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PHYSICAL BACKGROUND

1. The wave equation in one dimension

In this section we derive the equations of motion for a vibrating string and a
vibrating membrane.

Consider a string which we assume to be described as the graph of a function of
x (space) and t (time):

y = u(x, t).

Vertical external forces acting on a piece of the string between x = a and x = b,
(a, b) for short, may be described as∫ b

a

f(x, t)dx (in positive y−direction).

Here f(x, t) is the force per unit of lenght, and ux = ∂u/∂x is assumed to be small,
so that the arc lenght √

1 + (
∂u

∂x
)2 dx ≈ dx.

Now what are the internal forces acting on (a, b)?

In x = a we have a tangential force proportional to the strain,

~Fa = −σ(a)
1√

1 + ux(a)2

(
1

ux(a)

)
.

Similarly, at x = b,
~Fb = σ(b)

1√
1 + u2

x(b)

(
1

ux(b)

)
.

Assuming again that ux is small, the total internal force acting on (a, b) is given
by

~F = σ(b)
(

1
ux(b)

)
− σ(a)

(
1

ux(a)

)
.

Newton’s law says that the combined forces determine the change of impuls mo-
ment. Ignoring motion in the x-direction, we conclude that σ(a) = σ(b), and since
a, b where arbitrary,

σ(x) ≡ σ is constant.

Thus the impuls moment of (a, b) has only a y-component, given by∫ b

a

ρ(x)
∂u

∂t
(x, t)dx,
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where ρ(x) is the mass density of the string per unit lenght, so that

d

dt

∫ b

a

ρ(x)
∂u

∂t
(x, t)dx = σ(b)

∂u

∂x
(b, t)− σ(a)

∂u

∂x
(a, t) +

∫ b

a

f(x, t)dx,

or, assuming also ρ(x) ≡ ρ is a constant,∫ b

a

ρ
∂2u

∂t2
(x, t) =

∫ b

a

∂

∂x
σ
∂u

∂x
(x, t)dx+

∫ b

a

f(x, t)dx.

Again, since a and b are arbitrary, we conclude that

ρ
∂2u

∂t2
= σ

∂2u

∂x2
+ f, (1.1)

which is the one-dimensional inhomogeneous wave equation.

2. The wave equation in more dimensions

Next we consider a vibrating membrane. We examine where the derivation above
has to be adjusted. Instead of y = u(x, t) we have

z = u(x, y, t),

and instead of (a, b) we take a small open diskD in the (x, y)-plane. The horizontal
internal force acting on the piece corresponding to D is given by, again assuming
that ux and uy are small, ∮

∂D

σ(x, y)ν(x, y)dS,

Here ν is the outward normal, dS is the arc lenght, ∂D is the boundary of D, and
σ is the strain. By the vector valued integral version of the divergence theorem,
this equals ∫

D

∇σ(x, y)d(x, y),

which has to be zero again, because we neglect motion in the horizontal directions.
But D is arbitrary so ∇σ ≡ 0, i.e. σ(x, y) = σ is constant. The vertical internal
force acting on D is then

σ

∮
∂D

∇u(x, y, t) · ν(x, y)dS =

(by the divergence theorem)

σ

∫
D

∆u(x, y, t) d(x, y).
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Here ∇ and ∆ act only on x and y, but not on t. The inhomogeneous wave
equation in two (and in fact any n) dimensions thus reads

ρ
∂2u

∂t2
= σ∆u+ f. (2.1)

3. Conservation laws and diffusion

Let Ω ⊂ R3 be a bounded domain, i.e. a bounded open connected set. We assume
Ω is filled with some sort of diffusive material, with concentration given by

c = c(x, t) = c(x1, x2, x3, t),

where x is space, t is time. Motion is then usually described by the mass flux

~Φ =

 Φ1

Φ2

Φ3

 = ~Φ(x, t).

The direction of ~Φ coincides with the direction of the motion, and its magnitude
says how much mass flows through a plane perpendicular to ~Φ, per unit of surface
area.

If we consider any ball B contained in Ω and compute what comes out of B per
unit of time, we find∮

∂B

Φ(x, t)ν(x)dS(x) =
∫

B

divΦ(x, t)dx =

∫
B

{∂Φ1(x, t)
∂x1

+
∂Φ2(x, t)
∂x2

+
∂Φ3(x, t)
∂x3

}
d(x1, x2, x3).

Assuming that new material is being produced in Ω, and that per unit of time the
production rate in any disk B is given by∫

B

q(x, t)dx,

we have by the conservation of mass principle

d

dt

∫
B

c(x, t)dx = −
∫

B

divΦ(x, t)dx+
∫

B

q(x, t)dt.
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Since B was arbitrary, we find

∂c

∂t
= −divΦ(x, t) + q(x, t), (3.1)

which is commonly called a conservation law.

This conservation law has to be combined with some sort of second relation be-
tween the concentration c and the flux Φ in order to arrive at a single equation for
c. An example of such a relation is the principle of diffusion which says that mass
flows from higher to lower concentrations, i.e. the flux Φ and the gradient of the
concentration, point in opposite directions:

~Φ = −D∇C. (3.2)

Here D > 0 is the diffusion coefficient, which may depend on space, time, etc.
In the simplest case D is a constant. Substituting this second relation in the
conservation law we obtain, if D is a constant,

∂c

∂t
= div D∇c+ q = D∆c+ q. (3.3)

Because a similar derivation can be given for the flow of heat in a physical body,
this equation is often called the inhomogeneous heat equation.

PART 2: THE WAVE EQUATION

4. The Cauchy problem in one space dimension

For u = u(x, t) we consider the equation

utt − c2uxx = 0, (4.1)

where c ∈ R+ is fixed and x and t are real variables. We change variables by
setting

ξ = x+ ct, η = x− ct. (4.2)

Then
∂

∂x
=

∂

∂ξ
+

∂

∂η
and

∂

∂t
= c

∂

∂ξ
− c

∂

∂η
,

so that
∂2

∂t2
− c2

∂2

∂x2
= c2

∂2

∂ξ2
− 2c2

∂2

∂ξ∂η
+ c2

∂2

∂η2

−c2 ∂
2

∂ξ2
− 2c2

∂2

∂ξ∂η
− c2

∂2

∂η2
= −(2c)2

∂2

∂ξ∂η
,
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and (4.1) reduces to
uξη = 0. (4.3)

Formally then every function of the form

u(x, t) = f(ξ) + g(η) = f(x+ ct) + g(x− ct), (4.4)

is a solution. The lines ξ = constant and η = constant are called characteristics .

Next consider the initial value problem

(CP )

utt − c2uxx = 0 x, t ∈ R;
u(x, 0) = α(x) x ∈ R;
ut(x, 0) = β(x) x ∈ R.

This is usually called the Cauchy problem for the wave equation in one space
dimension. To solve (CP) for given functions α and β we use (4.4). Thus we have
to find f and g such that

α(x) = u(x, 0) = f(x) + g(x) and β(x) = ut(x, 0) = cf ′(x)− cg′(x).

It is no restriction to assume that f(0)− g(0) = 0. Hence

f(x)− g(x) =
1
c

∫ x

0

β(s)ds and f(x) + g(x) = α(x).

Solving for f and g we obtain

f(x) =
1
2
α(x) +

1
2c

∫ x

0

β(s)ds and g(x) =
1
2
α(x)− 1

2c

∫ x

0

β(s)ds.

Here the only restriction on the functions α and β is that the latter one has to be
locally integrable. Using (4.2) and (4.4) we conclude that

u(x, t) =
1
2
{
α(x+ ct) + α(x− ct)

}
+

1
2c

∫ x+ct

x−ct

β(s)ds. (4.5)

Clearly, u defined as such, satisfies u(x, 0) = α(x), and if α is differentiable, and
β continuous, then

ut(x, t) =
1
2
{
cα′(x+ ct)− cα′(x− ct)

}
+

1
2c

{
cβ(x+ ct) + cβ(x− ct)

}
,

so that ut(x, 0) = β(x).

For the (1.1) to be satisfied in a classical way, i.e. for utt and uxx to be continuous,
we need α to be twice and β to be once continuously differentiable. We summarize
these results in the following theorem.
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4.1 Theorem Let α ∈ C2(R) and β ∈ C1(R). Then problem (CP) has a unique
solution u ∈ C2(R× R), given by

u(x, t) =
1
2
{
α(x+ ct) + α(x− ct)

}
+

1
2c

∫ x+ct

x−ct

β(s)ds.

The right hand side of this expression is defined for all α : R → R and all locally
integrable β : R → R.

Proof The derivation of the formula is correct if u is a twice continuously differ-
entiable solution and it is easy to check that under the hypotheses u as defined in
the theorem is indeed such a solution.

4.2 Corollary Suppose supp α∪supp β ⊂ [A,B]. Then supp u ⊂ [A−ct, B+ct],
for t > 0,

5. The inhomogeneous wave equation in dimension one

Next we consider the Cauchy problem for the inhomogeneous wave equation,

(CPi)

utt − c2uxx = ϕ(x, t) x, t ∈ R;
u(x, 0) = α(x) x ∈ R;
ut(x, 0) = β(x) x ∈ R,

for given functions α, β, ϕ. We assume ϕ is integrable.

We shall derive a representation formula for the solution of (CPi). To do so, fix
x0 and t0 > 0, and consider the triangle G in R × R bounded by the segments
C1 = {x− x0 = c(t− t0), 0 < t < t0}, C2 = {x− x0 = −c(t− t0), 0 < t < t0}, and
I = {t = 0, x0 − ct0 < x < x0 + t0}. Assume u is smooth and satisfies

utt − c2uxx = div
(
−c2ux

ut

)
= ϕ(x, t). (5.1)

Here x is the first, and t the second coordinate. Applying the divergence theorem
we have ∫ ∫

G

ϕ(x, t)dxdt =
∮

∂G

(
−c2ux

ut

)
· ν dS =

(where ν is the outward normal on ∂G)∮
∂G

(−c2ux dt− ut dx) =
∫

C1

+
∫

C2

+
∫

I

(−c2ux dt− ut dx) =
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(using dx = cdt along C1 and dx = −cdt along C2)∫
C1

(−cux dx− cut dt) +
∫

C2

(cuxdx+ cut dt) +
∫

I

−ut dx =

−cα(x0 − ct0) + 2cu(x0, t0)− cα(x0 + ct0)−
∫ x0+ct0

x0−ct0

β(s)ds.

Thus problem (CPi) should have as a solution

u(x, t) =
1
2
{
α(x−ct)+α(x+ct)

}
+

1
2c

∫ x+ct

x−ct

β(s)ds+
1
2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

ϕ(ξ, τ)dξdτ.

We have already investigated for which α and β this makes sense, so consider the
new term, which we denote by

up(x, t) =
1
2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

ϕ(ξ, τ)dξdτ. (5.2)

For all locally integrable ϕ the function up is well defined as a function of x ∈ R
and t ∈ R, and since ϕ is integrated over a domain in R × R with continuously
varying boundary, it is clear that up ∈ C(R × R), and that up(x, 0) = 0 for all
x ∈ R. Also, the measure of G equals ct2, so that for locally bounded ϕ,

up(x, t) = O(t2) as t→ 0,

uniformly on bounded x-intervals. In particular,

∂up

∂t
(x, 0) = 0,

for all x ∈ R.

Next we give conditions on ϕ for up to be a classical solution of the inhomogeneous
wave equation. We assume that ϕ ∈ C(R× R). Then

up(x, t) =
1
2c

∫ t

0

g(x, t, τ)dτ ; g(x, t, τ) =
∫ x+c(t−τ)

x−c(t−τ)

ϕ(ξ, τ)dξ,

so that
∂g

∂x
(x, t, τ) = ϕ(x+ c(t− τ), τ)− ϕ(x− c(t− τ), τ),

and
∂g

∂t
(x, t, τ) = cϕ(x+ c(t− τ), τ) + cϕ(x− c(t− τ), τ).
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Thus g is differentiable with respect to x and t, with partial derivatives continuous
in x, t and τ . Hence

∂up

∂t
(x, t) =

1
2c
g(x, t, t) +

1
2c

∫ t

0

∂g

∂t
(x, t, τ)dτ

=
1
2

∫ t

0

{ϕ(x+ c(t− τ), τ) + ϕ(x− c(t− τ), τ}dτ,

which is continuous because ϕ is. Similarly we find that

∂up

∂x
(x, t) =

1
2c

∫ t

0

∂g

∂x
(x, t, τ)dτ =

1
2c

∫ t

0

{ϕ(x+ c(t− τ), τ)− ϕ(x− c(t− τ), τ)}dτ

is continuous. We conclude that up ∈ C1(R× R)).

If we want up to be in C2(R×R), we need more regularity on ϕ because we have to
differentiate once more under the integral sign. This is allowed if ϕx is continuous.
Then

∂2up

∂t2
(x, t) = ϕ(x, t) +

1
2

∫ t

0

{cϕx(x+ c(t− τ), τ)− cϕx(x− c(t− τ), τ)}dτ,

while

∂2up

∂x2
(x, t) =

1
2c

∫ t

0

{ϕx(x+ c(t− τ), τ)− ϕx(x− c(t− τ), τ)}dτ,

so that indeed up is a solution of the inhomogeneous wave equation.

5.1 Theorem Suppose α ∈ C2(R), β ∈ C1(R), ϕ ∈ C(R×R), and ϕx ∈ C(R×R).
Then problem (CPi) has a unique solution u ∈ C2(R×R), which for t > 0 is given
by

u(x, t) =
1
2
{α(x− ct) + α(x+ ct)}+

1
2c

∫ x+ct

x−ct

β(ξ)dξ +
1
2c

∫ ∫
G(x,t)

ϕ(ξ, τ)dξ dτ,

where
G(x, t) = {(ξ, τ), 0 ≤ τ ≤ t, |ξ − x| ≤ c(t− τ)}.

Proof The derivation above is correct if u is a twice continuously differentiable
solution and we have seen that under the hypotheses u as defined in the theorem
is indeed such a solution.
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6. Initial boundary value problems

We now consider the inhomogeneous wave equation

utt = c2uxx + ϕ (6.1)

on the strip {(x, t) : a < x < b}. Initial conditions are again of the form

(IC)
{
u(x, 0) = α(x) x ∈ (a, b);
ut(x, 0) = β(x) x ∈ (a, b).

For (lateral) boundary conditions one can take any of the following four combina-
tions

(DD)
{
u(a, t) = A(t)
u(b, t) = B(t) (DN)

{
u(a, t) = A(t)
ux(b, t) = B(t)

(ND)
{
ux(a, t) = A(t)
u(b, t) = B(t) (NN)

{
ux(a, t) = A(t)
ux(b, t) = B(t)

6.1 Theorem For any T > 0 there is atmost one solution u ∈ C2([a, b]× [0, T ]) of
(6.1) satisfying the initial conditions (IC) as well as the lateral boundary conditions
(DD), (ND), (DN) or (NN).

Proof Assuming the existence of two different solutions we obtain, by subtraction,
the existence of a nontrivial solution u with boundary conditions given by A(t) ≡
B(t) ≡ 0, and α(x) ≡ β(x) ≡ 0. Define the ”energy” integral

E(t) =
1
2

∫ b

a

{c2u2
x + u2

t}dx.

Then for all t ≥ 0,

dE

dt
(t) =

∫ b

a

{c2uxuxt + ututt}dx =
∫ b

a

{c2uxuxt + utc
2uxx}dx

= c2
∫ b

a

∂

∂x
(uxut) dx = c2 [uxut]x=b

x=a = 0.

Thus E(t) ≡ E(0) = 0, so that u ≡ 0.
Contradiction, because we assumed u to be nontrivial.

For the construction of solutions we use the following lemma.

6.2 Lemma Let u ∈ C2(ϑ) for some open subset ϑ of R×R. Then u is a solution
of utt = uxx in ϑ, if and only if u satisfies the difference equation

u(x− k, t− h) + u(x+ k, t+ h) = u(x− h, t− k) + u(x+ h, t+ k)
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for all x, t, k, h such that the rectangle R with vertices A = (x − k, t − h), B =
(x+ h, t+ k), C = (x+ k, t+ h), and D = (x− h, t− k) is contained in ϑ. (R is
called a characteristic rectangle, because its boundary consists of characteristics.)

Proof Suppose u solves utt = uxx. Then u is of the form u(x, t) = f(x+t)+g(x−t).
Since

f(A) + f(C) = f(x+ t− h− k) + f(x+ t+ h+ k) = f(B) + f(D),

and

g(A) + g(C) = g(x− k − t+ h) + g(x+ k − t− h) = g(B) + g(D),

it follows that u(A) + u(C) = u(B) + u(D).

Conversely, suppose u satisfies the difference equation for all characteristics rect-
angles R ⊂ ϑ. Put h = 0, then

u (x− k, t)− 2u(x, t) + u(x+ k, t)
k2

=
u (x, t− k)− 2u(x, t) + u(x, t+ k)

k2
.

Using Taylor’s theorem with respect to the variable k in the numerators, we obtain,
as k → 0, that utt = uxx. This completes the proof of the lemma.

With this lemma we can obtain a solution of the inhomogeneous wave equation
satisfying initial conditions (IC) and lateral boundary conditions (DD).

6.3 Theorem Let α ∈ C2([a, b]), β ∈ C1([a, b]), A,B ∈ C2([0,∞]), ϕ,ϕx ∈
C([a, b])× [0,∞]), and suppose that the following six compatibility conditions are
satisfied:

A′′(0) = c2α′′(a) + ϕ(a, 0) ; α(a) = A(0) ; A′(0) = β(a) ;

B′′(0) = c2α′′(b) + ϕ(b, 0) ; α(b) = B(0) ; B′(0) = β(b).

Then the problemutt − c2uxx = ϕ a < x < b, t > 0;
u(a, t) = A(t) ; u(b, t) = B(t) t > 0;
u(x, 0) = α(x) ; ut(x, 0) = β(x) a ≤ x ≤ b,

has a unique solution u ∈ C2([a, b]× [0,∞)).

Proof It suffices to prove existence. First we reduce the problem to the case ϕ ≡ 0.
To do so we observe that we may assume that ϕ and ϕx belong to C(R× [0,∞))
by setting

ϕ(x, t) = ϕ(b, t) + ϕx(b, t)(x− b) for x ≥ b,
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and
ϕ(x, t) = ϕ(a, t) + ϕx(a, t)(x− a) for x ≤ a.

We also assume without loss of generality that c = 1. Taking the difference between
the unknown function u(x, t) and

1
2

∫ ∫
G(x,t)

ϕ(ξ, τ)dξ dτ,

and renaming this difference u again, we obtain a new problem, with new functions
A,B, α and β, and with ϕ = 0, satisfying the same regularity and compatibility
conditions.

We construct a solution for 0 < t ≤ b−a. The square [a, b]× [0, b−a] if subdivided
by its diagonals into four triangles, which we number counterclockwise starting at
the bottom as I, II, III and IV . To compute u in I, we use the formula

u(x, t) =
1
2
{
α(x+ t) + α(x− t)

}
+

1
2

∫ x+t

x−t

β(s)ds.

We then define u for every (x, t) in II and IV using the difference equation in
Lemma 6.2 for characteristic rectangles with two vertices contained in I, one on
the lateral boundary, and the last one at (x, t). Then with u being determined for
every point in II and IV, we extend u to III using the difference equation again,
now applied to characteristic rectangles with one vertex in each triangle. This
defines a function u on [a, b]× [0, b− a].

Repeating the construction on [a, b] × [b − a, 2(b − a)], etc., we obtain the value
of u(x, t) for every (x, t) in (a, b) × (0,∞). We claim that u ∈ C2([a, b] × [0,∞]),
and that utt = uxx. Clearly, because of the previous results it suffices to establish
u ∈ C2([a, b]× [0,∞]) This is left as an exercise.

7. The fundamental solution in one space dimension

We have seen that under appropriate conditions on α, β and ϕ, the solution of

(CPi)

utt − uxx = ϕ(x, t) x, t ∈ R;
u(x, 0) = α(x) x ∈ R;
ut(x, 0) = β(x) x ∈ R,

is given by
u(x, t) = uα(x, t) + uβ(x, t) + up(x, t), (7.1)

where

uα(x, t) =
1
2
α(x+ t) +

1
2
α(x− t); uβ(x, t) =

1
2

∫ x+t

x−t

β(s)ds;
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up(x, t) =
1
2

∫ ∫
G(x,t)

ϕ(ξ, τ)dξ dτ ; G(x, t) = {(ξ, τ), 0 ≤ τ ≤ t, |ξ − x| ≤ t− τ}.

Note that uα is the solution of utt = uxx with u(x, 0) = α(x) and ut(x, 0) ≡ 0, uβ

of utt = uxx with u(x, 0) ≡ 0 and ut(x, 0) = β(x), and up of utt = uxx + ϕ with
u(x, 0) ≡ ut(x, 0) ≡ 0. In fact these three different functions are constructed by
means of one (fundamental) solution. To see this we have to make a small detour
into the theory of distributions.

As an example we consider first the so-called Heaviside function:

H(s) =
{ 0 s < 0;

1 s > 0.

If we look at H as an element of L1
loc(R), H(0) need not be defined. If we look

at H as a “maximal monotone graph” , we must set H(0) = [0, 1]. We cannot
differentiate H in the class of functions, but we can in the class of distributions.
The “testfunctionspace” is defined by

D(R) = {ψ ∈ C∞(R);ψ has compact support}.

We say that for ψn, n = 1, 2..., and ψ in D(R),

ψn → ψ as n→∞ in D(R),

if the supports of ψ(k)
n are uniformly bounded, and if ψ(k)

n → ψ(k) uniformly on R
for all k = 0, 1, 2, ....

7.1 Definition A linear functional T : D(R) → R is called a distribution if
ψn → ψ in D(R) implies that Tψn → Tψ.

Every ϕ ∈ L1
loc(R) defines a distribution

Tϕ(ψ) =< ϕ,ψ >=
∫ ∞

−∞
ϕψ. (7.2)

Now suppose we take for ϕ a smooth function. Then

Tϕ′(ψ) =< ϕ′, ψ >=
∫ ∞

−∞
ϕ′ψ = −

∫ ∞

−∞
ϕψ′ = − < ϕ,ψ′ >= −Tϕ(ψ′). (7.3)

In view of this property, the following definition is natural.

7.2 Definition Let T : D(R) → R be a distribution. Define T ′ : D(R) → R by
T ′(ψ) = −T (ψ′). Then T ′ is called the distributional derivative of T . Note that
T ′ is again a distribution.
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7.3 Example Let H be the Heaviside function. Then

TH(ψ) =< H,ψ >=
∫ ∞

−∞
H(s)ψ(s)ds =

∫ ∞

0

ψ(s)ds,

and

(TH)′(ψ) =< H ′, ψ >= −
∫ ∞

−∞
H(s)ψ′(s)ds = −

∫ ∞

0

ψ′(s)ds = ψ(0).

We introduce the Dirac delta distribution δ = δ(x) by

< δ, ψ >=
∫ ∞

−∞
δ(x)ψ(x)dx = ψ(0). (7.4)

Clearly δ is the distributional derivative of H. Intuitively, δ is a function with

δ(x) = 0 for x 6= 0; δ(0) = +∞;
∫ ∞

−∞
δ(x)dx = 1,

but one should always remember that mathematically speaking, δ is not a function.
A better and correct way is to say that δ is a measure which assigns the value one
to any set containing zero.

Returning to uβ we have that, for t ≥ 0

uβ(x, t) =
1
2

∫ x+t

x−t

β(s)ds =
∫ ∞

−∞

1
2
H(x+ t− s)H(s− x+ t)β(s)ds =

∫ ∞

−∞
E+(x− s, t)β(s)ds,

where
E+(x, t) =

1
2
H(t+ x)H(t− x), x ∈ R, t ≥ 0.

We extend E+ to the whole of R2 by setting E+(x, t) = 0 for t ≤ 0. Note that we
can also write

E+(x, t) =
1
2
H(t){H(x+ t)−H(x− t)}, (7.5)

and that supp E+ ⊂ R× R̄+. Extending the definitions of distributions and their
derivatives in the obvious way from R to R2, and in particular defining the Dirac
distribution in R× R by

< δ, ψ >=
∫ ∞

−∞

∫ ∞

−∞
δ(x, t)ψ(x, t)dx = ψ(0, 0), (7.6)

14



we claim that
E+

tt − E+
xx = δ(x, t) = δ(x)δ(t) in R× R. (7.7)

To see this, let ψ be any smooth function with compact support in R × R, i.e.
ψ ∈ D(R×R), and let γ be the boundary of the triangle {(x, t) : −t < x < t, 0 <
t < T}, where T is so large that the support of ψ is contained in {t < T}. Then

< E+
tt − E+

xx, ψ >=
∫ ∫

E+(x, t)(ψtt − ψxx)dxdt =

1
2

∫ ∫
−t≤x≤t

(ψtt − ψxx)dxdt =
1
2

∫ ∫
−t≤x≤t

∂

∂x
(−ψx) +

∂

∂t
(ψt)dxdt

=
1
2

∫ ∫
−t≤x≤t

div
(
−ψx

ψt

)
dxdt =

1
2

∮
γ

(
−ψx

ψt

)
· νds =

−1
2

∮
γ

ψx dt+ ψtdx = ψ(0, 0) =< δ, ψ > .

Next we compute, as distributions on R, for t > 0,

< E+(·, t), ψ >=
∫ ∞

−∞
E+(x, t)ψ(x) dx =

∫ t

−t

ψ(x)dx,

for all ψ ∈ D(R). Clearly, < E+(·, t), ψ >→ 0 as t ↓ 0. In view of the following
definition we say that E+(·, t) → 0 as t ↓ 0 in the class of distributions on R.

7.4 Definition Let Tn, n = 1, 2, ..., and T be distributions on an open set Ω ⊂ Rn.
We say that Tn → T if Tnψ → Tψ for all ψ ∈ D(Ω).

Finally we look at E+
t . Again let ψ ∈ D(R× R). Then

< E+
t , ψ >= − < E+, ψt >= −1

2

∫ ∫
−t≤x≤t

ψt(x, t)dxdt =

1
2

∫ ∞

0

ψ(x, x) dx+
1
2

∫ 0

−∞
ψ(x,−x) dx =

1
2

∫ ∞

0

(ψ(t, t) + ψ(−t, t)) dt

=
∫ ∞

0

<
1
2
(δ(x− t) + δ(x+ t)), ψ(x, t) > dt.

Here we have used the notation

< δ(· ± t), ψ >=
∫
δ(x± t)ψ(x) dx = ψ(∓t).
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Symbolically we write for t > 0,

E+
t (x, t) =

1
2
δ(x+ t) +

1
2
δ(x− t). (7.8)

Consequently, for ψ ∈ D(R),

< E+
t (·, t), ψ >=

1
2
ψ(−t) +

1
2
ψ(t) → ψ(0) =< δ(x), ψ(x) >

as t ↓ 0, i.e. E+
t (·, t) → δ as t ↓ 0.

7.5 Definition E+ is called the fundamental solution of utt = uxx. Its support,
the set {|x| ≤ t} is called the forward light cone.

7.6 Remark The derivation of the formula above for E+
t is formal, but can be

made mathematically rigourous, if one considers δ as a measure.

7.7 Definition For f, g : R → R the convolution of f and g is given by

(f ∗ g)(x) =
∫ ∞

−∞
f(x− s)g(s)ds,

whenever this integral exists.

Now recall that for t > 0

uβ(x, t) =
∫ ∞

−∞
E+(x− s, t)β(s)ds, (7.9)

i.e. uβ(·, t) is the convolution of E+(·, t) and β.

Next we consider uα. For t > 0 we have

uα(x, t) =
1
2
α(x+ t) +

1
2
α(x− t) =

∫ ∞

−∞

1
2
(δ(x− s+ t) + δ(x− s− t))α(s)ds

=
∫ ∞

−∞
E+

t (x− s, t)α(s)ds,

so that formally uα is the convolution of E+
t (·, t) and α.

Finally we look at up. We have for t > 0

up(x, t) =
1
2

∫ ∫
G(x,t)

ψ(ξ, τ)dξ dτ =
1
2

∫ t

0

∫ x+t−τ

x−t+τ

ψ(ξ, τ)dξ dτ
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=
1
2

∫ t

0

∫ ∞

−∞
H (ξ − x+ t− τ) H (x+ t− τ − ξ) ψ (ξ, τ) dξ dτ

=
∫ t

0

∫ ∞

−∞
E+ (x− ξ, t− τ) ψ (ξ, τ) dξ dτ.

Now this is the convolution of E+ and ψ with respect to both variables in R×R+.
Summarizing we have for t > 0

uα = E+
t (·, t) ∗ α and uβ = E+(·, t) ∗ β (convolution in x);

up = E+ ∗ ϕ (convolution in x and t).

8. The fundamental solution in three and two space dimensions

For the wave equation in one dimension, we have constructed the fundamental
solution

E+(x, t) =
1
2
H(t){H(x+ t)−H(x− t)},

which was a distributional solution on R×R of utt−uxx = δ(x, t) = δ(x)δ(t), with
support contained in R× [0,∞).

Next we turn to the 3-dimensional case and try to find the analog of E+. Thus we
try to find a distribution in R3 × R with support contained in {t ≥ 0}, satisfying

utt −∆u = δ(x1, x2, x3, t) = δ(x1)δ(x2)δ(x3)δ(t). (8.1)

We shall first obtain a solution by formal methods, and then give a rigorous proof.

Because of the radial symmetry in this problem, we look for a solution of the form
u = u(r, t). For t > 0 this implies

utt = urr +
2
r
ur,

or (this trick only works for N = 3)

(ru)tt = (ru)rr.

As in the one dimensional case we conclude that

ru(r, t) = v(t− r) + w(t+ r).

17



Because the second term reflects signals coming inwards, we neglect it. Thus we
consider

u(r, t) =
v(t− r)

r
.

Tracing “characteristics” of the form t − r = c backwards in time, we conclude
that v(c) = 0 if c 6= 0. These considerations suggest that v(t − r) = δ(t − r) (up
to a constant).

8.1 Theorem The fundamental solution of the wave equation in R3 ×R, i.e. the
solution of (8.1) with support in R3 × [0,∞], is given by

E+(x1, x2, x3, t) =
δ(t− r)

4πr
,

which we define as a distribution below.

In order to define E+ as a distribution, we first compute formally what < E+, ψ >
would be for ψ ∈ D(R3 × R), using the “rule”∫

ϕ(s) δ(t− s)ds = ϕ(t).

Thus we evaluate < E+, ψ > using polar coordinates

x1 = r sin θ cosϕ; x2 = r sin θ sinϕ; x3 = r cos θ.

Then
< E+, ψ >=∫ ∞

−∞

∫ π

0

∫ 2π

0

∫ ∞

0

δ(t− r)
4πr

ψ(r sin θ cosϕ, r sin θ sinϕ, r cos θ, t) r2 sin θ drdϕdθdt

=
∫ ∞

0

∫ π

0

∫ 2π

0

1
4πt

ψ(t sin θ cosϕ, t sin θ sinϕ, t cos θ, t)t2 sin θdϕdθdt =∫ ∞

0

1
4πt

∮
x2
1+x2

2+x2
3=t2

ψ(x1, x2, x3, t) dS dt,

and we use this final expression as a definition of E+.

8.2 Definition We define the distribution E+ on R3 × R by

< E+, ψ >=
∫ ∞

0

1
4πt

∮
x2
1+x2

2+x2
3=t2

ψ(x1, x2, x3, t) dS(x1, x2, x3) dt

for all ψ ∈ D(R3 × R). We also define E+(·, ·, ·, t) as a distribution on R3 by

< E+(t), ψ >=
1

4πt

∮
x2
1+x2

2+x2
3=t2

ψ(x1, x2, x3) dS(x1, x2, x3).
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Next we prove that E+ is a fundamental solution.

8.3 Lemma E+ satisfies E+
tt −∆E+ = δ(x1, x2, x3, t) in R3 × R.

Proof Let ψ ∈ D(R3×R). Since < δ(x1, x2, x3, t), ψ(x1, x3, x3, t) >= ψ(0, 0, 0, 0),
and < E+

tt − ∆E+, ψ >=< E+, ψtt − ∆ψ >, we have to show that < E+, ψtt −
∆ψ >= ψ(0, 0, 0, 0). Again we use polar coordinates. We have

∆ψ =
1
r2

(r2ψr)r +
1

r2 sin θ
(sin θψθ)θ +

1
r2 sin2 θ

ψϕϕ,

so that
< E+, ψtt −∆ψ >=∫ ∞

0

∫ π

0

∫ 2π

0

1
4πt

[
ψtt−

1
r2
{(r2ψr)r−

1
sin θ

(sin θψθ)θ−
1

sin2 θ
ψϕϕ}

]
r=t

t2 sin θdϕdθdt

=
∫ ∞

0

∫ π

0

∫ 2π

0

1
4π

[
(rψ)tt − (rψ)rr

]
r=t

sin θdϕdθdt

−
∫ ∞

0

∫ π

0

∫ 2π

0

(sin θ ψθ)θdϕdθdt−
∫ ∞

0

∫ π

0

∫ 2π

0

ψϕϕ

sin θ
dϕdθdt.

Obviously, the last two integrals are zero, so if γ is the curve {r = t > 0} in the
(r, t)- plane (along which we have dr = dt), then

< E+
tt −∆E+, ψ >=

∫ ∞

0

∫ π

0

∫ 2π

0

1
4π

[
(rψ)tt − (rψ)rr

]
r=t

sin θdϕdθdt =

1
4π

∫ π

0

∫ 2π

0

sin θ
∫

γ

{(rψ)tt − (rψ)rr} dt dϕ dθ =

1
4π

∫ π

0

∫ 2π

0

sin θ
∫

γ

{(rψ)ttdt+ (rψ)trdr − (rψ)rrdr − (rψ)rtdt}dϕ dθ =

(since ψ has compact support)

1
4π

∫ π

0

∫ 2π

0

sin θ
[
(rψ)r − (rψ)t

]
r=t=0

dϕ dθ = ψ(0, 0, 0, 0).

This completes the proof.

Formally now, the solution of the equation utt−∆u = ϕ(x1, x2, x3, t) in R×[0,∞]
with u = ut ≡ 0 for t < 0, should be obtained by taking the convolution of E+

and ϕ with respect to all variables, just like in the one-dimensional case. However,
here E+ is no longer a function, so the definition of this convolution is not entirely
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obvious. We shall restrict ourselves here to the formal computation. Then, with
(x, y, z) = (x1, x2, x3), we have for t > 0,

u(x, y, x, t) =
∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E(x− ξ, y− η, z− ζ, t− τ)ϕ(ξ, η, ζ, τ)dξdηdζdτ =

(writing P = (x, y, z), Q = (ξ, η, ζ), and rPQ =
√

(x− ξ)2 + (y − η2) + (z − ζ)2)∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ t

0

δ(t− r − rPQ)
4πrPQ

ϕ(ξ, η, ζ, τ)dτ dξdηdζ =

(using the ”rule”
∫
ϕ(τ) δ(s− t)ds = ϕ(t))

1
4π

∫ ∫ ∫
rP Q≤t

ϕ(ξ, η, ζ, t− rPQ)
rPQ

dξdηdζ =

∫ ∫ ∫
G(x,y,z,t)

ϕ(ξ, η, ζ, t−
√

(x− ξ)2 + (y − η)2 + (z − ζ2)
4π

√
(x− ξ)2 + (y − η)2 + (z − ζ)2

dξdηdζ,

where

G(x, y, z, t) = {(ξ, η, ζ, τ) : (x− ξ)2 + (y − η)2 + (z − ζ)2 ≤ t2}.

Next we treat (only formally) some special cases.

8.4 Example Consider

ϕ(x, y, z, t) = δ(x)δ(y)δ(z)f(t).

We find that u(x, y, z, t) =∫ ∫ ∫
G(x,y,z,t)

δ(ξ)δ(η)δ(ζ)f(t−
√

(x− ξ)2 + (y − η)2 + (z − ζ2))
4π

√
(x− ξ)2 + (y − η)2 + (z − ζ)2

dξdηdζ

=
f(t− r)

4πr
.

8.5 Example Consider ϕ(x, y, z, t) = δ(x)δ(y)f(t). Then u(x, y, z, t) =∫ ∫ ∫
G(x,y,z,t)

δ(ξ)δ(η)f(t−
√

(x− ξ)2 + (y − η)2 + (z − ζ2))
4π

√
(x− ξ)2 + (y − η)2 + (z − ζ)2

dξdηdζ

=
1
2π

∫
x2+y2+(z−ζ)2≤t2, z−ζ≥0

f(t−
√
x2 + y2 + (z − ζ2)√

x2 + y2 + (z − ζ)2
dζ
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=
1
2π

∫ t−r

0

f(τ)dτ√
(t− τ)2 − r2

.

(here r =
√
x2 + y2, τ = t −

√
x2 + y2 + (z − ζ)2, dτ = −ζ+z√

x2+y2+(z−ζ)2
dζ, (z −

ζ)2 = (t− τ)2 − r2)

8.6 Example Consider ϕ(x, y, z, t) = δ(x)δ(y)δ(t) (or f(t) = δ(t) in the last
example), then

u(x, y, z, t) =
1
2π

∫ t−r

0

δ(τ)√
(t− τ)2 − r2

dt =
1
2π

H(t− r)√
t2 − r2

Note however that this last expression is independent of t, so we have found the
fundamental solution for the wave equation in two dimensions.

8.7 Proposition Let E+(x, y, t)be given by

E+(x, y, t) =
1
2π

H(t− r)√
t2 − r2

Then E+ is the fundamental solution of the wave equation in two dimensions, i.e.
E+ has support in {t ≥ 0} and satisfies E+

tt − E+
xx − E+

yy = δ(x, y, t) = δ(x, y, t)
on R2 × R in the sense of distributions.

Proof First note that E+ is now a function. We have to show that < E+
tt −E+

xx−
E+

yy, ψ >=< E+, ψtt − ψxx − ψyy >= ψ(0, 0, 0) for all ψ ∈ D(R2 × R). To do so
we introduce polar coordinates on R2, x = r cosϕ; y = r sinϕ. Then

∆ψ = ψxx + ψyy =
1
r
(rψr)r +

1
r2
ψϕϕ.

Thus

< E+, ψtt −∆ψ >=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
2π

H(t− r)√
t2 − r2

(ψtt −∆ψ) dx dy dt

=
∫ ∞

0

∫ 2π

0

∫ t

0

ψtt − r−1(rψr)r − r−2ψϕϕ

2π
√
t2 − r2

r dr dϕ dt

=
∫ ∞

0

∫ 2π

0

∫ t

0

rψtt − (tψr)r

2π
√
t2 − r2

dr dϕ dt =
1
2π

∫ 2π

0

J(ϕ) dϕ,

where

J(ϕ) =
∫ ∞

0

∫ t

0

rψtt − (rψr)r√
t2 − r2

dr dt =
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(if suppψ ⊂ {t ≤ T})∫ T

0

∫ t

0

rψrr − (rψr)r√
t2 − r2

dr dt = lim
ε↓0

∫ T

ε

∫ t

ε

rψrr − (rψr)r√
t2 − r2

dr dt =

(using the transformation x = r, y = t/r)

lim
ε↓0

∫ T

ε

∫ T/x

1

{−(ψy

√
y2 − 1)y

x
− (xψx)x√

y2 − 1
+

2yψxy√
y2 − 1

}
dy dx

(here we have used

∂

∂r
=

∂

∂x
− y

x

∂

∂y
and

∂

∂t
=

1
x

∂

∂y
,

to transform the derivatives, and drdt = xdxdy)

= lim
ε↓0

{∫ T

ε

[
−ψy

√
y2 − 1
x

]y=T/x

y=1
dx+

∫ T/ε

1

[2yψy − xψx√
y2 − 1

]x=T/y

x=ε
dy

}

= lim
ε↓0

∫ T/ε

1

xψx − 2yψy√
y2 − 1

∣∣
x=ε

dy =

(transforming the x- and y-derivatives back to r- and t-derivatives)

lim
ε↓0

∫ T/ε

1

εψr − εyψt√
y2 − 1

∣∣
x=ε

dy =

(writing ψ(r, ϕ, t))

lim
ε↓0

∫ T/ε

1

εψr(ε, ϕ, εy)− εyψt(ε, ϕ, t)√
y2 − 1

dy =

(substituting t = εy)

lim
ε↓0

∫ T

ε

εψr(ε, ϕ, t)− tψt(ε, ϕ, t)√
t2 − ε2

dt =

lim
ε↓0

∫ T−ε

0

{εψr(ε, ϕ, t+ ε)√
(t+ 2ε)t

− t+ ε√
(t+ 2ε)t

ψt(ε, ϕ, t+ ε)
}
dt

= −
∫ T

0

ψt(0, ϕ, t)dt = ψ(0, ϕ, 0),

which completes the proof.
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PART 3: THE HEAT EQUATION

9. The fundamental solution of the heat equation in dimension one

As a first example we consider the problem

(P )
{
ut = uxx x ∈ R , t > 0;
u(x, 0) = H(x) x ∈ R,

where H is the Heaviside function. Now observe that if u(x, t) is a solution of (P),
then ua(x, t) = u(ax, a2t) is also a solution of (P ). Since we expect the solution
to be unique, we should have

u(ax, a2t) = u(x, t), (9.1)

for all a > 0, x ∈ R, t > 0. Thus if we put a = 1/
√
t, we obtain

u(x, t) = u(
x√
t
, 1) = U(η); η =

x√
t
. (9.2)

Here η is called the similarity variable. From (9.2) it follows that

ut = U ′(η)
∂η

∂t
= U ′(η)

x

2t
√
t

= −ηU
′(η)
2t

; uxx =
U ′′

t
,

so that u(x, t) = U(η) is a solution of the heat equation if

U ′′(η) + ηU ′(η)/2 = 0, (9.3)

or
(eη2/4U ′(η))′ = 0.

Thus
eη2/4U ′(η) = constant = A,

and

U(η) = B +A

∫ η

−∞
e−s2/4 ds = B + 2A

∫ η/2

−∞
e−y2

dy.

Since for x < 0,
0 = u(x, 0) = lim

t↓0
U(

x√
t
) = U(−∞) = B,

and for x > 0,

1 = u(x, 0) = lim
t↓0

U(
x√
t
) = U(+∞) = B + 2A

∫ ∞

−∞
e−η2

dη = 2A
√
π,
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we find that

U(η) =
1√
π

∫ η/2

−∞
e−s2

ds;u(x, t) =
1√
π

∫ x/2
√

t

−∞
e−s2

ds. (9.4)

We make the following observations.

(i) u(x, t) is smooth for t > 0, but not at t = 0,

(ii) limt↓0 u(x, t) =

{ 0 x < 0
1/2 x = 0
1 x > 0

,

(iii) 0 = minx∈R u(x, 0) < u(x, t) < maxx∈R u(x, 0) = 1 (i.e a strong comparison
principle seems to hold),

(iv) The positivity of u on R+ for t = 0 causes u to become positive immediately
for t > 0 on the whole of R (infinite speed of propagation, in sharp constrast with
the finite speed of propagation for the wave equation),

(v) u(x, t) = U(x/
√
t) is a self similar solution (or similarity solution).

Next we compute the solution of the heat equation with the initial value

u(x, 0) =

{
0 x < a

1 x > a
.

Naturally we obtain

ua(x, t) =
1√
π

∫ (x−a)/2
√

t

−∞
e−s2

ds,

so that the solution with initial conditions

w(x, 0) =


0 x < 0
1 0 < x < a

0 x > a

,

is given by

w(x, t) = u(x, t)− ua(x, t) =
1√
π

∫ x/2
√

t

(x−a)/2
√

t

e−s2
ds,

which obviously satisfies

|w(x, t)| = |u(x, t)− ua(x, t)| < a

2
√
πt
.
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Thus w(x, t) → 0 as t → ∞, the decay order being 1/
√
t. Note that w(x, 0) is a

bounded integrable function.

Going back to the solution with u(x, 0) = H(x), which is given by (9.4), we
differentiate it with respect to t, to obtain a new solution

E+(x, t) =
1

2
√
πt
e−x2/4t. (9.5)

Obviously E+ satisfies E+
t = E+

xx for t > 0, and it is in fact the fundamental
solution for the heat equation, that is, extending E+ by E+(x, t) = 0 for t < 0,
we have

9.1 Proposition The function E+ satisfies the fundamental equation E+
t −E+

xx =
δ(x, t) = δ(x)δ(t) in R2.

Proof To check that E+ is indeed a fundamental solution, we let ψ ∈ D(R × R)
and compute

< E+
t − E+

xx, ψ >= − < E+, ψt + ψxx >= −
∫ ∫

R×R+
E+(ψt + ψxx)d(x, t) =

− lim
ε↓0

∫ ∫
R×(ε,∞)

E+(ψt + ψxx)d(x, t) =

− lim
ε↓0

{ ∫ ∞

−∞

∫ ∞

ε

E+ψtdtdx+
∫ ∞

ε

∫ ∞

−∞
E+ψxxdxdt

}
=

− lim
ε↓0

{∫ ∞

−∞
[E+ψ]t=∞t=ε dx−

∫ ∞

−∞

∫ ∞

ε

E+
t ψdtdx+

∫ ∞

ε

∫ ∞

−∞
E+

xxψdxdt
}

=

lim
ε↓0

∫ ∞

−∞
E+(x, ε)ψ(x, ε)dx = lim

t↓0

∫ ∞

−∞

1
2
√
πt
e−x2/4tψ(x, t)dx.

To complete the proof we have to show that this limit equals ψ(0, 0).

For all ε > 0 there exists δ > 0 such that if |x| < δ and t < δ then |ψ(x, t) −
ψ(0, 0)| < ε. Thus∣∣∣ ∫ ∞

−∞

1
2
√
πt
e−x2/4tψ(x, t)dx− ψ(0, 0)

∣∣∣ =
∣∣∣ ∫ ∞

−∞

1
2
√
πt
e−x2/4t(ψ(x, t)− ψ(0, 0))dx

∣∣∣
≤ ε

∫ δ

−δ

1
2
√
πt
e−x2/4t + 2 sup |ψ|

∫
|x|≥δ

1
2
√
πt
e−x2/4tdx ≤

ε+
sup |ψ|√

π

∫
|s|≥δ/

√
t

e−s2/4ds→ ε as t ↓ 0.
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Since ε > 0 was arbitrary this completes the proof.

10. The Cauchy problem in one dimension

For a given function u0 : R → R we consider the problem

(CP )
{
ut = uxx x ∈ R , t > 0;
u(x, 0) = u0(x) x ∈ R,

Our experience with the wave equation suggests to consider the convolution

u(x, t) = (E+(t) ∗ u0)(x) =
∫ ∞

−∞
E+(x− ξ, t)u0(ξ)dξ

=
∫ ∞

−∞

1
2
√
πt
e−(x−ξ)2/4tu0(ξ)dξ. (10.1)

10.1 Notation Let Q = R× R+. Then

C2,1(Q) = {u : Q→ R; u, ut, ux, uxx ∈ C(Q)}.

10.2 Theorem Suppose u0 ∈ C(R) is bounded. Then (CP) has a unique bounded
classical solution u ∈ C2,1(Q) ∩ C(Q), given by the convolution (10.1).

Proof of existence Clearly E+(·, t) ∗ u0 is well defined and bounded for all
(x, t) ∈ Q, because u0 is bounded and E+(x, t) decays exponentially fast to zero
as |x| → ∞. Since the same holds for all partial derivatives of E+(x, t), we can
differentiate under the integral with respect to x and t. Thus for any n, l ∈ N∪{0},

( ∂
∂t

)n( ∂
∂x

)l
u(x, t) =

( ∂
∂t

)n( ∂
∂x

)l
∫ ∞

∞
E+(x− ξ, t)u0(ξ)dξ

=
∫ ∞

−∞

∂n+lE+(x− ξ, t)
∂tn∂xl

u0(ξ)dξ =
(∂n+lE+

∂tn∂xl
(·, t) ∗ u0

)
(x),

and in particular

∂u

∂t
− ∂2u

∂x2
=

(∂E+

∂t
− ∂2E+

∂x2

)
∗ u0 = 0.

Hence u ∈ C∞(Q) satisfies ut = uxx in Q.
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It remains to show that for every x0 ∈ R

lim
x→x0

t↓0
u(x, t) = u0(x).

The argument is similar to the proof that E+ satisfies the fundamental equation.

Fix ε > 0. Then there exists δ > 0 such that |u0(x)− u0(x0)| < ε for |x− x0| < δ.
For |x− x0| < 1

2δ we have

|u(x, t)− u0(x0)| =
∣∣ ∫ ∞

−∞
E+(x− ξ, t)(u0(ξ)− u0(x0))dξ

∣∣ ≤
∫
|x−ξ|< 1

2 δ

E+(x− ξ, t)
∣∣u0(ξ)−u0(x0)

∣∣dξ+
∫
|x−ξ|> 1

2 δ

E+(x− ξ, t)
∣∣u0(ξ)−u0(x0)

∣∣dξ
(since |x− ξ| < 1

2δ together with |x− x0| < 1
2δ implies |ξ − x0| < δ)

≤ ε

∫
|x−ξ|< 1

2 δ

E+(x− ξ, t)dξ + 2 sup |u0|
∫
|x−ξ|> 1

2 δ

E+(x− ξ, t)dξ

≤ ε+ 2 sup |u0|
∫
|ξ|> 1

2 δ

E+(ξ, t)dξ → ε as t ↓ 0

as before. Since ε > 0 was arbitrary, this completes the proof of the existence of
a solution. Note that for the continuity of u(x, t) at (x, t) = (x0, 0) we have only
used the continuity of u0(x) at x = x0.

Proof of uniqueness Suppose there exist two different solutions of (CP) in
C2,1(Q) ∩ C(Q). Then the difference is a nontrivial classical solution u of{

ut = uxx x ∈ R , t > 0;
u(x, 0) = 0 x ∈ R.

This is impossible in view of a maximum principle which we state and prove below.

10.3 Lemma Suppose u ∈ C2,1(QT ) ∩ C(QT ), where QT = R × (0, T ] (T > 0),
satisfies

ut ≤ uxx in QT .

If (i) u(x, 0) ≤ 0 for all x ∈ R;
(ii) u(x, t) ≤ AeBx2

for all (x, t) ∈ QT ,
where A > 0 and B are fixed constants, then

u ≤ 0 in QT .
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10.4 Lemma For −∞ < a < b < ∞ and T > 0 let Qa,b
T = (a, b) × (0, T ],

and Γa,b
T = Q

a,b

T \Qa,b
T . Γa,b

T is called the parabolic boundary of Qa,b
T . Suppose

u ∈ C2,1(Qa,b
T ) ∩ C(Q

a,b

T ) satisfies

ut ≤ uxx in Qa,b
T .

Then
sup
Qa,b

T

u = max
Γa,b

T

u.

Proof of Lemma 10.4 First observe that if ut < uxx in Qa,b
T , then u cannot

have a (local or global) maximum in Qa,b
T . Indeed, if this maximum would be

situated at (x0, t0) with a < x0 < b and 0 < t0 < T , then at (x, t) = (x0, t0) one
has uxx > ut = ux = 0, contradiction. Also a maximum at (x0, T ) is impossible
because then uxx > ut ≥ 0, again a contradiction.

Next we reduce the case ut ≤ uxx to ut < uxx. Let

un(x, t) = u(x, t) +
x2

2n
.

Then obviously

unt = ut ≤ uxx < uxx +
1
n

= unxx,

so that
sup
Qa,b

T

un = max
Γa,b

T

un.

Taking the limit n→∞ the lemma follows.

Proof of Lemma 10.3 It is sufficient to prove the statement for one fixed T > 0.
For α, β, γ > 0 let

h(x, t) = exp(
αx2

1− βt
+ γt) x ∈ R, 0 ≤ t <

1
β
.

Define u(x, t) by u = hv. Then

0 ≥ ut − uxx = (hv)t − (hv)xx = hvt + htv − hvxx − 2hxvx − hxxv =

h(vt − vxx − vx
2hx

h
+ v

ht − hxx

h
=

h
(
vt − vxx − vx

4αx
1− βt

+ v(
αβx2

(1− βt)2
+ γ − (

2αx
1− βt

)2 − 2α
1− βt

)
)

=
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h
(
vt − vxx −

4αx
1− βt

vx + v(γ − (4α− β)αx2

(1− βt)2
− 2α

1− βt
)
)
. (9.6)

Choosing β > 4α and γ > 4α the coefficient of v is positive for x ∈ R and
0 ≤ t ≤ 1/2β. We then also have

v(x, t) = u(x, t)exp(− αx2

1− βt
− γt) ≤ Ae(B−α)x2

,

so that, choosing α > B,

lim sup
|x|→∞

v(x, t) ≤ 0 uniformly on [0,
1
2β

]. (9.7)

Now suppose the lemma is false for T = 1/2β. Then u and v achieve positive
values on Q1/2β . In view (9.7) this implies that v must have a positive maximum
in Q1/2β . By the inequality for ut − uxx and the choice of α, β, γ this implies
vt < vxx at this maximum. But in the proof of Lemma 10.4 we have seen that
this is impossible, contradiction.

10.5 Exercise Finish the uniqueness proof.

10.6 Exercise For u0 ∈ C(R) satisfying

|u0(x)| ≤ AeBx2

for all x ∈ R, prove that (CP) has a classical solution u ∈ C2,1(QT )∩C(QT ) for all
T < 1/4B, and give a growth condition which determines the solution uniquely.

Next we consider the equation

ut = uxx + ϕ x ∈ R, 0 < t ≤ T,

where ϕ : R × (0, T ) → R. If ϕ is measurable and bounded, we can try as a
particular solution

up(x, t) =
∫ t

0

∫ ∞

−∞
E+(x− ξ, t− τ)ϕ(ξ, τ)dξdτ. (9.8)

Clearly, up is well defined, because the integral is dominated by∫ t

0

∫ ∞

−∞
E+(x− ξ, t− τ) sup

QT

|ϕ| dξdτ ≤ t sup
QT

|ϕ|,

so that in particular up(x, t) → 0 uniformly in x as t ↓ 0.
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One would like to have up ∈ C2,1(QT ), which is however rather technical to estab-
lish and unfortunately requires more than just the continuity of ϕ. Here we just
restrict ourselves to

10.7 Proposition Let ϕ ∈ L∞(QT ). Then

up(x, t) =
∫ t

0

∫ ∞

−∞
E+(x− ξ, t− τ)ϕ(ξ, τ)dξdτ

defines a bounded function which is a solution of ut = uxx + ϕ in the sense of
distributions on R× (0, T ), and tends to zero uniformly on R as t ↓ 0.

Proof If we set E+(x, t) ≡ ϕ(x, t) ≡ 0 for all t < 0, then

up(x, t) =
∫ ∞

−∞

∫ ∞

−∞
E+(x− ξ, t− τ)ϕ(ξ, τ)dξdτ.

Let ψ ∈ D(R× (0, T )), and extend ψ to R×R by ψ(x, t) ≡ 0 for t ≤ 0 and t ≥ T.
Then

<
∂up

∂t
− ∂2up

∂x2
, ψ >= − < up, ψt + ψxx >=

−
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E+(x− ξ, t− τ)ϕ(ξ, τ)(ψt(x, t) + ψxx(x, t))dξdτdxdt =

−
∫ ∞

−∞

∫ ∞

−∞

{∫ ∞

−∞

∫ ∞

−∞
E+(x− ξ, t− τ)(ψt(x, t) + ψxx(x, t))dxdt

}
ϕ(ξ, τ)dξdτ =

(as in the proof that E+ is a fundamental solution)∫ ∞

−∞

∫ ∞

−∞
ϕ(ξ, τ)ψ(ξ, τ)dξdτ =< ϕ,ψ >,

so that up is a solution of the inhomogeneous heat equation in the sense of distri-
butions.

We can now write down the solution of

(CPi)
{
ut = uxx + ϕ x ∈ R , t > 0;
u(x, 0) = u0(x) x ∈ R,

as

u(x, t) =
∫ ∞

−∞
E+(x− ξ, t)u0(ξ)dξ +

∫ t

0

∫ ∞

−∞
E+(x− ξ, t− τ)ϕ(ξ, τ)dξdτ,

but we do not give the precise hypothesis here on u0 and ϕ that guarantee that
this formula defines a classical solution, i.e.

u ∈ C2,1(R× R+) ∩ C(R× R+
).
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10.8 Exercise Show that (CPi) has at most one bounded classical solution.

11. Initial boundary value problems

First we indicate how one can generalize results for

(CP )
{
ut = uxx x ∈ R , t > 0;
u(x, 0) = u0(x) x ∈ R,

to

(CD)

{ut = uxx x > 0 , t > 0;
u(0, t) = 0 t > 0;
u(x, 0) = u0(x) x ≥ 0,

and

(CN)

{ut = uxx x > 0 , t > 0;
ux(0, t) = 0 t > 0;
u(x, 0) = u0(x) x ≥ 0.

For (CD) and (CN) we consider (CP) with odd and even initial data respectively.

We begin with (CD). Extending u0 to the whole of R by u0(−x) = −u0(x), the
integral representation of solutions gives

u(x, t) = −
∫ 0

−∞
E+(x− ξ, t)u0(−ξ)dξ +

∫ ∞

0

E+(x− ξ, t)u0(ξ)dξ =

∫ ∞

0

{E+(x− ξ, t)− E+(x+ ξ, t)}u0(ξ)dξ =
∫ ∞

0

G1(x, ξ, t)u0(ξ)dξ, (11.1)

where
G1(x, ξ, t) = E+(x− ξ, t)− E+(x+ ξ, t) (11.2)

is called the Green’s function of the first kind.

For (CN) we extend u0 by u0(−x) = u0(x), and thus

u(x, t) =
∫ 0

−∞
E+(x− ξ, t)u0(−ξ)dξ +

∫ ∞

0

E+(x− ξ, t)u0(ξ)dξ =

∫ ∞

0

{E+(x− ξ, t) + E+(x+ ξ, t)}u0(ξ)dξ =
∫ ∞

0

G2(x, ξ, t)u0(ξ)dξ, (11.3)

where
G2(x, ξ, t) = E+(x− ξ, t) + E+(x+ ξ, t) (11.3)

is called the Green’s function of the second kind.
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11.1 Exercise Let u0 ∈ C(R+
) be bounded, and let u0(0) = 0. Prove that (CD)

has a unique bounded solution u ∈ C2,1(R+ × R+) ∩ C(R+ × R+
).

11.2 Exercise Let u0 ∈ C(R+
) be bounded. Prove that (CN) has a unique

bounded solution u ∈ C2,1(R+ × R+) ∩ C(R+ × R+
).

11.3 Exercise Derive formal integral representations for the solutions of

(CDi)

{ut = uxx + ϕ x > 0, t > 0;
u(0, t) = 0 t > 0;
u(x, 0) = u0(x) x ≥ 0,

and

(CNi)

{ut = uxx + ϕ x > 0 , t > 0;
ux(0, t) = 0 t > 0;
u(x, 0) = u0(x) x ≥ 0.

Next we consider what is usually called the Dirichlet problem for the heat equation
on (0, 1):

(D)

{ut = uxx 0 < x < 1, t > 0;
u(0, t) = u(1, t) = 0 t > 0;
u(x, 0) = u0(x) 0 ≤ x ≤ 1.

To find an integral representation for the solution of (D) we extend u0 to a 2-
periodic function ũ0 : R → R defined by

ũ0 ≡ u0 on (0, 1); ũ0(x) = −ũ0(−x); ũ0(1 + x) = −ũ0(1− x).

For the Cauchy problem with initial dat ũ0 we then have

u(x, t) =
∫ ∞

−∞
E+(x− ξ, t)ũ0(ξ)dξ =

∞∑
k=−∞

∫ k+1

k

E+(x− ξ, t)ũ0(ξ)dξ =

∞∑
k=−∞

∫ 1

0

E+(x− ξ − k, t)ũ0(ξ + k)dξ =

∞∑
n=−∞

{∫ 1

0

E+(x−ξ−2n, t)ũ0(ξ+2n)dξ+
∫ 1

0

E+(x−ξ−2n−1, t)ũ0(ξ+2n+1)dξ
}

=

∞∑
n=−∞

{∫ 1

0

E+(x− ξ − 2n, t)ũ0(ξ)dξ +
∫ 1

0

E+(x− ξ − 2n− 1, t)ũ0(ξ + 1)dξ
}

=

∞∑
n=−∞

{∫ 1

0

E+(x− ξ − 2n, t)ũ0(ξ)dξ −
∫ 1

0

E(x− ξ − 2n− 1, t)ũ0(1− ξ)dξ
}

=
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∞∑
n=−∞

{∫ 1

0

E+(x− ξ − 2n, t)ũ0(ξ)dξ −
∫ 1

0

E+(x+ ξ − 1− 2n− 1, t)ũ0(ξ)dξ
}

=
∫ 1

0

∞∑
n=−∞

{
E+(x− ξ − 2n, t)− E+(x+ ξ − 2n, t)

}
ũ0(ξ)

=
∫ 1

0

GD(x, ξ, t)ũ0(ξ)dξ, (11.4)

where

GD(x, ξ, t) =
∞∑

n=−∞

{
E+(x− ξ − 2n, t)− E+(x+ ξ − 2n, t)

}
. (11.5)

(Note that this sum is absolutely convergent for t > 0, uniformly in x.)

11.4 Theorem Let u0 ∈ C([0, 1]), u0(0) = u0(1) = 0, and let QT = (0, 1)× (0, T ].
Then for every T > 0 there exists a unique bounded solution u ∈ C2,1(QT )∩C(QT )
of (D), given by

u(x, t) =
∫ 1

0

GD(x, ξ, t)u0(ξ)dξ.

Proof Exercise, for the uniqueness part, the maximum principle has to be used
again.

GD is called the Green’s function for the Dirichletproblem.

For the Neumannproblem, that is

(N)

{ut = uxx 0 < x < 1, t > 0;
ux(0, t) = ux(1, t) = 0 t > 0;
u(x, 0) = u0(x) 0 ≤ x ≤ 1,

we extend u0 to a 2-periodic function ũ0 : R → R by

ũ0 ≡ u0 on [0, 1]; ũ0(x) = ũ0(−x); ũ0(1 + x) = ũ0(1− x).

We now obtain

u(x, t) =
∫ 1

0

GN (x, ξ, t)u0(ξ)dξ, (11.6)

where

GN (x, ξ, t) =
∞∑

n=−∞

{
E+(x− ξ − 2n, t) + E+(x+ ξ − 2n, t)

}
(11.7)
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is Green’s function for the Neumannproblem.

11.5 Theorem Let u0 ∈ C([0, 1]). Then for every T > 0 there exists a unique
bounded classical solution of (N), given by

u(x, t) =
∫ 1

0

GN (x, ξ, t)u0(ξ)dξ.

11.6 Exercise Give a suitable definition of a classical solution of (N) and prove
this theorem.

11.7 Exercise Derive a representation formula for solutions of the mixed problem

(DN)

{ut = uxx 0 < x < 1, t > 0;
u(0, t) = ux(1, t) = 0 t > 0;
u(x, 0) = u0(x) 0 ≤ x ≤ 1,

and formulate and prove a uniqueness/existence theorem.

11.8 Exercise Give formal derivations for integral representations of solutions
to the problems above with ut = uxx replaced by the inhomogeneous equation
ut = uxx + ϕ.
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