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Abstract. We derive an upper bound for the radius R(t) of a vanishing bubble in a family of
equivariant maps Ft : D2 → S2 which evolve by the Harmonic Map Flow. The self-similar “type 1”
radius would be R(t) = C

√
T − t. We prove that R(t) = o(T − t).

1. Introduction. Let Nn ⊂ R
k be a smooth submanifold. The Dirichlet integral

or energy of a map F from the unit disc D2 ⊂ R
2 into N is defined to be

D[F ] =
1

2

∫

D2

|∇F (x)|2.

Extremals of this energy with prescribed boundary values F |∂D2 are called harmonic
maps. Eells and Sampson [4] introduced the gradient flow for D[F ], now called the
harmonic map flow, in which a family of maps Ft : D → N evolves according to the
nonlinear heat equation

∂F

∂t
=

(
∆F

)T

. (1.1)

Here, for any point p ∈ N and vector v ∈ TpR
k we write vT for the tangential

component of v to TpN .
When the target N is the 2-dimensional sphere, the harmonic map flow has re-

cently appeared as a model for the direction field of a nematic liquid crystal, see [12]
where the motivation comes from applications in fibre spinning, but physical appli-
cations go back as far as the treatment of ferromagnetic materials by Landau and
Lifschitz [5].

For general targets (1.1) has been used in a purely mathematical context to con-
struct harmonic maps of a given homotopy type, see e.g. [7]. As a nonlinear vector
valued partial differential equation, the harmonic map flow is of interest because of
the possible formation of singularities, due to the presence of topological obstructions.

For targets with negative sectional curvatures Eells and Sampson showed that
the initial value problem for (1.1) has a unique global solution {Ft | t ≥ 0} which
converges to a harmonic map as t ր ∞. Struwe [8, 6] later constructed global solutions
for arbitrary targets N , which he allowed to have singularities at a finite number of
points in space-time D× [0,∞). That such singularities cannot be avoided was shown
by examples of Chang, Ding & Ye [2] as well as Coron & Ghidaglia [3]. For a nice
treatment of their appearance and possible disappearance in the case of N = S2 with
radial symmetry, see [1].

Based on work of Struwe, Ding, Qing, Tian, Topping and others (see Topping’s
papers [10, 9] and the references therein) one can give a good qualitative description of
Struwe’s solutions near their singular points. This description implies that whenever
a singularity occurs a harmonic map f : S2 → N “bubbles off,” i.e. for a singular
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point (a, T ) ∈ D × (0,∞) there exist times ti ր T , points ai → a and scales Ri ց 0,
as well as a non-constant harmonic map f : S2 → N such that

Fti(ai + Rix) → f ◦ σ(x) (i → ∞)

uniformly in x on compact subsets of R
2. Here σ : R

2 → S2 \ {p} is the inverse
of stereographic projection from the point p ∈ S2. A full description involves the
combination and/or superposition of several such “bubbles” (see [9, 10]).

One can now ask at what rate the bubbles vanish, i.e. how large are the scales Ri

relative to the time to blow-up T − ti? The natural scale, suggested by the parabolic
equation, would be R2

i ≈ C(T − ti), but this can be ruled out. In fact, Topping [10]
has shown that one always has

R2
i = o

( T − ti
| ln(T − ti)|

)
, (1.2)

along some sequence ti ր T , while he also constructed a compact C∞ smooth target
manifold N and a solution F : D × [0, T ) → N with

lim inf
i→∞

R2
i (T − ti)

−1−δ > 0 (1.3)

for any δ > 0, thus showing that the upper bound (1.2) cannot be improved in general.
In this note we consider the special case where the target N is the perfectly round

two-sphere S2 ⊂ R
3, and where the maps F t : D2 → S2 have rotational symmetry,

i.e. the case studied in [2, 3, 1]. A later detailed analysis using formal matched
asymptotic expansions by van den Berg, Hulshof and King [11] strongly suggests that
a variety of blow-up rates are possible, depending on the specified initial and boundary
data. None of the formal solutions in [11] satisfy Topping’s lower bound (1.3). In fact,
the “generic case” in [11] has

R(t) ∼ κ
T − t

(
ln(T − t)

)2 = o(T − t) (1.4)

for some constant κ > 0 which varies from solution to solution.
Our main result here is a rigorous example of a solution to harmonic map flow

for which we can give an upper bound for the blowup rate of the radii Ri.
Theorem 1.1. There exist a solution F : D × [0, T ) → S2 which forms a

singularity at the origin at time T and a decreasing function R : [0, T ) → R+ such
that

lim
tրT

F t(R(t)x) = σ(x), (1.5)

uniformly on compact subsets of R
2. The length scale R satisfies

R(t) = o(T − t) (t ր T ) (1.6)

and also an integrated version of this estimate,

∫ T

0

R(t) dt

(T − t)2
< ∞. (1.7)
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In fact, we will derive the estimate for any solution F whose initial data satisfies
a certain monotonicity condition (2.5a), (2.5b). In section 5 we note that such initial
data are easily constructed.

Note that our upper estimates for the length scale R(t) is less than Topping’s
generally valid estimate (1.2) by a factor (T − ti)

1/2+o(1), while it only differs from
the formal asymptotics (1.4) by logarithmic factors. This raises the question which
of the two behaviours (1.2) and (1.4) is more common: is the blow-up rate (1.4)
exceptional and only possible in situations with a high degree of symmetry, or do
most singular solutions of harmonic map flow blow up according to (1.4)?

Outline of the paper. We begin by describing the class of symmetric initial data
we consider, and recall from the general theory that they do indeed produce solutions
with finite time singularities. We establish a number of monotonicity properties of the
solutions. Then, using the Sturmian theorem on intersections of solutions to parabolic
equations in 1D, we show that a bubble forms as t ր T . This proof also gives us a
quantitative estimate (lemma 6.2 in section 6) on how close the singular bubble at
time t is to an actual harmonic map, and this leads to a weaker form of the lower
bound for R(t) in the theorem. In the end a careful analysis of the parabolic blow-up
of the solution allows us to improve this estimate to R(t) = o(T − t).

2. A class of solutions with symmetry. We describe here the class of solu-
tions to which our estimates apply.

Rotational symmetry. When the target manifold is N = S2 ⊂ R
3, the normal

component of ∆F is −|∇F |2F so that (1.1) becomes

∂Ft

∂t
= ∆Ft + |∇Ft|2Ft. (2.1)

We choose spherical coordinates (θ, ϕ) on S2 and consider maps of the form

Ft(r, θ) = (cos θ sin ϕ(r, t), sin θ sin ϕ(r, t), cosϕ(r, t)) . (2.2)

Direct computation shows that harmonic map flow (2.1) preserves this class of maps
and is equivalent to the following PDE for ϕ:

∂ϕ

∂t
=

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
− sin 2ϕ

2r2
, (2.3)

where 0 ≤ r ≤ 1.
For ϕ close to zero the last nonlinear term in (2.3) may be approximated by the

linear term −ϕ/r2. The resulting linear equation has a singularity in r = 0, which
forces bounded solutions to have a first order zero in r = 0. This property of bounded
solutions will result in the boundary condition at r = 0 for ϕ below.

The singularity at r = 0 in (2.3) is caused by the use of spherical coordinates in
the target and polar coordinates in the domain. When we approximate sin φ by φ we
replace the target S2 by its tangent plane, described in polar coordinates with φ (or
φ−kπ for some integer k) acting as radius, and θ as angular coordinate. All bounded
solutions of (2.3) will have the property that for some k the function φ(r, t) − kπ
has a first order zero in r = 0. The solution wants to preserve this value of k. The
singularities we are concerned with in this paper are forced to occur when this is no
longer possible.
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π

ϕ0(r)

−ϕ̄

1 r

Fig. 2.1. The initial data

Next we choose initial and boundary conditions for ϕ ensuring the occurence of a
singularity. Choose some 0 < ϕ < π and consider harmonic map flows given by (2.2),
where ϕ : [0, 1]× [0, T ) satisfies

ϕ(1, t) = −ϕ ϕ(0, t) = π. (2.4)

We shall assume that at time t = 0 one has

ϕ(r, 0) ≤ π (2.5a)

ϕrr +
1

r
ϕr −

sin 2ϕ

2r2
< 0 (2.5b)

for all r ∈ [0, 1].
Henceforth ϕ : [0, 1] × [0, T ) → R denotes the corresponding maximal classical

solution to (2.3) with boundary conditions (2.4).
In section 5 we show that initial data ϕ(r, 0) satisfying the hypotheses (2.5a) and

(2.5b) actually do exist. It follows from the work of Chang-Ding-Ye [2] that any
solution whose initial data satisfy (2.5a) and (2.5b) will indeed become singular in
finite time.

Monotonicity properties. In section 3 we will use the maximum principle to
prove:

Lemma 2.1. ϕt(r, t) < 0 for all (r, t) ∈ (0, 1) × [0, T ).
One could try to use the maximum principle to show that ϕr < 0 is also preserved

by the flow. However, this turns out to be a consequence of the condition ϕt < 0 which
we have imposed on our initial data.

Lemma 2.2. ϕr(r, t) < 0 for all (r, t) ∈ (0, 1) × [0, T ).
See section 5 for the proof.

The radius of the bubble. Because of (2.4) and ϕr < 0 there is a unique
R(t) ∈ (0, 1) for each t ∈ [0, T ) such that

ϕ(R(t), t) = π/2, (2.6)

i.e. the corresponding map F t maps the circle in D2 with radius R(t) to the equator
in S2. By the Implicit Function Theorem R(t) is a monotonically decreasing function
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of time with

R′(t) = −ϕt(R(t), t)/ϕr(R(t), t).

The radius R(t) defined here is the one we meant in Theorem 1.1.
For any initial function ϕ0 satisfying our hypotheses (2.5a), (2.5b) there exist

small ε > 0 and large T∗ > 0 such that the Chang-Ding-Ye supersolution Φε,T∗(·, 0)
lies above ϕ0 at t = 0. By the maximum principle this continues to hold for t > 0,
and, as argued in [2], the solution ϕ must become singular before t = T∗.

Suppose that the solution becomes singular at time T < T∗, then along some
sequence of times ti ր T and points pi ∈ D2 a blow-up of the maps F t will result in a
nontrivial harmonic map from R

2 → S2. The limit map will inherit the symmetries of
the maps F ti . Because of this, the only possible blow-up point is the origin, and the
only possible blow-up map is inverse stereographic projection. We therefore conclude
from the general theory that along some sequence ti ր T one has R(ti) ց 0, and

lim
i→∞

ϕ(R(ti)z, ti) = π − 2 arctan z.

Since the bubble radius R(t) is a monotone function of time, we immediately have
the stronger statement:

Lemma 2.3. The maximal classical solution ϕ becomes singular in finite time,
i.e. T < ∞. Moreover, limtրT R(t) = 0.

In lemma 6.2 we will show that the bubble forms for all t close to T instead of
just along a sequence ti ր T .

Lemma 2.4. One has

lim
tրT

ϕ(R(t)z, t) = π − 2 arctan z

uniformly on bounded z intervals.

3. Proof of lemma 2.1. It will be convenient to abbreviate

f(ϕ) =
1

2
sin 2ϕ = sinϕ cos ϕ.

We consider u = ϕt and v = u(r, t)/r. For u one computes

ut = urr +
1

r
ur −

f ′(ϕ(r, t))

r2
u.

From this one obtains

vt = vrr +
3

r
vr +

1 − f ′(ϕ(r, t))

r2
v.

Since ϕ comes from a classical solution of harmonic map flow we have

|ϕt(r, t)| =
∣∣∂tF

t(r, θ)
∣∣

where the right-hand side actually does not depend on θ. For arbitrary δ > 0 the
map F t is smooth on D2 × [0, T − δ], so we have |∂tF

t| ≤ Cr (the constant C may
depend on δ). Consequently v(r, t) = ϕt(r, t)/r is uniformly bounded for 0 < r < 1,
0 ≤ t ≤ T − δ.
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We also may conclude from the smoothness of Ft, i.e. from the boundedness of
|∇Ft|, that

|ϕ(r, t) − π| ≤ Cδr for 0 < r < 1, 0 ≤ t ≤ T − δ,

and hence

|1 − f ′(ϕ(r, t))| = |1 − cosϕ(r, t)| ≤ ϕ2 ≤ C2
δ r2.

Thus v satisfies

vt = vrr +
3

r
vr + Q(r, t)v (3.1)

where Q(r, t) = r−2(1 − f ′(ϕ(r, t))) is uniformly bounded.
The differential operator in (3.1) is the radial Laplacian in R

4 with a bounded
potential added, so the maximum principle holds and we can conclude v(r, 0) ≤ 0. The
strong maximum principle implies strict inequality, and hence ϕt < 0 for 0 < r < 1
and 0 < t < T .

4. The x variable and the energy E. Instead of considering (2.3) we change
the independent variable r to x = − ln r (so 0 < r < 1 implies x > 0) and study the
PDE

ϕt = e2x
(
ϕxx − f(ϕ)

)
(4.1)

in the domain 0 < x < ∞, 0 ≤ t < T , with boundary conditions

ϕ(0, t) = −ϕ, ϕ(∞, t) = π. (4.2)

Time independent solutions of (4.1) satisfy the ODE

ϕ′′ = f(ϕ) (4.3)

where f(ϕ) = 1
2 sin 2ϕ. This equation has

E = 1
2ϕ′(x)2 − 1

2 sin2 ϕ(x)

as first integral. It follows that there is exactly one solution ϕ(E, x) of (4.3) which
has ϕ(0) = 1

2π and whose “energy” is E. This solution is determined by the relation

−x =

∫ π/2

ϕ(E,x)

d ϕ√
2E + sin2 ϕ

. (4.4)

For E = 0 this leads to the unique solution Φ(x) with Φ(−∞) = 0, Φ(+∞) = π and
Φ(0) = π/2, which corresponds to stereographic projection, namely

Φ(x) = 2 arctan ex. (4.5)

When E < 0 one is led to periodic solutions ϕ, which we shall not need in this paper.
For each E > 0 we set

β(E) =

∫ π/2

0

d ϕ√
2E + sin2 ϕ

(4.6)
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so that the solution with energy E satisfies

ϕ(−β) = 0, ϕ(0) = π/2, ϕ(β) = π. (4.7)

See figure 4.1.
Clearly β(E) is a monotone function of E with β(E) → ∞ as E → 0. We denote

the inverse by E = Eβ , and we write Φβ(x) = ϕ(Eβ , x). The function Φβ is thus the
unique solution of (4.3) which satisfies the boundary conditions (4.7). One has

lim
β→∞

Φβ(x) = Φ(x).

π/2

π

−β β

Fig. 4.1. Φβ

Lemma 4.1. The energy Eβ of Φβ satisfies

Eβ = 8e−2β+o(1) (β → ∞). (4.8)

Proof. We have

β =

∫ π/2

0

dϕ√
2E + sin2 ϕ

=

∫ π/2

0

1 − cosϕ√
2E + sin2 ϕ

dϕ +

∫ π/2

0

cosϕ√
2E + sin2 ϕ

dϕ

= A + B.

In the first term we may simply let E tend to 0, because of monotone convergence.
One gets

lim
Eց0

A =

∫ π/2

0

1 − cosϕ

sin ϕ
dϕ = ln 2.

For the second term one finds

B =
[
arsinh

sin ϕ√
2E

]π/2

0
= arsinh

1√
2E

.

Adding A and B while using arsinh t = ln
(
t+

√
1 + t2

)
= ln 2t+ 1

4 t−2 + · · · for t → ∞
we arrive at

β = ln 2 + o(1) + arsinh
1√
2E

= 1
2 ln(8/E) + o(1),
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from which (4.8) follows.
Lemma 4.2. For all β > 0 and all x ≥ 0 one has

0 < Φβ(x) − Φ(x) < Eβ sinhx ≤ Ce−2β sinhx. (4.9)

Since Φβ − Φ is an odd function one has the opposite inequalities for x < 0.
Proof. From the construction one sees that Φβ is a monotone function of β. This

implies Φβ > Φ.
Both Φ and Φβ are solutions of the ODE ϕ′′ − f(ϕ) = 0. so their difference

z = Φβ − Φ satisfies z′′ − Q(x)z = 0, where, by the mean value theorem, one has

|Q(x)| =

∣∣∣∣
f(Φβ(x)) − f(Φ(x))

Φβ(x) − Φ(x)

∣∣∣∣ < 1.

This implies that z′′ − z = (Q(x) − 1)z < 0. Therefore, taking into account that
z(0) = 0, one finds

z(x) = z(0) coshx + z′(0) sinhx +

∫ x

0

sinh(x − ξ)
{
z′′(ξ) − z(ξ)

}
dξ

< z′(0) sinhx

for all x > 0. Finally,

z′(0) = Φ′
β(0) − Φ′(0) =

Φ′
β(0)2 − Φ′(0)2

Φ′
β(0) + Φ′(0)

< Eβ ,

because Φ′
β(0) > Φ′(0) = 1.

5. Initial data and their intersections with steady states. Rewritten in
the x variable the hypotheses (2.5a) and (2.5b) are

ϕ0(x) ≤ π and ϕ′′
0 − f(ϕ0) < 0 for 0 ≤ x < ∞ (5.1a)

lim
x→∞

ϕ0(x) = π. (5.1b)

Lemma 5.1. Let ϕ0 : [0,∞) → R be a function which satisfies (5.1a) and (5.1b).
Then ϕ′

0(x) > 0 for all x ≥ 0.
As a consequence lemma 2.1 implies lemma 2.2.
Proof. There must be a final interval [x1,∞) on which 1

2π ≤ ϕ0(x) ≤ π. On this
interval one has ϕ′′

0 < f(ϕ0) ≤ 0 so ϕ0 is concave there. Hence for x ≥ x1 we already
have ϕ′

0(x) > 0.
Let x2 ≥ 0 be the largest root of ϕ′(x) = 0, if such exists. Then for x > x2 we

have

d

dx
Eϕ0

(x) = ϕ′
0(x){ϕ′′

0 − f(ϕ0)} < 0. (5.2)

Since limx→∞Eϕ0
(x) = 0 we get Eϕ0

(x2) > 0. On the other hand

Eϕ0
(x2) = 1

2

{
ϕ′

0(x2)
2 − sin2 ϕ0(x2)

}
= − 1

2 sin2 ϕ0(x2) ≤ 0,

a contradiction.
Hence no such x2 can exist, and we find that ϕ′

0(x) > 0 for all x ≥ 0.
The proof also shows that Eϕ0

(x) is strictly decreasing for all x ≥ 0 (by (5.2))
and hence that Eϕ0

(x) > 0 for all x ≥ 0.
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Construction of the initial data. It follows from lemma 5.1 that for any initial
ϕ0 which satisfies (5.1a), (5.1b) one can invert the map x 7→ ϕ0(x) and thus construct
a function G : [−ϕ̄, π] → [0,∞) for which one has ϕ′

0(x) = G
(
ϕ0(x)

)
. This function

must satisfy G(π) = 0 of course, but also

d

dφ

(
1
2G(φ)2 − 1

2 sin2 φ
)

< 0 for − ϕ̄ < φ < π, (5.3)

since, by the chain rule, and in view of ϕ′
0(x) = G(ϕ0(x)), the left hand side equals

d
dx

(
1
2ϕ′

0(x)2 − 1
2 sin2 ϕ0(x)

)

ϕ′
0(x)

= ϕ′′
0 (x) − f(ϕ0(x)) < 0 (5.4)

when φ = ϕ0(x).

Conversely, let E : [−ϕ̄, π] → [0,∞) be any smooth decreasing function for which
E(π) = 0 and define

G(φ) =
√

2
(
E(φ) + sin2 φ

)
.

Then G(φ) satisfies (5.3). The solution ϕ0 : [0,∞) → [−ϕ̄, π) of

ϕ′(x) = G(ϕ(x)), ϕ(0) = −ϕ̄.

is an increasing function with limx→∞ ϕ0(x) = π. Moreover, (5.4) implies that ϕ0

satisfies ϕ′′
0 − f(ϕ0) < 0 so that ϕ0 satisfies our hypotheses (5.1a) and (5.1b). So

we have constructed an admissible initial value for each smooth decreasing function
E : [−ϕ̄, π] → [0,∞) with E(π) = 0.

Intersections. We now count intersections of ϕ0 with steady states.

Lemma 5.2. The graph of ϕ0(x) intersects the graph of Φ(x − ζ) at most once
(for any ζ ∈ R).

Proof. All Φ(x − ζ) have zero energy, i.e. EΦ ≡ 0. If ϕ0(x1) = Φ(x1 − ζ) then
Eϕ0

(x1) > EΦ(x1 − ζ) = 0 implies ϕ′
0(x1) > Φ′(x1 − ζ). If there were more than one

intersection at least one of them would have to have ϕ′
0(x1) ≤ Φ′(x − ζ).

Lemma 5.3. The graphs of ϕ0 and Φβ(x − ζ) intersect at most twice for any
ζ ∈ R.

Proof. If some point of intersection x1 ≥ 0 has ϕ′
0(x1) ≤ Φ′

β(x1− ζ), then one has
Eϕ0

(x1) ≤ EΦβ
(x1). But EΦβ

is constant and Eϕ0
decreases, so for all x > x1 one

has Eϕ0
(x) < EΦβ

(x). This implies that there cannot be any further intersections
after x = x1, for at such an intersection one would have ϕ′

0(x) ≥ Φ′
β(x − ζ) and thus

Eϕ0
(x) ≥ EΦβ

.

Consequently there cannot be more than two intersections. For if there were three
intersections, say at x1 < x2 < x3, then at either x1 or x2 one would have ϕ′

0 ≤ Φ′
β

and the third intersection at x3 could not occur by the argument in the preceding
paragraph.

6. Proof of lemma 2.4 with an error estimate. In Section 4 we showed that
ϕt < 0, i.e. ϕxx−f(ϕ) < 0 at each time t. Hence each ϕ(·, t) satisfies the hypotheses of
lemma 2.2 and it follows that ϕx > 0 for all (x, t). In particular there exists a unique
X(t) such that ϕ(X(t), t) = 1

2π. The radius R(t) from (2.6) is given by R(t) = e−X(t).
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π

−π

ϕ

Φ

Ψ

−ϕ̄

X(t)

x = − ln r

1

2
X(t) + O(1)

Fig. 6.1. The proof of lemma 2.4

Again ϕxx − f(ϕ) < 0 implies that ϕ(·, t) also satisfies lemma 5.2, and hence
the graphs of ϕ(·, t) and Φ(x − X(t)) only intersect once: the intersection occurs by
definition of X(t) at x = X(t). We conclude that

{
ϕ(x, t) > Φ(x − X(t)) for x > X(t)
ϕ(x, t) < Φ(x − X(t)) for x < X(t).

(6.1)

Next, we compare ϕ(·, t) with Ψ(x), where Ψ(x) is the unique solution of

Ψ′′ − f(Ψ) = 0, Ψ(X(t)) =
π

2
, Ψ(0) = −ϕ. (6.2)

One can extend Ψ(x) to a function on all R, by solving the ODE Ψ′′ = f(Ψ).
Lemma 6.1. Ψ(x) = Φβ(x − X(t)) where

β =
1

2
X(t) + O(1), (6.3)

Proof. Since Ψ(x) crosses the ϕ = 0 line it must be a positive energy solution of
the ODE, and hence Ψ(x) = Φβ(x − X(t)) for some β. At x = 0 one has Ψ(0) = −ϕ
which is bounded away from 0 and −π, so within a distance1 of O(1) there must be
a point x1 with Ψ(x1) = − 1

2π. Clearly X(t) − x1 = 2β.
Lemma 6.2. For all x ≥ 0 one has

|ϕ(x, t) − Φ(x − X(t))| ≤ Ce−X(t)
∣∣sinh(x − X(t))

∣∣. (6.4)

1In fact, using Eβ ≥ 0 one can estimate x1 by

|x1| =

∣∣∣∣∣

∫ π/2

ϕ

(
2Eβ + sin2 ϕ

)−1/2
dϕ

∣∣∣∣∣ ≤ |artanh cos ϕ|.
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Proof. By lemma 5.3 the graphs of ϕ(x, t) and Ψ(x) intersect at most twice, which
they do at x = 0 and at x = X(t). Hence we have

{
ϕ(x, t) < Ψ(x) for x > X(t)
ϕ(x, t) > Ψ(x) for x < X(t).

(6.5)

If we combine this with (6.1) we get

|ϕ(x, t) − Φ(x − X(t))| ≤ |Ψ(x) − Φ(x − X(t))|

for all x ≥ 0. Since Ψ(x) = Φβ(x−X(t)) the inequality (6.4) follows from lemma 4.2.

7. Convergence of higher derivatives. We are considering ϕ as a function
of x = − ln r and t, so that ϕ satisfies (4.1), (4.2). In these variables blow-up of the
harmonic map flow leads to unbounded time derivatives, but not to unbounded space
derivatives.

Lemma 7.1. For all m = 0, 1, 2, . . . there are constants Mm,δ, such that

∣∣∣
∂mϕ

∂xm
(x, t)

∣∣∣ ≤ Mm,δ (7.1)

holds for x ≥ 1 and t ≥ δ.
Proof. Let x0 ≥ 1 and t0 ∈ [δ, T ) be given. Then consider

ϕ̃(x, t) = ϕ(x0 + x, t0 + e−2x0t).

The function ϕ̃ satisfies (4.1) on the rectangle −1 < x < 1, −δ < t ≤ 0 (in fact for
−δe2x0 < t ≤ 0) and is bounded there.

By standard interior estimates for semilinear parabolic equations we now find
that all derivatives ∂m

x ϕ̃(0, 0) are bounded. This implies (7.1).
Recall that for any integers 0 ≤ k ≤ m there is a constant Ck,m such that any

Cm function on the interval [−L, L] satisfies

‖f (k)‖∞ ≤ Ck,m‖f‖1−k/m
∞ ‖f (m)‖k/m

∞ ,

‖ · · · ‖∞ being the supremum norm on the interval [−L, L]. If we apply this interpola-
tion inequality to (6.4) and (7.1) we find that ϕ(X(t)+ z, t) converges in C∞ to Φ(z).
More precisely, we get

Lemma 7.2. For any 0 ≤ k ≤ m there is a constant Ck,m,L such that

sup
|x−X(t)|≤L

∣∣∣∣
∂kϕ

∂xk
− Φ(k)

∣∣∣∣ ≤ Ck,m,Le−(1−k/m)X(t). (7.2)

8. The mollified logarithmic radius X̂. We consider the following alternative
to X(t): define X̂(t) by requiring

∫ +1

−1

η(s)ϕ(X̂(t) + s, t)ds =
π

2
,

where 0 ≤ η ∈ C∞
c (−1, 1) is some function with

∫ 1

−1 η(s)ds = 1. The left hand side

here is strictly increasing as a function of X̂(t) so that uniqueness of X̂(t) is ensured.

11



We also define the corresponding mollified radius

R̂(t) = e−X̂(t).

Lemma 8.1. |X̂(t) − X(t)| ≤ Ce−X(t), for some C < ∞.
Consequently one also has

X(t) = X̂(t) + o(1) and R(t) = (1 + o(1))R̂(t) as t ր T. (8.1)

Proof. It follows from lemma 6.2 that

∫ +1

−1

η(s)ϕ(X(t) + s, t)ds =
π

2
+ O(e−X(t))

It also follows from lemma 7.2 that

A(ξ)
def
=

∫ +1

−1

η(s)ϕ(X(t) + ξ + s, t)ds

satisfies

A′(ξ) =

∫ +1

−1

η(s)ϕx(X(t) + ξ + s, t)ds ≥ δ > 0

for some constant δ, and all |ξ| ≤ 1.
Writing X̂(t) = X(t) + ξ these two inequalities imply the lemma.
We proceed to compute X̂ ′(t). Differentiation of the defining relation for X̂(t)

gives

0 =
d

dt

∫ 1

−1

η(s)ϕ(X̂(t) + s, t)dt =

∫ 1

−1

η(s){ϕt + X̂ ′(t)ϕx}ds,

so that

X̂ ′(t) = −
∫ 1

−1
η(s)ϕt(X̂(t) + s, t)ds

∫ 1

−1 η(s)ϕx(X̂(t) + s, t)ds
.

It is immediately clear from ϕt > 0 and ϕx > 0 that

X̂ ′(t) < 0. (8.2)

Moreover, the PDE (4.1) for ϕ implies

X̂ ′(t) = −
∫ 1

−1
η(s)e2(X̂+s)(ϕss − 1

2 sin 2ϕ)ds
∫ 1

−1 η(s)ϕs(X̂ + s, t)ds
.

(Note that for fixed t one has ∂/∂x = ∂/∂s.) After factoring out the e2X̂ and in-
tegrating by parts twice in the numerator and once in the denominator, one gets

X̂ ′(t) = e2X̂(t)

∫ 1

−1

{
(η(s)e2s)ssϕ − η(s)e2s 1

2 sin 2ϕ
}
ds

∫ 1

−1
η′(s)ϕ(X̂ + s, t)ds

. (8.3)
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By lemma 6.2 we find for the denominator

∫ 1

−1

η′(s)ϕ(X̂ + s, t)ds =

∫ 1

−1

η′(s)Φ(s)ds + O(e−X̂(t))

= −
∫ 1

−1

η(s)Φ′(s)ds + O(e−X̂(t))

= −C0 + O(e−X̂(t)),

in which C0 is some positive constant.
For the numerator we get, using lemma 6.2 again,

∫ 1

−1

{
(η(s)e2s)ssϕ − η(s)e2s 1

2 sin 2ϕ
}
ds

=

∫ 1

−1

{
(η(s)e2s)ssΦ(s) − η(s)e2s 1

2 sin 2Φ(s)
}
ds + O(e−X̂(t))

=

∫ 1

−1

η(s)e2s
{
Φ′′(s) − 1

2 sin 2Φ(s)
}
ds + O(e−X̂(t))

= O(e−X̂(t))

in which we have used that Φ satisfies the differential equation Φ′′(s) = 1
2 sin 2Φ(s).

These last two computations applied to (8.3) give us

X̂ ′(t) = O(eX̂(t)), (8.4)

which is the main estimate we derive in this section. Since R̂(t) = e−X̂(t) we have

dR̂

dt
= −e−X̂(t)X̂ ′(t) = O(1),

which implies R̂(t) = O(T − t) and, by lemma 8.1,

R(t) = O(T − t). (8.5)

9. m(τ) and Y (τ). We consider the parabolic blow-up of our solution to har-
monic map flow. Let

ϕ(r, t) = u(
r√

T − t
,− ln(T − t)),

y =
r√

T − t
, τ = − ln(T − t).

Then u(y, τ) is defined for 0 ≤ y ≤ eτ/2, − lnT ≤ τ < ∞, where it satisfies

uτ = uyy +
(1

y
− y

2

)
uy − 1

y2
u +

g(u)

y2
, (9.1a)

=
1

y
ey2/4

(
ye−y2/4uy

)

y
− 1

y2
u +

g(u)

y2
, (9.1b)

in which

g(u)
def
= u − 1

2 sin 2u = 2
3u3 + O(u5).
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We define

Y (τ) = eτ/2R(T − e−τ )

Then we have shown that

Y (τ) ≤ Ce−τ/2, (9.2)

for some constant C < ∞.
Lemma 9.1. If one defines U(η) = π − 2 arctanη, then for all y ≥ Y (τ) one has

∣∣∣∣u(y, τ) − U(
y

Y (τ)
)

∣∣∣∣ ≤
{

Ce−τ/2y for y ≥ Y (τ)

Ce−τ/2 for 0 ≤ y ≤ Y (τ)
(9.3)

Proof. Lemma 6.2 implies that

|u(y, τ) − U(y/Y (τ))| ≤ Ce−X(τ)

∣∣∣∣
y

Y
− Y

y

∣∣∣∣ ≤ Ce−τ/2Y

∣∣∣∣
y

Y
− Y

y

∣∣∣∣ .

In the region y ≥ Y this directly implies the first inequality in (9.3).
For 0 ≤ y ≤ Y we get

|u − U | ≤ Ce−τ/2Y 2/y.

In this region we also have U ≤ u ≤ π so that

|u − U | ≤ π − U = 2 arctany/Y ≤ 2y/Y.

At each y ∈ [0, Y ] these two estimates imply that

|u(y, τ) − U(y/Y (τ))| ≤ min{2y/Y, Ce−τ/2Y 2/y} ≤ C
√

Y e−τ/4 ≤ Ce−τ/2

since min{a, b} ≤
√

ab and in view of the estimate (9.2) for Y (τ).
We define

m(τ) =

∫ eτ/2

0

y2e−y2/4u(y, τ) dy. (9.4)

Lemma 9.2. One has

m′(τ) = − 1
2m(τ) + (4 + o(1))Y (τ) + O(e−

3

2
τ ) (9.5)

Proof. One differentiates the defining equation (9.4) for m(τ), and obtains

m′(τ) = eτe−eτ /4u(eτ/2, τ) +

∫ eτ/2

0

y2e−y2/4uτ (y, τ) dy

= ǫ(τ) +

∫ eτ/2

0

{
y(ye−y2/4uy)y − e−y2/4u + e−y2/4g(u)

}
dy
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(integrate by parts twice)

= ǫ(τ) − 1
2

∫ eτ/2

0

y2e−y2/4u(y, τ) dτ +

∫ eτ/2

0

e−y2/4g(u)dy

= − 1
2m(τ) +

∫ eτ/2

0

e−y2/4g(u)dy + ǫ(τ).

Here ǫ(τ) stands for a function of time which vanishes super exponentially, i.e. for
some C, c > 0 one has

|ǫ(τ)| ≤ Ce−ceτ

.

To complete the proof we must estimate the remaining integral. This is done in the
following two propositions.

Proposition 9.3.
∫ ∞

0
g(U(y))dy = 4.

Proof. Since U(y) satisfies the ODE U ′′ + 1
yU ′ = 1

2y−2 sin 2U , we have after
integrating by parts a few times

∫ L

0

g(U(y))dy =

∫ L

0

(
(−y2U ′′(y) − yU ′(y) + U(y)

)
dy

= [−y2U ′(y) + yU(y)]y=L
y=0

= −L2U ′(L) + LU(L).

For large y we have U(y) ∼ 2/y, and hence U ′(y) ∼ −2/y2. Taking the limit L → ∞
in the above computation then proves the lemma.

Proposition 9.4.

∫ eτ/2

0

g(u(y, τ))e−y2/4 dy = 4Y (τ) + o(Y (τ)) + O(e−
3

2
τ ).

Proof. We split the integral into several pieces.

∫ eτ/2

0

g(u(y, τ))e−y2/4 dy =

∫ eτ/2

0

g(U(y/Y ))e−y2/4 dy

+

∫ eτ/2

0

{g(u(y, τ)) − g(U(y/Y ))}e−y2/4 dy

= I1 + I2.

In the first integral we substitute y = ηY . The variable η then runs from 0 to
eτ/2/Y (τ) ≥ ceτ . One finds

I1 = Y (τ)

∫ eτ/2/Y (τ)

0

g(U(η))e−η2Y 2/4 dη

= Y (τ)(1 + o(1))

∫ ∞

0

g(U(η))e−η2Y 2/4 dη

= Y (τ)(1 + o(1))

∫ ∞

0

g(U(η)) dη

= (4 + o(1))Y (τ)
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by lemma 9.3 and monotone convergence.
In the second integral we use the mean value theorem, i.e. g(u)−g(U) = g′(ũ)(u−

U) for some ũ between u and U . Furthermore

0 ≤ g′(u) = 1 − cos 2u ≤ Cu2

for some constant, so we get 0 ≤ g′(ũ) ≤ C(U2 + u2). On the interval Y ≤ y ≤ eτ/2

lemma 9.1 tells us that

U(y/Y (τ)) − Ce−τ/2y ≤ u(y, τ) ≤ U(y/Y (τ)),

so that u2 ≤ U2 + Ce−τy2. Applying this to the integral I2 on the interval Y ≤ y ≤
eτ/2 we get

∣∣∣
∫ eτ/2

Y

{g(u(y, τ)) − g(U(y/Y ))}e−y2/4 dy
∣∣∣ ≤

≤ C

∫ eτ/2

Y

(U2 + u2)|U − u|e−y2/4 dy

≤ Ce−τ/2

∫ eτ/2

Y

{(
Y

y

)2

+ e−τy2

}
ye−y2/4 dy

≤ Ce−τ/2Y (τ)2 ln
1

Y (τ)
+ Ce−

3

2
τ

≤ o(Y (τ)) + Ce−
3

2
τ .

For the integral from y = 0 to y = Y we have |u − U | = O(e−τ/2) = o(1) uniformly,
by lemma 9.1. Since g′(u) is bounded, this implies

∫ Y (τ)

0

|g(u(y, τ)) − g(U(y/Y ))|e−y2/4 dy = o(Y (τ)).

Adding the two pieces we get

|I2| ≤
{
Ce−

3

2
τ + o(Y (τ))

}
.

The lemma is proved by adding the estimates for I1 and I2.
We can now improve our bound for the blow-up rates of X(t) and Y (τ).
Proposition 9.5. For some constant C < ∞ one has |m(τ)| ≥ Ce−τ/2.
Proof. It follows from the estimates in lemma 9.1 that u(y, τ) ≥ −Cye−τ/2 for

all y and τ . Substitution in (9.4) then gives m(τ) ≥ −Ce−τ/2.
To get the opposite inequality we recall lemma 9.3 which says that for y ≥ Y one

has u(y, τ) ≤ U(y/Y ) while for y ∈ [0, Y ] one has u(y, τ) ≤ U(y/Y ) + Ce−τ/2. The
explicit expression for U(y/Y ) implies that U(y/Y ) ≤ 2Y/y. Subtitution of these
estimates in the definition of m(τ) gives m(τ) ≤ Ce−τ/2.

Proposition 9.6.

∫ ∞

τ0

eτ/2Y (τ) dτ < ∞. (9.6)
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Proof. Apply the variation of constants formula to (9.5), to get

eτ/2m(τ) − eτ0/2m(τ0) =

∫ τ

τ0

{
(4 + o(1))eσ/2Y (σ) + O(e−σ)

}
dσ

Since Y (τ) > 0, and since the left hand side is bounded from above by the previous
proposition, (9.6) follows.

Unraveling the definitions of Y and τ , we find
∫ T

0

R(t)
dt

(T − t)2
< ∞. (9.7)

To conclude we show how this integral bound also implies a pointwise bound.
Recall that R(t) is monotone, so that for any τ0 and τ ∈ (τ0 − 1, τ0] it follows from
Y (τ) = eτ/2R(T − e−τ ) that

Y (τ) > e−1/2Y (τ0).

Hence
∫ τ0

τ0−1

eτ/2Y (τ) dτ > eτ0/2e−1Y (τ0).

Convergence of the integral (9.6) then implies

lim
τ0→∞

eτ0/2Y (τ0) = 0,

which in turn implies R(t) = o(T − t) as t ր T .
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