MINDS - Spring 2018 "Riemann surfaces"

Thursdays 11am-12am


Topic Date Details Speaker Room
Introduction 8.02. Overview and a little planning Elena
Classification of surfaces 15.02. Topological classification of surfaces Elena WN P624
Holomorphic maps 22.02. Holomorphic map, definitions and examples Wouter WN S624
Riemann existence theorem 1.03. Statement and proof Thomas WN S664
Riemann existence theorem 2 8.03. Statement and proof Thomas WN S624
EXTRA SESSION 13.03. Swift-Hohenberg Equation, 16:00-17:00 Jason Bramburger WN S631
Calculus on surfaces 1 15.03. 1-forms Wouter-Thomas WN R231 (no blackboard)
Master thesis presentation 22.03. Thomas Rooijakkers WN P624
Calculus on surfaces 2 29.03 de Rahm cohomology Thomas-JD WN S624
Applications of Euler characteristics 5.04 Jan-David WN P624
Elliptic integrals 12.04. Elliptic integrals and Weierstrass p-function Joey WN P624
Elliptic integrals II 19.04. Weierstrass p-function Joey WN S640
Main theorem 26.04. Main theorem of Riemann surfaces Elena WN S640
Proof 3.05 Proof of the Main theorem Wouter WN P624
Ascenion Day 10.05 WN P624
Uniformisation theorem 17.05 Uniformisation theorem Berry WN S640
Ricci flow 24.05 Connetions and Ricci flow Thomas WN P624
Chapter 11 31.05 Contrasts in Riemann surfaces Jan-David WN S624
Chapter 12 7.06 Divisors and Jacobians Casper WN S664
Chapter 13 14.06 Moduli and deformations Joey WN S664
no MINDS 21.06
Chapter 14 28.06 Mappings and moduli Jan-David WN C121

Literature:

back to home page