
Using Entropy for Parameter Analysis of
Evolutionary Algorithms
S.K. Smit A.E. Eiben

Abstract— Evolutionary Algorithms (EA) form a rich class
of stochastic search methods that share the basic principles
of incrementally improving the quality of a set of candidate
solutions by means of variation and selection [10], [8]. Such
variation and selection operators often require parameters to
be specified. Finding a good set of parameter values is a non-
trivial problem in itself, furthermore some EA parameters are
more relevant than others in the sense that choosing different
values for them affects EA performance more than for the other
parameters. In this chapter we explain the notion of entropy
and discuss how entropy can disclose important information
on EA parameters, in particular, about their relevance. We
describe an algorithm that is able to estimate the entropy of
EA parameters and we present a showcase, based on extensive
experimentation, to demonstrate the usefulness of this approach
and some interesting insights that are gained.

I. INTRODUCTION AND BACKGROUND

Evolutionary algorithms form a rich class of stochastic
search methods that share the basic principles of incremen-
tally improving the quality of a set of candidate solutions
by means of variation and selection [10], [8]. Algorithms
in this class are all based on the same generic framework
(explained in the next section) and for obtaining a con-
crete algorithm one needs to fill in many details, that is
to say, specify the parameters of the algorithm. Over the
history of EAs it has became clear that good parameter
values are essential for good performance. However, as of
today, not much is known about the effect of parameters
on performance. Setting parameter values is commonly done
in a very ad hoc manner, based on conventions, intuition,
and experimental comparisons on a limited scale. Collective
wisdom in evolutionary computing (EC) acknowledges that
some parameters have more impact on performance than
others. Obviously, more influential parameters need more
care when setting their values, but at the moment there are no
widely used techniques to establish the (relative) importance
of different parameters. Using screening methods [28] is one
of the few techniques currently used to indicate importance,
however the information that can be extracted is limited and
the results of different algorithms cannot be compared.

In this chapter we show how entropy can be used to
indicate how influential a particular parameter is. We use
the term parameter relevance to reflect the level of influence
on EA performance and argue that entropy is a good measure
of relevance. The main contributions of this chapter are as
follows:

1) We explain the notion of entropy and discuss how
entropy can disclose important information on EA

Vrije Universiteit Amsterdam, The Netherlands, {sksmit, gusz}@cs.vu.nl

parameters, in particular, about their relevance.
2) Describe an algorithm, REVAC, that is able to estimate

entropy of EA parameters.
3) Present a showcase, based on extensive experimenta-

tion, to demonstrate the usefulness of this approach
and some interesting insights gained.

The rest of this chapter is organized as follows. In Section
II we briefly introduce evolutionary algorithms, followed by
a discussion on their parameters and issues in parameter
tuning in Section III. We elaborate on the notion of entropy in
Section IV, including a discussion on the use of entropy for
parameter analysis of EAs. The REVAC method is described
in Section V. Section VI contains the case study and we
conclude the paper in Section VII by summarizing the main
issues.

II. EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms are all based on the same generic
framework, inspired by biological evolution. The fundamen-
tal metaphor of evolutionary computing relates natural evo-
lution to problem solving in a trial-and-error (a.k.a. generate-
and-test) fashion as illustrated in Table I.

TABLE I
THE BASIC EVOLUTIONARY COMPUTING METAPHOR LINKING NATURAL

EVOLUTION TO PROBLEM SOLVING

EVOLUTION PROBLEM SOLVING
environment ←→ problem
individual ←→ candidate solution
fitness ←→ quality

In natural evolution, a given environment is filled with a
population of individuals that strive for survival and repro-
duction. Their fitness – determined by the environment –
tells how well they succeed in achieving these goals, i.e., it
reflects their chances to live and multiply. In the context of
problem solving we have a collection of candidate solutions.
Their quality – defined by the given problem – determines
the chance that they will be kept and used as seeds for
constructing further candidate solutions.

Surprisingly enough, this idea of applying Darwinian
principles to automated problem solving dates back to the
forties, long before the breakthrough of computers [12]. As
early as in 1948 Turing proposed “genetical or evolutionary
search” and already in 1962 Bremermann actually executed
computer experiments on “optimization through evolution

and recombination”. During the sixties three different im-
plementations of the basic idea have been developed at
three different places. In the USA Fogel et al. introduced
evolutionary programming, [13], [11], while Holland called
his method a genetic algorithm [15], [16], [20]. In Germany
Rechenberg and Schwefel invented evolution strategies [27],
[31]. For about 15 years these areas developed separately;
it is since the early nineties that they are envisioned as
different representatives of one technology that was termed
evolutionary computing [1], [2], [3], [20]. It was also in
the early nineties that a fourth stream following the general
ideas has emerged: Koza’s genetic programming [4], [17].
The contemporary terminology denotes the whole field by
evolutionary computing and the methods herein evolutionary
algorithms. The historical versions evolutionary program-
ming, evolution strategies, genetic algorithms, and genetic
programming are seen as sub-types or dialects within the
family of EAs.

As the history of the field suggests there are many different
variants of evolutionary algorithms. The common underlying
idea behind all these techniques is the same. Given an
objective function to be maximized we can randomly create
a set of candidate solutions, i.e., elements of the objective
function’s domain that forms the search space, and apply
the objective function as an abstract fitness measure – the
higher the better. Based on this fitness, some of the better
candidates are chosen to seed the next generation by applying
so-called variation operators, recombination and mutation, to
them. Recombination is a binary variation operator applied
to two selected candidates (the so-called parents) and results
one or two new candidates (the children). Mutation is a unary
variation operator, it is applied to one candidate and results
in one new candidate. Executing recombination and mutation
leads to a set of new candidates (the offspring) that compete
– based on their fitness – with the old ones for a place in the
next generation. This cycle can be iterated until a solution is
found or a previously set computational limit is reached.

In this process there are two fundamental forces that form
the basis of all evolutionary systems:

• Variation (implemented through recombination and mu-
tation operators) creates the necessary diversity within
the population, thus it facilitates novelty.

• Selection (implemented through parent selection and
survivor selection operators) acts as a force towards
increasing the quality of solutions in the population.

The combined application of variation and selection gener-
ally leads to improving fitness values in consecutive popula-
tions. It is easy, although somewhat misleading, to view this
process as if evolution is optimizing (or at least “approximiz-
ing”) the fitness function, by approaching the optimal values
closer and closer over time.

It should be noted that many components of such an
evolutionary process are stochastic. Thus, although during
selection fitter individuals have a higher chance of being
selected than less fit ones, typically even the weak individuals
have a chance of becoming a parent or of surviving. During

the recombination process, the choice of which pieces from
the parents will be recombined is made at random. Similarly
for mutation, the choice of which pieces will be changed
within a candidate solution, and of the new pieces to replace
them, is made randomly.

It is easy to see that EAs fall into the category of
generate-and-test algorithms. The fitness function represents
a heuristic estimation of solution quality, and the search
process is driven by the variation and selection operators.
Evolutionary algorithms possess a number of features that
can help to position them among generate-and-test methods:
• EAs are population based, i.e., they process a whole

collection of candidate solutions simultaneously.
• EAs mostly use recombination, mixing information

from two or more candidate solutions to create a new
one.

• EAs are stochastic.

Fig. 1. The general scheme of an evolutionary algorithm as a flow-chart

The various dialects of evolutionary computing that we
have mentioned previously all follow the general EA out-
lines, differing only in technical details. In particular, the
representation of a candidate solution is often used to char-
acterize different streams. Typically the representation (i.e.,
the data structure encoding a candidate solution) has the
form of strings over a finite alphabet in genetic algorithms
(GAs), real-valued vectors in evolution strategies (ESs),
finite state machines in classical evolutionary programming
(EP), and trees in genetic programming (GP). The origin
of these differences is mainly historical. Technically, one
representation might be preferable to others if it matches
the given problem better; that is, if it makes the encoding of
candidate solutions easier or more natural. For instance, when
solving a satisfiability problem with n logical variables, the
straightforward choice is to use bit-strings of length n, hence
the appropriate EA would be a genetic algorithm. To evolve
a computer program that can play checkers, trees are well-
suited (namely, the parse trees of the syntactic expressions
forming the programs), thus a GP approach is likely. It is im-
portant to note that the recombination and mutation operators
working on candidates must match the given representation.
Thus, for instance, in GP the recombination operator works

on trees, while in GAs it operates on strings. In contrast to
variation operators, the selection process only takes fitness
information into account, and so it works independently from
the choice of representation. Therefore differences between
the selection mechanisms commonly applied in each stream
are a matter of tradition rather than of technical necessity.

It is worth to note that the borders between the four main
EC streams are diminishing in the last decade. Approach-
ing EAs from a “unionist” perspective the distinguishing
features of different EAs are the algorithmic components,
representation, recombination operator, mutation operator,
parent selection operator, and survivor selection operator.
Reviewing the details of the commonly used operators for
these components exceeds the scope of this chapter. For those
details we refer to a modern text book, such as [10] or [8],
and in the sequel we will use (the names of) such operators
without further explanation. Here we restrict ourselves to
providing an illustration in Table II showing how particular
choices can lead to a typical genetic algorithm or evolution
strategy.

TABLE II
A TYPICAL GA AND ES AS AN INSTANTIATION OF THE GENERIC EA

SCHEME BY PARTICULAR REPRESENTATION AND OPERATORS

GA ES
Representation bit-strings real-valued vectors
Recombination 1-point crossover intermediary
Mutation bit-flip Gaussian noise by N(0, σ)
Parent selection 2-tournament uniform random
Survivor selection generational (µ, λ)
Extra none self-adaptation of σ

III. EA DESIGN, EA PARAMETERS

Given a particular problem, designing an EA for solving
it requires filling in the details of the generic EA framework
appropriately. For a solid basis of this paper we first elaborate
on suitable naming conventions regarding these details.

One possibility is to call these details EA parameters.
In this case, designing an EA for a given application
amounts to selecting good values for these parameters. For
instance, the definition of an EA might include setting the
parameter crossoveroperator to 1-point, the parameter
crossoverrate to 0.5, and the parameter populationsize
to 100. In principle, this is a sound naming convention, but
intuitively, there is a difference between choosing a good
crossover operator from a given list of three operators and
choosing a good value for the related crossover rate pc ∈
[0, 1]. One feels that the parameters crossoveroperator

and crossoverrate are different.
This difference can be formalized if we distinguish param-

eters by their domains. The parameter crossoveroperator
has a finite domain with no sensible distance metric, e.g.,
{1-point, uniform, averaging}, whereas the domain of
the parameter pc is a subset of IR with the natural metric for
real numbers. This difference is essential for searchability.
For parameters with a domain that has a distance metric,

one can use heuristic search and optimization methods to
find optimal values. For the first type of parameters this is not
possible because the domain has no exploitable structure. The
only option in this case is sampling. For a clear distinction
between these cases we can use the terms symbolic parameter
or qualitative parameter, e.g., crossoveroperator, and
numeric parameter or quantitative parameter, e.g., crossover
rate. For both types of parameters the elements of the
parameter’s domain are called parameter values and we
instantiate a parameter by allocating a value to it.

An alternative naming convention, (used in [26] for in-
stance) is to call symbolic parameters components and the
elements of their domains operators. In the corresponding
terminology a parameter is instantiated by a value, while
a component is instantiated by allocating an operator to it.
Using this naming convention for the example in the begin-
ning of this section, crossoveroperator is a component
instantiated by the operator 1-point, while crossoverrate

is a parameter instantiated by the value 0.5.
In this paper we adhere to the second terminology dis-

tinguishing components and parameters. Further to this, we
distinguish two levels in designing a particular EA instance
for a given problem by saying that the operators (the high-
level, symbolic details) define the EA, while the parameters
(the low-level, numerical details) define a variant of this EA.
Table III illustrates this matter.

TABLE III
THREE EA INSTANCES SPECIFIED BY THE COMPONENTS

RECOMBINATION, MUTATION, PARENT SELECTION, SURVIVOR

SELECTION AND THE PARAMETERS MUTATION RATE (pc), MUTATION

STEP SIZE (σ), CROSSOVER RATE (pc), POPULATION SIZE (µ),
OFFSPRING SIZE (λ), AND TOURNAMENT SIZE. THE EA INSTANCES IN

COLUMNS A AND B ARE JUST VARIANTS OF THE SAME EA. THE EA
INSTANCE IN COLUMN C BELONGS TO A DIFFERENT EA.

A B C
Recombin. 1-point 1-point averaging
Mutation bit-flip bit-flip Gaussian N(0, σ)
Parent sel. tournament tournament uniform random
Survivor sel. generational generational (µ, λ)

pm 0.01 0.1 0.05
σ n.a. n.a 0.1
pc 0.5 0.7 0.7
µ 100 100 10
λ n.a. n.a 70
tourn. size 2 4 n.a

This terminology enables precise formulations, meanwhile
it enforces care with phrasing. From now on the phrase an EA
for problem X means a partially specified algorithm where
the operators to instantiate EA components are defined, but
the parameter values are not. After specifying all details,
including the values for all parameters, we obtain an EA
instance for problem X.

It has long been noticed that EA parameters have a strong
influence on EA performance. The problem of setting EA
parameters correctly is therefore highly relevant. Setting EA

parameters is commonly divided into two cases, parameter
tuning and parameter control [9]. In case of parameter control
the parameter values are changing during an EA run. In
this case one needs initial parameter values and suitable
control strategies, that in turn can be deterministic, adaptive,
or self-adaptive. Parameter tuning is easier in the sense that
the parameter values are not changing during a run, hence
only a single value per parameter is required. Nevertheless,
even the problem of tuning an EA for a given application
is hard because there is a large number of options, but only
little knowledge about the effect of EA parameters on EA
performance. EA users mostly rely on conventions (mutation
rate should be low), ad hoc choices (why not use population
size 100), and experimental comparisons on a limited scale
(testing combinations of three different crossover rates and
three different mutation rates).

In these terms we can express the primary focus of this
chapter as being parameter tuning. Entropy is proposed as
a generic measure of parameter relevance that shows how
difficult it is to find parameter values that induce good EA
performance. The practical use of this information is obvious.
Given an EA (thus, all operators specified), if the relevance
levels of the parameters are known then it is possible to
allocate tuning efforts such that more relevant parameters are
tuned more extensively than less relevant ones. It is important
to note that relevance information of EA parameters depends
on two other factors: the EA itself (that is, the chosen
operators to instantiate EA components) and the problem at
hand. The aspect of problem dependence belongs to the issue
of scoping, that is, establishing the scope of validity of exper-
imental work. A thorough treatment of this issue exceeds the
limitations of this chapter; our case study attempts to cope
with this problem by using many problem instances produced
by a parameterized random problem instance generator (see
Section VI for details). Concerning the dependence on the
EA itself, the case study will illustrate that the approach we
advocate here is also helpful for deciding about good opera-
tors for EA components, thus for designing EAs in general.
The basis of such aggregation is the hierarchy between EA
components and EA parameters. This hierarchy is visible
in Table VIII that arranges parameters by the operators
they belong to (with population size as the only exception).
Relying on this hierarchy, it is possible to aggregate results
concerning parameters to results at the level of operators and
thus at the level of EAs.

IV. SHANNON AND DIFFERENTIAL ENTROPY

As we have seen, an EA can be composed from a wide va-
riety of operators, each with its own numeric parameters that
need properly chosen values for satisfactory EA performance.
However, choosing proper values, i.e., tuning, requires effort
both in terms of time and computing facilities and both
resources are limited in practice. Hence, tuning efforts should
be carefully allocated to different parameters such that the
most relevant parameters receive the most attention and only
little effort is spent on finding good values for parameter

with limited relevance . The problem is, how to quantify the
relevance of parameters.

A. Using Success Ranges for Relevance Estimation

In order to objectively quantify a parameter’s relevance,
thus the amount of tuning it needs, one can look at how
accurately its value needs to be specified for achieving a
given performance level. A straightforward approach is to
measure which part of the parameter’s range leads to the
desired performance. For example, let us assume that an EA
has two parameters X1 ∈ [0, 1] and X2 ∈ [0, 1] and that the
algorithm reaches some desired performance if X1 is in the
range [0, 0.5] and X2 is in the range of [0, 0.1]. One can
argue that X2 is more relevant, because X1 has a success
range of 50% of its full range [0, 1] and X2 has a success
range of 10%. Furthermore, one can assume that the success
range within the full 2D parameter space [0, 1] × [0, 1] is
50%·10% = 5%. However, this kind of reasoning can lead to
misleading conclusions if the parameters are not independent.
For example, if we have an algorithm that achieves the
desired performance if X1 is in the range [0, 0.5] or X2

is in the range of [0, 0.1]. The success range of X1 is in that
case equal to [0, 1], because the EA instances with parameter
values of 〈0, 0.05〉 and 〈1, 0.05〉 both terminate with success.
Similarly, the success range of X2 is equal to [0, 1] too.

B. Shannon Entropy

Entropy is commonly used to measure the amount of
disorder of a system and this concept has been extended
in information theory to quantify the uncertainty associated
with a random variable. To be precise, the (Shannon) entropy
H(X) of a random variableX with probability mass function
p(x) can be used to measure the average information content
that is missing when the value of X is unknown [32].
Shannon defined the entropy for discrete variables as:

H(X) = −
i∑
pi · log2 pi (1)

where pi is equal to the chance of observing value i and
log2 is the logarithm with base 2.

Notice that a random variable with a large range of
different values will have a higher entropy than a random
variable with just a few specific values. For example, a fair
coin has an entropy of 1 bit. A biased coin has an entropy
that is lower, because it will return one side more often than
the other. Predicting the next value for a biased coin is easier,
lowering the uncertainty. So, entropy can be seen a measure
of the extent of bias towards a certain value, or range of
values.

C. Using the Shannon Entropy for Relevance Estimation

Let us consider an evolutionary algorithm with two pa-
rameters, population size P ∈ {10, 100} and tournament
size T ∈ {5, 10}. We can now execute the EA 100 times
with all possible parameter value combinations and thus
experimentally establish whether a given combination is

successful. Success here can mean that the EA finds the
optimal fitness value in all runs, or that the mean best fitness
(MBF) over all runs is above a certain threshold. Table IV
shows a possible outcome.

TABLE IV
SUCCESS OR FAILURE FOR DIFFERENT PARAMETER VALUE

COMBINATIONS, 1 = SUCCESS, 0 = FAILURE

Population Size
10 100

Tournament Size 5 1 1
10 0 1

We can observe that a high population size (100), a low
tournament size (5), or a combination of both, leads to
success. The list of population sizes that lead to success
will therefore be {10, 100, 100} with p values of 1

3 and 2
3 .

The entropy of this distribution is therefore 1
3 · log2(1

3) + 2
3 ·

log2(2
3) = 0.92 bits. Unlike the success range-based measure

from Section IV-A, the entropy identifies correctly that there
is a bias for one of those two values. Thereby it indicates that
it is beneficial to choose the parameter value from a specific
area, rather than selecting an arbitrary value. The size of the
entropy indicates the size of the area. The lower the entropy,
the smaller the area that leads to success.

Furthermore, we can use this approach to show how
the desired performance is related to the required tuning
effort. To this end we need a fine graded overview of the
experimental outcomes that exhibits the mean best fitness
over the 100 EA runs belonging to the parameter values used
in those runs. Table V shows a possible outcome for five
different population sizes and a fixed tournament size (not
shown in the table).

TABLE V
MEAN BEST FITNESS FOR DIFFERENT POPULATION SIZES

Population Size Performance (MBF)
10 0.80
20 0.85
30 0.90
40 0.95
50 1.00

Based on these results, we can calculate the entropy not
only for single parameter values, but for a whole range
of values. This results in a table containing the desired
performance, and the corresponding entropy (Table VI).

We can use such a table or graph to determine how big the
set of all possible parameter values is that lead to the desired
performance. Furthermore, this can indicate how relevant
it is to tune a certain parameter with a specific minimal
performance in mind. In this case, each of the 5 population
sizes lead to a performance of at least 0.8. The entropy, using
a minimal performance of 0.8, is therefore the highest. If we
define success as reaching a performance of at least 1.0, then
only one setup (population size = 50) results in success. The
corresponding entropy is therefore the lowest. In terms of

TABLE VI
THE MINIMAL PERFORMANCE REQUIRED FOR SUCCESS AND THE

CORRESPONDING ENTROPY

Performance (MBF) Entropyrequired for Success
0.80 2.32
0.85 2.00
0.90 1.59
0.95 1.00
1.00 0.00

(un)certainty, if we observe success in this case, then we
know for sure that the EA used population size 50. While
observing success in the first case we do not know anything,
because all possible population sizes could have caused it.

D. Differential Entropy

The differential entropy is an extension of the Shannon
entropy to the domain of continuous probability distributions.
This is required for parameters that are real-valued, for
example mutation rate. It is clear that calculating the entropy
of such parameters requires a somewhat different approach
than enumerating on all possible combinations of parameter
values.

One approach is to divide the continuous domain in a
certain number of bins. Because this makes the domain
discrete, we can use the Shannon entropy as described in
the previous section. However, the number of bins highly
influences the outcomes. One way of dealing with this
problem is always using the same amount of bins. This makes
the results comparable, but could lead to problems if the
number of bins is to small. The best number of bins, would
therefore be infinity, which is exactly the approach that is
used with the differential entropy.

In order to calculate the differential entropy, it is required
that the probability distribution of such a parameter is known.
Just as with the Shannon entropy, this can be any distribution.
With probability density function f(x), the entropy is defined
as:

h(X) = −
∫

X
f(x) log2 f(x) dx (2)

Unlike the Shannon entropy, the differential entropy can
get negative, for example, a uniform distribution over the
range [0, 0.1] results in a differential entropy of:

f(x) = 1
0.1−0 (3)

h(X) = −
∫ 0.1

0 f(x) log2 f(x) dx (4)
= log2(0.1) (5)
= −3.3 (6)

In order to compare the entropy of distributions that are
defined over different parameter ranges in a meaningful way,
we normalize the range of all parameters to the unit interval
[0, 1] before calculating the entropy. In this way the uniform

distribution has a Shannon entropy of zero, and any other
distribution has a negative Shannon entropy.

E. Joint Entropy

The notion of entropy as introduced above can be calcu-
lated for each specific parameter. However, sometimes we
are interested in the entropy of constructs that depend on
more then one parameters. For instance, the Gaussian (p, σ)
mutation operator is regulated by the mutation probability p
and the mutation stepsize σ. The amount of tuning required
by this mutation operator will thus depend on the amount
of tuning required by two parameters. This idea can be also
extended to the level of the algorithm, namely the set of
all instantiated operators. For an illustration recall Table III
and observe that EA with the instances in columns A and B
depends on four parameters and the EA whose instance is
shown in column C depends on five. In such situations we
need to handle the combination of more parameters, that is
to calculate joint entropies. If we assume independence of
the parameters in question, then the joint entropy is equal to
the sum of the individual entropies. If the parameters are not
independent then one should calculate the combined proba-
bility density function and use this to calculate the entropy.
If this is not possible, one can use lower and upper bounds
for the joint entropy that are easy to calculate, because the
sum of the individual entropies forms the lower bound and
the maximum individual entropy is the upperbound of the
joint entropy.

h(X ∩ Y) ≤ h(X) + h(Y) (7)
h(X ∩ Y) ≥ max(h(X), h(Y)) (8)

To illustrate the usage of such bounds assume that we need
information on the relevance of the uniform crossover oper-
ator (one parameter, pc) and the Gaussian (pm, σ) mutation
operator. Assume furthermore that the entropies belonging
to pc, pm, and σ are known. Then the sum of entropies of
the parameters pm and σ is an upper bound for entropy of
the mutation operator (that would correspond to the joint
entropy of pm and σ). Thus, if the sum of entropies of the
parameters pm and σ is lower than the entropy of pc, then
we know that the entropy of this mutation operator is lower
than the entropy of this crossover operator. Application to
complete EAs with more parameters is similar.

V. ESTIMATING ENTROPY

Calculating the entropy as proposed in the previous section
is a computationally intensive task. Even if one performs a
full parameter sweep over thousands of different parameters
settings, the resulting entropy is still just an estimation.
Although such a sweep can be distributed over multiple ma-
chines [30], it is still a very time consuming task. Especially
because much time is spent on evaluating parameter settings
that are not interesting, because their performance is far from
optimal.

There are three different approaches to estimate the en-
tropy more efficiently. Ranking and Selection of parameters

can be used to estimate entropy [7] with less effort. The
principle is not very different from a full parameter sweep,
however, instead of assigning each parameter setting the
same computational effort, Ranking and Selection focuses on
the areas with a high utility. This results in a better estimated
entropy, and expectedly, a higher level of utility with the
same computational effort.

Secondly, one could build models of the utility landscape
and calculate the entropy through the model. There are
several approaches to create such models, for example,
Sequential Parameter Optimization [5], [6] and Response
Surface Models[29]. Some of those models can directly be
translated into a probability density function, for which the
entropy is given in Equation 2. In other cases, a sweep
over all possible parameter values can be used to calculate
the entropy of the model. Because utility is estimated by
the model, rather than tested, the entropy can be estimated
efficiently.

Finally, one could use heuristic search methods that it-
eratively generate parameter vectors to be tested and used
to calculate entropy. The search heuristic should represent
a bias towards better parameter vectors thus allocating more
computational efforts to interesting areas of the search space.
Because of this bias, the estimations of entropy will be
better in high utility regions, quite similarly to Ranking and
Selection methods. At this moment we only know of one
method in this category: REVAC (Relevance Estimation and
VAlue Calibration) [23], [24]. REVAC has been developed to
aid the design of evolutionary mechanisms for simulation and
optimization in application areas without much knowledge on
successful EA designs [25]. The main activities of REVAC
can be summarized as follows. Given a problem to be solved
and an EA to solve it with
• REVAC finds parameter vectors with high utility,
• REVAC collects values of entropy for different utility

levels,
• REVAC creates a distribution for each parameter that

indicates the expected utility of parameter values.
It is important to note that REVAC does not handle parameter
interactions (no joint distributions for multiple parameters)
and that it can be used for tuning numeric parameters only.

The case study, described in Section VI, is based on
estimating entropy values. In principle, the experiments could
have been conducted using any of the methods mentioned
above, but actually we have used REVAC [26]. Therefore,
we describe it in detail in the sequel.

A. REVAC: the Algorithm

Technically, REVAC is a heuristic generate-and-test
method that is iteratively adapting a set of parameter vectors
of a given EA. Testing a parameter vector is done by
executing the EA with the given parameters and measuring
the EA performance. EA performance can be defined by
any appropriate performance measure, or combination of
performance measures, and the results will reflect the utility
of the parameter vector in question. Because of the stochastic

nature of EAs, in general a number of runs is advisable to
obtain better statistics.

For a good understanding of the REVAC method it is
helpful to distinguish two views on a given set of parameter
vectors as shown in Table VII. Taking a horizontal view on

TABLE VII
TWO VIEWS ON A TABLE OF PARAMETER VECTORS.

D(x1) · · · D(xi) · · · D(xk) Utility
~x1 {x1

1 · · · x1
i · · · x1

k} u1

...
. . .

...
~xn {xn1 · · · xni · · · xnk} un

...
. . .

...
~xm {xm1 · · · xmi · · · xmk } um

the table, each row shows the name of a vector (first column),
the k parameter values of this vector, and the utility of this
vector (last column), defined through the performance of the
EA in question. However, taking a vertical view on the table,
the ith column in the inner box shows m values from the
domain of parameter i and this can be seen as a distribution
over the range of that parameter.

To understand how REVAC is generating parameter vec-
tors the horizontal view is more helpful. From this perspec-
tive, REVAC can be described as an evolutionary algorithm,
in the style of EDAs [21], working on a population of m
parameter vectors. This population is updated by selecting
parent vectors, which are then recombined and mutated
to produce one child vector that is then inserted into the
population. The exact details are as follows.
• Parent selection is deterministic in REVAC as the best
n (n < m) vectors of the population, i.e., those with
the highest utility, are selected to become the parents of
the new child vector. For further discussion we denote
the set of parents by {~y 1, . . . , ~yn} ⊂ {~x1, . . . , ~xm}.

• Recombination is performed by a multi-parent
crossover operator, uniform scanning. In general, this
operator can be applied to any number of parent vectors
and the ith value in the child 〈c1, . . . , ck〉 is selected
uniformly random from the ithe values, y1

i , . . . , y
n
i , of

the parents. Here we create one child from the selected
n parents.

• Mutation, applied to the offspring 〈c1, . . . , ck〉 created
by recombination, works independently on each param-
eter i ∈ {1, . . . , k} in two steps. First, a mutation inter-
val [ai, bi] is calculated, then a random value is chosen
uniformly from this interval. The mutation interval for a
given ci is determined by all values y1

i , . . . , y
n
i for this

parameter in the selected parents as follows. First, the
parental values are sorted in increasing order such that
y1
i ≤ · · · ≤ yni . (Note, that for the sake of readability,

we do not introduce new indices corresponding to this
ordering.) Recall that the child 〈c1, . . . , ck〉 is created by
uniform scanning crossover, hence the value ci comes
from one of the parents. That is, ci = yji for some
j ∈ {1, . . . , n} and we can define the neighbors of ci as

follows. The first neighbors of ci are yj−1
i and yj+1

i , the
second neighbors are yj−2

i and yj+2
i , the third neighbors

are yj−3
i and yj+3

i , etc. Now, the begin point ai of the
mutation interval is defined as the h-th lower neighbor
of ci, while the end point of the interval bi is the h-
th upper neighbor of ci, where h is a parameter of the
REVAC method (as there are no neighbors beyond the
upper and lower limits of the domain, we extend it by
mirroring the parent values as well as the mutated values
at the limits). The mutated value c′i is drawn from this
mutation interval [ai, bi] with a uniform distribution and
the child 〈c′1, . . . , c′k〉 is composed from these mutated
values.

• Survivor selection is also deterministic in REVAC as
the newly generated vector always replaces the oldest
vector in the population.

• Evaluation The newly generated vector is tested by
running the EA in question with the values it contains.

The above list describes one REVAC cycle that is iterated
until the maximum number of vectors tested is reached.

B. REVAC: the Data Generated

In each REVAC cycle several data records are saved to
allow analysis after termination. This happens directly after
the n parent vectors are selected from the population. First,
the lowest utility in the set of parents is identified as u =
min{u1, . . . , un}. Then for each parameter i ∈ {1, . . . , k}
we calculate the entropy ei and store the pair 〈ei, u〉. The
calculation of ei is based on the set {y1

i , · · · , yni } of parental
values for parameter i that we consider to be a representative
sample of good parameter values – ‘good’ defined as leading
to a utility higher than u.1

For the calculation of ei we use the formula for differen-
tial entropy (Equation 2) applied to the probability density
function

f i(z) = 1
(n+1)·(b(z)−a(z)) (9)

where a(z) and b(z) are the h-th lower and upper neighbor
of z, respectively.

For determining the (h-th) neighbors of any given z,
we use a method similar to the procedure for defining the
neighbors of ci in the description of the mutation operator.
However, in general, there need not be a j ∈ {1, . . . , n}
such that z = yji . Hence, the index j is now defined as the
one satisfying yji ≤ z < yj+1

i and we call yji and yj+1
i the

first neighbors of z, yj−1
i and yj+2

i its second neighbors,
yj−2
i and yj+3

i its third neighbors, etc. Now, a(z) and b(z)
in Equation 9 are the h-th lower neighbor and the h-th upper
neighbor of z, respectively .

Calculating the entropy ei for all i = 1, . . . , k we get k
pairs, 〈e1, u〉 through 〈ek, u〉, one for each parameter. These
pairs can be used for making plots of performance levels
(parameter vector utilities) and entropy values.

1In a previous study [26] we associated the entropy ei with the expected
utility v = avg{u1 , . . . , un} among the parents. In other words, we defined
‘good’ as leading to an expected utility v.

TABLE VIII
EA COMPONENTS, OPERATORS, AND PARAMETERS USED IN THIS STUDY

Component Operator Parameter(s)
population size µ

parent tournament (parent) tournament size
selection random uniform -

fitness proportional -
best selection number n of best

survivor generational -
selection tournament (survivor) tournament size

random uniform -
(µ, λ) λ
(µ+ λ) λ

recombination none -
one-point crossover probability
uniform crossover probability

mutation reset mutation probability
Gaussian(σ, 1) step size
Gaussian(σ, p) step size, mutation probability

VI. CASE STUDY

In this section we present a case study, based on data
generated by a large experimental investigation [22], [26].
Our case study will present entropy data that is inherently
produced by every REVAC run. Strictly speaking, the use
of REVAC generated data implies that we are not showing
results on entropy, but results on the estimation of entropy as
done by REVAC. Our discussion, however, will be in general
terms since it could be presented along the same lines with
any other similar method for entropy estimations.

A. Experimental Setup

For a clear discussion we separate three different levels
that can be distinguished in the context of algorithm design.

1) The problem/application (here: fitness landscapes cre-
ated by a problem generator).

2) The problem solver (here: an Evolutionary Algorithm).
3) The design method for calibrating the problem solver

(here: REVAC).
To obtain concrete problem instances to be solved by

the EAs we use a parameterized random problem instance
generator that produces real-valued fitness landscapes or
objective functions to be maximized. This generator [14]
defines a class of landscapes formed by the Max-Set of Gaus-
sian curves in high dimensional Cartesian spaces. Where
a Gaussian mixture model takes the average of several
Gaussians, a max-set takes their enveloping maximum. In this
way, the complexity of maximizing a Gaussian mixture can
be combined with full control over the location and height of
global and local maxima. For this study we selected problem
set 4 from [14] with peaks that get higher the closer they
get to the origin. Using 10 dimensions, 100 Gaussians and
the same distributions over height, location, and rotation of
these Gaussians we generated 10 test landscapes by different
random seeds.

For the EA we use the open source Evolutionary Compu-
tation toolkit in Java (ECJ) [19]. ECJ allows the specification
of a full EA through a simple parameter file. Obviously, we
do not use all possibilities ECJ offers, but select a number
of operators for the EA components and run REVAC for
all those EAs that can be obtained by the combinations
of these operators. To be specific, we base our study on
the components parent selection, survivor selection, recom-
bination, and mutation, with three to five commonly used
operators for each as shown in Table VIII. We follow the
naming convention of ECJ. For any given EA, the population
size parameter is always present, other parameters depend
on the actual chosen operators. Due to technical details in
ECJ, only 10 different combinations of parent and survivor
selection operators are possible2. Together with 3 choices for
the recombination operator and 3 choices for the mutation
operator, this yields 90 different EAs to be tuned, of which
6 EAs with 2, 27 with 3, 38 with 4, 17 with 5, and 2 with
6 free parameters. Most operators have one or no parameter
to calibrate. One operator has 2 parameters—Gaussian(σ, p)
with free parameters σ for step size and p for mutation
probability, the latter set to one in the case of Gaussian(σ, 1).

The basic data nuggets in this case study are produced
by REVAC runs with a given EA on one of the 10 test
landscapes. In one run REVAC is allowed to generate and
test 1000 parameter vectors. Generating parameter vectors
is done through the main REVAC loop using m = 100
vectors to form the population and selecting the best n = 50
of them as parents to create one child vector by uniform
scanning crossover. REVAC’s smoothing parameter used in
the mutation operator is set at h = 5. Testing parameter
vectors happens by executing 10 independent runs of the

2Arguably, (µ, λ) and (µ+ λ) define both parent and survivor selection.
Here we classify them under survivor selection because that is what the
parameter λ influences.

Fig. 2. Parameter entropy plot for EA-1: {Tournament Parent Selection,
Generational Survivor Selection, No Crossover and Gaussian(σ)}

given EA using the given vector. The utility of a vector is
measured by the performance of the EA using that vector,
which is in turn measured by the mean best fitness. That is,
the best fitness value after each run, averaged over the 10
independent runs.

The experimental data used in this section are generated
by carrying out 10 REVAC runs with all of the 90 EAs on
all of the 10 test landscapes. The basic data points are pairs
of estimated entropy values and corresponding performance
levels, as explained in section V-B. All together we have 901
of such pairs per REVAC run (because after initialization 900
generations have passed before REVAC terminates), hence
the plots shown in the sequel are based on 10× 901 = 9010
pairs.

B. Entropy of Parameters

Each of the 90 EAs can be individually analyzed to
get insight into the relevance of its parameters. For ex-
ample, let EA-1 be the evolutionary algorithm defined by
the operators {Tournament Parent Selection, Generational
Survivor Selection, No Crossover and Gaussian(σ)} for its
components. EA-1 has three parameters, namely population
size, tournament size, and mutation stepsize (σ). For each
of these parameters we can plot the entropy for reaching a
specific performance using our REVAC generated data.

Figure 2 exhibits the mean and standard deviation of the
estimated entropy for a given performance. From this figure it
is clear that mutation stepsize is the most relevant parameter,
and the other two parameters do not differ significantly w.r.t.
their relevance. For example, if the desired performance is
equal to 0.75, the entropy of stepsize is equal to -2, while
the population size and tournament size have an entropy
higher than -1. This means that the mutation stepsize has
the smallest range of values that lead to a performance of at
least 0.75. Thus, for this EA it is advisable to dedicate the
most tuning effort to the stepsize parameter.

Furthermore, we can observe a rather straight line of the
average entropy of stepsize between approximately 0.7 and
0.78. This indicates that the size of the area that leads to
values of at least 0.7 is equal to the size of the area that
leads to a performance of 0.78 or higher. Therefore, we can
conclude that it is equally hard to tune the EA for reaching
a performance of 0.7 or to a performance of 0.78. However,

for a higher performance, not only stepsize, but also the other
parameters need to be carefully set.

C. Entropy of Operators

In general, operators can have zero, one, or more pa-
rameters. For the following example we use an EA that
has an operator with two parameters, EA-2, defined by
{Tournament Parent Selection, Generational Survivor Selec-
tion, No Crossover and Gaussian(p, σ)}. The Gaussian(p,
σ) mutation operator is an extension of the Gaussian(σ)
operator, where the probability p of applying the mutation
operator is a parameter. (The usual option of always applying
mutation is now a special case belonging to p = 1). As we
will show, a parameter entropy plot similar to the previous
figure could lead to incorrect conclusions in this case.

Looking at Figure 3 we can observe that the entropy levels
of the parameters do not differ very much, all somewhere
between -1.5 and -2.5 for a range of performance levels
between 0.7 and 0.8. This implies that these parameters
require roughly equal tuning effort. However, one can not
infer from this figure that the mutation operator requires
roughly the same tuning effort as the other details of the
algorithm. Because the Gaussian(p,σ) operator has two pa-
rameters, both parameters have to be taken into account. As
explained in section IV-E, the joint entropy of two parameters
can be estimated by the sum of both entropies. This leads
to Figure 4, where entropy data is elevated from parameter
level to operator level, except for population size, of course.3

Note that for tournament selection (and in general for all
operators with just one parameter) the parameter level and the
operator level plots are identical. This figure clearly shows
that Gaussian(p,σ) is by far the most relevant operator of
EA-2, requiring the most tuning effort.

D. Entropy of EAs

The previous examples illustrated matters within one given
EA. In particular, we showed that the comparison of en-
tropies can provide valuable information on which design
detail (parameter or operator) is the most relevant, and thus
requires the most tuning effort. Because this all happened
in the context of one EA, the operators were only meant to
instantiate different EA components (within the given EA).
In this section we consider information on different operators
for the same component (thus leading to different EAs).
We can distinguish these two cases by the main question
that can be answered by looking at the data plots. In the
previous subsections the question was “Given an EA, which
parameter, respectively operator, of this EA needs to be tuned
most carefully for a given level of desired performance?”,
whereas here we address the following question: “Given all
operators for instantiating an EA component, which of these
operators implies the most effort for tuning?”

Posing this question concerning mutation operators, we
might try to get an answer from the previous figures on the

3Recall that EA-2 does not use an operator for the crossover component
and that the Survivor selection component is instantiated through “genera-
tional” that has no parameters.

Fig. 3. Parameter entropy plot for EA-2: {Tournament Parent Selec-
tion, Generational Survivor Selection, No Crossover and Gaussian(p,
σ)}

Fig. 4. Operator entropy plot for EA-2: {Tournament Parent Selection,
Generational Survivor Selection, No Crossover and Gaussian(p, σ)}
(Mind the different scale w.r.t. Figure 3

average entropies of the Gaussian(σ) and Gaussian(p,σ) op-
erators. The entropy levels are around -3 and -5 for reaching
a performance of 0.8, respectively. This indicates that the
Gaussian(p,σ) mutation operator requires more tuning effort
to reach the same performance than the Gaussian(σ) operator.
However, this would be a too hasty conclusion because it
ignores the influence of other operators and parameters. It
is therefore important to compare the total entropy of an
algorithm design.

Fig. 5. Algorithm entropy plot for EA-1 (with the Gaussian(σ) mutation
operator) and EA-2 (with the Gaussian(p,σ) mutation operator)

Figure 5 shows these algorithm entropies for EA-1 and
EA-2. The curves show that the Gaussian(σ) operator indeed
causes a higher algorithm entropy, and requires therefore
probably less tuning. The difference on the algorithm level
is even bigger than we observed in Figure 4 and Figure 2
regarding the operator level.

A similar comparison can be done for the crossover
component. To this end, we define EA-3 as {Tournament
Parent Selection, Generational Survivor Selection, One Point
Crossover, and Gaussian(σ) Mutation} and compare it with
EA-1 that used no crossover at all. The plots are shown in
Figure 7. Obviously, EA-1 has a crossover operator entropy
of 0 at all performance levels, while the crossover operator
entropy of EA-3 is most likely lower than 0. Therefore,
one would expect that the algorithm entropy of EA-3 is
lower than the algorithm entropy of EA-1. However, the
absence of crossover makes that variation is only regulated
by a single parameter. This causes the range of possible
σ values that lead to success highly decreases if the re-
quired performance increases. In this case, the entropy of
σ decreases significantly (Figure 7). The total algorithm

entropy of the algorithm without crossover is therefore lower
than the algorithm entropy of the algorithm with one-point
crossover (Figure 6). This indicates that adding crossover to
the algorithm decreases tuning effort.

VII. CONCLUSIONS

In this chapter we illustrated how entropy can be used to
obtain useful information on evolutionary algorithm param-
eters. The main problem we consider here is the tuning of
EA parameters, that is, the process of searching for good
parameter values in the space of all possibilities. The related
challenges are rooted in the facts that 1) EA parameters need
to be instantiated with good values for good EA performance,
2) some EA parameters are more relevant than others in the
sense that choosing different values for them affects EA
performance more than for those other parameters, 3) to
maximize the effectivity of parameter tuning, tuning efforts
should be allocated such that more relevant parameters are
given more time/capacity to find good values than less
relevant parameters.

As we explained, entropy (two versions discussed) is
a good indicator of parameter relevance. Furthermore, we
described the REVAC method [22] that can be used to
collect data on specific performance levels and corresponding
entropy values. Using a large data set generated by many
REVAC runs we created plots concerning the (estimated)
entropy of EA parameters, EA operators, and complete EAs
as well. For the sake of correctness, let us recall that the
entropy values in the source data set are calculated from a
pool of parameter vectors as known to REVAC at a given
moment, the performance level associated with an entropy
value is the utility of the worst vector in the pool, that
the combined entropies in our plots are estimated by the
sum of the underlying entropies, and that our data were
based on just one problem (be it more random instances
of it). With these caveats in mind we presented a number
of case studies to illustrate the kind of knowledge that
can be gained through the entropy-based approach. These
case studies showed that it is indeed possible to distinguish
parameters and operators that need more tuning than others
and that differences in relevance can be quantified. Our
entropy-based analysis also disclosed a formerly unknown
advantage of using crossover in an EA: It reduces the tuning

Fig. 6. Algorithm entropy plot for EA-1 (without crossover) and
EA-3 (with crossover)

Fig. 7. Mutation stepsize entropy plot for EA-1 (without crossover)
and EA-3 (with crossover)

effort associated with mutation. This kind of knowledge has
immediate practical relevance in guiding users when tuning
their EAs and it has more theoretical advantages for it can
disclose relationships between parameters in general. The
scope of validity of such insights can be small (the set of
problem instances used in the experiments), medium range
(more problems of a certain type), or rather generic (“all”
EAs and “all” problems). Although the case studies here
serve mainly as illustration, not as crisp claims, we do believe
that many of our findings hold in more cases than just the
10 landscapes and the 90 EAs we used here and that more
of such findings are possible. This, however, requires more
experimental research in the future.

ACKNOWLEDGEMENT

All experimental data and results are due to Volker Nan-
nen.

REFERENCES

[1] T Bäck. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, Oxford, UK, 1996.

[2] T Bäck, D.B Fogel, and Z Michalewicz, editors. Evolutionary
Computation 1: Basic Algorithms and Operators. Institute of Physics
Publishing, Bristol, 2000.

[3] T Bäck, D.B Fogel, and Z Michalewicz, editors. Evolutionary
Computation 2: Advanced Algorithms and Operators. Institute of
Physics Publishing, Bristol, 2000.

[4] W Banzhaf, P Nordin, R.E Keller, and F.D Francone. Genetic
Programming: An Introduction. Morgan Kaufmann, San Francisco,
1998.

[5] Thomas Bartz-Beielstein. Experimental Analysis of Evolution Strate-
gies: Overview and Comprehensive Introduction. Technical Report
Reihe CI 157/03, SFB 531, Universität Dortmund, Dortmund, Ger-
many, 2003.

[6] Thomas Bartz-Beielstein. Experimental Research in Evolutionary
Computation—The New Experimentalism. Natural Computing Series.
Springer, 2006.

[7] Jürgen Branke, E. Chick, Stephen, and Christian Schmidt. New
developments in ranking and selection: an empirical comparison of
the three main approaches. In WSC ’05: Proceedings of the 37th
conference on Winter simulation, pages 708–717. Winter Simulation
Conference, 2005.

[8] K.A. De Jong. Evolutionary Computation: A Unified Approach. The
MIT Press, 2006.

[9] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter Control
in Evolutionary Algorithms. IEEE Transactions on Evolutionary
Computation, 3(2):124–141, 1999.

[10] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computation.
Natural Computing Series. Springer, 2003.

[11] D.B Fogel. Evolutionary Computation. IEEE Press, 1995.
[12] D.B Fogel, editor. Evolutionary Computation: the Fossil Record. IEEE

Press, Piscataway, NJ, 1998.

[13] L.J Fogel, A.J Owens, and M.J Walsh. Artificial Intelligence through
Simulated Evolution. Wiley, Chichester, UK, 1966.

[14] M. Gallagher and B. Yuan. A General-Purpose Tunable Landscape
Editor. IEEE Transactions on Evolutionary Computation, 10(5):590–
603, 2006.

[15] D.E Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, 1989.

[16] J.H Holland. Adaption in Natural and Artificial Systems. MIT Press,
Cambridge, MA, 1992. 1st edition: 1975, The University of Michigan
Press, Ann Arbor.

[17] J.R Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
[18] Hod Lipson, editor. Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2007). ACM, 2007.
[19] S. Luke et al. A java-based evolutionary computation research system.

http://www.cs.gmu.edu/∼eclab/projects/ecj/.
[20] M Mitchell. An Introduction to Genetic Algorithms. MIT Press,

Cambridge, MA, 1996.
[21] H. Mühlenbein and R. Höns. The Estimation of Distributions and

the Minimum Relative Entropy Principle. Evolutionary Computation,
13(1):1–27, 2005.

[22] V. Nannen. Evolutionary Agent-Based Policy Analysis in Dynamic
Environments. PhD thesis, Vrije Universiteit Amsterdam, April, 2009.

[23] V. Nannen and A. E. Eiben. Efficient Relevance Estimation and Value
Calibration of Evolutionary Algorithm Parameters. In IEEE Congress
on Evolutionary Computation, pages 103–110. IEEE, 2007.

[24] V. Nannen and A. E. Eiben. Relevance Estimation and Value
Calibration of Evolutionary Algorithm Parameters. In Manuela M.
Veloso, editor, IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 1034–1039, 2007.

[25] V. Nannen and A.E. Eiben. A method for parameter calibration and
relevance estimation in evolutionary algorithms. In M. Keijzer, editor,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2006), pages 183–190. Morgan Kaufmann, San Francisco,
2006.

[26] V. Nannen, S.K. Smit, and A.E. Eiben. Costs and benefits of tuning
parameters of evolutionary algorithms. In Günter Rudolph, Thomas
Jansen, Simon M. Lucas, Carlo Poloni, and Nicola Beume, editors,
PPSN, volume 5199 of Lecture Notes in Computer Science, pages
528–538. Springer, 2008.

[27] I Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme
nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog
Verlag, Stuttgart, 1973.

[28] E. Ridge and D. Kudenko. Screening the parameters affecting heuristic
performance. In Lipson [18], pages 180–180.

[29] Enda Ridge and Daniel Kudenko. Analyzing heuristic performance
with response surface models: prediction, optimization and robustness.
In Lipson [18], pages 150–157.

[30] M.E. Samples, M.J. Byom, and J.M. Daida. Parameter sweeps for
exploring parameter spaces of genetic and evolutionary algorithms. In
F.G. Lobo, C.F. Lima, and Z. Michalewicz, editors, Parameter Setting
in Evolutionary Algorithms, pages 161–184. Springer, 2007.

[31] H.-P Schwefel. Evolution and Optimum Seeking. Wiley, New York,
1995.

[32] C.E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 623–656, 1948.

