
Differentiation = linear approximation

X, Y normed vector spaces, f : X → Y , e.g. X = IRn, Y = IRm. p denotes
some (fixed) point in X (I use p instead of x0 now).

Definition. f is called differentiable in p ∈ X if there exists A : X → Y
linear and continuous such that R : X → Y defined implicitly by

f(x) = f(p) + A(x− p) +R(x), satisfies lim
x→p

|R(x)|
|x− p|

= 0.

Here the vertical bars | | denote the norm or length of the quantitity in
between.

Simplest case. X = IR, Y = IR. In this case A(x − p) = f ′(p)(x − p) and
it seems we are nitpicking. Why not use the (equivalent) definition

df

dx
(p) = f ′(p) = lim

x→p

f(x)− f(p)

x− p
if the limit exists,

and call f differentiable in p ∈ IR if this happens to be the case?

Answer. Because this only works for X = IR and does not take us very far.

Second simplest case. X = IRn, Y = IRm. In this (Calculus 2) case A may
be seen as a matrix. The first row of the matrix has the partial derivatives
of the first component of f as entries, the second row the partial derivatives
of the second component of f , etc, so

Aij =
∂fi

∂xj

(p),

the matrix of all partial derivatives (Jacobian matrix) in p. In other words,
the first row is the gradient of f1, the second of f2, etc. We write ∂ instead
of d because some smart person decided to do so. Warning. The existence
of all these partial derivatives means nothing without:

Main theorem for second simplest case. If all the partial derivatives are
continuous in p (what does this, implicitly, mean?) then f is differentiable
in p ∈ X and A is given by the Jacobian matrix as above.

Special second simplest case. X = IR2, Y = IR2. Here we usually write
(x, y) instead of (x1, x2), (p, q) instead of (p1, p2), and (u, v) instead of (f1, f2),
to allow for reinterpretation of f : IC→ IC below. In this case

A =

(
∂u
∂x

(p, q) ∂u
∂y

(p, q)
∂v
∂x

(p, q) ∂v
∂y

(p, q)

)
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Also of interest

In between simplest and second simplest case. X = IRn, Y = IR. Now, pro-
vided f is differentiable in p, A = 0 corresponds to necessary (not sufficient)
conditions for f to have an extremum in p.

A physical example, classical mechanics. f is difference between kinetic and
potential energy, A = 0 is equivalent to the equations of motion.

Complex differentiation

Complex functions f : IC→ IC, s denotes some (fixed) point in IC (I use s
instead of z0 now).

Definition. f is called differentiable in s ∈ IC if there exists α ∈ IC such that
R : IC→ IC defined implicitly by

f(z) = f(s) + α(z − s) +R(z), satisfies lim
z→s

|R(z)|
|z − s|

= 0

Now the vertical bars | | denote the absolute value, which is the length of the
corresponding vector in IR2. We have, as for f : IR→ IR, that

f ′(s) = lim
z→s

f(z)− f(s)

z − s
= α,

which works fine for polynomials like f(z) = z3 − z + 1, giving what we
(should) expect, but what if we only know u and v, for instance f(z) =
exp(z)?
Writing α = a + ib, z = x + iy, s = p + iq, f = u + iv, to compare to
f = (u, v) : IR2 → IR2, we find that the 2x2 matrix A must have a
special form, namely

A =

(
a −b
b a

)
,

simply because
α(z − s) ∈ IC

rewrites as (
a −b
b a

)(
x− p
y − q

)
∈ IR2.

Combining the main theorem above for f : IR2 → IR2, with the special form
of A, a sufficient condition for complex differentiability of f = u+ iv
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in s = p + iq is the continuity of all four partial derivatives in (p, q),
plus the Cauchy-Riemann equations in s = p + iq which characterise
the special form of A, i.e.

∂u

∂x
(p, q) =

∂v

∂y
(p, q),

∂u

∂y
(p, q) = −∂v

∂x
(p, q).

Exercise, or see the book. Verify directly that complex differentiability
implies the Cauchy Riemann equations.

Remark. f = u + iv : IC → IC differentiable in s = p + iq is equivalent to
f = (u, v) : IR2 → IR2 differentiable in (p, q) combined with the Cauchy-
Riemann equations in (p, q).

N.B. f = (u, v) : IR2 → IR2 differentiable in (p, q) is often best verifiable
using the main theorem above.

Exercises

1. Verify, both by means of the limit definition, as well as by using the
Cauchy-Riemann equations, that f(z) = z2 is differentiable in every z ∈ IC.
Determine f ′(z).

2. Verify, both by means of the limit definition, as well as by using the
Cauchy-Riemann equations, that f(z) = 1

z
is differentiable in every 0 6= z ∈

IC. Determine f ′(z).

2. Verify, using the Cauchy-Riemann equations, that f(z) = exp(z) is differ-
entiable in every z ∈ IC. Determine f ′(z).
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