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Abstract. We revisit the Near Equidiffusional Flames (NEF) model intro-

duced by Matkowsky and Sivashinsky in 1979 and consider a simplified, quasi-

steady version of it. This simplification allows, near the planar front, an ex-
plicit derivation of the front equation. The latter is a pseudodifferential fully

nonlinear parabolic equation of the fourth-order. First, we study the (orbital)

stability of the null solution. Second, introducing a parameter ε, we rescale
both the dependent and independent variables and prove rigourously the con-

vergence to the solution of the Kuramoto-Sivashinsky equation as ε→ 0.

1. Introduction. Paradigms of two-dimensional Free Boundary evolution prob-
lems are often formulated in a strip, say Ω = R × [−`/2, `/2] with coordinates
denoted respectively by x and y. The other independent variable t stands for the
time. A moving front represented by x = ξ(t, y) separates two regions or phases.
The dependent variables are, on the one hand, the function ξ and on the other hand
a vector-valued function, say u(t, x, y), whose components correspond to physical
quantities such as temperature, mass fraction, enthalpy, etc. Usually, those quanti-
ties are continuous at the front, whereas there is a jump in their gradient since the
interface corresponds to a thin reaction zone. On both sides of the front, the restric-
tion of u satisfies a system of reaction-diffusion equations with convenient boundary
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conditions at y = ±`/2 (in the sequel periodicity will be assumed). Finally, there
is a set of Free Boundary conditions at the front x = ξ(t, y) and convenient initial
conditions.

The case of a planar front, namely ξ(t, y) = −ct, c > 0, is of special interest.
It corresponds to a family of one-dimensional Traveling Waves which propagate
with velocity −c. Its (orbital) stability with respect to small initial perturbations
is an important question. It leads to the study of corrugated fronts ξ(t, y) in some
neighborhood of the planar front, namely small perturbations of the form ϕ(t, y) =
ξ(t, y) + ct. In the case of instabilities, the dynamics of ϕ is a crucial issue.

A very challenging problem is the derivation of a single equation for ϕ, which
may capture most of the dynamics and, as a consequence, yields a reduction of
the effective dimensionality of the system. In this spirit, one of the authors in [23]
derived asymptotically from the NEF system in combustion theory the Kuramoto-
Sivashinsky equation (K–S)

Φτ + 4Φηηηη + Φηη +
1
2

(Φη)2 = 0, (1.1)

in a set of conveniently rescaled dependent and independent variables. Since then,
this equation has received considerable attention from the mathematical community,
especially for its ability to generate a cellular structure and chaotic behavior in
appropriate range of parameters [13]. We refer to the book [26] and its extensive
bibliography.

Other dissipative systems with similar dynamics have been a subject of discussion
in recent years. Let us mention the Burgers-Sivashinsky (B–S) equation, a model
pertinent to the flame front dynamics subject to the buoyancy effect [1], and the
Q–S equation derived in [3] as a quasi-steady version of the κ − θ model in flame
theory.

Several generalizations of K–S have been considered in the literature. For in-
stance in [21], it was observed that D4 can be replaced by an elliptic pseudo-
differential operator of order 2m and D2 by the opposite of an elliptic pseudo-
differential operator of order less than 2m. Recently in [11], the K–S equation has
been generalized as the following one:

ϕt + G (ϕy) = Lϕ, (1.2)

where L is a linear pseudo-differential operator of order 2m and G is a sufficiently
smooth real valued function which satisfies cminζ

2 ≤ G (ζ2) ≤ Cmaxζ
2 for |ζ| large.

In [4], we have considered a two-dimensional Stefan problem, a simplified version
of a solid-liquid interface model. We have derived an equation for the front of the
form:

∂

∂t
Bϕ+ F ((ϕy)2) = Sϕ, (1.3)

where B and F are pseudo-differential operators of the second-order and S is
a pseudo-differential operator of the fourth-order. Actually, B can be inverted.
Hence, Equation (1.3) can be reformulated as a second order parabolic equation
similar to (1.2). However, in contrast to [11], G is not a quadratic function of ϕy
but a bounded linear operator acting on (ϕy)2. Indeed the equation for the front
reads:

ϕt + G ((ϕy)2) = Lϕ. (1.4)
In this paper, we derive a new front equation which sticks as close as possible

to the original NEF combustion model. We get to an equation which belongs to
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the class (1.3), (1.4). However, whereas S (resp. L ) is still a pseudo-differential
operator of the fourth-order (resp. second-order), it turns out that F (resp. G ) is
a pseudo-differential operator of the third-order (resp. first-order) acting on (ϕy)2.
Therefore, the nonlinear part is of the same order as the linear part: this is, by
definition, a fully nonlinear problem (see [18]), in contrast to (1.1) and (1.2) which
are semilinear.

The paper is organized as follows. First, in Section 2, we consider as a paradigm
Free Boundary Problem a simplified quasi-steady version of the NEF model, present
our results and introduce some mathematical setting. Next, in Section 3 we derive
formally the front equations (1.3), (1.4). We refer to [4, 5] for a rigorous derivation
of the front equation as a solvability condition in a Stefan problem. Section 4 is
devoted to prove the first main result of this paper (Theorem 2.1), i.e., the study
of the stability of the front. For this purpose, we first study the symbols of the
operators B, F , G and L . In particular, we characterize the spectrum of the
realization of the operator L in L2(−`/2, `/2).

Section 5 is devoted to prove the second main result of this paper (Theorem 2.2),
i.e., we provide a rigorous derivation of the K–S equation (1.1). For this purpose,
we set α = 1 + ε and introduce the rescaled variables

t = τ/ε2, y = η/
√
ε, ϕ = εψ.

This leads us to a fully nonlinear equation of the form

∂

∂τ
Bε(ψ) = S (ψ) + Fε((Dηψ)2). (1.5)

The core of this section consists of the a priori estimates in Subsection 5.2 for
solutions to (1.5) which, together with Lemma 5.6, are the main tools needed to
prove Theorem 2.2.

Finally, for the reader’s convenience, in the appendices we give a brief introduc-
tion to the Near Equidiffusional Flames model and provide a rather detailed proof
of the existence, uniqueness and regularity properties of the solution to the K–S
equation (1.1).

2. Setting up the problem, main results and some mathematical setting.
In this section we set up our problem, state our main results and introduce some
notation which are kept throughout the paper.

2.1. Setting up the problem. Our starting point is the following NEF system
(see the Appendix) for the temperature θ, the enthalpy S and the moving flame
front, defined by x = ξ(t, y), which reads

∂θ

∂t
= ∆θ, x < ξ(t, y), (2.1)

θ = 1, x ≥ ξ(t, y), (2.2)
∂S

∂t
= ∆S − α∆θ, x 6= ξ(t, y). (2.3)

For some mathematical results about this problem, see e.g., [6, 14, 15, 16, 17, 10].
Here, we consider only the case where α is positive, i.e., the case of high mobility of
the deficient reactant. It will be convenient to assume periodicity in y with period
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`, and restrict attention to y ∈ [−`/2, `/2]. At the front, θ and S are continuous
and the following jump conditions occur for the normal derivatives:[

∂θ

∂n

]
= − exp(S), (2.4)[

∂S

∂n

]
= α

[
∂θ

∂n

]
. (2.5)

System (2.1)-(2.5) admits a planar travelling wave (TW) solution, with velocity −1,

θ(x) =
{

expx, x ≤ 0,
1, x ≥ 0 S(x) =

{
αx expx, x ≤ 0,
0, x ≥ 0.

As usual one fixes the free boundary. We set ξ(t, y) = −t+ϕ(t, y), x′ = x− ξ(t, y).
In this new framework:

θt + (1− ϕt)θx′ = ∆ϕθ, x′ < 0, (2.6)

θ(x′) = 1, x′ > 0, (2.7)

St + (1− ϕt)Sx′ = ∆ϕS − α∆ϕθ, x′ 6= 0, (2.8)

where

∆ϕ = (1 + (ϕy)2)Dx′x′ +Dyy − ϕyyDx′ − 2ϕyDx′y.

The front is now fixed at x′ = 0. The first condition (2.4) reads:√
1 + (ϕy)2

[
∂θ

∂x′

]
= − exp(S),

the second one (2.5) becomes [
∂S

∂x′

]
= α

[
∂θ

∂x′

]
.

We will consider a quasi-steady version of the NEF model. As a matter of fact,
it has been observed in similar problems (see [3]) that not far from the instability
threshold the time derivatives in the temperature and enthalpy equations have a
relatively small effect on the solution. The dynamics appears to be essentially driven
by the front. Based on this observation one can define a quasi-steady NEF model
replacing (2.6)-(2.8) by

(1− ϕt)θx′ = ∆ϕθ, x′ < 0,

θ = 1, x′ > 0,

(1− ϕt)Sx′ = ∆ϕS − α∆ϕθ, x′ 6= 0.

Next we consider the perturbations of temperature u and enthalpy v:

θ = θ + u, S = S + v.

Writing for simplicity x instead of x′, the problem for the triplet (u, v, ϕ) reads:

(1− ϕt)ux −∆ϕu− ϕtθx = (∆ϕ −∆)θ, x < 0,

u = 0, x > 0,

(1− ϕt)vx −∆ϕ(v − αu)− ϕtSx = (∆ϕ −∆)(S − αθ), x 6= 0,
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where

(∆ϕ −∆)(θ) = ((ϕy)2 − ϕyy)θx,

(∆ϕ −∆)(S − αθ) = α((ϕy)2Sx − ϕyyS).

As in [4, 5], we introduce further simplifications: we keep only linear and second-
order terms for the perturbation of the front ϕ, and first-order terms for the pertur-
bations of temperature u and enthalpy v. The skipped terms contribute to higher
order perturbations only. This leads to the equations:

ux −∆u− ϕtθx = (∆ϕ −∆)θ, x < 0,

vx −∆(v − αu)− ϕtSx = (∆ϕ −∆)(S − αθ), x 6= 0.

At x = 0 there are several conditions. First

[u] = [v] = 0,

however, since u(x) = 0 for x > 0, this is equivalent to

u(0−) = [v] = 0.

Second, √
1 + (ϕy)2 [θx + ux] = − exp(S + v),

hence up to the second-order:

−1 + [ux] = −(1 + (ϕy)2)−
1
2 ev ∼ −

(
1− 1

2
(ϕy)2

)(
1 + v(0) +

1
2

(v(0))2

)
and keeping only the first-order for v yields:

− ux(0) + v(0) =
1
2

(ϕy)2.

Moreover, the condition [Sx] = α[θx] yields

[vx] = −αux(0).

Therefore, the final system reads:

ux −∆u− ϕtθx = ((ϕy)2 − ϕyy)θx, x < 0,

vx −∆(v − αu)− ϕtSx = (ϕy)2Sx − ϕyyS, x 6= 0,
u(0) = [v] = 0,
v(0)− ux(0) = 1

2 (ϕy)2,

[vx] = −αux(0).

(2.9)

We remark that the equation for u associated with the boundary condition u(0) = 0
entirely determines u when ϕ is given. Therefore, it can be viewed as a kind
of pseudo-differential Stefan condition. We will take advantage of this remark in
Section 3.
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2.2. Our results. The goal of this paper is to show that this simplified NEF model
still contains the dynamics of the system. It is simple enough to be integrated
explicitly via a discrete Fourier transform in the variable y and therefore it allows a
separation of the dependent variables. We get to a self-consistent pseudo-differential
equation for the front ϕ which reads:

(X2
k + αXk − α)ϕ̂t(t, k) = (−4λ2

k + (α− 1)λk)ϕ̂(t, k)

+
1
4

(X3
k − 3X2

k − 4αXk + 4α)(̂ϕy)2(t, k), k = 0, 1, . . . , (2.10)

where the −λk’s are the non-positive eigenvalues of the operator Dyy with periodic
boundary conditions at y = ±`/2 (that we denote below by A) and

Xk =
√

1 + 4λk, k = 0, 1, . . . ,

is the symbol of operator
√

1− 4Dyy.
Equation (2.10) can be written in the more abstract form:

∂

∂t
ϕ = L (ϕ) + G ((ϕy)2), (2.11)

where L is a pseudodifferential operator whose leading part is Dyy and G is a
nonlinear operator whose leading term is 1

4

√
1− 4Dyy. This makes (2.11) a strongly

nonlinear equation, more precisely it is a fully nonlinear parabolic equation: in the
L2-setting the nonlinear part is exactly of the same order as the linear operator.
This is one of the main issues of this paper. Note that the realization of the operator√

1− 4Dyy in the space of continuous and `-periodic functions (say C]) is defined
only in a proper subspace of C1

] (the space of all the `-periodic C1-functions). Hence,
in the C]-setting, the nonlinear term G ((ϕy)2) represents the leading part of the
right-hand side of (2.11). This would make the study of (2.11) more difficult than
in the L2-setting, where we confine our analysis.

In the case where ϕ is smoother, we can rewrite Equation (2.11) as a fourth-order
equation as follows:

∂

∂t
Bϕ = S (ϕ) + F ((ϕy)2), (2.12)

where S is nothing but the usual fourth-order differential operator

S (ϕ) = −ϕyyyy − (α− 1)ϕyy.

Operators B and F are pseudo-differential ones with symbols, respectively,

bk = X2
k + αXk − α, fk =

1
4

(X3
k − 3X2

k − 4αXk + 4α).

Therefore,

B = I − 4Dyy + α
(√

I − 4Dyy − I
)
,

F =
1
4

(I − 4Dyy)
3
2 − 3

4
(I − 4Dyy)− α

(√
1− 4Dyy − I

)
.

The main feature of Equation (2.12) is that the nonlinear part is rather unusual.
Actually, it has a fourth-order leading term, as S has. Therefore (2.12) is also a
fully nonlinear problem.

The first main result of the paper is the following one.
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Theorem 2.1. Let

αc = 1 +
16π2

`2
. (2.13)

Then, the following properties are satisfied.
(a) If α < αc, then, the null solution to Equation (2.12) is (orbitally) stable, with

asymptotic phase, with respect to sufficiently smooth and small perturbations.
(b) If α > αc, then the null solution to Equation (2.12) is unstable.

An important question, that we address in Section 5, is the link between (2.12)
and K–S. Following [23], we introduce a small parameter ε > 0, setting

α = 1 + ε,

and define the rescaled dependent and independent variables accordingly:

t = τ/ε2, y = η/
√
ε, ϕ = εψ.

We see that ψ solves the equation
∂

∂τ

{
I − 4εDηη + (1 + ε)

(√
I − 4εDηη − 1

)}
ψ

=− 4Dηηηηψ −Dηηψ

+
1
4

{
(I − 4εDηη)

3
2 − 3(I − 4εDηη)− 4(1 + ε)

(√
1− 4εDηη − I

)}
(Dηψ)2.

Then, we anticipate, in the limit ε→ 0, that ψ ∼ Φ, where Φ solves (1.1). More
precisely, we take for `:

`ε = `0/
√
ε,

which blows up as ε → 0; hence αc = 1 + 16π2

`20
ε. Thus, `0 becomes the new

bifurcation parameter. We shall assume that `0 > 4π in order to have αc ∈ (1, 1+ε),
i.e., α > αc, otherwise the trivial solution is stable and the dynamics is trivial.

The second main result of the paper is the following.

Theorem 2.2. Let Φ0 ∈ Hm be a periodic function of period `0. Further, let Φ
be the periodic solution of (1.1) (with period `0) on a fixed time interval [0, T ],
satisfying the initial condition Φ(0, ·) = Φ0. Then, if m is large enough, there exists
ε0 = ε0(T ) ∈ (0, 1) such that, for 0 < ε ≤ ε0, Problem (2.12) admits a unique
classical solution ϕ on [0, T/ε2], which is periodic with period `0/

√
ε with respect to

y, and satisfies

ϕ(0, y) = εΦ0(y
√
ε), |y| ≤ `0

2
√
ε
.

Moreover, there exists a positive constant C, independent of ε ∈ (0, ε0], such that

|ϕ(t, y)− εΦ(tε2, y
√
ε)| ≤ C ε2, 0 ≤ t ≤ T

ε2
, |y| ≤ `0

2
√
ε
,

for any ε ∈ (0, ε0].

In other words, starting from the same configuration, the solution of (2.12) re-
mains on a fixed time interval close to the solution of K–S up to some renormal-
ization, uniformly in ε sufficiently small. Note that the initial condition for ϕ is of
special type, compatible with Φ0 and (1.1) at τ = 0. Initial conditions of this type
have been already considered in [2, 3, 5].

Although energy methods are known to be usually inefficient in fully nonlinear
problems, here we may take advantage of the special structure of F . It allows us to
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establish sharp a priori estimates on the remainder (more precisely on its derivative)
when ε is small enough. A key point is an extension of a lemma that we already
successfully used in [2, 5].

2.3. Some mathematical setting. In this subsection we briefly introduce some
notation, the functional spaces and operators we will use below. We will mainly
use the discrete Fourier transform with respect to the variable y. For this purpose,
given a function f : (−`/2, `/2)→ C, we denote by f̂(k) its k-th Fourier coefficient,
that is, we write

f(y) =
+∞∑
k=0

f̂(k)wk(y), y ∈ (−`/2, `/2),

where {wk} is a complete set of (complex valued) eigenfunctions of the operator

A = Dyy : D(A) = H2(−`/2, `/2) → L2(−`/2, `/2),

with `-periodic boundary conditions, corresponding to the non-positive eigenvalues

0,−4π2

`2
,−4π2

`2
,−16π2

`2
,−16π2

`2
,−36π2

`2
, . . .

We shall find it convenient to label this sequence as

0 = −λ0(`) > −λ1(`) = −λ2(`) > −λ3(`) = −λ4(`) > . . .

Quite often we simply write λk instead of λk(`).
When f depends also on t and/or x, we denote by f̂(·, k) the k-th Fourier coef-

ficient of f with respect to y. For instance, for fixed t and x, f̂(t, x, k) will denote
the k-th Fourier coefficient of the function f(t, x, ·).

For integer or arbitrary real s, we denote by Hs
] the usual Sobolev space of

order s consisting of `-periodic (generalized) functions, which we will conveniently
represent as

Hs
] =

{
w =

+∞∑
k=0

akwk :
+∞∑
k=0

λska
2
k < +∞

}
,

with norm

‖w‖2s =
+∞∑
k=0

λska
2
k.

For k = 0, we simply write L2 instead of H0
] and | · |2 instead of ‖ · ‖0.

We recall that for any β > 0 and γ ∈ (0, 1) the operator (I − βA)γ has H2γ
] as a

domain and it is defined by its symbol ((1 + βλk)γ) (see e.g., [19, Thm. 4.33]).
Next, for any n = 0, 1, . . . and any β ∈ [0, 1), we set

Cn+β
] = {f ∈ Cn+β([−`/2, `/2]) : f (j)(−`/2) = f (j)(`/2), j ≤ n}.

Cn+β
] is endowed with the Euclidean norm of Cn+β([−`/2, `/2]). Finally, we denote

by ‖ · ‖∞ the sup-norm.
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3. The derivation of a self-consistent equation for the front. The aim of
this section is the derivation of a self-consistent equation (in the Fourier variables)
for the front ϕ. For this purpose, we rewrite Problem (2.9), making θ and S explicit.
We get



ux −∆u = (ϕt + (ϕy)2 − ϕyy)ex, x < 0,
vx −∆(v − αu) = α(ϕt + (ϕy)2)(x+ 1)ex − αϕyyxex, x < 0,
vx −∆v = 0, x > 0,
u(0) = [v] = 0,
v(0)− ux(0) = 1

2 (ϕy)2,

[vx] = −αux(0).

(3.1)

In what follows, we assume that (u, v, ϕ) is a sufficiently smooth solution to Problem
(3.1) such that the function x 7→ e−x/2u(t, x, y) is bounded in (−∞, 0] and the
function x 7→ e−x/2v(t, x, y) is bounded in R. As it has been stressed in Section
2, we use the first equation in (3.1) and the boundary condition u(·, 0, ·) = 0 as a
pseudo-differential Stefan condition. We solve the problem for u via discrete Fourier
transform. This leads us to a system of infinitely many equations

ûx(t, x, k)− ûxx(t, x, k) + λkû(t, x, k) =
(
ϕ̂t(t, k) + (̂ϕy)2(t, k) + λkϕ̂(t, k)

)
ex,

(3.2)
for k = 0, 1, 2, . . ., where we recall that −λk = −λk(`) is the k-th eigenvalue of
the realization of the operator Dyy in L2. For notational convenience we set νk =
1
2 + 1

2

√
1 + 4λk for any k = 0, 1, . . . A straightforward computation reveals that the

solution to (3.2) which vanishes at x = 0 and tends to 0 as x → −∞ not slower
than e−x/2 is given by

û(t, x, 0) = −
(
ϕ̂t(t, 0) + (̂ϕy)2(t, 0)

)
xex, x ≤ 0,

û(t, x, k) =
(
ϕ̂t(t, k) + (̂ϕy)2(t, k) + λkϕ̂(t, k)

)
(ex − eνkx) , x ≤ 0, k = 1, 2, . . .

Let us now consider the problem for v, where we disregard (for the moment) the
condition v(·, 0, ·)−ux(·, 0, ·) = 1

2 (ϕy)2. Taking the Fourier transform (with respect
to the variable y), we get the Cauchy problems


v̂x(t, x, 0)− v̂xx(t, x, 0) = α

(
ϕ̂t(t, 0) + (̂ϕy)2(t, 0)

)
(2x+ 3)ex, x < 0,

v̂x(t, x, 0)− v̂xx(t, x, 0) = 0, x > 0,
[v̂(t, ·, 0)] = 0,

[v̂x(t, ·, 0)] = −αûx(t, 0, 0) = α
(
ϕ̂t(t, 0) + (̂ϕy)2(t, 0)

)
,
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for k = 0, and

v̂x(t, x, k)− v̂xx(t, x, k) + λkv̂(t, x, k)

= α

(
x+ 2− 1

λk

)(
ϕ̂t(t, k) + (̂ϕy)2(t, k)

)
ex + αλk

(
x+ 1− 1

λk

)
ϕ̂(t, k)ex

+
ανk
λk

(
ϕ̂t(t, k) + (̂ϕy)2(t, k) + λkϕ̂(t, k)

)
eνkx, x < 0,

v̂x(t, x, k)− v̂xx(t, x, k) + λkv̂(t, x, k) = 0, x > 0,
[v̂(t, ·, k)] = 0,

[v̂x(t, ·, k)] = −αûx(t, 0, k) = αν−1
k

(
ϕ̂t(t, k) + (̂ϕy)2(t, k) + λkϕ̂(t, k)

)
,

for k ≥ 1.
It is easy to show that

v̂(t, x, 0) = −α
(
ϕ̂t(t, 0) + (̂ϕy)2(t, 0)

)
x(x+ 1)ex, x < 0,

v̂(t, x, 0) = 0, x > 0.

and

v̂(t, x, k) =c1,keνkx +
α

λk

(
ϕ̂t(t, k) + (̂ϕy)2(t, k)

)
(x+ 2)ex + αϕ̂(t, k)(x+ 1)ex

+
α

λk

νk
1− 2νk

(
ϕ̂t(t, k) + (̂ϕy)2(t, k) + λkϕ̂(t, k)

)
xeνkx, x < 0,

v̂(t, x, k) =c2,ke(1−νk)x, x ≥ 0,

where

c1,k =
α

1− 2νk

(
1 + νk +

νk
1− 2νk

+
λk
νk

)
ϕ̂(t, k)

+
α

1− 2νk

(
1
λk

+
2νk
λk

+
1
νk

+
1
λk

νk
1− 2νk

)(
ϕ̂t(t, k) + (̂ϕy)2(t, k)

)
,

c2,k =
α

1− 2νk

(
2 +

νk
1− 2νk

+
λk
νk
− νk

)
ϕ̂(t, k)

− α

1− 2νk

(
2νk
λk
− 3
λk
− 1
λk

νk
1− 2νk

− 1
νk

)(
ϕ̂t(t, k) + (̂ϕy)2(t, k)

)
.

Now, we are in a position to determine the equation for the front. Indeed,
rewriting the boundary condition

v(0)− ux(0) =
1
2

(ϕy)2,

in Fourier variables, and using the above results, we get to the following equations
for the front (in the Fourier coordinates):

ϕ̂t(t, 0) +
1
2

(̂ϕy)2(t, 0) = 0,

{
α

1− 2νk

(
2 +

νk
1− 2νk

+
λk
νk
− νk

)
+
λk
νk

}
ϕ̂(t, k)
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+
{
− α

1− 2νk

(
2νk
λk
− 3
λk
− 1
λk

νk
1− 2νk

− 1
νk

)
+

1
νk

}
ϕ̂t(t, k)

+
{
− α

1− 2νk

(
2νk
λk
− 3
λk
− 1
λk

νk
1− 2νk

− 1
νk

)
+

1
νk
− 1

2

}
(̂ϕy)2(t, k) = 0.

Let us set Xk =
√

1 + 4λk. Then, the equation for ϕ reads (in terms of Xk) as
follows:

(Xk − 1)(X2
k − α)

2X2
k

ϕ̂(t, k) +
2(X2

k + αXk − α)
X2
k(Xk + 1)

ϕ̂t(t, k)

−X
3
k − 3X2

k − 4αXk + 4α
2X2

k(Xk + 1)
(̂ϕy)2(t, k) = 0,

for any k = 0, 1, 2, . . ., or, equivalently,

4ϕ̂t(t, k) =
(1−X2

k)(X2
k − α)

X2
k + αXk − α

ϕ̂(t, k) +
X3
k − 3X2

k − 4αXk + 4α
X2
k + αXk − α

(̂ϕy)2(t, k), (3.3)

or

(X2
k + αXk − α)ϕ̂t(t, k) =

1
4

(1−X2
k)(X2

k − α)ϕ̂(t, k)

+
1
4

(X3
k − 3X2

k − 4αXk + 4α)(̂ϕy)2(t, k)

=(−4λ2
k + (α− 1)λk)ϕ̂(t, k)

+
1
4

(X3
k − 3X2

k − 4αXk + 4α)(̂ϕy)2(t, k),

for any k = 0, 1, . . . Hence, we can conclude that ϕ solves the equations
d

dt
B(ϕ) = S (ϕ) + F ((ϕy)2) (3.4)

and
ϕt = B−1S (ϕ) + B−1F ((ϕy)2) := L (ϕ) + G ((ϕy)2), (3.5)

where the operators B, S and F are defined through their symbols

bk = X2
k + αXk − α, (3.6)

sk = −4λ2
k + (α− 1)λk, (3.7)

fk =
1
4

(X3
k − 3X2

k − 4αXk + 4α), (3.8)

for any k = 0, 1, . . .

4. Stability of the front. In this section we are interested in the stability and
instability properties of the null solution to the Equations (3.4) and (3.5). In this
respect we need to study the symbols appearing in (3.3).

4.1. Study of the symbols. In this subsection, we study the main properties of
the operators B, G , S , and L , F , whose symbols are respectively defined by
(3.6)-(3.8) and by

lk =
(1−X2

k)(X2
k − α)

4(X2
k + αXk − α)

,

gk =
X3
k − 3X2

k − 4αXk + 4α
4(X2

k + αXk − α)
,
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for any k = 0, 1, . . . Even if all these operators depend on α, we prefer not to stress
explicitly the dependence on α to avoid cumbersome notations.

Proposition 4.1. The following properties are satisfied.

(i) The operator L admits a realization L in L2 which is a sectorial operator.
Moreover, its spectrum consists of the sequence (lk). In particular, 0 is a
simple eigenvalue of L. The spectral projection associated with this eigenvalue
is the operator Π defined by

Π(ψ) =
1
`

∫ `
2

− `2
ψ(y)dy, ψ ∈ L2.

Finally, σ(L) \ {0} ⊂ (−∞, 0) if and only if α < αc (see (2.13)).
(ii) The operator B admits a bounded realization B mapping H2

] into L2. More-
over, B is invertible.

(iii) The operator F admits a bounded realization F mapping H3
] into L2.

(iv) The operator G admits a bounded realization G mapping H1
] into L2.

(v) The realization of the operator S in L2 is the operator

S = −4Dyyyy + (α− 1)Dyy,

with H4
] as domain.

Proof. (i). To begin with, we observe that

lk = − λk(4λk + 1− α)
α
√

4λk + 1 + 4λk + 1− α
.

Hence, we can split

lk = −λk +
αλk
√

1 + 4λk
α
√

1 + 4λk + 4λk + 1− α
:= −λk + l1,k,

for any k = 0, 1, . . . Note that l1,k ∼ α
2

√
λk as k → +∞. Hence, from the above

splitting of the symbol (lk) it follows at once that the operator L admits a realiza-
tion L in L2 with domain D(L) = H2

] which can be split as L = A+ L1, where L1

is a bounded operator from H1
] into L2, and A is the realization of Dyy in L2 with

domain H2
] . Since H1

] is an intermediate space of class J1/2 between L2 and D(A),
[18, Prop. 2.4.1(i)] applies and shows that L is sectorial.

Let us now compute the spectrum of the operator L. For this purpose, we observe
that, since D(L) is compactly embedded into L2, σ(L) consists of eigenvalues only.
Further, if λ is an eigenvalue of L, then there exists a not identically vanishing
function ψ such that Lψ = λψ. In the Fourier variables, the previous equation
leads to the system of infinitely many equations:

λψ̂(k)− lkψ̂(k) = 0, k = 0, 1, 2, . . .

If λ 6= lk, then ψ̂(k) = 0. Hence, if λ is not an element of the sequence (lk), λ is in
the resolvent set of L. On the other hand, it is clear that the sequence (lk) consists
of eigenvalues of L. So σ(L) = {lk : k = 0, 1, . . .}.

Since lk → −∞ as k → +∞, 0 is an isolated point of the spectrum of L and the
corresponding eigenspace is one-dimensional. Let us prove that Π is the spectral
projection associated with such an eigenvalue. For this purpose, we prove that 0
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is a simple pole of the function λ 7→ R(λ, L) and compute the residual at 0. Note
that for any λ 6∈ σ(L) and any ψ ∈ H2

] it holds that

R(λ, L)ψ =
+∞∑
k=0

1
λ− lk

ψ̂(k)wk.

Hence,

λR(λ, L)ψ = ψ̂(0)w0 +
+∞∑
k=1

λ

λ− lk
ψ̂(k)wk = Πψ +

+∞∑
k=1

λ

λ− lk
ψ̂(k)wk.

Hence, for |λ| ≤ 1
2 min
k=1,2,...

|lk|, we can estimate

|λR(λ, L)ψ −Πψ|22 ≤
+∞∑
k=1

∣∣∣∣ λ

λ− lk

∣∣∣∣2 |ψ̂(k)|2 ≤ 2|λ|2

lmin

+∞∑
k=1

|ψ̂(k)|2 ≤ 2|λ|2

lmin
|ψ|22,

where lmin = minn=1,2,... |ln| > 0. This shows that R(λI − L) has a simple pole at
λ = 0 and its residual is the operator Π, which turns out to be spectral projection
associated with the eigenvalue 0, which is simple. For more details, we refer the
reader to e.g., [18, Prop. A.1.2 & A.2.1].

To conclude the proof of point (i), we observe that lk < 0, for k ≥ 1, if and only if
1 + 4λk−α > 0. Since (λk) is a nondecreasing sequence, lk < 0 for any k = 1, 2, . . .,
if and only if 4λ1 + 1− α > 0, i.e., if and only if α < αc.

(ii), (iii) & (iv). It is enough to observe that bk ∼ 4λk, fk ∼ 2λ3/2
k , gk ∼ 1

2

√
λk

as k → +∞ and bk 6= 0 for any k = 0, 1, . . .
(v). It is immediate and, hence, omitted. �

4.2. Proof of Theorem 2.1. The proof is rather classical and is based on the
results in Propositions 4.1. Nevertheless, for the reader’s convenience we go into
details. We split the proof in two steps: in the first one we deal with Equation (3.5)
and in the second one we consider Equation (3.4).

Step 1. Using classical arguments based on a fixed point argument, one can show
that for any α ∈ R and any T > 0, there exists r0 > 0 such that, if ‖ϕ0‖2 ≤ r0, the
Cauchy problem

ϕt(t, y) = (Lϕ(t, ·))(y) + (G((ϕy(t, ·))2))(y), t > 0, |y| ≤ `
2 ,

ϕ(t,−`/2) = ϕ(t, `/2), t > 0,
ϕy(t,−`/2) = ϕy(t, `/2), t > 0,

ϕ(0, y) = ϕ0(y), |y| ≤ `
2 ,

(4.1)

admits a unique solution ψ ∈
⋃
θ∈(0,1) Xθ(T ), where

Xθ(T ) =
{
ψ ∈ C([0, T ];H2

] ) ∩ C1([0, T ];L2) : sup
0<ε<T

εθ[ψ]Cθ([ε,T ];H2
] )

}
.

This can be proved slightly adapting the proof of [18, Thm. 8.1.1]. The crucial
point is the estimate

sθ|G((ψy(t, ·))2)−G((ψy(s, ·))2)|2 ≤ C1s
θ|ψy(s, ·)|2[ψ]Cθ([s,T ];L2)|t− s|θ, (4.2)

for any 0 < s < t ≤ T , some positive constant C1 and any ψ ∈ Xθ(T ) (θ ∈ (0, 1)).
To prove this estimate it suffices to observe that, by Proposition 4.1(iv)

|G((ψy(t, ·))2)−G((ψy(s, ·))2)|22
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≤C|(ψy(t, ·))2 − (ψy(s, ·))2|2 + C|Dy(ψy(t, ·))2 −Dy(ψy(s, ·))2|22
≤C|ψy(t, ·)− ψy(s, ·)|2‖ψy(t, ·) + ψy(s, ·)‖∞

+ C|ψyy(t, ·)|2‖ψy(t, ·)− ψy(s, ·)‖∞
+ C‖ψy(s, ·)‖∞|ψyy(t, ·)− ψyy(s, ·)|2
≤C|ψy(t, ·)− ψy(s, ·)|2|ψyy(t, ·) + ψyy(s, ·)|2

+ C (|ψyy(t, ·)|2 + C|ψy(s, ·)|2) |ψyy(t, ·)− ψyy(s, ·)|2,

for any 0 < s < T , where the last side of the previous chain of inequalities follows
from the Poincaré-Wirtinger inequality, and C denotes a positive constant, inde-
pendent of s, t and ψ, which may vary from line to line. Estimate (4.2) now follows
at once.

Let us now prove properties (a) and (b). It is convenient to split the solution ϕ to
Equation (3.5) along Π(L2) and (I−Π)(L2). We get ϕ(t, y) = p(t)w0+ψ(t, y) for any
t > 0 and any y ∈ [−`/2, `/2]. Since Π commutes with both the time and the spatial
derivatives, Π(Dtϕ) = DtΠ(ϕ) = p′ and (I − Π)(Dyϕ) = Dy(I − Π)(ϕ) = Dyw.
Moreover, for any ψ ∈ H1

] , G(ψ) =
∑+∞
k=0 gkψ̂(k)wk, so that

ΠG(ψ) = g0ψ̂(0) = −1
2

Πψ.

Hence, projecting the Cauchy problem (4.1) along Π(L2) and (I − Π)(L2), we get
the two self-consistent equations for p and ψ:{

p′(t) = − 1
2Π((ψy(t, ·))2), t > 0,

p(0) = Π(ϕ0),
(4.3)

and
ψt(t, y) = (Lψ(t, ·))(y) + (I −Π)(G((ψy(t, ·))2))(y), t > 0, |y| ≤ `

2 ,

ψ(t,−`/2) = ψ(t, `/2), t > 0,
ψy(t,−`/2) = ψy(t, `/2), t > 0,

ψ(0, y) = ((I −Π)(ϕ0))(y), |y| ≤ `
2 .

(4.4)

Clearly, the stability of the null solution to Equation (3.5) depends only on the
stability of the null solution to the equation ψt = Lψ + (I − Π)(G((ψy)2)), set in
(I −Π)(L2).

Note that the part of the operator L in (I − Π)(L2) is still a sectorial operator,
and its spectrum is σ(L) \ {0} = {lk : k = 1, 2, . . .}. In particular, all the elements
of σ(L) \ {0} lie in (−∞, 0). Hence, the linearized stability principle applies to this
situation. More specifically, in the case where α < αc all the eigenvalues of the
part of L in (I − Π)(L2) are contained in the plane {λ ∈ C : Reλ < 0}. Hence,
up to replacing r0 with a smaller value (if needed), for any ϕ ∈ B(0, r) ⊂ L2,
the solution ψ to Problem (4.4) exists for all positive times. Moreover, for any
ω > max{lk : k = 1, 2, . . .}, there exists a positive constant Cω such that

|ψt(t, ·)|2 + ‖ψ(t, ·)‖2 ≤ Cωeωt‖ϕ0‖2, t > 0.

As a byproduct, we can infer that the solution to Problem (4.3) exists for all positive
times and

lim
t→+∞

p(t) = p∞ := Πϕ0 −
1
2

∫ +∞

0

Π((ψy(t, ·))2)dt.
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Coming back to Problem (4.1), the above results show that, if α < αc, this
problem admits a unique solution, defined for all positive times. Moreover,

|ϕt(t, ·)|2 + ‖ϕ(t, ·)− p∞‖∞ + ‖ϕy(t, ·)‖∞ + |ϕyy(t, ·)|2 ≤ Pωeωt‖ϕ0‖2,

for any t > 0, any ω as above and some positive constant Pω independent of s, ϕ0

and ϕ, i.e., the null solution to Equation (3.5) is (orbitally) stable with asymptotic
phase.

In the case where α > αc the spectrum of L|(I−Π)(L2) contains (a finite number of)
eigenvalues with positive real part. Hence, the equation ψt = Lψ+(I−Π)(G((ψy)2))
admits a backward solution, exponentially decreasing to 0 at −∞ and this implies
that the null solution to Problem (4.4) and, consequently, the null solution to Prob-
lem (4.1) are unstable. For further details, we refer the reader to e.g., [12] and [18,
Thm. 9.1.2 & 9.1.3].

Step 2. We focus on the case where α < αc, the other case being simpler. Of
course, we just need to deal with the function ψ = (I − Π)ϕ. We assume that
ϕ0 ∈ H4

] . We are going to show that for any ω ∈ (0,maxk=1,2,... lk), it holds that

sup
t>0

e−ωt‖ϕ(t, ·)‖4 + sup
t>0

e−ωt‖ϕt(t, ·)‖2 < +∞.

For this purpose, let us consider the differentiated problem
ρt(t, y) = (Lρ(t, ·))(y) + (Dyy(I −Π)(G((P(ρ(t, ·)))2))(y), t > 0, |y| ≤ `

2 ,

ρ(t,−`/2) = ρ(t, `/2), t > 0,
ρy(t,−`/2) = ρy(t, `/2), t > 0,

ρ(0, y) = Dyyϕ0(y), |y| ≤ `
2 ,

(4.5)
for the unknown ρ = ψyy. Here,

P(ζ) = (I −Π)

(
y 7→

∫ y

− `2
ζ(η)dη

)
, ζ ∈ L2. (4.6)

This problem has the same structure as Problem (4.4), and, by assumptions,
Dyyϕ0 ∈ H2

] . Therefore, up to taking a smaller r0 (if necessary), if ‖Dyyϕ0‖2 ≤ r0,
Problem (4.5) has a solution ρ which belongs to C1([0, T ];L2) ∩ C([0, T ];H2

] ) for
any T > 0. Moreover,

sup
t>0

e−ωt‖ρ(t, ·)‖2 < +∞,

and ρ(t, ·) = (I −Π)ρ(t, ·) for any t > 0.
Let us show that ψ(t, ·) = P2(ρ(t, ·)) for any t > 0. Clearly, the function

Ψ = P2(ρ) belongs to C([0,+∞);H4
] ) ∩ C1([0,+∞);L2). Moreover, it belongs to

X1/2(T ) for any T > 0. Indeed, H2
] belongs to the class J1/2 between L2 and H4

] .
This means that

‖Ψ(t, ·)−Ψ(s, ·)‖2 ≤C|Ψ(t, ·)−Ψ(s, ·)|
1
2
2 ‖Ψ(t, ·)−Ψ(s, ·)‖

1
2
4

≤
√

2C‖Ψt‖
1
2
C([0,T ];L2)‖Ψ‖

1
2
C([0,T ];H4

] )
|t− s| 12 ,

for any 0 ≤ s ≤ t ≤ T and some positive constant C, independent of s, t and Ψ.
From this estimate, it is clear that Ψ ∈ C1/2([0, T ];H2

] ) ⊂X1/2(T ) for any T > 0.
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Further, DyyΨ = ρ and DtΨ = P2(Dtρ), so that DyyDtΨ = DtDyyΨ = ρt. It
turns out that

(i) Dyy(DtΨ− LΨ− (I −Π)G((Ψy)2)) ≡ 0, (ii) Ψ(0, ·) ≡ (I −Π)ϕ0.

Hence, DtΨ−LΨ−(I−Π)G((Ψy)2) = a(t)+b(t)y for some functions a, b : [0,+∞)→
R. Since Ψt, LΨ and G((Ψy)2) are continuous functions in [0,+∞)× [−`0/2, `0/2]
and are periodic with respect to y, it follows that DtΨ − LΨ − (I − Π)G((Ψy)2)
is periodic with respect to y as well. Moreover, this latter function belongs to
(I − Π)(L2) since Ψ does. Hence, a = b ≡ 0, implying that Ψ and ψ actually
coincide. We have thus proved that ψ ∈ C([0,+∞);H4

] ) andDtψ ∈ C([0,+∞);H2
] ).

Moreover,

sup
t>0

e−ωt|ψtyy(t, ·)|2 + sup
t>0

e−ωt‖ψ(t, ·)‖H4
]
< +∞.

To complete the proof it suffices to show that ϕ solves Equation (3.4), but this
follows immediately observing that ϕ is in the domain of both the operators B
(see Proposition 4.1(ii)) and S, and (ϕy)2 is in the domain of the operator F (see
Proposition 4.1(iii)). Further, L = B−1S and G = B−1F in H4

] . Since ϕ solves
the differential equation ϕt − Lϕ − G((ϕy)2) = 0, applying B to both sides of the
equation, it now follows immediately that ϕ solves Equation (3.4).

5. Rigorous derivation of the Kuramoto-Sivashinsky equation. In this sec-
tion we are interested in proving Theorem 2.2.

5.1. Rescaling and equation for the remainder. Let ϕ be a solution to (2.12).
We set α = 1 + ε and define the rescaled dependent and independent variables:

t = τ/ε2, y = η/
√
ε, ϕ = εψ.

The spatial period is now `ε = `0/
√
ε, for some `0 > 4π fixed, see the Introduction.

A straightforward computation reveals that the function ψ satisfies the equation
∂

∂τ
Bε(ψ) = S (ψ) + Fε((Dηψ)2), (5.1)

where

Bε = I − 4εDηη + (1 + ε)
(√

I − 4εDηη − 1
)
,

S = −4Dηηηη −Dηη,

Fε =
1
4

{
(I − 4εDηη)

3
2 − 3(I − 4εDηη)− 4(1 + ε)

(√
1− 4εDηη − I

)}
(Dη·)2.

Note that, if we denote by (λk(`)) the sequence of the eigenvalues of the second-
order derivative with periodic boundary conditions in [−`/2, `/2], it turns out that
λk(`ε) = ελk(`0) := ελk, for any k = 0, 1, . . .. Hence, the symbols of the operators
Bε, S and Fε are

bε,k = X2
ε,k + (1 + ε)Xε,k − 1− ε,

sk = −λk(4λk − 1),

fε,k =
1
4

(X3
ε,k − 3X2

ε,k − 4(1 + ε)Xε,k + 4 + 4ε), (5.2)

for any k = 0, 1, . . ., where

Xε,k =
√

1 + 4ελk, k = 0, 1, . . .
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Hence, the equation for the function ψ (in Fourier coordinates) reads

bε,kψ̂τ (τ, k) = −λk(4λk − 1)ψ̂(τ, k) + fε,k (̂ψη)2(τ, k),

for any k = 0, 1, . . . Note that the leading terms (at order 0 in ε) of bε,k and fε,k are
1 and −1/2, respectively. Hence, at the zero-order, we recover the K–S equation

Φτ + 4Φηηηη + Φηη +
1
2

(Φη)2 = 0.

As we recall in the Introduction, this equation has been thoroughly studied by many
authors. For our purposes, we need the following classical result. For the reader’s
convenience we provide a rather detailed proof in Appendix B.

Theorem 5.1. Let Φ0 ∈ Hm
] for some m ≥ 4 and fix T > 0. Then, the Cauchy

problem
Φτ (τ, η) = −4Φηηηη(τ, η)− Φηη(τ, η)− 1

2 (Φη(τ, η))2, τ ≥ 0, |η| ≤ `0
2 ,

Dk
ηΦ(τ,−`0/2) = Dk

ηΦ(τ, `0/2), τ ≥ 0, k = 0, 1, 2, 3,

Φ(0, η) = Φ0(η), |η| ≤ `0
2 ,

(5.3)
admits a unique solution Φ ∈ C([0, T ];Hm

] ) such that Φτ ∈ C([0, T ];Hm−4
] ).

The above (heuristical) arguments suggest to split ψ as follows:

ψ = Φ + ερε.

To avoid cumbersome notation, we usely write ρ for ρε. By assumptions (see The-
orem 2.2), the initial condition for ρ is

ρ(0, ·) = 0.

Replacing ψ in (5.1) we get, after simplifying by ε,
∂

∂τ
Bε(ρ) + Hε(Φτ ) = S (ρ) + Mε((Φη)2) + εFε((ρη)2) + 2Fε(Φηρη), (5.4)

for any k = 0, 1, . . ., where the symbols of the operators Hε and Mε are

hε,k =
1
ε

(X2
ε,k + (1 + ε)Xε,k − 2− ε), (5.5)

mε,k =
1
4ε

(X3
ε,k − 3X2

ε,k − 4(1 + ε)Xε,k + 6 + 4ε), (5.6)

for any k = 0, 1, . . .

Proposition 5.2. Fix ε ∈ (0, 1]. Then there exists a positive constant C∗ such that
the following properties are satisfied:
(a) for any s = 2, 3, . . ., the operators Bε and Hε admit bounded realizations Bε

and Hε, respectively, mapping Hs
] into Hs−2

] . Moreover

‖Bε‖L(Hs] ,H
s−2
] ) + ‖Hε‖L(Hs] ,H

s−2
] ) ≤ C∗,

for any ε ∈ (0, 1] and any s as above. Finally, the operator Bε is invertible both
from Hs

] to Hs−2
] for any s = 2, 3, . . .;

(b) for any s ≥ 3, the operators Fε and Mε admit bounded realizations Fε and Mε,
respectively, mapping Hs into Hs−3. Moreover,

‖Fε‖L(Hs] ,H
s−3
] ) + ‖Mε‖L(Hs] ,H

s−3
] ) ≤ C∗,

for any ε ∈ (0, 1] and any s = 3, 4, . . .
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Proof. (a). A straightforward computation shows that

|hε,k| = 4λk +
4(ε+ 1)λk√
1 + 4ελk + 1

≤ 4λk + 2(ε+ 1)λk = (6 + 2ε)λk,

for any k = 0, 1, . . . and any ε ∈ (0, 1]. This shows that Hε admits a bounded
realization mapping Hs

] into Hs−2
] for any s ≥ 2 and its norm can be bounded by

a constant, independent of ε ∈ (0, 1].
Since bε,k = εhε,k + 1 for any k = 0, 1, . . ., the boundedness of the operator Bε

from Hs
] to Hs−2

] follows at once.
Showing that the operator Bε is invertible from Hs

] into Hs−2
] is an easy task.

It suffices to observe that bε,k ≥ 4ελk + 1 for any k = 0, 1, . . ..
(b). Since fk = εmε,k − 1/2 for any k = 0, 1, . . ., we can limit ourselves to

considering the operator Mε. A simple computation shows that

|mε,k| ≤
(1 + 4ελk)

3
2 − 1

4ε
+ 3λk + 4

1 + ε

ε

(√
1 + 4ελk − 1

)
≤ 16ε2λ3

k + 12ελ2
k + 3λk

(1 + 4ελk)
3
2 + 1

+ 19λk

≤ 16ε2λ3
k

(1 + 4ελk)
3
2

+
12ελ2

k

1 + 4ελk
+ 22λk

≤ 2
√
ελ

3
2
k + 25λk,

for any k = 0, 1, 2, . . . Hence, Mε is well defined (and bounded) in Hs
] with values

in Hs−3
] for any s ≥ 3. Since its symbol can be estimated from above uniformly

with respect to ε ∈ (0, 1], the assertion follows immediately. �
Since all the operators appearing in (5.4) commute with Dη, the differentiated

problem for ζ := ρη reads as follows:

∂

∂τ
Bε(ζ) + Hε(Ψτ ) = S (ζ) + Mε((Ψ2)η) + εFε((ζ2)η) + 2Fε((Ψζ)η), (5.7)

where we have set Ψ = Φη. Obviously (5.7) is to be solved with zero initial condition
at time τ = 0. For simplicity, we denote Dη by D. For an integer n ≥ 1, Dn is the
differentiation operator of order n. We also set D0 = Id.

5.2. Formal a priori estimates. For any n = 0, 1, 2, . . . and any T > 0, we set

Yn(T ) =
{
ζ ∈ C([0, T ];H4∨2n

] ) ∩ C1([0, T ];L2) : ζτ ∈ C([0, T ];H2∨(n+1)
] )

}
,

where a ∨ b := max{a, b}. The main result of this subsection is contained in the
following theorem.

Theorem 5.3. Fix an integer n ≥ 0 and T > 0. Further, fix m in Theorem 5.1 large
enough such that Ψ ∈ C([0, T ];Hn+4

] ) ∩ C1([0, T ];L2) and Ψτ ∈ C([0, T ];Hn+2
] ).

Then, there exist ε1 = ε1(n, T ) ∈ (0, 1) and Kn = Kn(n, T ) > 0 such that, if
ζ ∈ Yn(T1) is a solution on the time interval [0, T1] of Equation (5.7) for some
T1 ≤ T , then

sup
τ∈[0,T1]

∫ `0
2

− `02
|Dnζ(τ, ·)|2dη + ε sup

τ∈[0,T1]

∫ `0
2

− `02
|Dn+1ζ(τ, ·)|2dη ≤ Kn, (5.8)

whenever 0 < ε ≤ ε1.
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To prove (5.8), we multiply both sides of the equation (5.7) by (−1)nD2nζ and
integrate by parts over (−`0/2, `0/2). We thus get

(−1)n
∫ `0

2

− `02
Bε(ζτ (τ, ·))D2nζ(τ, ·)dη − (−1)n

∫ `0
2

− `02
S(ζ(τ, ·))D2nζ(τ, ·)dη

=− (−1)n
∫ `0

2

− `02

(
Hε(Ψτ (τ, ·))−Mε((Ψ2)η(τ, ·))

)
D2nζ(τ, ·)dη

+ (−1)nε
∫ `0

2

− `02
Fε((ζ2)η(τ, ·))D2nζ(τ, ·)dη

+ 2(−1)n
∫ `0

2

− `02
Fε((Ψζ)η(τ, ·))D2nζ(τ, ·)dη, (5.9)

where S = −4Dηηηη −Dηη.
In the following lemmata we estimate all the terms appearing in the previous

equation. We first deal with the left-hand side of (5.9) which consists of the “benign”
terms.

Lemma 5.4. Fix n = 0, 1, . . ., ε > 0, T1 ≤ T and ζ ∈ Yn(T1). Then,

(−1)n
∫ `0

2

− `02
Bε(ζτ (τ, ·))D2nζ(τ, ·)dη − (−1)n

∫ `0
2

− `02
S(ζ(τ, ·))D2nζ(τ, ·)dη

=
1
2
d

dτ

∫ `0
2

− `02
|Dnζ(τ, ·)|2dη + 2ε

d

dτ

∫ `0
2

− `02
|Dn+1ζ(τ, ·)|2dη

+
(1 + ε)

2
d

dτ

∫ `0
2

− `02
〈RεDnζ(τ, ·), Dnζ(τ, ·)〉dη

+ 4
∫ `0

2

`0
2

|Dn+2ζ(τ, ·)|2dη −
∫ `0

2

`0
2

|Dn+1ζ(τ, ·)|2dη, (5.10)

where Rε : H1
] → L2 is the positive operator whose symbol is (Xε,k − 1).

Proof. For any ζ ∈ Yn(T1), we can estimate∫ `0
2

− `02
Bε(ζτ (τ, ·))D2nζ(τ, ·)dη = (−1)n

+∞∑
k=1

bε,k ζ̂τ (τ, k)λnk ζ̂(τ, k)

=(−1)n
+∞∑
k=1

λnk ζ̂τ (τ, k)ζ̂(τ, k) + 4(−1)nε
+∞∑
k=1

λn+1
k ζ̂τ (τ, k)ζ̂(τ, k)

+ (−1)n(1 + ε)
+∞∑
k=1

λnk (Xε,k − 1)ζ̂τ (τ, k)ζ̂(τ, k)

=
∫ `0

2

− `02
ζτ (τ, ·)D2nζ(τ, ·)dη − 4ε

∫ `0
2

− `02
ζτηη(τ, ·)D2nζ(τ, ·)dη

+ (1 + ε)
∫ `0

2

− `02
ζτ (τ, ·)(

√
I − 4εDηη − I)D2nζ(τ, ·)dη
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=(−1)n
∫ `0

2

− `02
(Dnζ)τ (τ, ·)Dnζ(τ, ·)dη + 4(−1)nε

∫ `0
2

− `02
Dn+1(ζτ (τ, ·))Dn+1ζ(τ, ·)dη

+ (−1)n(1 + ε)
∫ `0

2

− `02
〈RεDnζ(τ, ·), (Dnζ)τ (τ, ·)〉dη

− (−1)n(1 + ε)
∫ `0

2

− `02
(Dnζ)τ (τ, ·)Dnζ(τ, ·)dη

=(−1)n
{

1
2
d

dτ

∫ `0
2

− `02
|Dnζ(τ, ·)|2dη + 2ε

d

dτ

∫ `0
2

− `02
|Dn+1ζ(τ, ·)|2dη

+
(1 + ε)

2
d

dτ

∫ `0
2

− `02
〈RεDnζ(τ, ·), Dnζ(τ, ·)〉dη

}
,

(5.11)

for any τ ∈ [0, T1]. On the other hand, a straightforward computation shows that∫ `0
2

− `02
S(ζ(τ, ·))D2nζ(τ, ·)dη =− 4(−1)n

∫ `0
2

− `02
|Dn+2ζ(τ, ·)|2dη (5.12)

+ (−1)n
∫ `0

2

− `02
|Dn+1ζ(τ, ·)|2dη,

for any τ ∈ [0, T1]. Combining (5.11) and (5.12), Estimate (5.10) follows at once.
�

We now deal with the other terms in (5.9).

Lemma 5.5. Fix n = 0, 1, . . ., T1 ≤ T and assume that Ψ ∈ C([0, T1];Hn+4
] ) and

Ψτ ∈ C([0, T1];Hn+2
] ). Then, there exist a positive constant Cn, independent of

ε ∈ (0, 1] and T1, and constants K ′1(n,Ψ) and K ′2(n,Ψ) such that the following
estimates hold∣∣∣∣∣

∫ `0
2

− `02

(
Hε(Ψτ (τ, η))−Mε((Ψ2)η(τ, ·))

)
D2nζ(τ, ·)dη

∣∣∣∣∣ ≤ K ′1(n,Ψ) + |Dnζ(τ, ·)|22;

(5.13)∣∣∣∣∣
∫ `0

2

− `02
Fε((ζ2)η)D2nζ(τ, ·)dη

∣∣∣∣∣ ≤ Cnε 3
2 |Dnζ(τ, ·)|2|Dn+2ζ(τ, ·)|22 + Cn|Dnζ(τ, ·)|42

(5.14)

+ Cnε
2|Dn+1ζ(τ, ·)|42 + Cn|Dn+2ζ(τ, ·)|22;∣∣∣∣∣

∫ `0
2

− `02
Fε((Ψζ)η(τ, ·))D2nζ(τ, ·)dη

∣∣∣∣∣ (5.15)

≤K ′2(n,Ψ)
(
ε|Dn+2ζ(τ, ·)|22 + ε|Dn+1ζ(τ, ·)|22 + |Dnζ(τ, ·)|22

)
+

1
4
|Dn+2ζ(τ, ·)|22,

for any τ ∈ [0, T1] and any ζ ∈ Yn(T1).

Proof. Fix n = 0, 1, . . . Throughout the proof C denotes a positive constant de-
pending on n, but being independent of τ , Ψ and ζ, which may vary from line to
line.
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Estimate (5.13) follows immediately from Proposition 5.2, the Poincaré-Wirtinger
and Cauchy-Schwarz inequalities, which allow us to estimate∣∣∣∣∣

∫ `0
2

− `02

(
Hε(Ψτ (τ, ·))−Mε((Ψ2)η(τ, ·))

)
D2nζ(τ, ·)dη

∣∣∣∣∣
=

∣∣∣∣∣
∫ `0

2

− `02
Dn
(
Hε(Ψτ (τ, ·))−Mε((Ψ2)η(τ, ·))

)
Dnζ(τ, ·)dη

∣∣∣∣∣
≤K ′1(n,Ψ) + |Dnζ(τ, ·)|22,

for any τ ∈ [0, T1].
Let us now prove Estimate (5.14). For this purpose, we observe that

|fε,k| ≤ 2
√

2ε
3
2λ

3
2
k + 3ελk + 2(ε+ 1)

√
ελ

1
2
k +

3 +
√

2
4

, k = 0, 1, . . .

For the convenience of the reader, we note the splittings we use below:
3
2

+ n =
2 + n

2
+

1 + n

2
, 1 + n =

1 + n

2
+

1 + n

2
,

1
2

+ n =
n− 1

2
+

2 + n

2
, n =

n− 1
2

+
n+ 1

2
,

for n ≥ 1. (The case n = 0 can be handled likewise with very few slight and
straightforward changes.) Hence, for any χ ∈ C([0, T1];H4∨2n

] ) we can estimate∣∣∣∣∣
∫ `0

2

− `02
Fε(χη)D2nζdη

∣∣∣∣∣ =
+∞∑
k=0

λnk |nε,k|χ̂η(τ, k)|ζ̂(τ, k)| (5.16)

≤2
√

2ε
3
2

+∞∑
k=0

λ
3
2 +n

k |χ̂η(τ, k)||ζ̂(τ, k)|+ 3ε
+∞∑
k=0

λ1+n
k |χ̂η(τ, k)||ζ̂(τ, k)|

+ 2
√
ε(1 + ε)

+∞∑
k=0

λ
1
2 +n

k |χ̂η(τ, k)||ζ̂(τ, k)|

+
3 +
√

2
4

+∞∑
k=0

λnk |χ̂η(τ, k)||ζ̂(τ, k)|

≤2
√

2ε
3
2

(
+∞∑
k=0

λ1+n
k |χ̂η(τ, k)|2

) 1
2
(

+∞∑
k=0

λ2+n
k |ζ̂(τ, k)|2

) 1
2

+ 3ε

(
+∞∑
k=0

λ1+n
k |χ̂η(τ, k)|2

) 1
2
(

+∞∑
k=0

λ1+n
k |ζ̂(τ, k)|2

) 1
2

+ 2
√
ε(1 + ε)

(
+∞∑
k=0

|λn−1
k χ̂η(τ, k)|2

) 1
2
(

+∞∑
k=0

λ2+n
k |ζ̂(τ, k)|2

) 1
2

+
3 +
√

2
4

(
+∞∑
k=0

|λn−1
k χ̂η(τ, k)|2

) 1
2
(

+∞∑
k=0

λn+1
k |ζ̂(τ, k)|2

) 1
2

=2
√

2ε
3
2 |Dn+2χ(τ, ·)|2|Dn+2ζ(τ, ·)|2 + 3ε|Dn+2χ(τ, ·)|2|Dn+1ζ(τ, ·)|2

+ 2
√
ε(1 + ε)|Dnχ(τ, ·)|2|Dn+2ζ(τ, ·)|2
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+
3 +
√

2
4
|Dnχ(τ, ·)|2|Dn+1ζ(τ, ·)|2,

for any τ ∈ [0, T1].
Now, we are in a position to prove Estimate (5.14). For this purpose, we observe

that, using the Leibniz formula and the Poincaré-Wirtinger inequality, we get:

|Dn+2(ζ(τ, ·))2|2 ≤ C(|Dn+2ζ(τ, ·)|2|Dnζ(τ, ·)|2 + |Dn+1ζ(τ, ·)|22) (5.17)

|Dn(ζ(τ, ·))2|2 ≤ C|Dnζ(τ, ·)|22, (5.18)

for any τ ∈ [0, T1]. Replacing Estimates (5.17), (5.18) in (5.16) (with χ = ζ2), and
using the Cauchy-Schwarz inequality and, again, the Poincaré-Wirtinger inequality,
we get∣∣∣∣∣

∫ `0
2

− `02
Fε((ζ2)η(τ, ·))D2nζ(τ, ·)dη

∣∣∣∣∣
≤Cε 3

2 |Dnζ(τ, ·)|2|Dn+2ζ(τ, ·)|22 + Cε
3
2 |Dn+1ζ(τ, ·)|22|Dn+2ζ(τ, ·)|2

+ Cε|Dnζη(τ, ·)|2|Dn+1ζ(τ, ·)|2|Dn+2ζ(τ, ·)|2 + Cε|Dn+1ζ(τ, ·)|32
+ C
√
ε(1 + ε)|Dnζ(τ, ·)|22|Dn+2ζ(τ, ·)|2 + C|Dnζ(τ, ·)|22|Dn+1ζ(τ, ·)|2

≤Cε 3
2 |Dnζ(τ, ·)|2|Dn+2ζ(τ, ·)|22 + Cε

3
2 |Dn+1ζ(τ, ·)|22|Dn+2ζ(τ, ·)|2

+ Cε|Dn+1ζ(τ, ·)|22|Dn+2ζ(τ, ·)|2 + Cε|Dn+1ζ(τ, ·)|22|Dn+2ζ(τ, ·)|2
+ C
√
ε(1 + ε)|Dnζ(τ, ·)|22|Dn+2ζ(τ, ·)|2 + C|Dnζ(τ, ·)|22|Dn+2ζ(τ, ·)|2

≤Cε 3
2 |Dnζ(τ, ·)|2|Dn+2ζ(τ, ·)|22 + C

(
ε2|Dn+1ζ(τ, ·)|42 + ε|Dn+2ζ(τ, ·)|22

)
+ C|Dn+2ζ(τ, ·)|22 + Cε2|Dn+1ζ(τ, ·)|42 + Cε2|Dn+1ζ(τ, ·)|42 + C|Dn+2ζ(τ, ·)|22
+ C|Dnζ(τ, ·)|42 + Cε|Dn+2ζ(τ, ·)|22 + C|Dnζ(τ, ·)|42 + C|Dn+2ζ(τ, ·)|22,

for any τ ∈ [0, T1] and any ε ∈ (0, 1]. Now, Estimate (5.14) follows immediately.
To complete the proof, let us prove Estimate (5.15). From (5.16) and the esti-

mates

|Dn(Ψζ)(τ, ·)|2 ≤ C|Dnζ(τ, ·)|2|DnΨ(τ, ·)|2,
|Dn+2(Ψζ)(τ, ·)|2 ≤ C|Dn+2ζ(τ, ·)|2|Dn+2Ψ(τ, ·)|2,

(which can be proved using the same argument as in the proof of (5.17) and (5.18))
we get∣∣∣∣∣

∫ `0
2

− `02
Fε((Ψζ)η(τ, ·))D2nζ(τ, ·)dη

∣∣∣∣∣
≤
√

2ε
3
2 |Dn+2ζ(τ, ·)|2|Dn+2(Ψζ)(τ, ·)|2 + 3ε|Dn+1ζ(τ, ·)|2|Dn+2(Ψζ)(τ, ·)|2

+ 2
√
ε(1 + ε)|Dn+2ζ(τ, ·)|2|Dn(Ψζ)(τ, ·)|2

+
3 +
√

2
4
|Dn+1ζ(τ, ·)|2|Dn(Ψζ)(τ, ·)|2

≤Cε 3
2 |Dn+2Ψ(τ, ·)|2|Dn+2ζ(τ, ·)|22 + Cε|Dn+2Ψ(τ, ·)|2|Dn+1ζ(τ, ·)|2|Dn+2ζ(τ, ·)|2

+ C
√
ε|DnΨ(τ, ·)|2|Dnζ(τ, ·)|2|Dn+2ζ(τ, ·)|2

+ C|DnΨ(τ, ·)|2|Dnζ(τ, ·)|2|Dn+1ζ(τ, ·)|2
≤Cε 3

2 |Dn+2Ψ(τ, ·)|2|Dn+2ζ(τ, ·)|22 + Cε|Dn+2Ψ(τ, ·)|2|Dn+1ζ(τ, ·)|22
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+ Cε|Dn+2Ψ(τ, ·)|2|Dn+2ζ(τ, ·)|22
+ C|DnΨ(τ, ·)|2|Dnζ(τ, ·)|22 + Cε|DnΨ(τ, ·)|2|Dn+2ζ(τ, ·)|22
+ Cδ−1|DnΨ(τ, ·)|22|Dnζ(τ, ·)|22 + Cδ|Dn+2ζ(τ, ·)|22,

for any τ ∈ [0, T1], any ε ∈ (0, 1] and any δ > 0. Estimate (5.15) follows taking
Cδ = 1/4. This completes the proof. �

We are almost ready to write the crucial a priori estimate satisfied by ζ(τ, ·). For
this purpose, we recall that

|Dn+1ψ|2 ≤ |Dnψ|
1
2
2 |Dn+2ψ|

1
2
2 , ψ ∈ Hn+2

] .

Applying this estimate to Dn+1ζ(τ, ·), together with Young’s inequality, yields

|Dn+1ζ(τ, ·)|22 ≤ |Dnζ(τ, ·)|22 +
1
4
|Dn+2ζ(τ, ·)|22, (5.19)

for any τ ∈ [0, T1]. Combining Lemmata 5.4, 5.5 and Estimate (5.19) allows us to
estimate

1
2
d

dτ

(
|Dnζ(τ, ·)|22 + 4ε|Dn+1ζ(τ, ·)|22 + (1 + ε)|

√
RεD

nζ(τ, ·)|22
)

+
(

15
4
− Cnε− εK ′2(n,Ψ)− Cnε

5
2 |Dnζ(τ, ·)|2

)
|Dn+2ζ(τ, ·)|22

≤K ′1(n,Ψ) + (2 +K ′2(n,Ψ)) |Dnζ(τ, ·)|22 + εK ′2(n,Ψ)|Dn+1ζ(τ, ·)|22
+ Cnε|Dnζ(τ, ·)|42 + Cnε

3|Dn+1ζ(τ, ·)|42, (5.20)

for any τ ∈ [0, T1]. If we set

Aε(τ) = |Dnζ(τ, ·)|22 + 4ε|Dn+1ζ(τ, ·)|22 + (1 + ε)|
√
RεD

nζ(τ, ·)|22, τ ∈ [0, T1],

c1 = 2K ′1(n,Ψ),

c2 = 4 + 2K ′2(n,Ψ),

c3 = 2Cn,

and assume ε small enough such that

Cnε+ εK ′2(n,Ψ) <
3
4
,

we can rewrite Inequality (5.20) in the more compact form

A′ε(τ) +
(

6− 2Cε
5
2Aε(τ)

)
|Dn+2ζ(τ, ·)|22 ≤ c1 + c2Aε(τ) + c3ε(Aε(τ))2,

for any τ ∈ [0, T1].
The following lemma allows us to estimate the function Aε.

Lemma 5.6. Let A0, c0, c1, c2, c3, ε, T0, T1 be positive constants with T1 < T0.
Further, let fε : [0, T1] → R and Aε be positive functions of class C([0, T1]) and
C1([0, T1]), respectively, that satisfy the inequalities{

A′ε(τ) + (c0 − εAε(τ))fε(τ) ≤ c1 + c2Aε(τ) + c3ε(Aε(τ))2, τ ∈ [0, T1],
Aε(0) = 0.

Then, there exist ε1 = ε1(T0) ∈ (0, 1) and a constant K = K(T0) such that Aε(τ) ≤
K for any τ ∈ [0, T1] and any ε ∈ (0, ε1].
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Proof. The proof follows basically from [2, Lemma 3.1], which deals with the case
where fε ≡ 0. Repeating the arguments in that proof, we can easily show that
Aε(τ) ≤ 4c1ec2T0/(3c2) for any τ ∈ [0, T1] and any ε ∈ (0, ε2(T0)], where ε2(T0) =
3c22/(16c1c3(ec2T0 − 1)).

Let us now consider the general case where fε does not identically vanish in
[0, T1]. We fix ε1(T0) ≤ ε2(T0) such that 3c0c2 − 4c1ec2T0ε0 > 0 and ε ∈ (0, ε0(T )].
Since Aε(0) = 0, there exists a maximal interval [0, Tε) where c0− εAε > 0. We are
going to prove that Tε = T1. For this purpose, we observe that in [0, Tε) the function
Aε satisfies the inequality A′ε ≤ c1 + c2Aε + c3εA

2
ε. Hence, from the above result it

follows that Aε(τ) ≤ (4c1ec2T0)/(3c2) for any τ ∈ [0, Tε], so that c0 − εAε(Tε) > 0.
This clearly implies that Tε = T1. �

We are now in position to prove Theorem 5.3. Applying Lemma 5.6 it follows
immediately that

sup
τ∈[0,T ]

(
|Dnζ(τ, ·)|22 + 4ε|Dn+1ζ(τ, ·)|22 + (1 + ε)|

√
RεD

nζ(τ, ·)|22
)
≤ K1,n,

for any n = 0, 1, . . ., from which (5.10) follows at once.

5.3. Existence and uniqueness of a solution to Equation (5.4) vanishing at
τ = 0. In this subsection we are concerned with the proof of the following theorem.

Theorem 5.7. For any T > 0, there exists ε0(T ) > 0 such that, for any 0 < ε ≤
ε0(T ), Equation (5.7) has a unique classical solution ζ on [0, T ], which vanishes at
τ = 0.

Existence part. We prove the existence of a solution ζ to Equation (5.4),
vanishing at 0, by a standard Faedo-Galerkin method. Let us fix ξ ∈ (I − Π)(Hs

] )
and expand it as a Fourier series (see Section 2.3) as follows:

ξ =
+∞∑
k=1

ξ̂(k)wk.

For N = 1, 2, . . ., we denote by ΞN = PN ((I−Π)(Hs
] )) the projection of (I−Π)(Hs

] )
along the vector space spanned by the functions w1, . . . , wN .

Let us look for a solution ζN ∈ ΞN to the variational problem

∂

∂τ

∫ `0
2

− `02
Bε(ζN ) ξdη =

∫ `0
2

− `02
S(ζN ) ξdη +

∫ `0
2

− `02

{
Mε((Ψ2)η)−Hε(Ψτ )

}
ξdη

+ ε

∫ `0
2

− `02
Fε((ζ2

N )η) ξdη + 2
∫ `0

2

− `02
Fε((ΨζN )η)ξdη. (5.21)

for all ξ ∈ ΞN . The problem is subject to the initial condition ζN (0, ·) ≡ 0. In
terms of Fourier series, the variational formulation (5.9) reads as follows:

d

dτ

+∞∑
k=1

bk,εζ̂N (·, k)ξ̂(k) =
+∞∑
k=1

sk ζ̂N (·, k)ξ̂(k)

+
+∞∑
k=1

{
mε,k (̂Ψ2)η(·, k)− hε,kΨ̂τ (·, k)

}
ξ̂(k)
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+ ε

+∞∑
k=1

fk,ε(̂ζ2
N )η(·, k)ξ̂(k) + 2

+∞∑
k=1

fε,k ̂(ΨζN )η(·, k)ξ̂(k).

(5.22)

Taking ξ = wj (j = 1, . . . , N) in (5.22), we see that the ζ̂N (·, k)’s verify a system
of N ordinary differential equations with zero initial data. Hence, there exists a
unique solution to System (5.22), defined on some maximal time interval [0, TN ),
where TN may also depend on ε.

Next, we take ξ = ζN in (5.21). The estimates of Section 5.2 remain valid also
for the function ζN . Writing such estimates, taking as T1 any number less than TN
and then letting T ′ → TN , we thus get

sup
τ∈[0,TN )

∫ `0
2

− `02
|DnζN (τ, ·)|2dη + ε

∫ `0
2

− `02
|Dn+1ζN (τ, ·)|2dη ≤ Kn, (5.23)

for any n ≥ 1. From this estimate we infer that, whenever 0 < ε ≤ ε1(T ), the
solution of the ODE system can be extended up to T .

We now let N → +∞. For this purpose, we use Estimate (5.23) with n = 4. It
leads to the following facts:

(i) the sequence (ζN )N∈N is bounded in C([0, T ];H5
] ), with a bound possibly

depending on ε ∈ (0, ε1(T )];
(ii) the sequence ((ζN )τ )N∈N is bounded in C([0, T ];H3

] ) with a bound possibly
depending on ε.

Property (i) follows immediately from (5.23). (Note that, if n ≥ 5, then the
bound is uniform in 0 < ε ≤ ε1(T ).) To prove property (ii), we observe that (5.21)
may be rewritten as:

∂

∂τ
Bε(ζN ) = PN

{
S(ζN ) +Mε((Ψ2)η)−Hε(Ψτ ) + εFε((ζ2

N )η) + 2Fε((ΨζN )η)
}
,

and we use (i) and Proposition 5.2.
Now, we can make the compactness argument work for any arbitrarily fixed

ε ∈ (0, ε1(T )]. By the Sobolev embedding theorem, the sequences (ζN )N∈N and
((ζN )τ )N∈N are bounded in C([0, T ];C9/2

] ) and in C([0, T ];C5/2
] ), respectively. In

particular, by interpolation we easily see that (Dl
η(ζN )τ )N∈N (l = 0, . . . , 4) are

bounded in C1/9([0, T ]×[−`0/2, `0/2]). Indeed, C4
] belongs to the class J8/9 between

C] and C
9/2
] . Hence, we can estimate

‖ζN (τ2, ·)− ζN (τ1, ·)‖C4
]
≤ ‖ζN (τ2, ·)− ζN (τ1, ·)‖

1
9∞‖ζN (τ2, ·)− ζN (τ1, ·)‖

8
9

C
9/2
]

≤ ‖DτζN‖
1
9∞ sup
τ∈[0,T ]

‖ζN (τ, ·)‖
8
9

C
9/2
]

|τ2 − τ1|
1
9 ,

for any τ1, τ2 ∈ [0, T ]. Since the sequence (ζN ) is bounded both in C1/9([0, T ];C4
] )

and in C([0, T ];C9/2
] ), it is bounded in C1/9([0, T ] × [−`0/2, `0/2]), as well. The

Arzelà-Ascoli theorem then implies that, up to a subsequence, ζN converges in
C([0, T ];C4

] ) to a function ζ ∈ C([0, T ];C9/2
] ). Similarly, Dl

η((ζτ )N )N∈N (l = 0, 1, 2)
converges, up to a subsequence, to Dl

η(ζτ ) (l = 0, 1, 2). Clearly, the function ζ
solves the equation (5.4) and vanishes at τ = 0.
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Uniqueness part. Assume that ζ1 and ζ2 are two classical solutions to Equation
(5.7) which vanish at τ = 0. Then, the function χ := ζ1 − ζ2 turns out to solve the
equation

∂

∂τ
Bε(χ) = S(χ) + εFε((χ(ζ1 + ζ2))η) + 2Fε((Ψχ)η). (5.24)

We multiply (5.24) by χ and integrate over [−`0/2, `0/2]. We get∫ `0
2

− `02
Bε(χ(τ, ·))χ(τ, ·)dη =

∫ `0
2

− `02
S(χ(τ, ·))χ(τ, ·)dη

+ ε

∫ `0
2

− `02
Fε((χ(τ, ·)(ζ1(τ, ·) + ζ2(τ, ·)))η)χ(τ, ·)dη

+ 2
∫ `0

2

− `02
Fε((Ψχ(τ, ·))η)χ(τ, ·),

for any τ ∈ [0, T ]. All the terms but
∫ `0/2
−`0/2 Fε((χ(τ, ·)(ζ1(τ, ·) + ζ2(τ, ·)))η)χ(τ, ·)dη

have been already estimated in Lemmata 5.4 and 5.5. Hence, we just need to
estimate the latter term. For this purpose, we observe that (5.16) implies that∣∣∣∣∣

∫ `0
2

− `02
Fε((χ(ζ1 + ζ2))η(τ, ·))χ(τ, ·)dη

∣∣∣∣∣ (5.25)

≤2
√

2ε
3
2 |D2(χ(ζ1 + ζ2))(τ, ·)|2|D2χ(τ, ·)|2 + 3ε|D2(χ(ζ1 + ζ2))(τ, ·)|2|Dχ(τ, ·)|2

+ 4
√
ε|χ(τ, ·)(ζ1 + ζ2)(τ, ·)|2|D2χ(τ, ·)|2

+
3 +
√

2
4
|χ(τ, ·)(ζ1 + ζ2)(τ, ·)|2|Dχ(τ, ·)|2,

for any τ ∈ [0, T ]. By the a priori estimates (5.8) with n = 1, we infer that

|D(ζ1 + ζ2)(τ, ·)|22 + ε|D2(ζ1 + ζ2)(τ, ·)|22 ≤ 2K1, τ ∈ [0, T ].

Therefore,

|χ(τ, ·)(ζ1 + ζ2)(τ, ·)|2 ≤ C1|χ(τ, ·)|2|D(ζ1 + ζ2)(τ, ·)|2 ≤ 2C1K|χ(τ, ·)|2,

|D2(χ(ζ1 + ζ2))(τ, ·)|2 ≤ C1|D2(ζ1 + ζ2)(τ, ·)|2|Dχ(τ, ·)|2
+ C1|D(ζ1 + ζ2)(τ, ·)|2|D2χ(τ, ·)|2
≤ 2C1Kε

−1|Dχ(τ, ·)|2 + 2C1K|D2ζ(τ, ·)|2,

for any τ ∈ [0, T ] and some positive constant C1, depending on `0 only. We can
thus continue (5.25) getting∣∣∣∣∣

∫ `0
2

− `02
Fε((χ(ζ1 + ζ2))η(τ, ·))χ(τ, ·)dη

∣∣∣∣∣
≤CK

√
ε|Dχ(τ, ·)|2|D2χ(τ, ·)|2 + CKε

3
2 |D2χ(τ, ·)|22 + CK

√
ε|χ(τ, ·)|2|Dχ(τ, ·)|2

+ CK |Dχ(τ, ·)|22 + CK |χ(τ, ·)|2|Dχ(τ, ·)|2
≤CKε|D2χ(τ, ·)|22 + CK |Dχ(τ, ·)|22 + CK |D2χ(τ, ·)|22,
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for any τ ∈ [0, T ] and some positive constant CK , depending on K only. Hence,
combining this estimate with (5.10) and (5.15) yields

1
2
d

dτ
|χ(τ, ·)|22 + 2ε

d

dτ
|Dχ(τ, ·)|22 +

1 + ε

2
d

dτ
|
√
Rεχ(τ, ·)|22 +Mε,K |D2χ(τ, ·)|22

≤ (K2(0,Ψ) + CKε+ 1) |χ(τ, ·)|22 + ε (CK +K2(0,Ψ)) |Dχ(τ, ·)|22,

for any τ ∈ [0, T ], whereMε,K = 15
4 −CKε

2−K2(0, ψ)ε
3
2 . Up to replacing ε1(T ) with

a smaller value ε0(T ), if needed, we can assume that Mε,K ≤ 0 for any ε ∈ (0, ε0(T )].
Now, Gronwall’s Lemma applies and yields ζ ≡ 0 since ζ(0, ·) = 0.

5.4. Proof of Theorem 2.2. We now return to ρ and to Problem (5.4). This
can be done as in the proof of Theorem 2.1. The idea is simple: we look for ρ
as ρ(τ, η) = χ(τ, η) + p(τ)w0, where χ has zero average. More precisely, we set
χ = P(ζ), where the operator P is defined by (4.6). A simple computation shows
that

Bε(χ) +Hε(Φη)− S(χ)−Mε((Φη)2)− εFε((χη)2)− 2Fε(Φηχη)

is independent of η. Since χ ∈ (I −Π)(L2), this means that

Bε(χ) +Hε(Φη) =S(χ) + (I −Π)(Mε((Φη)2)) + ε(I −Π)(Fε((χη)2))

+ 2(I −Π)(Fε(Φηχη)).

Let us now denote by p : [0, T ]→ R the solution to the Cauchy problem
dp

dτ
= −Π(Hε(Φη)) + Π(Mε((Φη)2)) + εΠ(Fε((χη)2)) + 2Π(Fε(Φηχη)),

p(0) = 0.
(5.26)

If we set ρ = p+χ, we immediately see that ρ(0, ·) = 0 and ρ solves equation (5.4).
Clearly, this function is the unique solution to Equation (5.4) which vanishes at

τ = 0. Indeed, if ρ1 and ρ2 are two such solutions, then the functions ζ1 := Dηρ1

and ζ2 := Dηρ2 solve Equation (5.7) and vanish at τ = 0. By the above results,
ζ1 and ζ2 agree. This means that (I − Π)(ρ1) ≡ (I − Π)(ρ2). But then also Π(ρ1)
and Π(ρ2) agree, since, as Problem (5.26) shows, Π(ρ1) and Π(ρ2) are uniquely
determined by (I −Π)(ρ1).

To complete the proof of Theorem 2.2, let us check that there exists M > 0 such
that

sup
τ∈[0,T ]

η∈[−`0/2,`0/2]

|ρ(τ, η)| ≤M, (5.27)

uniformly in 0 < ε ≤ ε0(T ). Applying the a priori estimates in Theorem 5.3 (here
n = 0 is enough) and using (4.6), one can easily show that

‖(I −Π)(ρ)‖∞ = ‖P(ζ)‖∞ ≤ (1 + `0)
√
`0K0.

As far as the component of ρ along Π(L2) is concerned (which we still denote by
p), we observe that (see (5.2), (5.5) and (5.6))

Π(Hε(Φη)) = Π(Mε((Φη)2)) = 0,

Π(Fε((χη)2)) = −1
2

Π((χη)2),

Π(Fε(Φηχη)) = −1
2

Π(Φηχη),
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and we can estimate

|Π(Fε((χη(τ, ·))2))| ≤1
2
|χη(τ)|2 ≤

1
2

sup
τ∈[0,T ]

|ζ(τ, ·)|22 ≤
1
2
K0,

|Π(Fε(Φη(τ, ·)χη(τ, ·)))| ≤1
2

∫ `0
2

− `02
|Φη(τ, ·)χη(τ, ·)|dη

≤1
2
|Φη(τ, ·)|2|ζ(τ, ·)|2

≤1
2

√
K0 sup

τ∈[0,T ]

|Φη(τ, ·)|2,

for any τ ∈ [0, T ]. It thus follows from (5.26) that

|p(τ)| ≤ ε
∫ τ

0

|Π(Fε((χη(τ, ·))2)) + 2Π(Fε(Φη(τ, ·)χη(τ, ·)))|dτ

≤ 1
2
K0T +

√
K0T sup

τ∈[0,T ]

|Φη(τ, ·)|2,

for any τ ∈ [0, T ]. Estimate (5.27) now follows immediately.
Finally, coming back to Problem (2.12) and setting `ε = `0/

√
ε and Tε = T/ε2,

one can easily conclude that, for any ε ∈ (0, ε0], such a problem admits a unique
classical solution ϕ. Moreover,

‖ϕ(t, ·)− εΦ(tε2,
√
ε ·)‖C([−`ε/2,`ε/2]) ≤ ε2M, t ∈ [0, Tε].

This accomplishes the proof of Theorem 2.2.

Appendix A. The NEF model. Flames constitute a complex physical system
involving fluid dynamics, multistep chemical kinetics, as well as molecular and ra-
diative transfer. The laminar flames of low-Lewis-number premixtures are known
to display diffusive-thermal instability responsible for the formation of a non-steady
cellular structure (see [24]). However, the cellular instability is quite robust with
respect to these aero-thermo-chemical complexities and may be successfully cap-
tured by a model involving only two equations: the heat equation for the system’s
temperature and the diffusion equation for the deficient reactant’s concentration.
In suitably chosen units, the so-called thermal-diffusional model reads, see e.g., [7]:

Θt = Θxx + Θyy + Ω(Y,Θ), (A.1)

Yt = Le−1(Yxx + Yyy)− Ω(Y,Θ), (A.2)

Ω =
1
2
Le−1β2Y exp[β(Θ− 1)/(σ + (1− σ)Θ)]. (A.3)

Here, Θ = (T − Tu)/(Tad − Tu) is the scaled temperature, where Tu and Tad cor-
respond to, respectively, the temperature of the unburned gas and the adiabatic
temperature of combustion products; Y = C/Cu is the scaled concentration of the
deficient reactant with Cu being its value in the unburned gas; x, y, t are the scaled
spatiotemporal coordinates referred to Dth/U , and Dth/U

2, respectively, where Dth

is the thermal diffusivity of the mixture and U is the velocity of the undisturbed
planar flame; Le is the Lewis number (the ratio of thermal and molecular diffu-
sivities); σ = Tu/Tad; β = Ta(1 − σ)/Tad is the Zeldovich number, assumed to be
large, where Ta is the activation temperature; Ω is the scaled reaction rate, where
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the normalizing factor 1
2Le

−1β2 ensures that at β � 1 the planar flame propagates
at velocity close to unity.

Due to the distributed nature of the reaction rate Ω, Equations (A.1) and (A.2)
are still difficult for a theoretical exploration. One therefore turns to the conven-
tional high activation energy limit (β � 1) which converts the reaction rate term
into a localized source distributed over a certain interface x = ξ(t, y), the flame
front. Intensity of the source varies along the front as exp

(
1
2 (Θf − 1)

)
(see [22]).

Here, Θf is the scaled temperature at the curved front, which may differ from unity
(T = Tad) by a quantity of the order of β−1. Due to the strong temperature de-
pendence of the reaction rate (β � 1), even slight changes of Θf may considerably
affect its intensity, and thereby also the local flame speed. The study of flame
propagation is thus reduced to a free-interface problem. To ensure that the emerg-
ing free-interface model does not involve large parameters one should combine the
limit of large activation energy (β � 1) with the requirement that the product
α = 1

2β(1 − Le) remains finite, i.e., the ratio of thermal and molecular diffusivi-
ties (Le) should be closed to unity. This is the Near Equidiffusive Flames model, in
short NEF, introduced in [20]. As a result, instead of the reaction diffusion problem
for Θ and Y , one ends up with the free-interface problem

∂θ

∂t
= ∆θ, x < ξ(t, y),

θ = 1, x ≥ ξ(t, y),
∂S

∂t
= ∆S − α∆θ, x 6= ξ(t, y),[

∂θ

∂n

]
= − exp(S),

[
∂S

∂n

]
= α

[
∂θ

∂n

]
,

for the new scaled temperature θ = limβ→+∞Θ and the reduced enthalpy S =
limβ→+∞ β−1(Θ + Y − 1). For some rigorous mathematical justification, see [9, 8].

Appendix B. Proof of Theorem 5.1. Showing that Problem (5.3) admits a
unique solution Φ ∈ C1([0, T0];L2) ∩ C([0, T0];H4

] ) for some T0 > 0 is an easy
task. Indeed, the operator A : H2

] → L2 is sectorial in L2 as has been already
remarked. By [18, Prop. 2.4.1 & 2.4.4] the operator S = −4A2 − A is sectorial
in L2 with domain H4

] . Classical results for semilinear equations associated with
sectorial operators show that the Cauchy problem (5.3) admits a unique solution Φ
with the above regularity properties. (See e.g., [18, Prop. 7.1.10].) Φ turns out to
be a fixed point of the operator Γ, formally defined by

(Γ(Φ))(τ, ·) = eτSΦ0 +
∫ τ

0

e(τ−s)S(Φη(s, ·))2ds, τ > 0,

where {eτS} denotes the semigroup generated by S.
Using a classical continuation argument, we can extend Φ to a maximal domain

[0, Tmax) with a function (still denoted by Φ) which belongs to C1([0, Tmax);L2) ∩
C([0, Tmax);H4

] ).
Let us regularize Φ. Suppose that Φ0 ∈ H5

] . Note that S commutes with Dη.
Hence,

Φη(τ, ·) = eτS(DηΦ0) +
∫ τ

0

e(τ−s)SDη(Φη(s, ·))2ds, τ ∈ [0, Tmax).
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Since Φ ∈ C1([0, Tmax);L2) ∩ C([0, Tmax);H4
] ) and Hk

] belongs to the class Jk/4
between L2 and H4, we can estimate

‖Φ(τ2, ·)− Φ(τ1, ·)‖k ≤|Φ(τ2, ·)− Φ(τ1, ·)|
1− k4
2 ‖Φ(τ2, ·)− Φ(τ1, ·)‖

k
4
4

≤2‖Φτ‖C([0,T1];L2)‖Φ‖
k
4
C([0,T1];H4

] )
|τ2 − τ1|1−

k
4 ,

for any τ1, τ2 ∈ [0, T1] and any T1 < Tmax. Therefore, by the Sobolev embedding
theorem, we can estimate

|Dη(Φη(τ2, ·))2 −Dη(Φη(τ1, ·))2|2 ≤|Φη(τ2, ·)|∞|Φηη(τ2, ·)− Φηη(τ1, ·)|2
+ |Φηη(τ2, ·)|∞|Φη(τ2, ·)− Φη(τ1, ·)|2

≤CT1 |τ2 − τ1|
1
2 ,

for any τ1 and τ2 as above. This shows thatDη(Φη(τ2, ·))2 belongs to C1/2([0, T1];L2)
for any T1 < Tmax. Theorem 4.3.1 of [18] implies that Φη ∈ C1([0, Tmax);L2) ∩
C([0, Tmax);H4

] ). In particular, Φτ belongs to C([0, Tmax);H1
] ). It follows that

Φτη ≡ Φητ . Iterating this argument shows that, if Φ0 ∈ Hm
] for some m ∈ N such

that m > 4, then Φ ∈ C([0, Tmax);Hm
] ) and Φτ ∈ C([0, Tmax);Hm−4

] ).
The rest of the proof is devoted to show that Tmax = +∞. We adapt the

arguments in [25, Thm. 2.4]. The main step is the a priori estimate

|Φη(τ, ·)|2 ≤ e
13
6 τ |DηΦ0|2, τ ∈ [0, Tmax). (B.1)

For this purpose, we introduce the function v, defined by v(τ, η) = e−2τΦη(τ, η)
for any (τ, η) ∈ [0, Tmax) × [−`0/2, `0/2]. The smoothness of Φ implies that v ∈
C1,4([0, Tmax)× [−`0/2, `0/2]), solves the parabolic equation

vτ = −3vηηηη − vηη − e2τvvη − 2v, (B.2)

and satisfies the boundary conditions D(k)
η v(τ,−`0/2) = D

(k)
η v(τ, `0/2) for any τ ∈

[0, T ) and k = 0, 1, 2, 3. Multiplying both sides of (B.2) by v(τ, ·), integrating on
(−`0/2, `0/2) and observing that the integral over (−`0/2, `0/2) of (v(τ, ·))2vη(τ, ·)
vanishes for any τ ∈ [0, Tmax), we get

d

dτ
|v(τ, ·)|22 + 3|vηη(τ, ·)|22 − |vη(τ, ·)|22 + 2|v(τ, ·)|22 = 0, τ ∈ [0, Tmax). (B.3)

In view of the estimate

|vη(τ, ·)|22 ≤ |v(τ, ·)|2|vηη(τ, ·)|2 ≤ 3|vηη(τ, ·)|22 +
5
3
|v(τ, ·)|22, τ ∈ [0, Tmax),

Formula (B.3) leads us to the inequality

d

dτ
|v(τ, ·)|22 +

1
3
|v(τ, ·)|22 ≤ 0, τ ∈ [0, Tmax),

from which Estimate (B.1) follows at once.
We can now complete the proof. For this purpose, let us consider the function

Ψ, defined by Ψ(τ, η) = Φ(τ, η) − Π(Φ(τ, ·)) for any τ ∈ [0, Tmax) and any η ∈
[−`0/2, `0/2]. Applying the Poincaré inequality, we get

|Φ(τ, ·)−Π(Φ(τ, ·))|2 ≤
√
`0e

13
6 τ |DηΦ0|2, τ ∈ [0, Tmax). (B.4)

Let us now show that the function τ 7→ Π(Φ(τ, ·)) satisfies a similar estimate.
For this purpose, we fix τ ∈ [0, Tmax) and apply the operator Π to both sides of
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(5.3). Since Φ and its derivatives satisfy periodic boundary conditions,

d

dτ
Π(Φ(τ, ·)) = Π(Φτ (τ, ·)) = − 1

2`0
Π((Φη(τ, ·))2),

for any τ ∈ [0, Tmax). Taking (B.1) into account, we can then estimate∣∣∣∣ ddτ Π(Φ(τ, ·))
∣∣∣∣ ≤ 1

2`0
e

13
3 τ |DηΦ0|22, τ ∈ [0, Tmax).

Hence,

|Π(Φ(τ))| ≤ |Π(Φ0)|+
∫ τ

0

∣∣∣∣ ddτ Π(Φ(τ, ·))
∣∣∣∣ dτ ≤ |Π(Φ0)|+ 3

26`0
|DηΦ0|22e

13
3 τ , (B.5)

for any τ ∈ [0, Tmax). Estimates (B.4) and (B.5) show that Φ is bounded in [0, Tmax)
with values in L2. Therefore, we can apply [18, Prop. 7.2.2] with γ = 1/2, α = 1/4,
X1/4 = H1

] , which implies that Tmax = +∞.
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