mean thinking time of �ve hours. The duration of the

simulation is a year. After that, we de�ne the various events.

#include <sim/sim.h>

const double duration = 52*7*24.0; // a year
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Slide 11-15: Dining philosophers

const int number = 5; // philosophers

const int eatingtime = 2; // 2 hours

const int thinkingtime = 5; // 5 hours

simulation* sim;

generator* g;

resource* chopstick[number];

histogram* thinking;

After de�ning the global variables, we de�ne the actual event classes. To

model this problem, three events can be identi�ed, eat, think and await. The

corresponding classes are derived from the class event. Furthermore we need a

chopstick for every philosopher. These are represented as a resource. The thinking

times are gathered in an instance of the class histogram and the generator takes

care of the variations in the time needed to think and eat.

class eat : public event

f

public :

eat(int i); // constructor, taking identity

virtual int operator()(); // function operator

private :

int id; // identity of the philosopher

g;
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class think : public event

f

public :

think(int i); // constructor, taking identity

virtual int operator()(); // function operator

private :

int id; // identity of the philosopher

g;

class await : public event

f

public :

await(int i); // constructor, taking identity

virtual int operator()(); // function operator

private :

int id; // identity of the philosopher

g;

Next, we implement the various events. An event is given its functionality by

deriving it from the class event and overriding its function operator.

The logic of the eat event is that the philosopher eats for a random time,

exponentially distributed with a mean eating time. So, we �rst determine the

actual eating time and schedule a think event to be activated after this eating

time. The eat event can be terminated.

eat::eat(int i) : event()

f

id = i; // set identity

g

int eat::operator()()

f

double t = g -> exponential(eatingtime); // eating time

think* th = new think(id); // create a thinking event

sim -> schedule(th,t); // schedule thinking

sim -> terminate(this); // terminate this eat event

return OK;

g

If a philosopher starts to think, the philosopher �rst releases both chopsticks.

The thinking time is determined and a sample is made of the percentage of this

thinking time towards the total time. An await event is scheduled and the think

event is terminated.

think::think(int i) : event()

f

id = i; // set identity

g
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int think::operator()()

f

chopstick[id] -> release(); // release left chopstick

chopstick[(id+1) % number] -> release(); // release right

double t = g -> exponential(thinkingtime); // thinking time

thinking -> sample(id,t/duration*100); // add a sample (%)

await* aw = new await(id); // create await event

sim -> schedule(aw,t); // schedule waiting

sim -> terminate(this); // terminate thinking

return OK;

g

The await event acquires the left and right chopstick and schedules an eat

event immediately, if both chopsticks are available. The await event is passivated

as it could be on the conditional list. If no chopsticks are available, the await

event stays on the conditional list or, if it was not conditional as is the case the

�rst time it is activated, it is added to the conditional list.

await::await(int i) : event()

f

id = i; // set identity

g

int await::operator()()

f

if ( (chopstick[id] -> available()) && // available ?

(chopstick[(id+1) % number] -> available()) )

f

chopstick[id] -> acquire(); // acquire left

chopstick[(id+1) % number] -> acquire(); // acquire right

eat* e = new eat(id);

sim -> passivate(this); // extract from conditional list

sim -> schedule(e,0); // schedule eat event immediately

sim -> terminate(this); // terminate await event

g

else if (!conditional()) // not on conditional list

sim -> hold(this); // add to conditional list

return OK;

g

The following step is the de�nition and implementation of an application, which is

derived from session. The application::main function �rst creates the simulation

object. Furthermore, a frequency histogram and �ve resources that represent the

chopsticks are created. The histogram is created with its widget path and with

its (default) options. Afterwards it is packed to the display. The simulation starts

with all philosophers waiting and runs for a year (52*7*24 hours). After running

the simulation, the resulting histogram is printed.
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int application::main() // tk is an instance variable of session

f

sim = new simulation();

g = new generator(80,20,19); // gets three seeds

thinking = new histogram(".h","-columns 5 -title thinkingtime");

tk -> pack(thinking); // add to display;

tk -> update(); // update display;

for (int i=0;i<number;i++)

f

chopstick[i] = new resource(1); // create chopsticks

await* aw = new await(i); // schedule each

sim -> schedule(aw,0); // philosopher waiting

g

sim -> run(duration); // run for duration

cout << (*thinking) << endl; // print resulting histogram

delete thinking;

delete sim;

return 0; // successful termination

g

The process-oriented approach With the process-oriented approach the com-

ponents of the model consist of entities, which represent the existence of some

object in the system such as a philosopher. An entity receives a user-de�ned

phase that determines the behavior of the entity.

The entity class is derived from the event class. It may be regarded as a

compound event, that is it maintains an additional phase variable to record the

actual phase it is in.

We �rst identify the entities (or the types) in the model. The events are

represented as methods of an entity. The function operator calls these events

based on the phase the entity is in, as illustrated in the de�nition of a philosopher.

enum fEATING,THINKING,WAITINGg; // phases of a philosopher

class philosopher : public entity

f

public :

philosopher(int ph,int i); // constructor, taking phase and id

virtual int operator()(); // function operator

int eat(); // eat event

int think(); // think event

int await(); // await event

private :

int id;

generator* g;

g;

philosopher::philosopher(int ph,int i) : entity(ph)
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f

id = i; // set phase and identity

g = new generator(20,10,999);

g

int philosopher::operator()()

f

switch (phase()) // what phase is the philosopher in?

f

case EATING :

return eat(); // the philosopher eats

case THINKING :

return think(); // the philosopher thinks

case WAITING :

return await(); // the philosopher waits

g

return FALSE;

g

int philosopher::eat()

f

double t = g -> exponential(eatingtime); // determine eating

time

sim -> wait(t); // schedule this philosopher thinking

phase(THINKING); // set phase to thinking

return OK;

g

int philosopher::think()

f

chopstick[id] -> release(); // release left chopstick

chopstick[(id+1) % number] -> release(); // release right

double t = g -> exponential(thinkingtime); // determine

thinking time

thinking -> sample(id,t/duration*100); // sample (%)

sim -> wait(t); // schedule this philosopher waiting

phase(WAITING); // set phase on waiting

return OK;

g

int philosopher::await()

f

if ( (chopstick[id] -> available()) && // available?

(chopstick[(id+1) % number] -> available()) )

f

chopstick[id] -> acquire(); // acquire left chopstick

chopstick[(id+1) % number] -> acquire(); // acquire right

sim -> passivate(this); // make passive

sim -> activate(this); // activate as eating

phase(EATING); // set phase on eating
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g

else if (!conditional())

sim -> hold(this); // add to conditional

return OK;

g

Dependent on the phase the philosopher is in, the appropriate action on

the simulation environment is taken. These actions closely resemble the events,

described in the event-based approach of this problem. The main di�erence is

in the use of phase. If, for example, a philosopher �nishes eating, his/her phase

is set to THINKING and he/she is scheduled after t time units, whereas in the

event-based approach a think event is scheduled and the eat event is explicitly

terminated. So, in the process-oriented solution a philosopher exists for the

entire simulation. In the application::main function the simulation is set up by

scheduling the �ve philosophers, initially waiting, instead of scheduling �ve await

events.

11.4 Visualization support

Visualization is one of the oldest forms of communication. As expressed in the

programmers manual of In3D from Visible Decisions (1997), visualization may

be used to convey information and to help us manage, analyze, control and

comprehend vast amounts of information.

Slide 11-16: Retail USA

c


1995{1999 Visible Decisions Inc.
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The visualization in slide 11-16, which is one of the examples that comes with

In3D, depicts sales �gures in the USA, embedded in an obvious geographical

metaphor. The image, which may be animated to display the time-dependent

changes in sales �gures, contains a wealth of information that would be much more

di�cult to comprehend if presented numerically or even in (plain) 2D graphs.

In this section will discuss how visualization may be used to give access to

information and what role visualization can play in decision making. We will

also look at the design rationale underlying a generic distributed architecture for

information visualization, which is based on Java and VRML technology.

11.4.1 So many users, so many perspectives

The title of this section is from an article, Sch�onhage et al. (1998). It is meant to

express that visualization must be 
exible in order to accommodate the individual

user's information needs. Originally, visualization was primarily used for the

analysis of scienti�c data, resulting from measurements or some physical model.

Nowadays, visualization is increasingly applied to non-scienti�c data, for better

understanding of the contents and the relations between the data. In business

data visualization there is not necessarily a physical model underlying the data.

Nevertheless, it is worthwhile to visualize the data in order to explore structural

patterns and temporal relations.

Observer
Models

Mapper

Charting

Compound Views
Single/Multi Views

Sensors
Controllers

Viewers
Frames

Commands Expressions OpenGL/VRML Rendering

extension layer

core layer

foundation layer

Slide 11-17: In3D architecture

The In3D toolkit, Visible Decisions (1997), provides an object-oriented frame-

work for the visualization of business data. It is based on theModel{View{Control

paradigm, and provides the functionality to de�ne data models or containers,

observers for these models, mappings to transform the data to be displayed, a

variety of views to display the data, sensors and controllers to create interactive

applications, and frames and viewers for displaying visualizations on the screen.

The In3D toolkit is built on OpenGL and allows for VRML import and export.

An overview of the In3D architecture is given in slide 11-17.

Creating an e�ective visualization may be quite demanding. First of all, one

has to make the choice for an appropriate metaphor. Basically, the choice is

between a literal metaphor, such as the geographical metaphor used in slide 11-16,

or an abstract metaphor, such as a data cube or an abstract topology. Next, it is

important to organize the data, and to �nd suitable visual primitives to display the

data content and the inherent relationships of the data. Finally, user interaction

capabilities must be added, to allow for explorative behavior and drill down. See

slide 11-18.
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Interaction { visualization

� selection { clicking a view ! action

� brushing { display detailed information

� controllers { sliders and buttons for manipulation

� �ltering { apply constraints on the data

� sensors { triggered by user navigation

� navigation { move around and explore

� commands { user-de�ned macros

11-18

Slide 11-18: User interaction

Available systems The In3D toolkit (http://www.vdi.com) was one of the �rst

around for business data visualization. Recently, a number of VRML-based

visualization kits have been introduced (for example http://www.em7.com and

http://www.platinum.com).

11.4.2 DIVA – distributed visualization architecture

The DIVA project aims at creating a 
exible architecture and framework for

dynamic information visualization, in particular business process visualization,

that is the visualization of the outcomes and implications of business process

simulations.

primary

model

derived

model

presentation

model

presentationalconceptual

mapping mapping

generator views display

Slide 11-19: Conceptual architecture (DIVA)

DIVA is based on three requirements

� to allow for multiple views or perspectives, according to the users' informa-

tion needs;

� to provide adaptive visualizations, allowing for experimentation; and

� to support a networked, Web-based infrastructure.

Conceptually, a visualization may be regarded as a transition of data through

a sequence of models, as depicted in slide 11-19.

In the case of business process visualization, the primary model, or generator

component, is a simulation of a business process. The derived model collects

these data, �lters some out, and computes aggregate data, as for example the

average waiting time for a queue. The presentation model de�nes how the data
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Slide 11-20: Screenshot

is presented, that is what visual gadgets are used to display the outcome and the

dynamics of the simulation.

As an example, look at the visualization displayed in slide 11-20. It presents

a waiting queue, which is the result of a business process simulation, as described

in Sch�onhage et al. (1998), and a dialog that allows to restart the simulation.

Collaborative visualization The conceptual architecture in slide 11-19 allows

for having multiple perspectives on the same data. For example, instead of

the queue length, we might also display the actual throughput or the product

lead time. In Sch�onhage et al. (1998), we have investigated how to extend the

DIVA architecture to support collaborative visualization and decision making, for

example in a process re-engineering or redesign e�ort.

Obviously, the original DIVA architecture needs to be extended with sessions,

de�ning a (virtual) meeting and corresponding roles, such as a chair, listeners,

talkers, and interactors. Restarting the simulation is an example of the action of

an interactor. Clearly, such interactions disrupt the actual course of events and

must be limited to privileged participants.

To deploy visualizations e�ectively in actual argumentation, it must be pos-

sible, literally, to share one's point of view with other participants, or to enforce

one's perspective. In practice this means that a particular visualization, that is

presentation of a perspective, is displayed to the other users. So, instead of the

length of the queue, the average waiting times may be displayed, for example to



Visualization support 371

Collaborative visualization

� sessions { meetings/roles

� roles { chair, listener, talker, interactor

� interactor { disruptive or non-disruptive

� perspectives { sharing and enforcing

� communication { telepointers, chatting, ...

11-21

Slide 11-21: Collaborative visualization

illustrate that customer satisfaction will not be a�ected. Technically, our solution

for sharing or exporting views is based on mobile object technology, as will be

discussed shortly.

Finally, we need additional means to communicate with the other participants,

such as a telepointer and a chatting facility.

Display agents To allow for sharing or enforcing perspectives, we introduced

so-called display agents, mobile Java objects that may be used by a Java applet to

create a VRML world using the external authoring interface (EAI). See Sch�onhage

and Eli�ens (1999).

Repository

display agents

simulation server
broadcast

objects
Java

Java applet

world
VRML 

VRML plugin

Web browser

update

Slide 11-22: Architecture DIVA { display agents

As sketched in slide 11-22, the simulation server sends events to the visu-

alization, embedded in a Web browser. A visualization consists of a VRML

world and Java objects that intercept the visualization events (using the CORBA

Event Service) and react to possible user actions. The content of VRML worlds

are stored as display agents, which re
ect the contents of the secondary model

or concept space. Display agents are mobile objects that may be activated on

demand, to display the simulation scene, or to update the other participants'

view.

Implementation details DIVA is designed as a distributed object-oriented sys-

tem. The DIVA components are written in C

++

and Java, and can run on di�erent

platforms. We use the Common Object Request Broker Architecture (CORBA)

to let our distributed objects communicate with each other. By using the interface
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de�nition language (IDL) to describe the interfaces between components and by

making use of the object request broker (ORB), distributed components are able

to communicate.

Voyager, described in ObjectSpace (1997), is an agent ORB written purely in

Java, which supports CORBA. Voyager allows us to use mobile objects, a feature

which CORBA does not have. We use Voyager to construct the mobile controller

components. These components are able to `dock' at a user environment and can

subsequently show their user interface on the screen to let the user interact with

it.

We use VRML, see ISO (1997), as the main visualization tool. The users

are able to navigate through the VRML worlds by using a VRML-browser. The

External Authoring Interface (EAI) makes it possible to control the VRML worlds

dynamically via the Java and Javascript languages.

The visualization gadgets in the presentation component are represented by

mobile display agents. These agents are constructed using Voyager. Display

agents can also `dock' in a user environment and, in addition, get access to the

local VRML world. They collect the needed information from shared concept

spaces to build and maintain the 3D visualization.

The combination of CORBA and the Web enables access to information re-

sources by means of HTML, Java and VRML. For example, the simulation and

shared concept space, that is the derived model, can be hosted on a Unix server

while the presentation components are executed in a Web-browser on Windows

client machines.

11.5 Migrating from legacy applications

With IT becoming the spine of business processes, many companies are urged to

move away from their legacy applications and jump right into the new tech-

nologies, to take advantage of the rich GUI capabilities of current desktops,

client/server computing and the Web. However, most companies are still tied to

their (mainframe) legacy systems, and the cost of (re)development is in general

too high.

As phrased by No�singer et al. (1998), what they need is an unobtrusive

method of integrating terminal-based (legacy) software with newer technologies,

to provide the existing information and services with some new (GUI and Web-

based) clothing.

In slide 11-23, it is depicted how such an integration might be achieved with a

three-tier architecture employing a terminal emulation or screen-scraping API for

encapsulating the legacy objects, and a HTTP server to deliver the functionality

to a (thin) Web client. (Information about the Legacy Object Framework can be

found at http://www.yrrid.com.)

The advantage of a three-tier solution is the decoupling of the legacy appli-

cation from both GUI functionality and (middleware) business logic. The legacy

object modeling, which re
ects the business logic, is taken care of in a middleware

layer, to allow for thin or ignorant clients. In No�singer et al. (1998), alternative
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terminal emulation

(1)

(2)

(3)mainframe legacy application

legacy objects

Web objects

HTTP server

HTML browser

legacy

application

model

Slide 11-23: Three-tier architecture

solutions are discussed as well, including CORBA-based three-tier solutions as

well as a variety of two-tier architectures with fat clients that carry all the

knowledge about the business logic underlying the legacy application themselves.

In comparison, three-tier solutions are to be preferred, since they allow for better

maintenance. Nevertheless, according to No�singer et al. (1998), the development

e�ort is signi�cantly higher.

Discussion At ASZ/GAK, the IT section of a large social security organiza-

tion in the Netherlands, students of the Vrije Universiteit have been involved in

projects aimed at developing a new information infrastructure. There we studied

intensively the three tiers and in particular the boundaries between these tiers,

notably the GUI/Business Objects boundary and the Business Objects/Database

boundary, using Java, CORBA, (D)COM and proprietary middleware. General-

izing, our conclusions thus far are that decoupling is much harder to achieve than

we expected. For example, de�ning transactions using business objects seems to

require more knowledge of the database backend than is desirable. Also, it seemed

necessary to replicate much of the business logic inherent in the database. And,

de�ning user interaction with business objects in a purely abstract fashion, that

is independent of an actual interface technology, proved to be di�cult as well.

For an organization such as ASZ/GAK, migration is necessary, simply because

the risk of an abrupt transition is too high. This may also explain why the IT sta�

of ASZ/GAK who were responsible for maintaining the system were at �rst not

too eager to experiment with the new technologies. Our experiments, however,

convinced them that there is hope for the future.

Summary

This chapter has dealt with business objects, business applications and the issues

involved in business process redesign. Since business process redesign may be
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motivated by changes in technology, we also discuss the migration from legacy

applications.

Business objects { SanFrancisco framework 1

� business objects { access to relational data

� framework { collection of components

� generic solution for a class of problems { frame of mind

� architectural constraints { Java, Web-aware applications

11-24

Slide 11-24: Section 11.1: Business objects { SanFrancisco framework

In section 1, we discussed the need for business objects and looked at the

San Francisco framework, which aims to provide a generic solution to creating

business applications.

Business process modeling 2

� logistics-based modeling

� business process simulation

� example { requests for loans

11-25

Slide 11-25: Section 11.2: Business process modeling

In section 2, we looked at the issues involved in business process modeling,

which we consider as a prerequisite for business process redesign. We dealt with

the simulation of the logistic aspects of business processes and concluded with a

small example.

Object-oriented simulation 3

� simulation classes { event, entity, generator, resource, queue

� event scheduling strategy { conditional, passive, pending

� dining philosophers { events versus processes

11-26

Slide 11-26: Section 11.3: Object-oriented simulation

In section 3, we treated object-oriented simulation in somewhat more detail.

An overview was given of useful simulation classes. We discussed event scheduling

strategies, and looked at the classic dining philosophers example, both from an

event-based simulation perspective and a process-based simulation perspective.

In section 4, we looked at interactive information visualization as a means to

support business process redesign and decision making. An overview was given of
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Visualization support 4

� So many users, so many perspectives

� DIVA { distributed visualization architecture

11-27

Slide 11-27: Section 11.4: Visualization support

the DIVA software architecture, which allows for distribution, user perspectives

and collaboration.

Migrating from legacy applications 5

� fat versus thin clients { screen scraping

� Web-aware applications { wrapping the legacy

11-28

Slide 11-28: Section 11.5: Migrating from legacy applications

We concluded, in section 5, with a discussion of the opportunities to migrate

from legacy applications to a modern, object-oriented, Web-aware architecture.

Questions

1. Why would you need business objects? Discuss this from the perspective of

the end-user as well as from the perspective of management.

2. What are the motivations underlying the San Francisco framework?

3. Give an overview of the component layers constituting the San Francisco

framework.

4. Explain the goals of logistics-based business modeling. Discuss possible

means to support business modeling.

5. Give an example of business process simulation.

6. What classes can you think of for a library supporting object-oriented

simulation?

7. What are the requirements for visualization support? Can you think of

actual classes?

8. Discuss the issues that may arise in migrating from legacy applications.

What possible solutions can you think of?
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Further reading

For more information on business process redesign, consult Davenport and Short

(1995), Hammer (1990) and Wastell et al. (1994). For an in-depth treatment of

simulation, you may read, for example, Watkins (1993).
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The explosive growth of the Web is perhaps the single most important event in

the history of computing technology. What started as an information infrastruc-

ture is now turning into an infrastructure encompassing both information and

applications, and is becoming the backbone for the commercial deployment of the

Internet.

Web Applications 12

� objects and the Web

� Web application development { tools and environments

� DejaVU - Web applications with hush

� software architectures for the Web

Additional keywords and phrases: Web Objects, XML, Java, CORBA,

multimedia, software architecture

12-1

Slide 12-1: Web applications

In this chapter, we will explore how the Web a�ects (object-oriented) software

development. First of all, we will discuss whether object orientation has any

relevance for the Web and for the development of Web applications. We will look

at some of the current trends and technologies, discuss the possible occurrence of

the Object Web, and look at an example deploying Web technology to provide

an infrastructure for distributed object computing. We will re
ect on the com-

377
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putation model underlying the Web, to explore how to program the Web to suit

our needs. We will also look at the phenomenon of intelligent agents on the Web,

which may aid the user in retrieving the right information and perform his/her

tasks in a more convenient way. We then present some of our early research

on extending the Web with multimedia fuctionality, carried out in the DejaVU

project at the Vrije Universiteit. Concluding this chapter, and the book, we will

discuss the forces that play a role in de�ning a suitable software architecture for

(object-oriented) Web applications.

12.1 Objects and the Web

The Web originated from an initiative at CERN, nicknamed the World Wide Web

(WWW), to provide an infrastructure for the exchange of information between sci-

entists. Undoubtedly, the initiative succeeded beyond expectation. As described

by Bass et al. (1998), at the time there were other such initiatives. Nevertheless,

the e�ort at CERN contained two novel ideas: the use of hypertext, to allow

for easy navigation between documents, and the deployment of a client/server

architecture, to separate presentation from the delivery of documents.

Presentation UI

Access

Protocol

Stream

Cache

Paths

Stream

Access

Browser Server

HTTP

HTTP

External Viewer CGI File System

Slide 12-2: Client/server pair

Among the original requirements of the WWW was extensibility. As slide 12-2

indicates, which is an adapted rendering from a chapter about the Web in Bass

et al. (1998), both the browser (client) and the (HTTP) server may be extended

with, respectively, additional viewers on the client side and arbitrary programs

through the Common Gateway Interface (CGI) on the server side. Together with

these extensions the original infrastructure, which consists of HTML (Hypertext

Markup Language) as the document format and HTTP (Hypertext Transfer

Protocol) for the transport of documents, proved to be su�cient for the Web

to be widely adopted. In retrospect, one may wonder why the Web was not

based on, for example, distributed object technology or remote procedure calls.

Accepting the Web as it is, we may still ask ourselves what role objects may play

in developing Web applications.
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12.1.1 Trends and technologies

The Web came as a surprise, both to the hypertext community and to the

distributed systems community. As a surprise because, despite its simplicity,

or probably because of its simplicity, the adoption of the Web is unsurpassed, in

absolute volume and growth rate. Its simplicity lies both in terms of the underly-

ing TCP/IP-based HTTP transport protocol, and the (conceptual) functionality

of the HTML hypertext format, which more or less de�nes the services o�ered by

the Web.

Transport and Services

Web Corba

Services HTML IDL

Transport HTTP ORB/IIOP

Alternatives

� ANSAWeb { CORBA-based Web infrastructure

� WebBroker { HTTP as a transport protocol for ORBs

� orblets { Java applets with ORB

12-3

Slide 12-3: Transport and services

It is probably not an exaggeration to say that the entire academic community

was shocked to see the sudden mass-scale adoption of a technology that was only

a shallow re
ection of the original conceptions of globally distributed systems

and hypermedia. Not surprisingly, however, academia and other research and

development institutes reacted to the Web by redirecting their research programs,

in order to jump on the wagon.

browser

java

orb

HTTP

orb

orb

request

HTML

Slide 12-4: Java applet with ORB

As an example, in the August/September 1996 issue of the Object Expert

(Europe) the question was posed `How to survive the Internet revolution?'. In

answer to that question, the Web was �rst criticized for o�ering a monolithic

HTML/HTTP-based structure that gave rise to many proprietary extensions.
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Then, as a solution, CORBA was praised as an infrastructure that allows for the

creation of well-behaved extensions through the use of IDL. The most radical

alternative, indeed, would be to base the Web entirely on CORBA, of which the

ANSAWeb proposal is an example. A rather di�erent route is to adopt HTTP as

the transport protocol for object request brokers and turn the Web into a global

infrastructure for distributed object computing, as for example suggested in the

WebBroker proposal that will be discussed later.

A more modest, and realistic, approach is to enhance Java applets with the

capability to connect with CORBA servers, as indicated in slide 12-4 and slide

12-5.

In slide 12-4, we see a browser with an HTML page that contains a Java applet,

which may connect through an ORB directly to, for example, a database server.

Alternatively, a request may pass through a CGI process to an ORB attached to

the HTTP server.

client

CORBA ORB objects database

1

2

3

4

5 6

7HTTP server

Slide 12-5: Processing steps

In more detail, when we look at the processing steps, as depicted in slide 12-5,

we may distinguish between

1. get the HTML page,

2. load the applet,

3. start the applet,

4. connect to a CORBA server from the applet,

5. get access to the remote objects,

6. connect optionally to a database, and

7. send output either in HTML format or directly to the applet.

Based on this setup, we may think of several alternatives and re�nements,

as for example the use of Java RMI or an extension of the Java ORB with full

server functionality, to allow for callbacks from the objects (server) to the client

(applet).

The WebBroker proposal In the scenario sketched above, Java and CORBA

were used to extend the basic functionality of the Web. In a similar vein, Microsoft

DCOM, as an alternative distributed object technology, might have been used to
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incorporate objects in the Web. The WebBroker proposal, as explained in the

technical note submitted to the W3C, 11 May 1998, attempts to unify distributed

object technology and the Web publishing infrastructure by providing a common

Web computing standard based on HTTP and XML. (XML, the eXtendable

Markup Language, may be considered as a lightweight version of SGML, suitable

for the description of the structure and content of arbitrary documents.)

The objective of the WebBroker is, as stated in the proposal, to have a

system which is less complicated than the OMG CORBA and Microsoft COM+

distributed computing systems and which is more powerful than HTML forms and

CGI. The principal advantage of the WebBroker approach is that it is Web-native.

However, with the universal adoption of IIOP, which is now also the transport

protocol of Java RMI, the advantage of a more e�cient protocol gains more weight.

12.1.2 The Object Web – CORBA/Java versus Microsoft

No doubt, the Object Web is coming, as testi�ed by the appearance of the Object

Web Survival Guide, see Orfali et al. (1999).

client server CGI-script
request startup

result result

Slide 12-6: Client-Server/CGI

To state the argument for the Object Web once more, as depicted in slide 12-6

what we have, basically, is a client/server architecture of which the server-side

may be arbitrarily extended with CGI-processes. However, CGI extensions are

slow, they do not scale and, most important, they do not allow for state unless

unreliable programming tricks such as cookies are used. Now, according to (the

ads for) Orfali et al. (1999), there are two camps: Microsoft and Everyone Else.

We will start with the latter, which we will refer to as the Java/CORBA Web.

The Netscape way – Java/CORBA Web

When we consider the browser market, there are at the time of writing two major

players, Netscape and Microsoft. Although Netscape is certainly not the only

company selling Web servers, we will nevertheless take Netscape as representing

everyone else to see how the Java/CORBA Web may take shape.

First of all, it must be noted that Netscape made a serious commitment to

CORBA and IIOP. For example, all Java CORBA support classes are shipped

with their browser. Secondly, as indicated in slide 12-7, we may observe that

the functionality of Web servers has been signi�cantly enhanced since the begin-

ning days of the Web. Facilities for publishing, (intelligent) agents, search and

management are now more or less standard commodities provided on top of a

programmable content store, running on a variety of operating systems.

In slide 12-8, an architectural overview is given of one of the earlier versions

of the Netscape Enterprise Server. When going from the top to the bottom, we
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Publishing ManagementSearchAgents

Programmable Content Store

Operating System UnixWindowsNT

HTTP/IIOP

Slide 12-7: Content store

see that content may be delivered in a variety of formats, including Java applets,

Javascript, plain HTML, some legacy plugin format or any combination thereof.

See section 12.4 for a discussion of plugins. More to the bottom, Netscape o�ers

LiveConnect technology to allow (client) components to interact. For example,

a Java applet or a plugin may be addressed from Javascript code. In addition,

there is IIOP to connect to CORBA-enabled servers.

Java Javascript HTML

Messaging
Content

Store Access

Plugins

State
Management

Database

SMPT HTTP SQL Open Protocols

Internet Foundation Classes

LiveConnect & IIOP ComponentsIIOP

Slide 12-8: Netscape Enterprise Server

For programming server facilities, Netscape o�ered the Internet Foundation

Classes as part of the Open Network Environment (ONE), which is based on

standards such as SMPT, HTTP and SQL. However, the Internet Foundation

Classes for Java have become part of the Java Foundation Classes that are de-

livered with Java 1.2. Server facilities include messaging, content store, database

access and state management. Additional components may be provided either as

server extensions through the NSAPI, or through CORBA IIOP.

For the actual creation of content and the deployment of all that technology,

there is a large variety of tools from Netscape and other vendors, and plenty of

documentation that may be obtained from Netscape's Web site.

The Microsoft way – DNA

It is interesting to note that Microsoft's commitment to the Web came relatively

late. Nevertheless, there is no doubt that Microsoft recognizes the importance of
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the Internet and the Web as the infrastructure of what it calls the Digital Nervous

System of corporations.

legacy system

database

external application
logic

business

fat client

thin client

Slide 12-9: Business logic

In February 1999, I had the pleasure of hearing Bill Gates speak about the

Digital Nervous System, as a unifying concept for corporations to execute and

record transactions electronically, and as a means to create corporate awareness

of the actual state of business and current business goals. I found this view

quite appealing, although the complexity involved in the actual archiving, search,

retrieval and presentation of such material is quite immense.

Ideally, as depicted in slide 12-9, central to any corporate information structure

must be the business logic that governs the policies and information needs of

the organization. At the backend of the system we may have a database, legacy

systems, or external applications delivering information. For end-users, depending

on the particular architecture chosen, there may be thin or fat clients giving access

to the information and communication facilities.

Tools

Scripting
Components

Win32

(D)HTML COM+
MSMQ

ADO
OLE-DB

XMLIIS

System Services

Presentation Business Logic Data

Slide 12-10: Microsoft DNA

To turn to actual technology, Microsoft's proposal to realize their vision is the

Microsoft Dynamic Networking Architecture (DNA), of which the basic compo-

nents are given in slide 12-10. In the column on the left, we have the presentation

facilities, ranging from (dynamic) HTML to Win32 applications, going from thin

to fat, indeed. In the business logic column, we have COM+ (which is the followup

on (D)COM), the Microsoft Message Queue Server (MSMQ), and the Internet

Information Server, which is a powerful server that allows for server-side scripting,

Active Server Pages (ASP), and COM-based objects. For handling data, Microsoft

o�ers the ActiveX Data Objects format (ADO), OLE-DB to connect to databases,

and XML. It must be noted here that Microsoft is actively engaged in promoting

XML as a data interchange standard, in cooperation with the W3C.
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In summary, Microsoft DNA o�ers Presentation Services, Application Services,

Data Services and System Services. In addition, Microsoft o�ers an appealing

suite of tools collected in the Visual Studio, including Visual C

++

, Visual Basic

and Visual Interdev, for creating dynamic data-driven Web applications. Al-

though I do not intend to make this sound like an ad, it cannot be denied that

Microsoft is a serious player!

12.2 Programming the Web – a search for APIs

Leaving the Object Web for what it is, in construction obviously, we may raise the

question as to what support should be provided for developing Web applications

that are more �nely tuned to the needs of end-users. To answer this question,

or more appropriately, to gain insight into the requirements and state-of-the-art

technology that was available, I organized a series of two workshops, one for the

WWW5 Conference, entitled `Programming the Web { a search for APIs', and

one for the WWW6 Conference, entitled `Logic Programming and the Web'.

In this section we will discuss some of the issues treated in these workshops. In

particular, we will re
ect on the computation model underlying the Web, taking

the views of Luca Cardelli presented at the WWW5 workshop as a starting point,

to establish general requirements for APIs for programming the Web. Then we

will look at another interesting phenomenon, intelligent agents on the Web, and

discuss what would constitute a suitable framework for agent technology.

12.2.1 Models of computation

The Programming the Web workshop was intended to focus on concepts and

requirements for high-level APIs suitable for developing Web-aware applications.

The papers that were submitted, which are available on the CDROM accompa-

nying this book, covered a wide range of interests, including computation models,

applications and user requirements, software architectures and libraries, as well

as heuristics and guidelines for API developers.

The kicko� for the workshop was given by Luca Cardelli, who raised the

question `What is the Web's model of computation?'. This question appeared

to be of critical importance for understanding the requirements for APIs and

for evaluating possible solutions. In summary, we may observe that there is

some notion of global computation for the Web, but that computation on the

Web is fraught with many obstacles, such as the lack of referential integrity (e.g.

dead links), unreliable services (both in availability and quality), failures (due to

servers or network congestion). What we need, in conclusion, is some (formal)

model of computation that captures these properties. In addition, we need to

be able to deal with such properties in our Web programs, for example we may

wish to anticipate on the possible unavailability of a Web server, and provide an

alternative in that case.

In slide 12-11, an overview is given of the complaints about the functionality of

the Web, observations concerning its `nature', general requirements for open sys-
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Complaints

� lack of referential integrity

� undetected failures

� no control over quality of service

Observations

� dynamic quality of services

� complex interaction

Requirements

� uniformity, openness, 
exibility, orthogonality, layered

Behavior

� reliable, con�gurable, monitoring, noti�cation, thread-safe

Answers

� object-oriented, components, virtual APIs, callbacks, plug-ins

12-11

Slide 12-11: Requirements for APIs

tems development, a wish-list of desired behavioral characteristics and potential

(technological) answers.

Actions

� de�ne a distributed model of computation that suits the Web.

� de�ne canonical (language-independent?) object models for ...

resources, application domains ...

Perspectives

� servers - extensions

� browsers - clients, viewers, con�guration

� agents - e.g. payment

Interests

� distributed objects

� plugin components

� formalization of requirements and solutions

12-12

Slide 12-12: Dimensions of APIs

Not surprisingly, there did not seem to be a canonical approach to the def-

inition and development of APIs and Web applications, perhaps not in the last

place because the demarcation between computation models, languages and APIs

is not clear-cut.

Nevertheless, as summarized in slide 12-12, it seemed clear that we need to

de�ne a suitable computation model as well as (abstract) object models that

capture the requirements for resources and application domains (such as for

example e-commerce). In addition we must distinguish between client and server
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perspectives, with autonomous (intelligent) agents as a possible third perspective.

And, naturally, our own (technological) interests play a role as well, to the extent

that it may determine possible solutions.

Considering the basic needs for the development of Web-aware applications,

as expressed by the workshop's participants, which ranged over resolving URLs,

billing and payment facilities, and quality of service constraints, we may observe

that facilities for Web programming are nowadays as a standard provided (as

extensions) by languages such as Tcl, Perl, Python and Java. More domain-

speci�c facilities are being developed in a CORBA context, or for frameworks

such as San Francisco.

Document Object Model

Client-side scripting has been popularized by Dynamic HTML (DHTML) as

originally introduced by Netscape and Microsoft. Nevertheless, scripting facilities

are not standard accross the various browsers. To remedy this situation, the

W3C has developed a recommendation for a Document Object Model (DOM), that

provides a standard application programmer interface to access the structure and

content of HTML and XML Web pages. The DOM allows XML and HTML pages

to be treated in an object-oriented way, providing facilities for access, navigation

and manipulation.

Document CharacterNodeAttribute ...Type Element

Text Comment

Node

Slide 12-13: Hierarchical structure of DOM

Since XML is increasingly being used for other applications, such as Elec-

tronic Data Interchange (EDI), the DOM may in e�ect provide a foundation for

developing Web applications.

The W3C DOM Recommendation provides interfaces, described in a language

and platform-independent way in IDL, for the structural components that may be

used in XML and HTML documents, as indicated in slide 12-13. These interfaces

have been re�ned independently for both XML and HTML, to allow programmers

to access XML and HTML-speci�c features. In addition to the IDL interfaces, a

language-binding is speci�ed for ECMAscript, which may serve as an example for

similar bindings for Javascript and other languages, such as Java.

12.2.2 Intelligent agents

In Negroponte (1995), intelligent agents are characterized as autonomous, in-

telligent processes aiding the user in complex tasks, such as answering email,

gathering information and planning activities. In practice, agents on the Internet

may help in monitoring changes in Web pages, collecting information on topics of
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interest, or searching based on personal preferences. See Caglayan and Harrison

(1997), Cheong (1996). Other types of agents, such as the shopping agents

described in Kiniry and Zimmerman (1997) or even virtual players as those

described in Watson (1996), might become possible in the future. However,

despite the range of possible examples, the notion of intelligent agent is not very

clear.

In Wooldridge and Jennings (1995), two de�nitions of agent are given, a

soft de�nition, characterizing agents as autonomous processes that show some

intelligence, and a hard de�nition attributing agents with mentalistic properties

such as belief, desire and intentions. At this stage, the hard de�nition is clearly

no more than a metaphor, since there is no technology that actually supports it.

Taking the soft de�nition, one could argue that it is (partly) realized by modern

object technology, as embodied in Java and CORBA, omitting the intelligence

that is.

Whether or not adopting the agent metaphor, there is de�nitely a challenge of

making applications more intelligent, and perhaps even more human. Cf. Petrie

(1997) and Maes (1997). To my mind, one fundamental problem that we must

solve to realize this goal is to de�ne the technology, or the combination of tech-

nologies, needed to support the anthropomorphic metaphor of agents.

Given the merits of logic programming in a variety of application areas, en-

compassing areas such as diagnostic expert systems, natural language process-

ing, and control systems, it seemed natural to organize a workshop called Logic

Programming and the Web to investigate how logic programming technology

might be deployed to make the Web more intelligent. Nevertheless, although the

presentations at the workshop indicated that logic programming could fruitfully

be applied in for example the creation of virtual worlds, e-commerce applications,

and intelligent rental advisors, it did not shed any light on how to bridge the gap

between the (mentalistic) agent metaphor and its software realization.

In the remainder of this section we will discuss theWeb Agent Support Program

research project to delineate the requirements for a framework providing agent

technology support for Web applications.

Web Agent Support Program

The WASP project, of which an outline is given in Eli�ens et al. (1997a), concerns

the development of Web Agent Support to enable average users to keep track of

relevant information on the Web.

The project was envisaged to result in a framework providing support for:

� intelligent navigation and information retrieval,

� information and document maintenance,

� user interfaces for Web-aware applications,

� dynamic documents with user-de�ned applets,

� declarative descriptions of agent behavior based on user preferences,
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� declarative modeling of coordinated and cooperative behavior of software

agents, and

� programming single and multi-agent systems.

As an target product for the WASP project, we envisaged developing Pamela

(Personal Assistant for Maintaining Electronic Archives), an application combin-

ing the functional and architectural features mentioned above.

In summary, our project aims at providing insight in and solutions for

� modeling the behavior of cooperating agents,

� generic means for realizing actual agents in a Web-aware context,

� architectural support for programming agent-based systems.

The aspects of our research as indicated above address the problems involved

in de�ning and realizing the potential of the agentmetaphor as a human{computer

interface in the distributed information system domain, in particular the Web.

The architectural requirements for realizing agents in a Web-aware context

consist of (a) high-level support for distribution to allow for noti�cation and the

communication between agents, (b) access to the Web both in terms of server-side

and client-side computation, and (c) support for information retrieval and data

management.

Framework components Web-aware agents

� a methodology for developing agent-based applications, as well as

� a logical foundation for modeling agent behavior; and in addition

� guidelines for realizing actual agent applications, and

� software components that can be used as building blocks, including

� a language for programming agent behavior.

12-14

Slide 12-14: Framework components

The WASP project is aimed to result in a framework (in its extended meaning)

for the development of agent-based Web-aware applications. The components

provided by such a framework are listed in slide 12-14. In addition to the

proper software components, the framework includes a methodology, as well as

a logical foundation. Further we wish to develop guidelines for realizing actual

agent applications, and our hope is to develop a language for programming agent

applications, based on the language DLP, described in appendix E.

12.3 The DejaVU experience – jamming (on) the Web

The hush library was originally developed to have an easy-to-use and 
exible

GUI library for the Software Engineering practicum at the Vrije Universiteit.
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New components and extensions were created by students and research assistants,

including components for (Csound-based) music, video, (OpenGL-based) VRML

and MIDI. Since the Web was then in its early stages, we also built a Web browser

and created a number of experimental extensions to enhance the functionality of

the Web with new media and communication facilities. See slide 12-15.

The DejaVU experience

� Applications and the Web van Doorn and Eli�ens (1995)

� Bringing music to the Web van Ossenbruggen and Eli�ens (1995)

� Chatting on the Web van Welie and Eli�ens (1996)

� Animating the Web Eli�ens et al. (1997b)

� Jamming (on) the Web Eli�ens et al. (1997c)

12-15

Slide 12-15: The DejaVU experience

Our approach was simple but e�ective. First we created the components that

provided the desired functionality, then we provided a script interface for these

components, and �nally we provided new (HTML-like) tags for the syntactic de-

scription of the new functionality. We used stylesheets to separate the syntactical

description from its operational realization. These stylesheets were written in Tcl.

As the Web was maturing, we did not pursue this line of research. Nevertheless,

since this work still represents a valid approach, we will discuss one of my favorite

extensions, an extension that allows for jamming (on) the Web.

Jamming (on) the Web

Compared to textual and graphical material, the capabilities of the Web for

musical information are rather poor. The embedding of music, or sound in

general, rarely goes beyond links to raw audio and MIDI �les or to streamed

audio connections. To display a musical work, HTML authors have to use images

containing the score. All of these solutions are very low level as they basically

regard music as being just sound (or a picture in the case of a score).

True score �les are usually a few orders of magnitude smaller, and the audio

signal can be synthesized at the client side at any appropriate sample rate.

Additionally, a high-level description of music provides the browser with far more

information when compared to the raw samples. In previous work we proposed

to transmit musical scores (instead of the raw samples) across the Internet and

to add sound synthesis functionality to Web browsers, see van Ossenbruggen and

Eli�ens (1995), and the use of generic SGML to encode structured documents,

see Eli�ens et al. (1997b).

In this section, we describe an experimental framework that o�ers many of

the ingredients for true networked music support including facilities for editing,

displaying and playing musical scores as well as facilities for high-level exchange
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of musical material and real-time collaborative work involving music and sound.

Our approach is based on traditional music notation and on MIDI for playing

facilities. The framework builds upon the work done in the DejaVU project at

the Software Engineering section of the Vrije Universiteit, which resulted in a suite

of components for developing distributed Web-aware hypermedia applications.

Slide 12-16: The score in a plugin

Scores on the Web The most ambitious markup language for the dissemination

of music on the Web is probably the Standard Music Description Language,

described in ISO (1996). SMDL expresses a musical work in terms of four basic

domains. The logical domain { the primary focus of SMDL { is, according to

the standard, describable as `the composer's intentions with respect to pitches,

rhythms, harmonies, dynamics, tempi, articulations, accents, etc.'. The central

element of the logical domain, the cantus element, is an abstract, one-dimensional

�nite coordinate space onto which musical and non-musical events can be sched-

uled. This allows for the inclusion of any dependent time sequences (such as auto-

mated lighting information) in a musical work. The standard uses HyTime, ISO

(1992), hyperlinking to specify the relations with information from the other three

domains: the gestural domain { describing any number of particular performances

(e.g. MIDI �les or digital audio) of the work, the visual domain { describing any

number of scores (a printable/displayable version) of the work, and the analytical
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domain { comprising any number of theoretical analyses or commentaries about

the information in the three other domains. The addressing power of HyTime

makes it possible to link directly into information expressed in other formats,

including MIDI �les, digital audio recordings or speci�c score notations, without

modi�cation. Our approach is more modest and we deploy a much simpler SGML

representation, primarily geared to encode printable/displayable versions of the

score (i.e. SMDL's visual domain). However, the format used is su�ciently

rich to be able to generate a playable MIDI representation as well. Information

which is usually added by performers (in SMDL this is represented in the gestural

domain), such as explicit interpretations of tempi, articulations and accents, are

not supported in the current version.

<SCORE>

<TITLE>Corrente</TITLE>

<COMPOSER>Antonio Vivaldi</COMPOSER>

<STAFF>

<MEASURE Sig="3,4" Key=F Clef=Gclef>

<NOTE Pos="1,3" Stem=down>d6 4 0

<REST Pos="3,6">C6 8 0

<NOTE Pos="4,6" Stem=up>a5 8 0

<NOTETUPLE Stem=down>

<NOTE Pos="5,6">f5 8 0</NOTE>

<NOTE Pos="6,6">a5 8 0</NOTE>

</NOTETUPLE>

</MEASURE>

...

</STAFF>

</SCORE>

To support display and editing of SGML scores on the Web, we developed the

Amuse score editor as a plugin for our Web browser (see slide 12-16). The editor

has a graphical user interface and does not require any SGML knowledge from the

user. Above is a fragment of an example score �le, for which the associated style

sheet with a CSS1-like syntax is shown below. Both documents can be edited

by the graphical score editor plugin. Changes in the style sheet are dynamically

re
ected in the display of the score. A signi�cant enlargement of the page-width

parameter, for example, will allow for more measures on a single sta�, and will

result in a redraw of the complete score.

SCORE f

margin-left : 30;

margin-right : 30;

margin-top : 80;

margin-bottom : 20;

page-height : 1000;

page-width : 920;

g

TITLE f
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title-align : Center;

title-font : -*-Times-Bold-R-Normal--*-240-*;

g

COMPOSER f

composer-align : Center;

composer-font : -*-Times-*-R-Normal--*-180-*;

g

Playing on the Web The playback facilities of our framework are centered

around the MIDI server. After registering as a MIDI client, the score editor

is able to send the generated MIDI version of the score to the separate MIDI

server. The MIDI server builds upon a socket-level client/server library and a

class library that provides the basic functionality for MIDI devices, MIDI clients

and the MIDI server. Note that the audio device is usually an exclusive resource,

and by connecting to a single MIDI server, several client applications can have

simultaneous access to a single MIDI output device. The functionality of the

MIDI server comprises:

� registering and unregistering MIDI devices,

� routing MIDI data between clients and MIDI devices, and

� administration and security checks.

When a MIDI device is registered, a cookie is given out that may be used by

a client to request the server to set up a virtual connection with that device. The

cookie also prohibits unauthorized clients from accessing a MIDI output device.

Collective improvisation We developed the keyboard applet, depicted in slide

7-8, as an alternative input device to be able to send `live' MIDI data to our

server. Since multiple applications can have access to the MIDI server, a user

can have a score edit session running, and simultaneously be playing a keyboard

applet.

To engage in a jam session, the keyboard applet connects to the JamServer

instead of the MIDI server. The JamServer acts as the central point of a jam

session, keeping track of all clients engaged in the session.

To start a jam session, all jam clients connect to a single JamServer and send

it their MIDI data. The JamServer is connected to one or more MIDI servers,

as depicted in slide 12-17. By having the JamServer separate from the MIDI

server itself, the latter is relieved from the burden of jam session management.

Every connected MIDI device will receive all the MIDI data submitted by the jam

clients. This data is relayed to these devices by the MIDI server(s), through the

virtual MIDI data stream that is created when registering as a jam client.

In slide 12-17 we see three jam clients connected to a single JamServer (on

machine B). The MIDI server is running on the same machine as the JamServer.

Both the clients on machine A and C have registered a MIDI-out device (a software
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Slide 12-17: The jam server

sound synthesis MIDI program developed for Solaris) with the MIDI server on B.

The user on A has additionally registered a MIDI-in device (the keyboard). Using

the keyboard, the user on A can contribute to the jamming. The score editor on

C is directly connected to the MIDI server and is not engaged in the jam session.

The MIDI server will redirect MIDI requests from the score editor only to the

MIDI device on C.

Measurements To give an indication of the speed and response times of our

system, we have used a special jam client, jamping, that measures the average

delay between sending a MIDI message to the JamServer and receiving the same

message on a connected MIDI device. For a 486DX2-66 PC with Linux with

one client and both servers local, this resulted in a round-trip-delay time of 5.5

milliseconds. A similar setup on a Sparc-5 with Solaris resulted in 2.6 milliseconds.

A similar con�guration with the JamServer on a LAN gave 3.5 milliseconds

average round-trip-delay time. Nevertheless, with a server in Amsterdam and a

client in Sweden, we obtained an average round-trip-delay time of 87 milliseconds,

with a peak of 1.6 seconds. Clearly, the length and variability of round-trip-delay

times may be a prohibiting factor for jamming on a global scale.

Architecture of the Web components The software described so far was

developed for our SGML-based Web browser as an extension to the hush class

library, Eli�ens et al. (1997b).

In slide 12-18 an overview is given of the basic Web-related components of the

hush library. The browser provides the top-level user interface for all Web compo-

nents, including a viewer, a scrollbar, navigation buttons (back, forward, home,

reload) and an entry box to enter URLs. The netclient, web and MIMEviewer

components form the conceptual base of our approach of connecting to the Web:

� viewer { a widget for the inline display of several MIME types, such as

HTML, VRML and Amuse score formats.

� web { an extension of the MIMEviewer with history and caching.
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Slide 12-18: Web components

� netclient { the interface to the Internet, supporting several protocols.

The MIMEviewer component provides an abstract interface to viewers for sev-

eral MIME types. The web widget only knows about the (abstract) MIMEviewer

class while the actual functionality is implemented in several concrete viewer

classes, one per MIME type. Speci�c viewers for new MIME types can be plugged

dynamically into the MIMEviewer object.

When the MIMEviewer gets the instruction to display a document of a certain

MIME type, it changes its role and becomes a viewer for that particular MIME

type. This dynamic role-switching idiom is discussed in more detail in chapter 2.

As a result, the addition of new viewers can be done without changing the web

widget.

The netclient component builds the bridge between the local web widget and

the World Wide Web by providing an abstract and uniform interface to network

(�le) access and transport protocols. In the realization of the netclient components

we have employed the dynamic role-switching idiom in the same way as in the

implementation of the MIMEviewer components.

The web object creates a MIMEviewer object and tells which role it should

play (e.g. SGML, Amuse or VRMLviewer). This role can be changed during the

lifetime of a single MIMEviewer object by calling a method to change its role. A

browser typically uses only one single MIMEviewer object that changes its role

according to the type of data that should be displayed. The SGMLviewer is the

default viewer, it displays generic SGML documents by using style sheets for each

document type. By default, a style sheet for HTML is used. Since our generic

SGMLviewer is better suited to textual documents and does not o�er editing

support, we developed a separate viewer/editor to process our Amuse/SGML

score �les.
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Since the MIMEviewer provides no network functionality at all, it generates

events whenever it needs to retrieve data pointed to by a URL. Such events

are generated as a response to user interaction (e.g. clicking an anchor) or to

fetch inline data during the parsing process. These events are typically handled

by the web component which plays a central role in our approach because it

combines the functionality of the MIMEviewer and the netclient components.

Additionally, the web component adds a history and caching mechanism to the

MIMEviewer. The web component's behavior is similar to the standard widgets

of the hush framework, and can be conveniently used as a part of an application's

GUI. Because the web widget has both a C

++

class interface and a script interface,

it is easy to create, or extend, applications with Web functionality.

12.4 Software architectures revisited

The Web is, at the time of writing, still in 
ux. Yet it is becoming more and more

the standard infrastructure on which applications are built. A recurring question

is, `how do we build Web applications?'. There is no de�nite answer to this

question. There is no body of solutions that may serve to indicate proven practice.

But there is, de�nitely, a convergence towards objectifying, or object-orienting as

it is called in Wiggins (1999), the Web and its applications. Anyway, the following

quote, taken from Bass et al. (1998), p. 10, says it all.

It is a brave architect who, in today's environment, does not develop,

or at least consider, an object-oriented design.

Clearly, the architecture of the technological infrastructure of the Web, as well

as the architecture of Web applications, may bene�t from an object-oriented

approach. Nevertheless, knowing this, we still do not know how to build actual

Web applications.

Architectural software styles class of architectures

� component types { process, event, repository

� runtime relations { topology

� semantic constraints { immutability

� communication and coordination { connectors

12-19

Slide 12-19: Architectural software styles

From the perspective of software architectures, we may ask ourselves what

architectural style, or for that matter which mix of architectural styles, we may

deploy for building such applications. As a reminder, an architectural style, which

characterizes a class of software architectures, consists of a description of the

types of components used (processes, events, repositories), the (runtime) relations
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between these components (for example the network topology), possible semantic

constraints (such as the immutability of particular components) and properties

concerning communication and cooperation (such as the connectors or protocols

used).

Themes and variations technological constraints

� OO { simple call and return

� CORBA { independent components

� WWW { data centered

� events { independent components

� logic { virtual machine architecture

12-20

Slide 12-20: Themes and variations

A rather simple-minded categorization of architectural styles, re
ecting ob-

vious technological constraints, is given in slide 12-20. Each of the styles is

characterized by a single phrase capturing a central feature of the style. For

example, an OO approach may be characterized by the fact that it embodies a

simple call and return mechanism, which, by the way, gets its power from the

fact that it concerns methods or, in C

++

jargon, virtual functions. Events have

proven to be an excellent means to obtain a high degree of independence between

components. And logic, as has been argumented in section 7.3.1, may be used to

promote a clear separation between knowledge-level and system-level aspects of a

system, by embedding a (virtual) logic machine.

The categorization is, however, simple-minded because, as we may observe in

retrospect, most of the applications discussed contain elements of at least a couple

of the styles mentioned. So, instead of discussing one style, we need to consider a

mix of styles, and determine what mix of styles may be e�ectively used to create

the applications we have in mind.

The architecture of the Web

To return to the Web, why is the notion of software architecture important? As

indicated in slide 12-21, for one, the Web is still growing at a rapid rate, and it is

becoming increasingly important economically. So, we are faced with the problem

of managing this growth, and, much sooner than we could have expected, with

the problem of maintaining the applications that populate the Web.

Secondly, the Web is continuously enhanced with new functionality, including,

for example, synchronized multimedia as proposed in the SMIL standard, see SMIL

(1999). Consequently, with respect to the technological infrastructure, we need

to be able to accommodate new requirements, such as quality of service, needed

for the timely delivery of multimedia material.

And thirdly, many attempts are being undertaken to improve the quality of
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Architectural issues

� managing growth, maintaining installed base

� enhanced functionality { synchronized multimedia

� improved technological infrastructure { HTTP-NG

12-21

Slide 12-21: Architectural issues

the infrastructure itself, as exempli�ed by the HTTP-NG e�ort, which aims at

higher speeds and a state-full communication protocol, see Janssen (1999).

As clearly stated by the Web's principal architect, Tim Berners-Lee, graceful

extensibility has always been one of the primary goals in developing the archi-

tecture for the Web. In this respect, the Web di�ers signi�cantly from other

distributed technologies, such as CORBA, which does not allow for non-compliant

extensions. In contrast, the Web does to a great degree allow for non-compliant

extensions simply by ignoring them, until they become a standard. The challenge,

then, from an architectural point of view, is to come up with better standards

and better technologies without sacri�cing the extensibility allowed by non-strict

technologies such as HTML and HTTP.

Plugin architectures

To conclude this chapter, I would like to discuss brie
y an extension mechanism

that has proved to be invaluable for developing Web applications, the plugin archi-

tecture. Plugin architectures are becoming more and more popular, for `ordinary'

tools such as Adobe Photoshop and Macromedia Director. In a Web context, the

most notable examples are Netscape Navigator and Microsoft Internet Explorer,

which both provide a facility to extend the browser with new functionality that

is available in a dynamically loadable library.

Client NPP/Callbacks Browser NPN/Calls

Instantiation and Destruction Version Info

Stream Noti�cation Stream Creation and Destruction

Reading and Writing Streams StreamAsFile

LiveConnect

Plugin architectures are realized by using callbacks, in the same way as in

object-oriented frameworks. Above, an overview is given of the callback functions

required by the Netscape plugin architecture. These functions must be imple-

mented by the (plugin) client, so that the browser can recognize and activate

the plugin. Such callbacks encompass instantiation and destruction functions,

noti�cation when a stream is ready, functions for reading and writing streams,

and the Live Connect functions, which enable the (plugin) client to communicate

with Javascript functions and Java applets that are currently active. The browser,



398 Web applications

in return, provides convenience functions to obtain version information, to create

or destroy streams or to store the contents of a stream in a temporary �le.

It should be noted that the actual API for the creation of (Netscape) plugins is

not object-oriented, although a partial class library is available to create plugins

in an object-oriented manner.

Nevertheless, ignoring details, plugin architectures indicate what may become

the dominant paradigm of the future, framework-like environments that are ex-

tensible by components following a clearly de�ned pattern or protocol; that is to

say, components created according to the principles of object-oriented software

development.

Summary

This chapter discussed the relevance of object-oriented technology to the devel-

opment of Web-applications.

Objects and the Web 1

� trends and technologies { client/server + extensions

� ObjectWeb { CORBA/Java vs Microsoft
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Slide 12-22: Section 12.1: Objects and the Web

In section 1, we looked at trends and technologies, in particular the ongoing

creation of the ObjectWeb, which is essentially an ongoing war between Microsoft

and the rest of the world.

Programming the Web { a search for APIs 2

� models of computation

� intelligent agents
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Slide 12-23: Section 12.2: Programming the Web { a search for APIs

In section 2, we discussed the model of computation underlying the Web. We

looked at the requirements we may have for APIs, and we explored the notion of

intelligent agents on the Web,

In section 3, some of the research e�orts carried out in the DejaVU project

were presented. In particular, we looked at an SGML-based approach to extend

the Web with new media and communication facilities.

Finally, in section 4, we discussed some remaining architectural issues. We

concluded that many of the applications discussed in this book draw from a

mixture of technologies and architectural styles.
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The DejaVU experience { jamming (on) the Web 3

� animating the Web { an SGML-based approach

� bringing music to the Web { data formats + client-side plugin

� jamming (on) the Web { additional communication servers
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Slide 12-24: Section 12.3: The DejaVU experience { jamming (on) the Web

Architecture revisited 4

� OO { simple call and return

� CORBA { independent components

� WWW { data centered

� events { independent components

� logic { virtual machine architecture

12-25

Slide 12-25: Section 12.4: Architecture revisited

Questions

1. Describe the architecture of the Web. Explain the relevance of objects for

the Web.

2. Sketch the Microsoft approach to the ObjectWeb. Discuss its pros and cons.

3. In what ways can Java and CORBA be deployed in Web applications?

4. Indicate how the computation model underlying the Web deviates from

the computation models underlying, respectively, object systems and client-

server systems.

5. What requirements can you think of for libraries or frameworks for devel-

oping Web applications?

6. Discuss the Document Object Model.

7. What are the requirements for a framework supporting intelligent agents?

8. Explain the issues that arise in extending the Web with additional media

functionality. What solutions can you think of? Can you give an example?

Further reading

For information concerning the Web, have a look at http://www.w3c.org which

give a detailed account on the history of the Web and many other issues. For
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an exposition of the issues and technologies that play a role in the battle for

the ObjectWeb, consult Orfali et al. (1999). A good introduction to agents

and its associated technology is given in Wooldridge and Jennings (1995). For

architectural issues, again, I recommend Bass et al. (1998).
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The language Smalltalk

Smalltalk has been, without doubt, the most in
uential of all object-oriented pro-

gramming languages. Originally meant as an easy-to-use programming language

for the Dynabook (a laptop avant-la-lettre developed in 1972 at Xerox Parc), it

has developed into a powerful general purpose programming language (which has

stabilized in Smalltalk-80) that runs on many platforms. From the start, an

interactive programming environment has been an integral part of the language

implementation. Later implementations also include support for the interactive

construction of user interfaces.

Smalltalk { a radical change A

1972 Dynabook { Alan Kay

1976 SmallTalk76

1980 SmallTalk80

1990 ObjectWorks/SmallTalk { VisualWorks

Design principles { rapid prototyping

� uniform object model { control

� dynamic typing { 
exible

� standard libraries { functionality

A-1

Slide A-1: The language Smalltalk

In
uenced by the ideas of objects and classes embodied in Simula, the design

philosophy underlying Smalltalk clearly re
ects the desire to e�ect nothing less

than a radical change in programming practice. Characteristic for the design

of Smalltalk is a uniform object model (which is even used to support common

control constructs), dynamic typing (which accounts for much of the 
exibility

of Smalltalk) and a sizeable collection of standard library classes (providing the

functionality necessary to build complex applications). Smalltalk has successfully

been used, in particular, for rapid prototyping.

403
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Terminology The introduction of Smalltalk came along with an, at the time,

astounding terminology. See slide A-2.

Terminology Smalltalk

� literal { constants

� object { action by messages

� class { collection of protocols

� protocol { related methods

� category { collection of classes

A-2

Slide A-2: Smalltalk { terminology

Most important is the notion of object, which is something that acts in response

to messages (by executing a method procedure). In Smalltalk, everything is an

object. Moreover, every object is an instance of a class. A class is the description

of a collection of objects which share the same structure and applicable methods.

The methods of both objects and classes (considered as an object) are grouped

in so-called protocols. Related collections of classes may be grouped in so-called

categories. Both protocols and categories are merely syntactic add-ons, meant to

facilitate programming.

Expressions The syntax of Smalltalk needs some time to get used to. Since

everything is an object, expressions may be regarded as being composed of con-

stants, variables and method expressions.

There is a large variety of literal constants (including numbers, characters,

strings, symbols, byte arrays and literal arrays), as depicted in slide A-3.

Literal constants

� number { 1, 34.6, 8r24

� character { $a, $b, ...

� string { "this is a string"

� symbol { #Float

� byte array { # [0 255 2 7]

� array of literals { # (12.1 # ($a $b))

A-3

Slide A-3: Smalltalk { expressions (1)

Expressions may be assigned to variables. Usually, variables are given a name

that betrays their expected type, as for example anInteger. (In Smalltalk, class

names start with an upper case and variables with a lower case letter.)
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Assignment

� aVar := 1.

Variables

� temporary, instance, class, pool, global

Block expressions

� [ :arg | expression ]

A-4

Slide A-4: Smalltalk { expressions (2)

We distinguish between temporary variables (having a method scope), instance

variables (having an object scope), class variables (having as their scope the

collection of instances of the class), pool variables (that have a category as their

scope) and global variables (that are visible everywhere). See slide A-4.

A special kind of expression is the block expression that consists of a program

fragment, possibly parametrized with an argument. Block expressions are used

to de�ne control structures employing message expressions. Block expressions

correspond to function literals (lambda-expressions) in languages such as Lisp

and Smalltalk.

Message expressions may be characterized as either unary, binary or keyword

messages. See slide A-5.

Message expressions

� unary, binary, keyword

Unary

� 1.0 sin , Random new

Binary

� arithmetic { ctr + 1

� comparison { aVar >= 200

� combination { 100 @ 200

� association { # Two -> 2

A-5

Slide A-5: Smalltalk { expressions (3)

Unary messages consist of a single method name addressed at an expression

denoting an object, for example a constant or a class.

As binary method expressions, we have the familiar arithmetic and comparison

expressions as well as the less familiar combination expression (used for graphics
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coordinates) and association expression (used to de�ne associative maps). All

binary (in�x) message selectors have the same precedence and bind to the left.

Despite their common appearance, these are all true message expressions (which

may lead to surprises, for example in the case of a non-commutative de�nition of

the arithmetic operations). Examples of keyword message selectors are given in

slide A-6.

Control Smalltalk has no control structures except message passing. However,

familiar control structures are de�ned as methods on booleans and integers. See

slide A-6.

Keyword methods

(i <= 7)

ifTrue: [ m:= "oke" ]

ifFalse: [ ... ]

Control structures

� conditional { ifTrue: ifFalse:

� iteration { whileTrue:

� looping { to: by: do: [ :i | ... ]

A-6

Slide A-6: Smalltalk { control

For example, an if-statement may be obtained by de�ning the method ifTrue:

ifFalse: on booleans. (Despite the use of keywords, parameter passing in Smalltalk

is positional. Each sequence of keywords may be regarded as a di�erent method.)

In a similar vein, we may de�ne iteration and looping. For looping, we may

employ the parameter mechanism of blocks, as indicated above.

Objects Everything in Smalltalk is an object. An object may be regarded as

consisting of instance variables and a collection of methods.

Object { behavior

� instance variables, methods

Class { description

� class variables, class methods

Self { self reference

� super for ancestors

A-7

Slide A-7: Smalltalk { objects (1)
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A class is the description of a collection of objects, its instances. Considered

as an object, a class may be said to have class variables and class methods.

For self-reference the special expression self may be used. To invoke methods

from the parent class the expression super may be used.

An example of an object class description is given in slide A-8. The class Ctr

is de�ned as a subclass of the class behavior. It supports an initialization protocol

(containing the method initialize), a protocol for modi�cation (containing the

method add), and an inspection protocol (containing the method value).

Example { class

Behavior subclass: #Ctr

instanceVariableNames: 'value'

Ctr methodsFor: 'initialization'

initialize

value := 0.

Ctr methodsFor: 'modifications'

add: aValue

value := value + aValue.

Ctr methodsFor: 'inspection'

value

v̂alue

A-8

Slide A-8: Smalltalk { objects (2)

Note that value occurs both as an instance variable and as a method. Only

the method is accessible by the user.

In addition, we need a class description de�ning the object functionality of

Ctr, which consists of an instance creation protocol de�ning the class method

new. See slide A-9. This class description is (implicitly) an instance of a meta

class generated by the Smalltalk system. See section 5.5.

Class description { meta class

Ctr class

instanceVariableNames: ''

Ctr class methodsFor: 'instance creation'

new

ŝuper new initialize

A-9

Slide A-9: Smalltalk { objects (3)

Inheritance Each class in the Smalltalk library is (ultimately) a subclass of the

class Object. See slide A-10.
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Inheritance

Object

Magnitude

ArithmeticValue

Number

Integer

A-10

Slide A-10: Smalltalk { inheritance

Smalltalk supports only single inheritance. Above, the ancestor classes of the

class Integer are depicted as a branch of the inheritance tree.

Technology Inheritance, in combination with message passing, allows for pow-

erful programming techniques. As an example, an illustration is given of the

cooperation between two objects employing the Model/View paradigm. The

model class Ctr, depicted in slide A-11, may be regarded as embodying the proper

functionality of the application.

Model subclass: #Ctr Model

...

initialize

value := 0.

TV open: self.

...

add: anInt

value := value + anInt.

self changed: #value.

A-11

Slide A-11: Smalltalk { technology (1)

A view class de�nes an object that may be used to monitor the behavior of the

model instance in a non-intrusive way. To support monitoring, the model class

Ctr needs to install one or more view objects during initialization, and further,

it must notify its view object(s) whenever its contents have been modi�ed, as in

add. See slide A-12.

The view class TV de�nes a class method open to create a new view object

for an instance of the Ctr class. It must further de�ne a method update (that will

automatically be invoked when the Ctr instance signals a change) to display some

message, for example the value of the Ctr object monitored.

The programming environment forms an integral part of the Smalltalk system.
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View subclass: #TV View

instanceVariableNames: ''

TV methodsFor: 'updating'

update: aValue

Transcript show: 'ok'; cr .

TV class

instanceVariableNames: ''

TV class methodsFor: 'instance creation'

open: aCtr

self new model: aCtr

A-12

Slide A-12: Smalltalk { technology (2)

The code depicted above (which clearly re
ects the object nature of classes)

is usually not the result of text editing, but is generated by the system. The

Smalltalk programming system, in particular the standard library, however, will

take some time to get familiar with.

Summary This section presented a brief introduction to the programming lan-

guage Smalltalk.

The language Smalltalk A

� design principles { prototyping

� terminology { object, class, protocols

� syntax { method expressions

� objects { self reference

� inheritance { class hierarchy

� techniques { MVC paradigm

A-13

Slide A-13: Smalltalk { summary

It discussed the design principles underlying Smalltalk and the terminology

originally associated with Smalltalk. It further covered the basic syntactic con-

structs and characterized object behavior and inheritance using examples. Also,

an illustration was given of the use of the MVC paradigm.
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The language Eiffel

The language Ei�el has been designed with a clear concern for correctness and

validation. It supports a bottom-up development approach, centered around the

design of robust classes. Along with the language, Meyer (1988) introduces the

notion of contracts as a means to specify the mutual obligations between the user

of an object and the object in terms of a client/server relation.

Ei�el { a language with assertions B

� bottom-up development { class design

� contracts { specify client/server relationships

Design principles { correctness

� static typing { type secure

� multiple inheritance { polymorphism

� dynamic binding { re�nement

� generic classes { abstraction

B-1

Slide B-1: The language Ei�el

Ei�el is a (type secure) statically typed language, providingmultiple inheritance

and generic classes. Recently, Ei�el-3 has been introduced, supporting a number

of features (such as overloading) inspired by C

++

. See Meyer (1992a).

Terminology The design of Ei�el also re
ects a concern with the software en-

gineering issues involved in the development and maintenance of class libraries.

The language is built around a number of keywords, which accounts for an easy

to read, albeit somewhat verbose, layout of programs.

The keyword class precedes a class de�nition, which, according to Meyer

(1988), may be considered as a model for a collection of objects. The keyword

feature precedes the attributes, functions and procedures de�ned by a class. The

411
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The language Ei�el { keywords

� class { a model for a set of objects

� feature { attribute, function, procedure

� export { interface declaration

� inherit { class inclusion and subtyping (!)

� rede�ne, rename { to change inherited features

� deferred { to postpone the implementation

� require, ensure, invariant { assertions

B-2

Slide B-2: Ei�el { terminology

keyword export precedes the list of visible features, in other words the interface

declaration of the class. The keyword inherit precedes the list of inherited classes,

specifying class inclusion and the subtyping relationships. The keywords rename

and rede�ne are used to change inherited features. The keyword deferred may be

used to indicate that a feature will be implemented (in the future) in an inherited

class, and the keyword obsolete may be used to indicate that a feature will not be

supported in a future release. Finally, the keywords require, ensure and invariant

indicate assertions that specify respectively the pre- and post-conditions for a

(method) feature and the class invariant.

Type expressions { conformance

� basic types { Boolean, Integer

� formal parameter types { Array[T], List[T]

� class types { user-de�ned

� anchored types { like current

Value expressions

� arithmetic, comparison, method evaluation { o:m(: : :)

Assignment

� var := expression

B-3

Slide B-3: Ei�el { type expressions

Expressions Ei�el is a strongly typed language. In Ei�el, variables must be

explicitly typed by means of a declaration involving type expressions. Type

expressions range over basic types (such as Boolean and Integer), formal type

parameters of generic types (as the T in Array [T ], which stands for the type of
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the elements of the array), class types (that are de�ned by the user) and anchored

types, for instance like current (which results in the type of the current object,

or self in Smalltalk terminology). Anchored types present some problems for the

type safety of Ei�el programs. See section 9.6 for a discussion.

In Meyer (1988) conformance rules are speci�ed which are used to determine

whether a given type is a subtype of another type. See section 9.2 for an extensive

discussion of the subtyping relationship.

Value expressions in Ei�el comprise the familiar arithmetical and comparison

operations, as well as the message expressions of the form o:m(: : :) that result in

the evaluation of the method m by the object o. Parameter passing in Ei�el is

positional. See slide B-3.

Control structures Control in Ei�el is meant to be e�ected primarily by de�ning

(and rede�ning) the appropriate classes. However, control constructs both for

branching and iteration are provided. See slide B-4.

Control { method re�nement

� branching { if ... then ... elsif ... else ... end

� iterations { from ... until ... loop ... end

B-4

Slide B-4: Ei�el { control

The if-statement has a classical form, as in Pascal. The iteration-statement

may be used in a variety of ways, as a for-loop and as a while-statement (by

omitting the from) part).

Objects Objects in Ei�el are de�ned by classes. A typical class de�nition is given

in slide B-5.

The class counter exports the features inc and val. The feature count is hence

private to an instance of counter, since it does not appear in the interface de�ned

by the export part.

The create feature is automatically exported, and is used to create an instance

of counter by the statement x :create for a variable x of type counter. The reserved

word Result is used to return a value from a function feature. The method feature

inc speci�es both a pre-condition and a post-condition. The reserved word old

is used to access the value of the instance variable count before evaluating inc.

Finally, the invariance states the constraint that a counter instance never has a

value below zero.

Inheritance Ei�el supports multiple inheritance. As an example, look at the class

FixedList in slide B-6, which is implemented as a combination (by inheritance) of

a generic List and a generic Array.

Using (multiple) inheritance implies that a FixedList may be regarded as a
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class counter export inc val feature

count : Integer

create is do count := 0 end

inc( n : Integer ) is

require n > 0 do

count := count + n

ensure count = old count + n

end

val : Integer is do Result := count end

invariant count >= 0

end -- class counter

B-5

Slide B-5: Ei�el { objects

Multiple inheritance

class Fixed List[T] export ...

inherit

List[T]

Array[T]

feature

...

end

B-6

Slide B-6: Ei�el { inheritance

subtype of both Array and List. However, the export list in the end determines

what interface is provided and hence what type the class embodies.

Technology Developing programs in Ei�el is meant to be primarily a matter of

modeling, that is designing classes and the (inheritance) relations between classes.

An essential ingredient of class development is the design of appropriate interfaces.

Rename and/or rede�ne

class C export ... inherit

A rename m as m1 rede�ne p

B rename m as m2 rede�ne q

feature

...

end

B-7

Slide B-7: Ei�el { techniques
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To de�ne a class as (derived from) a combination of classes, Ei�el allows both

the renaming and rede�nition of inherited features. See slide B-7. In Meyer

(1988), many practical hints are given and numerous examples employing these

mechanisms.

Summary This section has given an introduction to the Ei�el language. It

discussed the design principles underlying Ei�el, which may be characterized

as being focused on static typing and support for the development of reliable

programs.

The language Ei�el B

� design principles { correctness

� terminology { keywords

� syntax { type conformance, control

� objects { counter example

� inheritance { renaming, rede�ning

B-8

Slide B-8: Ei�el { summary

Further, it presented an overview of the keywords related to the constructs

o�ered, and discussed type expressions, value expressions and control statements.

An example was given to illustrate the features o�ered. Finally, we looked at the

mechanisms of renaming and rede�ning, which are needed to avoid name clashes

when using multiple inheritance.
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The language C++

C

++

is often disparaged because of its C heritage. Nevertheless, not only is C

++

in many respects better than C, it also o�ers much more. From its conception,

C

++

has re
ected a strong concern with static typing. As such it has in
uenced

the ANSI C standard accepted in 1985.

Ellis and Stroustrup (1990) describe most of what has become the ANSI/ISO

C

++

standard, which is implemented by, among others, the GNU and Cygnus

C

++

compilers, and Microsoft Visual C

++

.

C++ { is much more than a better C C

1972 C Kernigan and Ritchi (Unix)

1983 C

++

(Simula 1967)

1985 ANSI/ISO C

1996 ANSI/ISO C

++

Design principles { the bene�ts of e�ciency

� superset of C { supporting OOP

� static typing { with exceptions

� explicit { no default virtual functions

� extensible { libraries in C and C++

C-1

Slide C-1: The language C++

The leading design principle underlying C

++

is to support object-oriented

programming, yet allow the programmer and user the bene�ts of (runtime) e�-

ciency. It has been designed as (almost) a superset of C, to allow the integration

of C code in a seamless way. It provides strong static typing, yet allows the

programmer to escape the rigidity of typing if absolutely necessary. C

++

is

designed to be extensible. This means that no assumptions are made with regard

to a programming environment or standard library classes.

The C language was originally introduced as a (Unix) systems programming

417
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language, and is gradually being replaced by C

++

for this purpose. However, C

++

lends itself to many other applications, including mathematical programming and

business applications.

Terminology The C

++

language is without doubt a large and complex language.

Fortunately, an increasing number of textbooks have become available which

provide an appropriate introduction to C

++

and its use for the realization of

abstract data types, including Headington and Riley (1994) and Weiss (1993).

Among the additional keywords introduced in C

++

(extending C) we have the

keyword const (which may be used to de�ne constants), the keyword inline (which

may be used to de�ne inline expanded functions, that for C have to be de�ned

using macros), the keyword new (to dynamically create objects on the heap), the

keyword delete (to destroy dynamically created objects) and, �nally, the keywords

private, public and protected (to indicate access restrictions for the instances of

an object class). See slide C-2.

Keywords: C++ overview

� inline, new, delete, private, protected, public

Language features:

� constructors { to create and initialize

� destructors { to reclaim resources

� virtual functions { dynamic binding

� (multiple) inheritance { for re�nement

� type conversions { to express relations between types

� private, protected, public { for access protection

� friends { to allow for e�cient access

C-2

Slide C-2: C++ { terminology (1)

The language features o�ered by C

++

supporting object-oriented program-

ming include constructors (which are de�ned for each class to create and initialize

instances), destructors (which may be used to reclaim resources), virtual functions

(which must be used to e�ect dynamic binding), multiple inheritance (to specify

behavioral re�nement), type conversions (which allow the user to de�ne coercion

relations between, both system-de�ned and user-de�ned, data types), and friend

declarations (which may be used to grant e�cient access to selected functions or

classes).

The annotated reference manual (ARM) is not a book to be used to learn the

language, but provides an excellent source of detailed technical explanations and

the motivations underlying particular design decisions.

To get an idea of the full set of features o�ered by C

++

, look at the meaning

of a name in C

++

(as described in the ARM). See slide C-3. A name can either
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Some basic terminology

name { denotes an object, a function, set of functions, enumerator, type,

class member, template, a value or a label

� introduced by a declaration,

� used within a scope, and

� has a type which determines its use.

object { region of storage

� a named object has a storage class that determines its lifetime, and

� the meaning of the values found in an object is determined by the

type of the expression used to access it

C-3

Slide C-3: C++ { terminology (2)

denote an object, a function, a set of functions, an enumerator, a type (including

classes, structs and unions), a class member, a template (class or function), a value

or a label. A name is typically introduced by a declaration, and is used within a

scope. Moreover, each name has a type which determines its use. An object in

C

++

is nothing but a region of storage, with a lifetime determined by its storage

class (that is, whether it is created on the stack or on the heap). Meaning is given

to an object by the type used to access it, which is determined during compile

time. The only information needed at runtime in C

++

is concerned with virtual

functions (which require a virtual function dispatch table for dynamic binding).

Expressions Again due to its C heritage, C

++

supports many basic types (includ-

ing int, char and 
oat) and compound types (including arrays, functions, pointer

types, reference types, and user-de�ned class, union or struct types). See slide

C-4.

Type expressions

� basic types { int, char, 
oat, ...

� array { int ar[SIZE]

� function { void f(int)

� pointer { int* , char*, void (*f)(int)

� reference { int&, char*&

� class, union, struct { user-de�ned

C-4

Slide C-4: C++ { expressions (1)

Pointer types encompass pointers to basic types and pointers to user-de�ned

types, such as functions and classes. The di�erence between object, reference and

pointer types may be succinctly characterized as the di�erence between the actual
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thing, an alias (that looks like the actual thing but isn't) and an address of the

actual thing (where you have to go to get it).

Expressions

� operators { + , - ,.., < , <= ,.., == , != ,.., && , ||

� indexing { o[ e ]

� application { o(...)

� access { o.m(...)

� dereference { p->m(...)

� in/decrement { o++, o--

� conditional { b?e1:e2

Assignment

� var = expression

� modifying { +=. -=, ...

C-5

Slide C-5: C++ { expressions (2)

Value expressions may be created using arithmetic and comparison operators

(including == for equality and != for inequality). As logical operators, C

++

includes conjunction (&&) and disjunction (k), as well as a number of bitwise logical

operators. Also, we have an indexing operator (which may be de�ned for arbitrary

types), an application operator (which may also be de�ned for arbitrary types),

an access operator (which is as a standard used for member function invocation or

method calls), a dereference operator (which is used to invoke member functions

through a pointer to an object) and in- and decrement operations (that, again,

may be de�ned for arbitrary types). Needless to say, user-de�ned operators must

be applied with care. Also, we have a conditional expression of the form b?e

1

:e

2

testing the condition b to deliver e

1

when it evaluates to true and e

2

otherwise.

Also, C

++

allows for sequencing within expressions of the form (e

1

; : : : ; e

n

), which

evaluates e

1

; : : : ; e

n

in that order and delivers e

n

as its value.

Assignments in C

++

, it is important to note, are written as var = expression

with a single = symbol. This convention is known to cause mistakes by program-

mers raised with languages such as Pascal or Modula-2. In addition, C

++

o�ers

modifying assignments, which may be used as, for example, in n += 1, which is

identical in meaning to n = n + 1.

Control C

++

provides a number of elementary control structures, directly inher-

ited from C. See slide C-6.

These include a conditional statement (of which the else part may be omitted),

a selection statement (that allows for a default branch), an iteration statement

(which is also o�ered in a reversed form to allow a repeat), a loop statement

(consisting of an initialization part, a part to test for termination, and a repetition
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Control

� conditional { if (b) S1; else S2;

� selection { switch(n)fcase n1 : S1; break ; : : : default : : : :g

� iteration { while (b)S

� looping { for(int i = 1; i 6 MAX ; i ++)S

� jumps { return, break, continue, goto

C-6

Slide C-6: C++ { control

part to increase the loop variable) and, �nally, jumps (including the so much

despised goto).

Objects Despite the (at �rst sight) overwhelming possibilities of de�ning values

and control, the essence of programming in C

++

must be the development of the

abstract data types. To illustrate the di�erence between C and C

++

, let us �rst

look at the realization of abstract data type in a procedural way in a C style

(employing references), and then at the realization in C

++

employing the class

construct. Note that in plain C, pointers must be used instead of references.

ADT in C style

struct ctr f int n; g

void ctr init(ctr& c) f c.n = 0; g

void ctr add(ctr& c, int i) f c.n = c.n + i; g

int ctr val(ctr& c) f return c.n; g

Usage

ctr c; ctr init(c); ctr add(c,1);

ctr* p = new ctr; ctr init(*p); ctr add(*p);

C-7

Slide C-7: C++ { objects (1)

The ctr type de�ned in slide C-7 may be regarded as a standard realization of

abstract data types in a procedural language. It de�nes a data structure ctr, an

initialization function ctr init, a function ctr add to modify the value or state of

an element of the (abstract) type and an observation function ctr val that informs

us about its value. We may either declare a ctr object or a pointer to a ctr instance

and invoke the functions as indicated.

In contrast, to de�ne (the realization of) an abstract data type in C

++

, we

employ the class construct and de�ne member functions (or methods) that operate

on the data encapsulated by instances of the class. See slide C-8.
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ADT in C++

class ctr f

public:

ctr() f n = 0; g constructor

�ctr() f cout << "bye"; g; destructor

void add( int i = 1) f n = n + i; g

int val( ) f return n; g

private:

int n;

g;

Usage

ctr c; c.add(1); cout << c.val();

ctr* p = new ctr(); c->add(1); ...

C-8

Slide C-8: C++ { objects (2)

Inheritance Not only is C

++

an e�cient language, but it also o�ers features

lacking in Smalltalk and Ei�el. In particular, it allows us to make a distinction

between (private) members of a class that are inaccessible to everybody (including

descendants), (protected) members that are inaccessible to ordinary clients (but

not to descendants), and (public) members that are accessible to everybody.

Inheritance

class A f ancestor

public:

A() f n = 0; g

void add( int i ) f n = n + i; g

virtual int val() f return n; g

protected: private would deny access to D

int n;

g;

class D : public A f descendant

public:

D() : A() f g

int val() f return n % 2; g

g;

C-9

Slide C-9: C++ { inheritance

In the example in slide C-9, using private instead of protected would deny

access to the instance variable n of A. The example also illustrates the use of
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virtual functions (to re�ne the observation val to deliver the value of the object

modulo two) and the invocation of constructors of ancestor classes (which need

not be explicitly speci�ed by the user).

Allowing descendants full access to the instance variables de�ned by ancestors,

however, increases the dependency on the actual implementation of these ances-

tors, with the risk of a total collapse when the implementation of an ancestor

changes.

Technology In addition to the elements introduced thus far, C

++

o�ers a number

of other features that may pro�tably be used in the development of libraries and

programs. See slide C-10.

Techniques

� templates { template<class T> class C f ... g

� overloading { void read(int); void read(
oat)

� friends { to bypass protection

� type conversions { by class constructors or type operators

� type coercion { by explicit casts (is dangerous)

� smart pointers { by overloading de-reference

C-10

Slide C-10: C++ { techniques (1)

For instance, C

++

o�ers templates (to de�ne generic classes and functions),

overloading (to de�ne a single function for multiple types), friends (to bypass

protection), type conversion (which may be de�ned by class constructors or type

operators), type coercions (or casts, which may be used to resolve ambiguity or to

escape a too rigid typing regime), and smart pointers (obtained by overloading the

dereference operator). An integral part of standard C

++

is the Standard Template

Library, o�ering a generic collection of containers, of which a brief description is

given in section 2.1.2.

To get some of the 
avor of using C

++

, look at the de�nition of the ctr class

in slide C-11 employing multiple constructors, operators, default arguments and

type conversion.

The ctr provides a constructor, with an integer argument (which is by default

set to zero, if omitted) and a string argument (that expects a name for the

counter). The increment operator is used to de�ne the function add (which by

default increments by one), and the application operator is used instead of val.

Also, a type conversion operator is de�ned to deliver the value of the ctr instance

anywhere where an integer is expected. In addition, a char� type conversion

operator is used to return the name of the ctr.

Again, the di�erence is most clearly re
ected in how an instance of ctr is used.

This example illustrates that C

++

o�ers many of the features that allow us to
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class ctr f C++

public:

ctr(int i = 0, char* x = "ctr") f

n = i; strcpy(s,x);

g

ctr& operator ++(int) f n++; return *this; g

int operator()() f return n; g

operator int() f return n; g

operator char*() f return s; g

private:

int n; char s[64];

g;

Usage

ctr c; cout << (char*) c++ << "=" << c();

C-11

Slide C-11: C++ - techniques (2)

de�ne objects which may be used in a (more or less) natural way. In the end, this

is what software development is about, to please the user, within reason.

Summary This section has presented an overview of C

++

. It gave an outline of

its history, and discussed the design principles underlying C

++

and its heritage

from C.

The language C++ C

� design principles { e�ciency

� terminology { object, type

� syntax { object, reference, pointer

� objects { abstract data types

� inheritance { virtual functions

� techniques { operators, templates, overloading

C-12

Slide C-12: C++ { summary

It listed the keywords that C

++

introduces in addition to the keywords em-

ployed in C and characterized the object-oriented constructs supported by C

++

.

An example was given to illustrate the di�erence between realizing an abstract

data type in C and realizing the same abstract data type in C

++

. Further, it

illustrated the use of virtual functions when deriving classes by inheritance, and

discussed a number of additional features supported by C

++

.
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The language Java

Java has a direct heritage from C

++

. Started as an interpreted C

++

like language

under the name Oak, it became a hype due to its introduction as the dial-tone of

the Internet in 1995.

Java { the dial-tone of the Internet D

1995 Introduction at WWW3

1996 1.0 with AWT

1997 1.1.x with modi�ed event handling

1998 version 1.2 (beta) with Swing

Design principles { safety

� a modern programming language

� C++ syntax, no pointers

� virtual machine (runs on many platforms)

� libraries: threads, networking, AWT

� downloadable classes

� support for applets

� extensions and APIs: Beans, Swing, MEDIA, 3D

See: http://www.javasoft.com

and http://java.sun.com/docs/books/tutorial

D-1

Slide D-1: The language Java

The impact of Java has been enormous, not only in terms of its adoption in the

software industry, but also in terms of the number of books written and sold. Java

has also become the language of choice for introductory programming courses.

The original design purpose stated for Java was to provide a safe environment

for executing so-called applets, written in a general purpose programming lan-

guage, in a Web-browser. For that reason Java programs are executed by a virtual

machine, in which the programs can be executed as in a sandbox protecting the

425
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environment from possibly malicious programs. In addition, the virtual machine

gives a high degree of platform independence. The slogan that has accompanied

the introduction of Java, write once, run everywhere does nevertheless not com-

pletely hold true when it concerns user interfaces, since the particularities of the

various platforms have proved to be hard to master.

Whatever one may think of Java as a language, a lot of e�ort is put into coming

to an agreement about the numerous APIs that are part of the Java platform.

These include the Swing GUI framework, the component Beans, the re
ection

API, the native code interface, the multimedia framework, not forgetting the

Java3D and VRML classes. This makes the Java platform indeed a very powerful

and productive environment.

Java is very well documented. Apart from the many books about Java, there

is also an excellent tutorial online, for free. See the URLs in slide D-1.

Terminology In comparison with C

++

, Java is almost as rich in keywords.

Notably lacking, however, is the keyword virtual. This is not needed, since in

Java every method is by de�nition subject to dynamic dispatching. Also, since

Java doesn't allow multiple inheritance, there is no need to use it for avoiding

multiple copies of inherited base classes.

Keywords: Java overview

� new, �nalize, extends, implements, synchronized

Language features:

� no pointers { references only simplify life

� garbage collection { no programmers' intervention

� constructors { to create and initialize

� single inheritance { for re�nement

� interfaces { abstract classes

� synchronized { to prevent concurrent invocation

� private, protected, public { for access protection

D-2

Slide D-2: Java { terminology (1)

New is the keyword interface in Java. De�ning an interface is equivalent to

de�ning an abstract class in C

++

. One merely lists the methods provided by

the (abstract) claas, without providing an implementation. A concrete class may

then indicate that it implements the interface. In this way multiple (interface)

inheritance is supported in a nice and clean way.

Also new is the keyword synchronized, re
ecting the built-in support for con-

currency in Java. A synchronized method excludes multiple invocations of that

method, which might otherwise occur in a multi-threaded program.

The keyword �nal may be used to indicate that a particular value may not be

changed. In this sense it is similar to the C

++

keyword const. It must be noted
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that Java is even more elaborate in the use of the keywords private, protected and

public than C

++

. They are used to indicate access restrictions for the methods of

an object for objects inside and outside the package in which the objects' class is

de�ned.

The language features o�ered by Java resemble those of C

++

. However, in

many respects Java is much simpler than C

++

. Most notably, the absence of

pointers, a sure source of errors, makes programmers' lives easier. In particular

since Java o�ers automatic garbage collection, programmers need not to worry

about disposing objects created dynamically. Resource management, however,

may be done by de�ning a method �nalize. The counterpart, however, of that is

that all objects in Java come into existence by explicit dynamic creation.

The availability of interfaces compensates for the restriction to single inher-

itance, which must be indicated by the keyword extends instead of the colon.

It has often been argued that multiple inheritance is not really necessary. This

holds true, however, only for implementation inheritance. Multiple (interface)

inheritance is a powerful feature that has interesting applications once one has

discovered how to use it.

Expressions Java supports basic types (including int, char and 
oat) and com-

pound types similar to C

++

. It does not o�er pointer or reference types. However,

it o�ers Array and String types. No need to say that it also allows for user-

de�nable classes.

Type expressions

� basic types -- int, char, float, ...

� Array { int ar[SIZE]

� String { String[] args

� class { user-de�ned

D-3

Slide D-3: Java { expressions (1)

It will be no surprise that the expressions also are similar to those of C

++

.

However, Java does not allow for operator overloading. That means that the

operators, as listed below, may only be used for the built-in types.

The operators de�ned for the built-in types do sometimes behave in an unex-

pected way. For example, whereas the + operator de�ned for String concate-

nates two strings (as expected), the comparison operator == does not compare

the values of the two strings, but instead the (opaque) references. One must use

s1.equals(s2) to compare the values of the strings s1 and s2.

Value expressions may be created using arithmetic and comparison operators

(including == for equality and != for inequality).

As logical operators Java includes, as C

++

, conjunction (&&) and disjunction

(k), as well as a number of bitwise logical operators. Also, we have an indexing
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Expressions

� operators { + , - ,.., < , <= ,.., == , ! = ,.., && , k

� indexing { o[ e ]

� access { o.m(...)

� in/decrement { o++, o--

� conditional { b?e1:e2

Assignment

� var = expression

� modifying { +=. -=, ...

D-4

Slide D-4: Java { expressions (2)

operator which, unlike for C

++

, may be not de�ned for arbitrary types. Access

to both static and dynamic methods involves the use of the dot operator.

The increment and decrement are de�ned only for the scalar types. Also, we

have a conditional expression of the form b?e

1

:e

2

testing the condition b to deliver

e

1

when it evaluates to true and e

2

otherwise.

Assignments in Java, like in C

++

, are written as var = expression with a single

= symbol. As remarked previously, this convention is known to cause mistakes

by programmers raised with languages such as Pascal or Modula-2.

In addition, Java o�ers, like C

++

, modifying assignments, which may be used

as, for example, in n += 1, which is identical in meaning to n = n + 1.

Control Java provides roughly the same elementary control structures as C

++

.

Control

� conditional { if (b) S1; else S2;

� selection { switch(n) f case n1: S1; break; ... default:

... g

� iteration { while (b) S

� looping { for( int i = 1; i <= MAX; i++) S

� jumps { return, break, continue

D-5

Slide D-5: Java { control

These include a conditional statement (of which the else part may be omitted),

a selection statement (that allows for a default branch), an iteration statement

(which is also o�ered in a reversed form to allow a repeat), a loop statement

(consisting of an initialization part, a part to test for termination, and a repetition

part to increase the loop variable) and, �nally, jumps.
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Objects An object is an instance of a class. In Java, a program is executed by

calling the static main method a class. Look for example at the HelloWorld class

in slide D-6.

Hello World { Java (1)

public class HelloWorld f

public static void main(String[] args) f

System.out.println("Hello World");

g

g;

D-6

Slide D-6: Java { objects (1)

The HelloWorld example is taken from a collection of hello world programs

located at http://www.latech.edu/�acm/HelloWorld.shtml.

To illustrate the use of interface de�nitions, slide D-7 presents a slightly

modi�ed version. The actual HelloWorld class announces that it implements

the World interface.

Hello World - interface

public interface World f

public void hello();

g;

Hello World - class

public class HelloWorld implements World f

public void hello() f

System.out.println("Hello World");

g

g;

D-7

Slide D-7: Java { objects (2)

Both classes make use of the standard out stream de�ned in the class System

to emit their message to the world.

Inheritance In Java, all classes are derived from the class Object, de�ned in the

package java.lang. As an advantage, every object class de�ned in Java is known

to support a number of basic methods, such as clone, equals, �nalize, hashCode,

toString. Of course, the programmer of the class is responsible for rede�ning
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these methods if appropriate. For example, when the method clone is invoked,

the object throws an exception unless the method clone has been de�ned.

The following members of Object, however, cannot be overridden: getClass,

notify, notifyAll, wait. The latter three re
ect Java's support for threads; they

should not be used when the object is not a thread.

Hello World { Java (2)

import java.awt.Graphics;

public class HelloWorld extends

java.applet.Applet f

public void init() f resize(150,50); g

public void paint(Graphics g) f

g.drawString("Hello, World!", 50, 25);

g

g;

D-8

Slide D-8: Java { inheritance

A simple example of a class that inherits from the Java Applet class is given

in slide D-8. It rede�nes the init and the paint method, which says `Hello World'.

Technology The Java platform, that is the Java language enriched with the

numerous libraries, frameworks and extensions, o�ers the software developer a

rich environment for developing (distributed) Internet-aware applications.

Perhaps the most well-known feature of Java is its support for so-called applets,

light weight applications that may enrich your Web-browser with graphics, mul-

timedia and additional communication facilities. Browsers such as Netscape and

Microsoft Internet Explorer have an embedded Java Virtual Machine that enables

them to execute Java applets. Applets may also be executed by the Java plugin

that has been provided by Sun Microsystems as an alternative to the browsers'

built-in virtual machines.

Server-side extensions are made possible by servlets. The server must then be

written in Java, or provide for a virtual machine.

Java o�ers a number of facilities for networking, including support for retriev-

ing resources by URL, sockets, and remote method invocation. Remote method

invocation (RMI) may be considered a light weight alternative for CORBA dis-

tributed programming.

In contrast with CORBA (version 2.0), Java allows for sending objects over

the network due to its powerful Re
ection API that gives runtime access to the

properties of objects, including class types and methods.

The Beans framework o�ers component technology, that allows developers to

exchange (beans) objects and inspect their properties in a uniform manner. For



The language Java 431

Java { techniques

� applets { extend your browser

� servlets { extend your server

� networking { urls, sockets

� RMI { remote method invocation

� re
ection { meta-information

� beans { component technology

� JNI { writing native methods

� javadoc { online class documentation

D-9

Slide D-9: Java { techniques

example GUI elements, written as beans, can be incorporated at runtime to add

the desired functionality to a user interface.

Another well-designed and powerful feature of Java is its native interface,

which enables the experienced programmer to embed native code in Java ap-

plications. No need to say that from a purists' point of view one should avoid

this.

Last but not least, the javadoc facility must be mentioned. The javadoc tool

allows for creating documentation directly from the class de�nitions, that may be

annotated with signature descriptions, and information about its author, possible

exceptions and comments.

Summary This section has presented an overview of Java.

The language Java D

� design principles { safety

� terminology { object, interface

� syntax { like C++

� objects { abstract data types, interfaces

� inheritance { single inheritance

� techniques { dynamic casts, re
ection, APIs

D-10

Slide D-10: Java { summary

It gave an outline of its history, and discussed the design principles underlying

Java and its possible future as the dial-tone of the Internet.

It described how Java di�ers from C

++

, gave an Hello World example of an

ordinary program, an object that implements an interface and an applet. Also,
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we discussed brie
y the libraries, frameworks and extensions comprising the Java

platform.



E

The language DLP

Apart from what may be considered the mainstream languages Smalltalk, Ei�el,

C

++

and Java, there are numerous other (experimental) languages incorporating

the object paradigm in one way or another. See section 5.1.1 and, for example,

Davison (1993) for an overview. Of particular interest is the combination of the

logic programming paradigm with object orientation, of which the language DLP

is an example.

DLP { introduces logic into object orientation E

� DLP = LP + OO + k

Design principles { support for knowledge-intensive applications

� objects { dynamic states

� processes { communication by rendezvous

� distributed backtracking { exhaustive search

E-1

Slide E-1: The language DLP

The DLP language combines logic programming (LP) with object orientation

(OO) and parallelism (k). DLP is a (very) high-level language, meant to support

the development of knowledge-intensive applications. In addition to the logic pro-

gramming features, it provides objects (that may change their state dynamically),

processes (such as active objects, that communicate by rendezvous), and it allows

for distributed backtracking (to enable exhaustive search in a logic programming

style). See Eli�ens (1992) for a full treatment.

Terminology Syntactically, DLP may be regarded as an extension of Prolog with

constructs for parallel object-oriented programming. However, in addition to the

familiar Prolog constructs it o�ers objects as well.

An object de�nition or object in DLP is a (labeled) collection of (Prolog)

433
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Objects { a labeled set of clauses DLP

object name f

var variables.

constructor clauses

method clauses

g

E-2

Slide E-2: DLP { terminology

clauses that de�ne the methods supported by the object, and which in addition

may contain non-logical variables that are private to each instance. An active

object also contains one or more constructor clauses that de�nes the object's own

activity. See slide E-2.

Expressions The expressiveness of DLP is derived to a large extent from its

heritage from Prolog. The basic syntactic units in Prolog are terms, which

are either constants (such as characters, integers, strings, or the empty list []),

variables (which by convention start with a capital or underscore), or compound

terms (which may be written as a function symbol with argument terms or as a

list of the form [H j T ], where H stands for the head of the list and T for its

tail). See slide E-3.

Expressions { terms Prolog

� constants { a, "a string", [ ]

� variables { X,Y,Z

� compound { f(a,X), [ H | T ]

Uni�cation { bi-directional

� f(X,a) = f(b,Y) results in X = b and Y = a

E-3

Slide E-3: DLP { expressions

Terms allow for what is called uni�cation, which is an extended form of pattern

matching. Uni�cation results in binding variables to terms, in such a way that the

two uni�ed terms become syntactically equal. As an example, unifying f(X,a)

with f(b,Y) results in binding X to a and Y to b. Uni�cation is the primary

mechanism of parameter passing in Prolog. It is essentially bi-directional and

satis�es the one-assignment-only property, which means that evaluating a goal

must result in a consistent binding, otherwise the goal fails.
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Control The computation mechanism employed by Prolog may be characterized

as goal reduction with uni�cation and backtracking. As an example, look at the

Prolog program in slide E-4, consisting of a number of clauses and facts.

Prolog

p(X,Y) :- r(Z), b(X). clauses

p(X,Y) :- q(Y), b(X).

b(X) :- a(X).

b(0). facts

a(1).

q(2).

Query

?- p(X,Y). results in (X = 1,Y = 2)

and (X = 0, Y = 2)

E-4

Slide E-4: DLP { control (1)

When we pose our query, it is �rst attempted to resolve the goal p(X ;Y )

with the �rst clause for p (which fails because r(Z ) cannot be resolved). Then

the second clause is tried, which leads to binding Y to 2 (since q(2) is a fact), and

gives us two possible bindings for X, due to the facts a(1) and b(0). (Variables

are local to clauses and will be renamed automatically to avoid clashes.) Hence,

the evaluation of the goal p(X ;Y ) leads to two consistent bindings, that may

successively be obtained by backtracking.

As an example of somewhat more realistic clauses, look at the list processing

predicates member and append in slide E-5.

List processing { backtracking

member(X,[X| ]).

member(X,[ |T]) :- member(X,T).

append([],L,L).

append([ H | T ],L,[ H | R ]):- append(T,L,R).

E-5

Slide E-5: DLP { control (2)

Both predicates are speci�ed in an inductive manner, taking care of all possible

cases. For example, the �rst clause for member states as a fact that an element
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is contained in a list when it is the �rst element. The second clause prescribes

the recursive application of member to the tail of the list if this is not the case.

Similarly, the clauses for append distiguish between the case of appending a list

to an empty list, and the case of appending a list to a non-empty list.

This manner of speci�cation closely adheres to standard practice in mathe-

matical logic and has proven to be a powerful means to develop knowledge-based

systems (such as expert systems) that rely on logical reasoning.

Objects The language DLP supports active objects with a state (expressed as the

value of non-logical instance variables) and communication by rendezvous (which

realizes message passing for active objects). See slide E-6.

Additional statements DLP

� v := t { to assign to non-logical variables

� O = new(c(t)) { to create an active instance of the object c

� O!m(t) { to call the method m(t) for the object O

� accept(m1,...,m n) { to accept method requests

E-6

Slide E-6: DLP { objects (1)

To support these features we need, in addition to terms and clauses, statements

to assign terms to non-logical variables, a statement to create new active instances

of an object (class), a statement to call a method for an object (which is essentially

the invocation of a goal), and an accept statement that allows an active object to

interrupt its own activity and accept the request to execute a method. When

binding terms to logical variables or assigning terms to non-logical variables,

simple rewriting rules are applied. Rewriting includes arithmetic simpli�cation

and string manipulation.

Computation model { distributed logic

objects { state + methods

processes { to evaluate goals

communication { backtrackable rendezvous

E-7

Slide E-7: DLP { objects (2)

The computation model underlying DLP is a model that supports distributed

logic, and may be seen as a combination of the models underlying logic program-

ming and parallel object-oriented languages. See slide E-7.

The DLP support system provides, in addition to a Prolog-like evaluation

mechanism, support for objects (having a state, and methods de�ned by clauses),



The language DLP 437

processes (to realize the object's own activity as well as to evaluate method calls

or goals for the object), and a communication mechanism (that allows for a

backtrackable rendezvous).

As an example of an object in DLP, look at the travel agency de�ned in

slide E-8, which has a non-logical instance variable cities (containing a number of

destinations), a constructor travel (which de�nes the object's own activity) and

two methods, reachable and add.

object travel f travel

var cities = [amsterdam, paris, london].

travel() :- accept( all ), travel().

reachable(X) :- member(X, cities).

add(X) :-

append( cities, [X], R), cities := R.

g

Usage

?- O = new travel(), O!reachable(X),

write(X).

E-8

Slide E-8: DLP { objects (3)

The reachable method may be used to ask whether a particular destination

exists or to ask for all possible destinations (which are actually obtained by

backtracking). The add method may be used to add new destinations to the

list of cities.

The travel constructor merely consists of a (tail-recursive) loop allowing to

accept any request, one at a time. By specifying which requests may be accepted

at a particular point in the lifetime of the object, the message interface of the

object may be dynamically speci�ed. In addition, an explicit accept statement is

needed to guarantee mutual exclusion between method calls.

Inheritance DLP supports static inheritance, by code sharing, as do Smalltalk,

Ei�el, C

++

and Java. For a discussion of dynamic inheritance, by delegation, see

section 5.4. As an example of inheritance in DLP, look at the re�nement of the

travel object into a veritable agency. See slide E-9.

An agency o�ers the user, in addition to the functionality o�ered by travel,

the opportunity to book for a particular destination and be informed of its price.

Inheritance in DLP conforms to the subsumption relation for logical theories,

in that it extends the functionality of a given object in a strict manner. DLP
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object agency : travel f agency

agency() :- accept( any ), agency().

book(X,Y) :-

reachable(X),

price(X,Y).

price(amsterdam,5).

...

g

E-9

Slide E-9: DLP { inheritance

allows for multiple inheritance and even checks for cycles to protect the user from

repetitions or cycles in the inheritance chain.

Technology Logic programming o�ers a wealth of techniques. In particular, the

meta programming facilities (which are essentially based on the interpretation

of programs as data) allow for very powerful programming techniques. See, for

example, Bratko (1990).

Techniques { logic

� meta programming

� active intelligent agents

E-10

Slide E-10: DLP { technology

By virtue of being an extension of Prolog, DLP inherits these facilities. In addi-

tion, DLP provides the constructs necessary to de�ne what may be called (active)

intelligent agents, of which the functionality can be speci�ed in a declarative,

logic-based fashion. DLP, in other words, is an example of a fruitful combination

of paradigms, merging logic with object orientation.

Summary This section has presented an overview of the DLP language. It

discussed the design principles underlying DLP and characterized its principal

application area as the development of knowledge-based systems.

It gave a brief characterization of Prolog, explained how DLP syntactically

extends Prolog with constructs for parallel object-oriented programming, and

characterized the computation model of DLP. Some examples were given to

illustrate the de�nition of objects and the use of inheritance.

Knowledge-intensive applications will increasingly become part of mainstream
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The language DLP E

� design principles { logic

� terminology { distributed backtracking

� syntax { Prolog + additional statements

� objects { non-logical instance variables

� inheritance { static

� techniques { active intelligent agents

E-11

Slide E-11: DLP { summary

IT. Distributed declarative languages and systems, of which DLP is just one

example are likely to become the vehicle of choice for such applications.

A language such as DLP is particularly well suited for the realization of so-

called agents, software processes that act as an intermediary between the end-user

of a system and the system itself.
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Unified Modeling Language

The Uni�ed Modeling Language (UML) resulted from a joint e�ort of leading

experts in object-oriented analysis and design, Grady Booch, Jim Rumbaugh and

Ivar Jacobson, also known as the three amigos, all currently employees of Rational.

UML provides (graphical) notations to express functional, structural and be-

havioral properties of (object-oriented) systems. UML is not a method. It does

not prescribe the steps to be taken in development. UML may best be regarded

as a toolbox, from which the developer can choose a notation or technique as the

need occurs.

Uni�ed Modeling Language UML

� class diagrams { conceptual structure

� use cases { functional requirements

� interaction diagrams { operational characteristics

� package and deployment diagrams { implementation

� state and activity diagrams { dynamic behavior

See http://www.rational.com/uml and UML Distilled, Fowler (1997b)

F-1

Slide F-1: UML

In this section we will look at a selection of the notational tools provided in

the UML, as indicated in slide F-1. For additional information see Rational's Web

site. I also strongly recommend Fowler (1997b).

Class diagrams

Class diagrams represent (ideally) the conceptual structure of the system. Class

diagrams typically consist of class descriptions and relations or associations be-

tween these. Class descriptions may be given as types, interfaces or actual

classes, including attributes, methods and even visibility speci�cations. There
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is considerable liberty in how much detail is provided in either class descriptions

or relations. As a rule of thumb, omit details as much as possible.

Class A Class Brole-B
role-A

SuperType

Classes and associations

CompoundClass Name
attribute:Type = value
operation(Args):Type

Class Class

Association

Slide F-2: Class diagrams

Special relations between classes are generalization or inheritance (indicated

with the triangle in the diagram left in slide F-2) and aggregation or containment

(indicated with the diamond). In this example, just think of a compound as

containing a number of instances of the type of which the compound is derived.

The aggregation relation is often referred to as a has-a relation, which is, however,

not appropriate when the object contained is actually used for delegation as

discussed in chapter ??.

The diagrams on the right indicate how to depict arbitrary associations. Think

for example of the relation between Employer and Employee classes. Clearly, in

this case the role each class has with respect to the other class follows from the

class name itself. In other cases it may be helpful to indicate the role explicitly.

When the association between classes is more complex, an explicit association

class may be introduced, for example a class specifying a work contract, to describe

the association in more detail.

Class diagrams may be re�ned further by adding annotations to the class

descriptions and the relations. For example, relations may be more precisely

de�ned by adding multiplicities (1,*,0..1,m..n, to indicate respectively one, many,

optional or bounded). Class descriptions may be re�ned by adding notes, drawn

as a box with a 
attened edge, containing descriptive text.

The UML also allows for adding constraints, between curly brackets, and

for the de�nition of so-called stereotypes, indicated by angular brackets as in

<<stereotype>>, which represent generic constraints.

Use cases

Use cases de�ne typical interactions between the user and the system. In other

words, use cases de�ne the boundaries between a system and its users. Use cases

are critical in eliciting the functional requirements a system must satisfy.

A typical use case consists of an actor or role and a more or less detailed

description of the actions that an actor performs to accomplish some task. A task

may for example be the insertion of text, or the creation of a particular �gure in
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<<uses>>

<<extends>>

action
Use Case

Use Case

Use Case

Slide F-3: Use cases

a drawing editor. A distinction must be made between the overall goals of a user,

like making a decent drawing, and the actions that must be performed to satisfy

these goals. Only the latter can be the subject of use cases.

When de�ning a use case, other use cases can be (re)used, either through

the extends or through the uses relation. The extends relation is similar to the

inheritance relation for classes. The extending use case may override aspects of

the extended use case. The uses relation is used to factor out common parts.

Interaction diagrams

Interaction diagrams are needed to clarify the actual behavior of a system, in

particular the interaction between objects (or classes of objects) that result when

executing a use case.

object

new

object

object-1

object-3

(a) Sequence diagram

object-2

(b) Collaboration diagram

2.2: message-3

2.1: message-2

1: message-1

self invocation
message

create

return

delete

3-message-4

Slide F-4: Interaction diagrams

Interaction diagrams come in two forms, sequence diagrams and collaboration

diagrams.

Sequence diagrams depict objects and their lifelines. When an object becomes

active, the lifeline may be widened to a rectangle for the period of activity.

Collaboration diagrams depict the objects and their relations in a more static

manner. Messages between objects, indicated by arrows, may be speci�ed in

greater or lesser detail. Also here, as a rule of thumb, details are given only when

needed. To indicate message sequencing in collaboration diagrams numbering

may be used, increasing or, as illustrated in slide F-4(b), branching.
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Package and component diagrams

Although classes may be considered the building blocks of object-oriented appli-

cations and frameworks, they are usually not the units of deployment nor the

units of reuse. See Szyperski (1997). Rather, packages and components may be

considered as such.

P-1

Package class

class

Component-1

Component-2

Package and deployment diagrams

Slide F-5: Package and deployment diagrams

A package diagram, depicted left, indicates the dependencies between pack-

ages, and possibly classes. Component or deployment diagrams depict the com-

ponents, their exported interfaces and the dependency between components.

Although package and component diagrams are usually implementation-level

diagrams, it seems advisable to take clustering and component packaging into

consideration in the early stages of design.

State and activity diagrams

The characterization of behavior given by interaction diagrams primarily con-

cerns, as the name says, the interaction between objects. The dynamic behavior

of the objects themselves and the global activity can only be inferred from such

diagrams.

An explicit characterization of the dynamic behavior of an individual object

may be given by a state transition diagram.
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activity activity

activity-1 activity-2

activity

State-2

State-3

State-1

State-0

State  and  activity diagrams

Slide F-6: State diagrams
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A state transition diagram consists of states and transitions between states,

indicated by arrows. The arrows may be indicated by expressions of the form

event(arguments)[conditions]/action

indicating that a transition can take place when a particular event occurs and

certain conditions are satis�ed. The transition will then result in an action, which

may possibly modify state/instance variables.

Individual states may contain the speci�cation of actions in response to par-

ticular events and the entry and exit of the state. States may be grouped to form

a single (super)state, such as state-0 in the diagram on the left in slide F-6.

To characterize the overall activity of a system, or parts thereof, activity

diagrams may be used. Activity diagrams consist of nodes indicating activities.

Since activity diagrams are rather unspeci�c with respect to the actual objects

involved, such diagrams are most appropriate in analysing aspects of work
ow. In

contrast, state diagrams are usually tied to the implementation of objects, such

as event-schedulers, with complex dynamic behavior.

Both state diagrams and activity diagrams allow for parallelism. In activity

diagrams, parallel activity may be assigned to so-called swim-lanes, activity falling

under the responsibility of a particular role, an actor or a part of the system.

Discussion

As said before, the UML provides a generic toolbox for analysis and design.

It o�ers no method, so the question remains: when to use what? The answer

to that question may be very simple. Just use what you need to convey the

properties of the system in a clear and understandable way. The answer may also

be very complex, since `clear and understandable' are somewhat elusive notions.

Following Fowler (1997b), I would say: don't overdo. Use UML to clarify critical

aspects of the system and highlights of design, and leave it at that. Never continue

modeling when you experience it as a useless, or worse, boring activity.

The UML toolbox is very rich. It allows you to model every conceivable

aspect of the system. Nevertheless, to my mind, graphical models are not always

appropriate. But, on the other hand, most people like them and they often make

a good impression, suggesting clarity ...

As concerns the use of UML, to some extent one can delineate a subset as core

UML. Class diagrams lie at the heart of most object models. Dependending on

the level of abstraction and the amount of detail, they may be regarded as either

a domain model, concrete class design, or anything in between. Use cases delimit

the functional requirements, and are essential for negotiating these requirements

and also for phasing the delivery of the system. Most interesting, I think, is where

combined modeling e�orts lead to an indication of the validation and veri�cation

spots of the system. In particular, the combination of class diagrams, use cases

and interaction (sequence) diagrams allows for spotting the high-risk parts of

the system and, accordingly, for specifying test procedures to verify whether the

system meets its requirement speci�cations.
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Interface Definition Language – IDL

The Interface De�nition Language (IDL) that accompanies CORBA-2.0 provides

the constructs needed to specify interfaces only.

IDL allows for specifying modules, consisting of interfaces. An interface spec-

i�cation may contain (read only) attributes and operations. Operations are

synchronous, unless annotated as oneway. Operations may raise exceptions upon

failure.

Interface De�nition Language IDL

� modules { for clustering

� interfaces { correspond with objects

� attributes { may be read only

� operations { best e�ort invocation

� exceptions { for handling failure

Language bindings

� C, Smalltalk, C++, Java

G-1

Slide G-1: Interface De�nition Language { IDL

Although IDL is syntactically very similar to C

++

or Java, it completely lacks

the algorithmic constructs of these languages. Objects speci�ed in IDL must be

realized in one of the languages for which an o�cial IDL language binding exists,

such as C, Smalltalk, C

++

or Java, or an uno�cial binding, such as Python, Perl

and Prolog.

Example

As an example, look at the de�nition of a module universe below. It contains an

interface named world which provides a method hello and two additional methods

ask and tell.
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module universe f universe

interface world f

void hello();

void ask(in string x);

string tell();

oneway void halt();

g;

g;

The ask method has a string input parameter and the tell method has a string

result type.

All methods supported by the world interface are synchronous, except for the

halt method, which is annotated as oneway.

The realization of the universe module is given in Appendix H.

Types and values

The operations speci�ed in an interface may result in a value and may take

particular values as arguments. The type of a value must either exist as a basic

type or be speci�ed in IDL.

Basic types

� integers, reals, booleans, enum, string, any

Constructed types

� struct, union, sequence, array, interface

Object references

� interface + operations

G-2

Slide G-2: Types and values

Basic types encompass integers, reals, booleans, enumerations and strings.

There is also a generic type, any, which allows for checking the actual type

dynamically. Constructed types include record structures (struct), tagged unions,

sequences and arrays.

Interfaces specify object types. However, a value that identi�es an object is

always a reference to the object. In CORBA 2.0 it is not possible to send objects

by value. As a workaround, one may send records by value and then locally

instantiate an object.
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Operations and exceptions

An operation or method speci�es a service that a client may request of an object.

Operations may result in a value. Each parameter of an operation has a type and

a modi�er indicating whether it is an input, output, or combined inout parameter.

Operations

� in, out, inout { parameter attributes

Exceptions

exception out of range f long count; g

interface writer f

void position(in long pos)

raises(out of range);

g

G-3

Slide G-3: Operations and exceptions

The signature or type of an operation may also include one or more exceptions

that may be raised. Exceptions may contain data �elds.

The signature of operations may also be assembled dynamically, through the

dynamic invocation interface of the ORB. The semantics for such requests are

the same as for requests via the operation stub generated from the interface

speci�cation.

Interfaces and inheritance

Interfaces de�ne polymorphic object types. An interface may be realized by any

object that supports the operations speci�ed in the interface.

Interfaces and inheritance

� no overriding, no overloading

Multiple (interface) inheritance

interface A f g;

interface B f g;

interface C : A f g;

interface D : B, A f g;

G-4

Slide G-4: Interfaces and inheritance

Interfaces can inherit from other interfaces. This results in augmenting the

interfaces with the attributes and operations of the inherited interface. However,
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in contrast to class inheritance in C

++

, IDL does not allow for operations to

be overridden, nor for overloading operations, that is di�erent signatures for the

same operation.

Multiple (interface) inheritance is supported however, provided that no clashes

or overloading occurs.

The Object interface Each object type de�ned in IDL may be assumed to be

derived from the interface Object. For example, when de�ning an iterator type

the interface may look as follows:

interface iterator f iterator

Object next();

g;

It is the responsibility of the implementation to downcast the object type to

its actual type.

Language bindings

A language binding for IDL must satisfy a number of requirements.

Language bindings

� types, references, access, ORB and BOA support

The Object interface

interface Object f PIDL

InterfaceDef get interface();

Object duplicate();

...

g

G-5

Slide G-5: Language bindings

Naturally, the mapping must support IDL basic and constructed types, refer-

ences to objects and constants, and access to attributes and operations.

In addition it must provide the signatures for operations de�ned by the Object

Request Broker (which transmits requests over the network) and the Basic Object

Adaptor (which translates method requests to actual object method or function

invocations).

Access to the ORB and BOA is usually provided by means of so-called pseudo-

objects, objects described by interfaces in IDL which are not necessarily imple-

mented as ordinary objects. As an example, the Object interface describes the

functionality that each IDL-de�ned object has.
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Hello (CORBA) Universe

CORBA is an impressive technology. It allows for writing heterogeneous platform-

independent and language-independent client/server object systems. Most soft-

ware developers, including those trained in object orientation, are unfamiliar

with developing distributed applications. As a consequence, writing a CORBA

application may seem to be beyond reach.

This example is meant to break that barrier, and to show the elementary

steps to be taken in writing a CORBA application. To complicate matters a bit,

we write a three-language system, consisting of three servers and three clients,

written respectively in C

++

, Java and Prolog.

Hello (CORBA) Universe H

� platform-independent

� language-independent

� server { C++, Java, Prolog, ...

� client { C++, Java, Prolog, ...

� 9 combinations { test.sh

H-1

Slide H-1: Hello (CORBA) Universe

Admittedly, the Hello Universe example presented here is slightly more com-

plex than the Hello World example given in the appendix on Java.

In the example, it is shown in complete detail how to write clients and servers

in the three respective languages, how to write a test program to test all possible

combinations and how to manage the con�guration of a CORBA application.

The example is based on the original Hello World example that came with

Orbacus 3.1 from Object-Oriented Concepts and examples from the experimental

SWI-Prolog CORBA binding for Orbacus 3.1.
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The interface – IDL

An interface written in IDL is the point of reference for every CORBA application.

It informs the client what to expect from a server, and it tells the server what

services it is to deliver.

The de�nition below de�nes a module universe that contains an interface

named world. The world interface provides the method hello and two additional

methods ask and tell.

module universe f universe.idl

interface world f world

void hello();

void ask(in string x);

string tell();

oneway void halt();

g;

g;

The ask and tell methods were introduced to show how CORBA deals with in

and out or result parameters.

In addition, the world interface supports a method halt, which was introduced

to stop the world on the client's demand. In actual applications, you do not want

to provide such a method without ensuring that the client has the right to stop

the world.

C++ realization

The C

++

realization consists of a broker that gives access to the ORB for the

client and to both the ORB and the BOA for the server. Apart from a client and

server, we need an implementation for the world, which is given in respectively

the world-srv.h and world-srv.c �les.

C++ realization

� broker { access to ORB and BOA

� client { needs ORB only

� server { needs access to BOA

� implementation { world-srv.h world-srv.c

H-2

Slide H-2: C++ realization
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Broker The broker class in C

++

provides a constructor, an initialization method,

the operator that starts the server's event loop, and methods to convert strings

to object references and methods to read and write object identi�ers.

class broker f broker.h

public:

broker();

void init(int& argc, char**& argv, int fl=0); 1 = client

int operator()(); to run the server

char* ref(corba::object* x); object to string

corba::object* ref(const char* s); string to object

corba::object* object(const char* file); get object IOR �le

void refout(const char* f, corba::object* x); IOR to �le

g;

Below, the implementation is given of the constructor, which needs to do

nothing, the init method, that initializes the ORB, and the BOA in the case of a

server.

broker::broker() f g broker.c

void broker::init(int& argc, char**& argv, int fl=0) f

orb = CORBA ORB init(argc, argv);

if (!fl) boa = orb -> BOA init(argc, argv);

g

g

int broker::operator()() f

boa -> impl is ready(CORBA ImplementationDef:: nil());

g

As said before, the broker class provides only shorthands and abstractions

from vendor-speci�c code.

Client The code snippet below shows how the client creates and initializes a

broker object, how it obtains an object reference, and also some calls to the world

server, including hello and a request to be informed about Clinton's a�airs, which

certainly had some relevance at the time of writing this.

int main(int argc, char* argv[], char*[]) f client.c

broker* broker = new broker(); get yourself a broker

try
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f

broker->init(argc,argv); initialize broker

corba::object* obj = broker->object("world.ref");

universe world var world = universe world:: narrow(obj);

f some object invocations

world -> hello();

world -> ask("How are Clinton's affairs?");

cout << "client:" << world->tell() << endl;

g

g catch(corba::exception ex) f ... g

g

Note that the object that is obtained from world.ref must be dynamically

downcasted to its actual type.

Server The server code is similar as far as the creation and initialization of the

broker is concerned, but instead of creating an object from a string identi�er, it

writes the identity of the server object created to the �le world.ref.

int main(int argc, char* argv[], char*[]) server.c

f

broker* broker = new broker(); get yourself a broker

try

f

broker->init(argc,argv); initialize orb and boa

universe world var p = new universe world srv;

broker->refout("world.ref", p); write identity

broker->operator()(); run the the world

g

catch(corba::exception& ex) f ... g

g

The C

++

class that implements the world interface might appear disappoint-

ingly trivial. It is left to the student to think of something less trivial.

void universe world srv::hello() f world srv.c

cout << "Hello World!" << endl;

g

void universe world srv::ask(const char* s) f

cout << "Asking: " << s << endl;

g
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char* universe world srv::tell() f

char result[] = "ok";

CORBA String var s = (const char*) result;

return s. retn();

g

void universe world srv::halt() f

exit(0);

g

Discussion Writing a CORBA application might indeed be simpler than you

thought. Follow the steps taken in this example as a recipe, and you master the

art of writing CORBA applications instantly.

Java realization

The Java realization of the Hello Universe example has the same structure as the

C

++

realization. See slide H-3.

Java realization

� broker { contact ORB and BOA

� client { connect to server

� server { announce server object

� implementation { world srv.java

H-3

Slide H-3: Java realization

Broker The IDL-Java binding seems to be somewhat better standardized, pos-

sibly because it is of a later date. So the advantage of using a broker abstraction

lies primarily in the shorthands it provides, and the similarity with the C

++

realization.

import org.omg.CORBA.*; broker.java

import java.io.*;

public class broker f

boolean fl = false;

java.applet.Applet applet = null;

public broker() f g

public broker(boolean fl) f fl = fl; g
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public broker(java.applet.Applet x) f

applet = x;

init(null);

g

public void init(String[] args) f

if ( applet == null) f

orb = ORB.init(args,new java.util.Properties());

if (! fl)

boa = orb.BOA init(args,new java.util.Properties());

g else

orb = ORB.init( applet, null);

g

public int operator() f run { server-only

if (! fl) boa.impl is ready(null);

return 0; // OK

g

....

g;

The only (real) di�erence with the C

++

broker class is the possible existence

of an applet. Somewhat unfortunately, when the (client) object is an applet, the

initialization of the ORB must be done in a di�erent way.

Client The client in Java must, also, create and initialize a broker object, and

create a reference to the world server object.

package universe;

import org.omg.CORBA.*; client.java

import java.io.*;

import hush.broker; see broker.java

public class client

f

public static void main(String args[])

f

broker broker = new broker(true); // true means client only

try

f

broker.init(args); init orb

org.omg.CORBA.Object obj = broker.object("world.ref");

world world = worldHelper.narrow(obj);

if (world == null)

throw new RuntimeException();
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System.out.println("Enter 'h' (hello) or 'x' (exit):");

... // do some requests to the world

g catch(...) f ... g

g

g;

In Java, an extra object interfaceHelper is created to allow for casting the

object that is created from a string object identi�er to its actual object type,

world in this case.

Server The server provides access to the (server) object that implements the

world interface. After creating and initializing a broker object, it creates an

instance of a world server and writes its object identi�er to the �le world.ref. In

addition it writes a HTML �le that contains an applet that has a (string) reference

to the server. See the online version or the Orbacus documentation for details.

package universe; server.java

import org.omg.CORBA.*;

import java.io.*;

import hush.broker; // see broker.java

public class server

f

public static void main(String args[])

f

broker broker = new broker();

try

f

broker.init(args); create orb en boa;

world srv p = new world srv(); create impl object

broker.refout("world.ref",p); write ref

create world.htm

broker.html("world.htm",p,

" code=universe/applet.class "

+ "width=500 height=300");

broker.operator(); // run == boa.impl is ready(null);

g catch(SystemException ex) f

broker.print(ex);

System.exit(1);
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g

System.exit(0);

g

g

After creating the object and its reference �les, the server invokes the method

impl is ready, through the broker's operator.

The implementation of the actual world server is as simple as its C

++

peer.

package universe; world srv.java

import org.omg.CORBA.*;

public class world srv extends worldImplBase

f

public void hello() f

System.out.println("Hello World!");

g

public void ask(String msg) f

System.out.println(msg);

g

public String tell() f

String s = new String("ok");

return s;

g

public void halt() f

System.exit(0);

g

g

Note that dealing with strings is signi�cantly simpler in Java, because of Java's

higher-level built-in String.

Discussion Observe that the Java and C

++

realizations are very similar in

structure and also very similar in code. Nevertheless, what does not become

evident in this small example is the bookkeeping that needs to be done in C

++

for managing the objects created. Since Java supports garbage collection, the

programmer needs to do no such bookkeeping, whereas in C

++

one has to use

either reference counting or the special var type, that acts as a smart pointer

which does the reference counting automatically. See any CORBA documentation

for details.
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Prolog realization

Although Prolog is not a mainstream programming language in IT, it is interesting

to look at the realization of the Hello Universe example in Prolog, if only to

observe that its structure is very similar to the realization in Java and C

++

.

In this example, that is implemented with the SWI-Prolog CORBA stubber,

which generates most of the code, we will primarily look at the implementation

of the server object itself. The relevance of this example may be motivated by

the observation that many knowledge-intensive IT applications are realized by

imperative (object-oriented) languages such as Java and C

++

which are obviously

not suited for that.

Prolog realization

� broker { mediating service

� client { get object reference

� server { provide implementation

� implementation { universe.pl

H-4

Slide H-4: Prolog realization

For those that do not know Prolog it is su�cient to know that in Prolog

so-called predicate de�nitions act as procedures, that may be invoked by trying

to satisfy a goal. A special, very powerful, feature of Prolog is that

broker(client(M:F)) :- broker.pl

...

corba initialize orb([], ),

factory(F). gives a handle to the server object

broker(server(M:I)) :-

...

corba initialize server([server,server(test),

timeout(infinite)],Server),

... create server object

G =.. [ Create, Server,Self],

call(G),

corba object to string(Self,IOR),

open(IORFile,write,Fd), write reference to �le

format(Fd,'string',[IOR]),

close(Fd),

corba main loop(Server). enter main loop

Obviously, when looking at this code, some standardization of a CORBA

binding for Prolog is desirable.
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Client The client makes a connection with the broker, gets a binding to the server

object and calls some methods of that object.

client.pl

:- use module(universe). see universe.pl

:- [broker]. include broker

main :-

broker(client(universe:F)), initialize the broker

assert(client(factory(F))),

run.

run :-

h,

ask('What is the state of Clinton s affairs?'),

write('Type h to say hallo, x to quit.'),nl.

ask(X) :-

client(factory(F)),

write(client(ask(X))),nl,

world ask(F,X),

world tell(F,R),

write(client(ans(R))),nl.

h :- client(factory(F)), world hello(F).

q :- client(factory(F)), world halt(F), halt.

x :- halt.

Server The server is signi�cantly simpler, due to the fact that all ugly details

have been hidden in the broker.

:- [broker]. server.pl

main :-

broker(server(universe:world)).

The implementation of the server object consists of a collection of predicate

de�nitions (procedures), that have the interface or class name as a pre�x.

:- module('universe',[]). universe.pl

world hello( Self) :-

write('Hello World'),nl.
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world ask( Self, X) :-

write(asking(X)), nl.

world tell( Self,Y) :-

Y = 'logically, ok',

write(telling(Y)),nl.

world halt( Self) :-

halt.

As in the previous examples, the actual realization is admittedly simple.

Discussion Prolog, also in its standard (that is, non-object-oriented form) is

a powerful language for implementing knowledge-intensive applications. This

example shows that CORBA applications can be realized also by using Prolog

technology. I would welcome seeing real-life applications in which the knowledge

programming part was written in Prolog or an object-oriented extension thereof

(such as the language DLP).

Configure, make and test

Still a di�cult aspect of CORBA programming, when you are not using an IDE,

is to manage the creation and con�guration of object �les and executables. In the

online version of the book you'll �nd all the details of the Makefile, the settings

used for Orbacus, and a simple test shell, which allows for testing all nine possible

combinations of clients and servers.

Testing CORBA applications is signi�cantly more di�cult than testing stand-

alone applications. This is due on the one hand to the fact that it concerns

a distributed application, involving communication over a network, and on the

other hand to the indirection that must take place within both the client and the

server to invoke and answer methods over the object request broker software bus.

Conclusions

This concludes our simple CORBA example. It shows that CORBA is ripe to be

exploited, on a small scale in practical student assignments, but, as testi�ed by

the literature, also on a large scale in business-critical applications.

� CORBA is ripe to be exploited in OO { the practicum

� the broker is a useful abstraction

� forget about the wiring - concentrate on application logic

H-5

Slide H-5: Conclusions
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In a multi-lingual, and possibly multi-orb, environment the broker abstraction

may act as an intermediary, providing a short-hand for common operations and

abstracting from the details in which the language bindings and ORBs may di�er.

As in other areas, in CORBA programming it is good advice to start small and

grow incrementally. Develop your system in such a way that you can gradually

forget about the wiring, and concentrate on the application logic instead.
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Software development projects

An object-oriented approach to software development requires an attitude that

must be formed by experience with a practical programming task, employing

object-oriented technology. In slide ??, a number of projects are listed that have

served as programming assignments at the Vrije Universiteit, Amsterdam.

Software development projects I

� gambling machine

� interactive video game Coplien (1992)

� simple hypermedia system Meyrowitz (1986)

� direct manipulation score editor Pope (1991)

� an object-oriented expert system Hu (1989)

� 3D animation editor Ammeraal (1992)

� a simple case tool Coad and Yourdon (1991b)

� route planner

I-1

Slide I-1: Software development projects

The programming language (mandatorily) employed was C

++

. The hush

library was used for developing graphical user interfaces. Students were allowed to

work in groups of two. Before starting a project, students were required to write

a synopsis giving a global outline of the intended functionality of their system.

The minimal design documentation required was a description of each class

interface in the style of CRC cards. Students were encouraged to make documen-

tation and help available online, preferably in a hypertext format.

The programming projects are based on suggestions found in the literature,

with the exception of the gambling machine and the routeplanner. The gambling

machine seemed nice to allow students to experiment with animation techniques.
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The projects A typical example of a gambling machine is a one armed bandit

with three columns of fruit. It is important to o�er a realistic interface. Further,

one must employ stochastic techniques to determine the chance of winning.

An example of an interactive video game is a volley or tennis game for one or

two players. One must allow for an option to determine the speed of the ball and

an option for replay. See Coplien (1992).

A simple hypermedia system must be capable of presenting text and graphics

and must allow for the traversal of links between such items. An important

aspect of this project is the development of an adequate object model for the

items supported, including links. See Meyrowitz (1986) and Conklin (1987).

A direct manipulation score editor allows for editing musical fragments interac-

tively. Some musical knowledge is required for such a project. The layout of music

notation appears to be a di�cult issue, because it is essentially two-dimensional

and involves many special symbols. See Pope (1991).

The notion of an object-oriented expert system is quite open-ended. An ap-

proach one may take is to implement a traditional rule-based expert system in an

object-oriented way, using C

++

. Take care to include an example knowledge-base

to test the functionality of the system. See Hu (1989). A more general approach

to employing object-oriented technology for the development of knowledge-based

systems is described in Eli�ens (1992).

A 3D animation editor supports the creation of (simple) 3D �gures and must

minimally allow for some basic manipulations in 3D space, such as rotations and

translations. As an additional requirement, there must be a facility to replay a

series of manipulations. See Ammeraal (1992).

A simple case tool allows for the interactive development of a simple object

model, including the description of attributes of objects and the inheritance

relations between object types. For an example of such tools, see Coad and

Yourdon (1991b) and Rumbaugh et al. (1991).

A routeplanner allows the user to indicate a starting location and an end

location. The system then calculates an appropriate route, for example the fastest

or cheapest. As an additional requirement, the system must allow for the user to

ask additional information about the route and the intermediate locations situated

along the selected route. This information should preferably be in multimedia

format.

Comments The routeplanner has successfully been used as an assignment as

part of a CS2 Software Engineering course. Students, indeed, took the oppor-

tunity to experiment with the multimedia facilities of hush. Some of the other

project assignments, such as the score editor and the 3D editor, have led to quite

remarkable results. For example, the 3D editor project led students to develop a

system to wander in 3D virtual space. Somewhat disappointingly, however, the

object-oriented expert system project has not been chosen thus far. Perhaps it is

regarded as too di�cult or as not interesting enough.

Since the assignments were meant primarily as a means to gain experience with

practical aspects of object-oriented programming, students were left free to choose

a particular design method. The use of CRC-style documentation, however, was
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mandatory. Quite often, students developed a design employing OMT notation,

which did not necessarily lead to a better result.

To gain experience with object-oriented design and analysis, a practical course

focusing on modeling and requirements analysis is advisable. Any of the assign-

ments above may be used in such a course. Other suggestions may be found

in Coleman et al. (1994) and Sanden (1994) (which may be obtained by anony-

mous ftp at ftp://isse.gmu.edu/pub/techrep/94 102 sanden.ps.gz).
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Answers to questions

Chapter 1

1. Object-oriented programming stands for an approach to structure programs

using the object metaphor as an abstraction device. See slide 1-2. It is

motivated by the need to manage the complexity of software.

2. An exhaustive overview is given in slide 1-4 and slide 1-5. The most

important features are, obviously, data abstraction and polymorphism due

to inheritance.

3. The complexity referred to is not the structural complexity of the com-

putation, that is the space and time needed to solve a problem, but the

conceptual complexity of programming, the organization of the software.

4. Contracts are a means to specify the obligations of the client and the services

an object is to provide, in case these obligations are met, in a formal way.

5. From a historical perspective, OOP is a paradigm of programming. See slide

1-15. However, from a software engineering perspective, OOP is increasingly

becoming important for design and analysis as well. See slide 1-9.

6. These include imperative languages, functional languages and logic pro-

gramming languages. The essential features of OOP encapsulation and

inheritance. These may be realized in a variety of language settings.

7. An object-oriented approach blurs the distinction between analysis, design

and implementation. See slide 1-19. Moreover, it allows for di�erent soft-

ware development models, such as prototyping. See slide 1-21. What is your

opinion? As concerns maintenance, corrective maintenance is facilitated

by the localization due to encapsulation. Adaptive maintenance is quite
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another matter. Polymorphism helps, but only if extensibility has been an

explicit design goal.

8. Aspects of software quality include correctness, robustness and extendibility.

In particular, with regard to the cost of maintenance, a valid criterion would

be maintainability. OOP contributes to maintainability by supporting a

strong notion of locality.

9. See slide 1-26.

10. See the discussion in section 1.4.

Chapter 2

1. The letter/envelope idiom is a means to separate interface aspects of a class

from implementation aspects. An advantage is that implementations may

be dynamically changed.

2. Polymorphism may be characterized as the ability to be of a di�erent

type, dependent upon circumstances. For object-oriented languages, the

best-known form is (inclusion) polymorphism by inheritance. However, (ad

hoc) polymorphism, due to function overloading, is a facility found in many

languages.

3. See section 2.1.4.

4. See section 2.2.

5. We can distinguish between creational, structural and behavioral patterns.

For a discussion of their relevance see section 2.3.

6. See section 2.3.3.

7. The Reactor pattern describes how to deal with events, in particular when

multiple event loops are involved. See section 2.4.1.

8. See section 2.4.2.

Chapter 3

1. The Fusion method is typically a second-generation development method,

containing ingredients of many other (�rst-generation) methods. See section

3.1.2. In comparison with other methods, it strongly focuses upon process

aspects. See section 3.1.3.

2. According to Booch, (1) identify the objects and their attributes, (2) identify

the operations associated with objects, and (3) establish the interfaces of

object.

Most of the heuristics for identifying objects are based on a linguistic anal-

ysis of the requirements document. See section 3.2.1.
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3. Criteria to eliminate spurious classes essentially come down to avoiding

classes that provide no information. See slide 3-14.

4. The CRC method consists of de�ning, for each class, its responsibilities and

its collaborators, that is the classes that are needed to function properly.

See slide 3-15.

5. A contract de�nes the behavior of an object by means of an invariant

and assertions characterizing the pre- and post-conditions of the methods

supported by an object. See slide 3-19.

6. Contracts may help to decide who is responsible for software failures. See

slide 3-21.

7. Re�ning a contract amounts to strengthening the invariant and, for each

method, weakening the pre-conditions and strengthening the post-conditions.

Also, methods may be added. See slide 3-22.

8. Contracts may be used to establish runtime consistency characteristics.

Testing runtime consistency amounts to checking object invariants and pre-

and post-conditions of object methods.

9. A formal speci�cation must characterize the requirements of a system and

must also provide guidelines for its validation. Contracts may be used to

specify invariant consistency properties that may be tested at runtime.

Chapter 4

1. I suggest taking the example described in section 4.1, but you are encouraged

to �nd a di�erent example.

2. See slide 4-12.

3. Class invariants may be disrupted by re�ning methods that introduce hidden

modi�cations to the value(s) of instance variables. See section 4.2.2.

4. The intuition underlying the Law of Demeter is essentially that ignorance of

how a class is implemented is bene�cial for understanding and maintenance.

See section 4.2.3.

5. See slide 4-16.

6. Semantic modeling is mostly concerned with de�ning the attributes of ob-

jects and the relation between object classes. Object-oriented modeling, in

contrast, is more concerned with characterizing the behavioral properties of

objects. However, the two approaches are converging.

7. Abstract systems may be regarded as the characterization of the functional-

ity o�ered by a collection of abstract data types. It speci�es the repertoire

of methods available to the user of such a collection.
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8. Classes corresponding to actual events specify the interactions which must

occur between objects. The resources which are needed when the event

occurs are speci�ed when creating the event. Protection is o�ered by hiding

the interaction between the objects in the de�nition of the event activation

operator.

Chapter 5

1. Object-oriented languages generally o�er a facility for creating objects, the

capability of message passing, classes and inheritance. See slide 5-4.

2. A classi�cation of object-oriented languages may distinguish between hybrid

languages, frame-based languages as employed in arti�cial intelligence, par-

allel/distributed languages and languages supporting prototypes. See slide

5-4.

3. Characteristic for the object model supported by C

++

is the uni�cation of

classes with the struct record type. See slide 5-6.

4. Friends may be classes or functions. They are allowed access to the private

parts of an object. They may be necessary for reasons of e�ciency. Friends

are a relatively safe feature, since they must explicitly be declared by the

class itself. They are not inherited. Neither is it possible for a class or

function to declare itself as a friend of a class. Nevertheless, friends may

jeopardize the integrity of an object. Treat friends with care.

5. Object-based implies support for encapsulation, whereas object-oriented

implies support for encapsulation and inheritance. See slide 5-11.

6. As orthogonal dimensions along which to describe the design of object-

oriented languages you may distinguish between objects, types, delegation

and abstraction. See slide 5-12.

7. Active objects are, basically, objects with threads. Synchronous active

objects, as supported by sC

++

, support method call by rendez-vous, pro-

tecting the object from unsafe access. Active objects may be used instead

of event-loops and callbacks, thus avoiding the need to merge multiple

event-loops. See section 5.3.4.

8. Prototype-based languages support an object model based on exemplars.

Their most characteristic feature is support for dynamic delegation.

9. Inheritance is static; it amounts to creation-time sharing, whereas delegation

supports lifetime sharing. See slide 5-16.

Both C

++

and Java support the forwarding of member function calls. For-

warding does not, however, allow for binding self-reference to the forwarding

object.
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10. In classical object-oriented languages, the notion of class stands for object

generator and interface description. A class may further be a repository for

sharing resources and act as an object capable of answering (class) methods.

See slide 5-20.

11. See slide 5-21.

12. The �rst three postulates given in slide 5-22 pertain to Smalltalk. With some

minor modi�cations, these postulates hold for other classical languages. The

fourth postulate of slide 5-22 speci�es the constraint that must be met by a

re
ective architecture: class variables of an object must be instance variables

of the class of the object (when considering the class as an object).

Chapter 6

1. The major characteristic of a component is that it is a unit of independent

deployment. In contrast, an object is simply a unit of instantiation. There

may be many objects in a component. In addition, components must satisfy

much stricter requirements than objects. For example, components may not

have persistent state, which transcends the boundaries of a transaction. See

slide 6-2.

2. See slide 6-3.

3. These are all, in some way, standards for interoperability. There is an

obvious commonality since they all use some form of an Interface De�nition

Language. There are, however, many di�erences. For example, Microsoft

(D)COM is being enforced as a de facto standard for the Windows platform,

whereas both CORBA and the ODMG standard are developed by a con-

sortium to arrive at a vendor-independent standard, encompassing multiple

platforms. See section 6.2.

4. A number of perspectives relevant to the evaluation of the Java platform are

mentioned in slide 7-12, among which are the software engineering and sys-

tem development perspectives. In brief, the Java platform is very promising

as it provides numerous APIs. There may be some doubt, however, about

its e�ciency. Also, questions have been raised about issues such as the

maintainability of Java code.

5. See section 6.4.

6. One of the problems that occurs is how to integrate the (remote) object

types with the types provided by the library. In section 6.5 the notion of

client adaptors has been introduced as a solution to this problem.

Chapter 7

1. As elements in a software architecture, we can distinguish between pro-

cessing elements, data elements and connections. See slide 7-2. A software
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architecture description may serve to verify critical properties of the system,

including properties such as availability, throughput, and interoperability.

2. See the discussion in section 7.1, in particular the de�nition from Bass et

al. (1998).

3. Patterns for distributed object architectures range over various levels: frame-

work, application, system, enterprise, and the intra/Internet level. In par-

ticular the latter levels require an e�ort of standardization and agreement

on protocols. Patterns on the lower levels are important to make good use

of the technology, for example CORBA.

4. A possible example is the architecture for a multimedia information system,

of which a sketch is given in section 7.2,

5. Simply, the separation of knowledge-level and system-level aspects. For

example, business logic would be a suitable candidate. See section 7.3.1.

6. The issues that play a role are listed in slide 7-10. The actual solution will,

naturally, depend on the language for which the extension is made.

7. The JNI allows for the coupling of functions to (native) object methods.

However, the JNI does not provide a standard way to associate Java objects

with native C

++

objects. See section 7.3.3.

8. The choice for an architectural style is determined by both technological

constraints and application requirements. See section 7.4.

Chapter 8

1. Control abstractions primarily a�ect the 
ow of control. Control abstrac-

tions were introduced to support a structured approach to algorithm design.

A structured approach avoids the use of goto's, and instead employs if-

statements and explicit while-statements. In contrast, data abstraction

pertains to data structures and information hiding. Abstract data types

may be realized as a collection of functions. Object-oriented languages,

however, provide far better support for data abstraction. See slide 8-2.

2. The most obvious interpretation of objects (as algebras) is to regard each

object state as an algebra. A state change for the object, then, results in

a di�erent algebra. Mathematically, the object may then be considered to

live in a di�erent world. See slide 8-28.

3. Types contribute primarily to the reliability of systems. See slide 8-4.

4. A data abstraction matrix, as shown in slide 8-23, provides a powerful way to

specify the properties of an abstract data type. Its realization by modules

or objects re
ects a choice for a particular decomposition, sacri�cing the

generality of the original matrix.
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5. The realization of an abstract data type as a module results in organizing

the functionality of the type around the observers. For each observer, the

result for the various generators is speci�ed as a separate case. In contracts,

objects may be regarded as specifying for each generator the value for the

observer operation. As trade-o�s we have that objects behave comparatively

better when extending the abstract data type with new generators, whereas

the reverse seems to hold for extending an abstract data type with new

observers.

6. Types have a formal interpretation as the speci�cation of constraints. Classes

may be taken as templates for object creation, which is a far more pragmatic

interpretation.

Types may be speci�ed in a syntactic way, semantically or purely pragmat-

ically. In the latter case, the notion of types coincides with the notion of

classes. Classes, clearly, may be regarded as an over-speci�cation of the

properties of a type. When regarded from a syntactic point of view, types

specify too little. However, a purely syntactic speci�cation allows for rigid

type checking. The behavioral speci�cation of types must be regarded as

an ideal. Contracts as supported by Ei�el are one possible approximation

of this ideal. See slide 8-34 and slide 8-35.

7. Behaviorally compatible modi�cations are re�nements that fully meet the

substitutability requirement. Alternatives are signature compatible mod-

i�cations, that are constrained only by syntactic requirements, and name

compatible modi�cations that rely only on the method search algorithm

employed, imposing even weaker constraints.

Chapter 9

1. In knowledge representation, inheritance is primarily applied to describe

taxonomic structures in a declarative way. Employing exceptions in inher-

itance networks leads to non-monotony. Non-monotonic inheritance net-

works may give rise to inconsistencies. See slide 9-2.

2. The meaning of an inheritance lattice may be expressed as a �rst-order logic

formula. An example is given in slide 9-3.

3. A type denotes a set of individuals. The subtyping relation is essentially

the set inclusion relation, with some additional constraints. However, the

subtype relation is best de�ned by means of subtype re�nement rules.

4. See slide 9-5.

5. The contravariant nature of the function subtype re�nement rule may be

explained by relying on the business service metaphor: re�ning a service

means better work for less money. Or, put di�erently, re�ning a function

means imposing less constraints on the client, yet delivering a result that is

more tightly de�ned. See slide 9-7.
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6. The notion of objects as records is introduced simply to justify the inter-

pretation of objects as records or tuples of values and functions. Again

employing a business metaphor, regarding an object as a collection of ser-

vices, improving such a collection means o�ering more, and possibly better,

services. See slide 9-8.

7. Typed formalisms provide protection against errors. Yet, untyped for-

malisms are generally more 
exible. In the practice of computer science

and mathematics, untyped formalisms are surprisingly popular.

8. A �rst distinction may be made between universal polymorphism and ad

hoc polymorphism, which accounts for overloading and coercion. Universal

polymorphism may be subdivided into parametric polymorphism, which

covers template classes, and inclusion polymorphism, which results from

derivation by inheritance. See slide 9-12.

9. Inheritance allows for the incremental development of object descriptions.

A child class may be regarded as modifying the parent base class, as it

may include additional attributes and methods and may re�ne inherited

attributes or methods.

10. See slides slide 9-19, slide 9-22 and slide 9-26.

11. (a) fa : Int ; f : Int ! Intg, (b) Int ! Int , (c) fa : Bool ; f : Bool ! Intg !

Int .

12. (a) No, since 1::4 66 2::5. (b) No, since f : Bool ! Int 66 f : Int ! Int ,

because Int 66 Bool . (c) Yes, since fa : Bool ; f : Bool ! Intg 6 fa : Boolg.

13. To give an example, if you have a record x of type 9�:fval : �:op : �! Intg

then you do not need to know the precise nature of the (hidden) type � to

be able to type the expression x :op(x :val) as Int. See slide 9-33.

14. A possible realization is given by the record fa = 0; f = � x :Eg, for

E = if even(x ) then true else false. The corresponding package is given by

the expression pack [� = Int in fa : �; f : � ! Boolg](0; � x :E ). Another

realization is given by the record type fa : R; f : R ! Boolg where R stands

for fx : Int ; y : Intg.

15. The proof involves unrolling. Let T

1

= ��:fc : �; b : � ! �g and T

2

=

��:fb : � ! �g. Now suppose that T

1

6 T

2

then, by unrolling, we would

have that fc : T

1

; b : T

1

! T

1

g 6 fb : T

2

! T

2

g, and hence, by the

function subtyping rule, that T

2

6 T

1

and T

1

6 T

2

. This would only hold

if T

1

= T

2

, which is obviously not the case.

16. Let � = ��:fc : �; b : � ! �g and assume that � 6 � , then by unrolling

we have that fc : �; b : � ! �g 6 fb : � ! �g which clearly holds since

b : � ! � 6 b : � ! � . And, by applying the re�nement rule for recursive

types (given in slide 9-35), we indeed have that � 6 � .
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Chapter 10

1. Conformance not only involves syntactic properties, but behavioral proper-

ties as well. Behavioral properties include invariant properties and history

properties. See slide 10-2.

2. See slide 10-3.

3. Static constraints may be expressed directly in the signature, but also by

means of pre- and post-conditions. To a certain, but de�nitely lesser, extent,

the reverse is also true. See slide 10-4.

4. States may be modeled as functions and state transformations as function

modi�cations. See slide 10-6 and slide 10-5.

5. There are two ways to verify the behavior of a program: (a) prove for each

possible transition that the formula holds; and (b) employ the correctness

calculus given in slide 10-7.

6. For each syntactical kind of statement allowed by the language, a transition

system speci�es a corresponding execution step, or series of such steps, by

means of a transition derivation rule. An example transition system for

a simple object-based language, supporting object creation and message

passing, is given in section 10.3.

7. To prove that a realization is correct with respect to its abstract speci�ca-

tion, one must prove that each concrete operation satis�es the constraints

imposed on the abstract level. See slide 10-12.

8. See slide 10-13, slide 10-14 and slide 10-15.

9. Correspondence between subtypes involves syntactic constraints, de�ned by

the subtyping rules given in chapter 9, behavioral constraints, as character-

ized by the re�nement relation for pre- and post-conditions and invariants,

and constraints for the extensions, as expressed by the diamond rule. See

slide 10-16 and slide 10-17.

10. See slide 10-18, slide 10-19 and slide 10-20.

11. Invariance properties of objects cannot completely be checked locally, within

the con�nes of a single object. See slide 10-21. Checking invariants explicitly

for each object, however, is likely to be too expensive.

12. Formal methods to specify the interaction between objects include model-

based speci�cation methods, the speci�cation of contracts as behavioral

compositions, the speci�cation of cooperating actors by means of scripts,

the speci�cation of multi-party interactions, and the speci�cation of joint

action systems. See slide 10-22.
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Chapter 11

1. Business objects give access to corporate data. For the end-user, 
exibility

in manipulating these data is what counts. For management, business

objects may provide a handle to de�ne business processes that make optimal

use of IT resources.

2. The SanFrancisco framework gives development companies the foundation

for developing added-value products. It is meant to be a reusable framework

of business process and business object components, that provides a generic

solution for the realization of (IT support for) business processes.

3. See slide 11-5.

4. Logistics-based modeling is concerned with quantitative aspects of business

processes, such as throughput and workload. Discrete event simulation

provides the tools to model such aspects.

5. The request for loans process, discussed in section 11.2.3, is such an example.

6. See slide 11-12.

7. As requirements we may mention support for interaction, support for multi-

ple views, and powerful modeling or visualization primitives. See slide 11-17

for an example architecture.

8. One of the issues to decide upon is whether a two-tier or three-tier archi-

tecture is chosen. Another issue is how to make the legacy information

available, and how to incorporate additional business logic in (for example

middle-tier) objects. For actual solutions, see section 11.5.

Chapter 12

1. The Web is essentially a client/server architecture. Objects play an increas-

ingly important role, to extend client-side applications, server-side applica-

tion and to enhance the technological infrastructure for the Web itself.

2. See section 12.1.2 for a description. As an advantage one may mention

that it is a powerful environment, with a large installed user base. A clear

disadvantage is that the proposed architecture is tightly connected with one

particular platform, Windows 95/NT.

3. Java and CORBA may be used for a smooth extension of Web applications

with (distributed) object facilities, as illustrated in slide 12-4 and slide 12-5.

4. Computation on the Web is much more indeterminate than computation in

traditional object systems. In comparison with LAN client/server systems

delay and response times are far less predictable.

5. See slide 12-11.
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6. See section 12.2.1

7. See section 12.2.2.

8. Two basic issues arise: (1) syntactic issues, that is how to incorporate new

media into Web documents, (2) semantic/operational issues, that is how to

provide the operational support fort the new media. With the introduction

of XML and XSL (a powerful stylesheet formalism for XML) there seems to

be generic support for tackling these issues. Another way to provide such

operational support is to write a plugin for the various browsers and (client)

platforms. As an example, see section 12.3.
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