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a b s t r a c t

We study the response of aMEMS resonator, driven in an in-plane length-extensional mode of excitation.

It is observed that the amplitude of the resulting vibration has an upper bound, i.e., the response shows

saturation. We present a model for this phenomenon, incorporating interaction with a bending mode.

We show that this model accurately describes the observed phenomena. The in-plane (‘‘trivial’’) mode is

shown to be stable up to a critical value of the amplitude of the excitation. At this value, a new ‘‘bending’’

branch of solutions bifurcates. For appropriate values of the parameters, a subsequent Hopf bifurcation

causes a beating phenomenon, in accordance with experimental observations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction; experiments and observations

For various designs of extensional MEMS resonators, fabricated
in SOI (Silicon-on-Insulator, thin Si-wafers), certain driving condi-
tions are observed to cause the response to show saturation, with-
out any evidence of physical obstruction. Next to this, sometimes
typical beating patterns are observed. These phenomena may oc-
cur at very low physical vibration amplitudes, severely limiting the
power handling of the device. In this paper we develop a model,
on the basis of which we are able to reproduce accurately the
behaviour of our resonators by simulation. A full analysis of the
model being too complicated, we construct a simplified model by
the method of averaging. On the basis of this simplified model,
we show that saturation may be explained by the presence of an
out-of-plane oscillation mode, which exchanges energy with the
‘‘standard’’ mode; beating phenomena are explained by the occur-
rence of Hopf bifurcations in the dynamical system containing this
out-of-plane mode.

MEMS resonators are currently being developed as an alter-
native for quartz crystals as frequency references for electron-
ics [1]. Using standard techniques in semiconductor technology,
extensional resonators with large piezo-resistive electrical signal
output can be produced [2]. The large-signal behaviour of these
devices has been studied frequently, as the maximum physical
vibration amplitude of such resonators is poor in some cases.
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Although non-linear stiffness terms were subject of most studies,
a more severe limiting mechanism was identified recently [3]. As
stated in the introduction, parametric oscillations are the basis of
instability, be it that we focus on instability of un-intended modes
of vibration. Studies of parametric excitation of MEMS resonators
have been presented in the literature [4]. MEMS literature on auto-
parametric resonance exists as well [5], but more specifically this
literature relates to spontaneous oscillations resulting from a con-
stant (optical) power supply. Auto-parametric coupling of vibra-
tions, as studied in the present paper, is also described as a useful
feature for signal mixing [6].

The excitation of unwanted modes in a resonator driven over
a defined threshold amplitude is common in the literature and
more general than the MEMS topic. As early as in 1951 Weiden-
hammer [7] described the phenomenon of exciting bending vibra-
tions by periodically compressing a rod longitudinally. Such a rod
was extensively studied in a lab experiment by Iwatsubo [8], who
also reported the occurrence of unstable amplitudes of the cou-
pled vibrations present in the mechanical system. We present in
the current paper how these unstable amplitudes can be described
by the occurrence of aHopf bifurcation.More general than the pure
2:1-condition for auto-parametric resonances would be combina-
tion resonance. Macroscopic experiments on dynamical systems
withmanymodes of vibrationwere carried out by Cartmell [9] and
modeled by Nayfeh [10]. The general conditions for combination
resonance apply to a MEMS resonator as well, but for simplicity
we limit our analysis to the special case of internal 2:1-resonance.

Fig. 1 shows twomeasurements of the same device, at different
driving power levels. These experimental results show the in-
plane response of a typical MEMS resonator (to be referred to as

0167-2789/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
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Fig. 1. Twomeasurements of the same device. In grey discs: regular electrical response, plotted as absolute value of transconductance (Y21) versus excitation frequency. The

output signal relates to themechanical motion. In black dots: distorted electrical response, obtained by increasing the input power to the resonator. Since themeasurement

returns a transfer function, the increased input power only shows in the reduced noise.

Fig. 2. Example of observed beating inmeasured time-dependent data for a different resonator. The data for out-of-planemotion have been taken using a Polytec vibrometer,

while the in-plane motion was measured directly as an electrical signal. The in-plane signal corresponds to the electrically measured extensional vibration at about 56 MHz.

The out-of-plane signal is the optically measured displacement, whichmodulates at a different frequency. From the complementary amplitudes of the envelopes around the

quickly modulating signals, it is clear that the two modes of vibration exchange energy.

Source: Figure by courtesy of K.L. Phan.

a rod) to an in-plane excitation. This excitation is an attractive

electrostatic force, modulated around a positive (tension) value.

It is to be expected that the mechanical response is maximal

in case of resonance, which was the experimental situation. In

Fig. 1, at low power a regular mechanical resonance is observed

when sweeping the frequency of the modulation of the force. In

contrast, Fig. 1 shows saturation when the power or modulation

depth is increased. In this paper, we shall address the clipping

situation. We shall, on the basis of first principles, show that

clipping phenomena can be explained by interaction of the primary

trivial extensional mode with other response modes, in this case

a specific bending mode. Our analysis also fully explains the

occurrence of beating phenomena, which are clearly observable

under appropriate conditions, see Fig. 2.

2. Equations of motion; bifurcation of out-of-plane mode

In order to derive a system of equations of motion for our rod,

we make the simplifying assumption that any motion of the rod

can be decomposed into two modes, vs.

1. the extensional mode u(x, t) = p(t)φ(x), where φ is the first

eigenfunction of the operator φ → φ′′ under the boundary

conditions φ(0) = φ′(L) = 0, and

2. a bending mode w(x, t) = q(t)θ(x), satisfying θ(0) = θ ′(0) =
θ ′′(L) = θ ′′′(L) = 0, with θ an appropriate eigenfunction (that

is, with the first eigenfrequency that is susceptible to resonance

to the first eigenfrequency of the extensional mode) of θ →
θ(iv).

The equations of motion follow from the Euler–Lagrange equa-
tion [11]

d

dt

(
∂T

∂ṗ

)
− ∂T

∂p
+ ∂V

∂p
= F, with p =

{
p(t)
q(t)

}
, (1)

where the forces in F are the electrostatic force for the in-plane
mode and zero for the out-of-plane mode. The translation from
continuous body motion to modal coordinates stems from the
modal expansion theorem [11], according to which

u(x, t) = p(t)θ(x)

w(x, t) = q(t)φ(x).
(2)

The kinetic energy is denoted as

T = 1

2
ρA

∫ L

0

(
u̇2 + ẇ2

)
dx

= 1

2
ρA

∫ L

0

[
ṗ2θ(x)2 + q̇2φ(x)2

]
dx. (3)

It should be noted that the integration over scalar products of
mode shapes mainly results in constants and for the motion we
are interested in the time-dependent behaviour of the modal
coordinates. Hence we write

T = 1

2
ρAṗ2

∫
θ2dx + 1

2
ρAq̇2

∫
φ2dx. (4)

Associated with u and w we have the local strain, which to first
order reads [12]

ε = ∂u

∂x
− z

∂2w

∂x2
+ 1

2

(
∂w

∂x

)2

. (5)
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The definition in Eq. (5) will turn out to be the basis of interaction
between the two modes of vibration. The third term is found
in expressions for large deformation as applicable to buckling
problems. It can also be considered as the term that defines the
potential energy of a string under tension. It assumes length
extension in order to accommodate for a bending displacement,
which in turn does not need to be a large deformation at all. The
total potential energy is expressed as

V = 1

2
Eb

∫ h/2

−h/2

∫ L

0

ε2dxdz, (6)

where beam width b is used instead of area A, as integration
over thickness has to take place. Inserting the modal expansion
equation (2) and the definition of strain equation (5), we find the
potential energy

V = 1

2
EA

[
p2

∫
θ ′2dx + pq2

∫
θ ′φ′2dx + 1

4
q4

∫
φ′4dx

]

+ 1

2
EI

[
q2

∫
φ′′2dx

]
, (7)

in which area A = bh and the second moment of area I = 1
12
bh3

are based on the cross-sectional dimensions.
To construct the equations of motion the expressions for T and

V can be inserted in the Lagrange equation, Eq. (1). The kinetic
energy T does not depend on the position of any of the coordinates
and ∂T/∂p is zero. Further we see that

d

dt

(
∂T

∂ṗ

)
= ρA

⎧⎪⎨
⎪⎩
p̈

∫
θ2dx

q̈

∫
φ2dx

⎫⎪⎬
⎪⎭ , (8)

where the integrals are simplified and express the integration from
0 to L and θ and φ are the normalized displacement functions
satisfying θ(L) = φ(L) = 1. For the potential energy we find

∂V

∂p
= 1

2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

EA

(
2p

∫
θ ′2dx + q2

∫
θ ′φ′2dx

)

EA

(
2pq

∫
θ ′φ′2dx + q3

∫
φ′4dx

)

+ EI2q

∫
φ′′2dx

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (9)

The mode shapes φ(x) and θ(x) lead to scalar values for the inner
products, rendering them as purely geometrical factors.

We combine Eqs. (1), (8) and (9) and write the equations of
motion as

p̈ + ω1
2p = −d1q

2 − γ1ṗ − G cos(Ωt)

q̈ + ω2
2q = −d2pq − γ2q̇ − d3q

3,
(10)

where the constants relate to the shape functions as

ω1
2 = E

ρ

∫
θ ′2dx∫
θ2dx

, ω2
2 = EI

ρA

∫
φ′′2dx∫
φ2dx

, (11)

and

d1 = E

2ρ

∫
θ ′φ′2dx∫
θ2dx

, d2 = E

ρ

∫
θ ′φ′2dx∫
φ2dx

,

d3 = E

2ρ

∫
φ′4dx∫
φ2dx

.

(12)

We have three different frequencies playing a role here, where ω1

is the small-amplitude eigenfrequency of the in-plane mode, ω2 is
the eigenfrequency of the unwanted out-of-plane mode and Ω is

the forcing frequency. Modal damping is added by γ1 and γ2, but

exact estimation of damping values lies outside the scope of this

paper.

In our case, it happens that ω1 ≈ 2ω2. Moreover, an optimal

response is obtained ifΩ = ω1, andwe shall assume thatΩ ≈ ω1.

Actually, when considering Hopf bifurcations in Section 3, in order

to simplify the argument we shall assume that Ω = ω1.

Before analyzing the equations of motion, we show a typical

simulation result (Fig. 3), where the parameters are such that the

stability of the trivial solution is lost. The trivial solution implies a

certain amplitude for the directly driven mode of vibration and a

zero amplitude for the bending mode of vibration. The directions

of vibration are in principle perpendicular to each other. The

direct driving force does not have a component in the bending

direction. As the stability of the trivial solution of steady states is

lost, the system settles in a different oscillatory mode, where both

amplitudes are nonvanishing.

In the case of interest, we write G = εg, di = εδi, γi = εμi,

where ε is of order 0.1 and the other parameters are atmost of unit

order. As mentioned before, Ω ≈ ω1 ≈ 2ω2. With the notation

ω2
1 − Ω2 = χ1ε, ω

2
2 − Ω2

4
= χ2ε, the problem may be written as

ẍ1 + Ω2x1 = ε(g cos(Ωt) − χ1x1 − δ1x
2
2 − μ1ẋ1), (13)

ẍ2 + Ω2

4
x2 = −ε(δ2x1x2 + χ2x2 + μ2ẋ2 + δ3x

3
2). (14)

Writing

y1 = x1, y2 = − ẋ1

Ω
, y3 = x2, y4 = −2ẋ2

Ω
,

we obtain the system

ẏ = Ay + εf (y, t), (15)

where

A =

⎛
⎜⎜⎜⎜⎝

0 −Ω 0 0
Ω 0 0 0

0 0 0 −Ω

2

0 0
Ω

2
0

⎞
⎟⎟⎟⎟⎠ and

f (y, t) =

⎛
⎜⎜⎜⎜⎝

0

− 1

Ω
[g cos (Ωt) − χ1y1 − δ1y

2
3 + μ1Ωy2]

0
2

Ω

[
δ2y1y3 + χ2y3 − μ2Ω

2
y4 + δ3y

3
3

]

⎞
⎟⎟⎟⎟⎠ .

With u := e−Aty, we have the system

u̇ = εe−At f (eAtu),

which is periodic in t , with period T = 4π
Ω
. In order to make

the analysis tractable, we shall from now on study the averaged

system. For details concerning the procedure of averaging, the

reader is referred to [13].

Setting u := (u1, v1, u2, v2)
T , we obtain(

y1
y2

)
=

(
u1 cos(Ωt) − v1 sin(Ωt)
u1 sin(Ωt) + v1 cos(Ωt)

)
;

(
y3
y4

)
=

⎛
⎜⎜⎝
u2 cos

(
Ωt

2

)
− v2 sin

(
Ωt

2

)

u2 sin

(
Ωt

2

)
+ v2 cos

(
Ωt

2

)
⎞
⎟⎟⎠ .
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Fig. 3. Integration of the system in Eq. (10), when ω1 = 2ω2, Ω = ω1 = 1, G = 0.3 and γ1 = γ2 = 0.1, d1 = 0.25, d2 = 0.05, d3 = 0.

Note that a constant u represents a periodic orbit for the original
system (15). A simple computation yields the equation in Box I and
the averaged equations read

˙̄u1 = −ε

2Ω
(χ1v̄1 + μ1Ω ū1 + δ1ū2v̄2), (16)

˙̄v1 = −ε

2Ω

(
g − χ1ū1 + μ1Ωv̄1 − δ1

ū2
2 − v̄2

2

2

)
, (17)

˙̄u2 = − ε

Ω

(
χ2v̄2 + μ2Ω

2
ū2 + 3δ3

4
(v̄3

2 + ū2
2v̄2)

−δ2(ū1v̄2 − ū2v̄1)

2

)
, (18)

˙̄v2 = ε

Ω

(
χ2ū2 − μ2Ω

2
v̄2 + 3δ3

4
(ū3

2 + ū2v̄
2
2)

+δ2(ū1ū2 + v̄1v̄2)

2

)
. (19)

For determining the steady states of this system, it turns out to be
advantageous to introduce the new unknown variables

z1 := ū1 + iv̄1; z2 := ū2 + iv̄2;
z3 := ū2 − iv̄2; z4 := ū1 − iv̄1.

We rescale time in order to get rid of the factor ε
2Ω

. The Eqs. (16)–
(19) in this setting read

ż1 = −ig + (−μ1Ω + iχ1)z1 + δ1iz
2
2

2
, (20)

ż2 = (−μ2Ω + 2iχ2)z2 + δ2iz1z3 + 3δ3iz
2
2z3

2
, (21)

ż3 = −(μ2Ω + 2iχ2)z3 − δ2iz4z2 − 3δ3iz
2
3z2

2
, (22)

ż4 = ig − (μ1Ω + iχ1)z4 − δ1iz
2
3

2
. (23)

By Z1, . . . , Z4 we denote any steady state of this system. Obviously,

−ig + (−μ1Ω + iχ1)Z1 + δ1iZ
2
2

2
= 0, (24)

(−μ2Ω + 2iχ2)Z2 + δ2iZ1Z3 + 3δ3iZ
2
2 Z3

2
= 0, (25)

−(μ2Ω + 2iχ2)Z3 − δ2iZ4Z2 − 3δ3iZ
2
3 Z2

2
= 0, (26)

ig − (μ1Ω + iχ1)Z4 − δ1iZ
2
3

2
= 0. (27)

We shall write R2
1 := Z1Z4; R2

2 = Z2Z3. Writing Z1 = U1 + iV1, Z2 =
U2 + iV2, Z3 = U2 − iV2 and Z4 = U1 − iV1, we see that R2

1 =
U2
1 + V 2

1 , R2
2 = U2

2 + V 2
2 . A situation where R2 = 0 represents an

in-plane situation, which we call trivial and which corresponds to
in-plane oscillations of the bar. For such a situation,

Z̃1 = g
χ1 − iμ1Ω

χ2
1 + μ2

1Ω
2
; Z̃4 = Z̃1.

We interpret the clipping phenomenon, as described in Section 1,
as the appearance of a new stable branch of solutions (namely:
out-of-plane oscillations), whereby the trivial steady state loses its
stability.We shall now compute the nontrivial steady states where
R2 �= 0. To do that, we use (24) to express Z1 in Z2, and then plug
the result into (25):

(−μ2Ω + 2iχ2)Z2 − δ2g

−μ1Ω + iχ1

Z3

+ δ1δ2R
2
2Z2

2(−μ1Ω + iχ1)
+ 3

2
δ3iR

2
2Z2 = 0. (28)

Similarly, expressing Z4 in Z3 from (27) and putting it into (26),
yields

(−μ2Ω − 2iχ2)Z3 − δ2g

−μ1Ω − iχ1

Z2

+ δ1δ2R
2
2Z3

2(−μ1Ω − iχ1)
− 3

2
δ3iR

2
2Z3 = 0. (29)

Considering R2 fixed for the moment, these equations constitute
a linear system in Z2, Z3; the existence of nontrivial solutions
requires the determinant to vanish. That is,(
1 − 6χ1δ3

δ1δ2
+ 9δ2

3(χ
2
1 + μ2

1Ω
2)

δ2
1δ

2
2

)
R4
2

+
(

4

δ1δ2
(μ1μ2Ω

2 − 2χ1χ2) + 24χ2δ3(χ
2
1 + μ2

1Ω
2)

δ2
1δ

2
2

)
R2
2

+ 4μ2
2Ω

2 + 16χ2
2

δ2
1δ

2
2

(χ2
1 + μ2

1Ω
2) − 4

g2

δ2
1

= 0. (30)

And conversely, if R2 satisfies (30) then, obviously, the system (28),
(29) admits a solution with the property that |Z2Z3| = R2

2. Writing

Z2 = R2e
iΦ2 , Z3 = R2e

−iΦ2 ,

a simple computation yields that Φ2 satisfies

μ1μ2Ω
2 − 2χ1χ2 + (δ1δ2 − 3δ3χ1)R

2
2

2
− i

(
μ2Ωχ1 + 2μ1Ωχ2

+ 3

2
δ3μ1ΩR2

2

)
= δ2ge

−2iΦ2 . (31)
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f (eAtu) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− 1

Ω

[
cos(Ωt)

(
g − χ1u1 + μ1Ωv1 − δ1

u2
2 − v2

2

2

)
+ sin(Ωt)(χ1v1 + μ1Ωu1 + δ1u2v2) − δ1

u2
2 + v2

2

2

]

0

2

Ω

[
cos

(
Ωt

2

) (
χ2u2 − μ2Ω

2
v2 + δ3

u3
2 + 3u2v

2
2

2

)
− sin

(
Ωt

2

) (
χ2v2 + μ2Ω

2
u2 + δ3

v3
2 + 3u2

2v2

2

)

+ cos(Ωt) cos

(
Ωt

2

) (
δ2u1u2 + δ3

u3
2 − 3u2v

2
2

2

)
+ sin(Ωt) sin

(
Ωt

2

)
δ2v1v2

+ cos(Ωt) sin

(
Ωt

2

) (
δ3

v3
2 − 3u2

2v2

2
− δ2u1v2

)
− sin(Ωt) cos

(
Ωt

2

)
δ2v1u2

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Box I.

Fig. 4. Numerical integration of the system in Eqs. (13) and (14). The result shows a repeating pattern of vibrations in which energy is exchanged between the modes

continuously.

It is now simple to compute Z2 and Z3. Note that Z1 and Z4 may be
computed from (25) and (26):

−δ2iZ1 = (−μ2Ω + 2iχ2)
Z2

Z3
+ 3δ3iZ

2
2

2
,

δ2iZ4 = −(μ2Ω + 2iχ2)
Z3

Z2
− 3δ3iZ

2
3

2
.

To obtain R1, wemultiply these two equations and use that Z1Z4 =
R2
1; Z2Z3 = R2

2:

δ2
2R

2
1 = μ2

2Ω
2 + 4χ2

2 + 9

4
δ2
3R

4
2 + 6δ3χ2R

2
2. (32)

Substituting R2 = 0 in (30) yields a value g∗, which is easily seen
to be critical in the following sense:when g < g∗, the trivial steady
state is asymptotically stable, while for g > g∗ it is unstable. When
g = g∗, R2 = 0 and R1 and R2 satisfy (32), the nontrivial steady
state branches off. The stability of the nontrivial steady state is the
subject of the next section.

3. The occurrence of beating: Hopf bifurcations

Experimental evidence clearly shows beating phenomena
under appropriate conditions, and beating is also observed in
simulations of the full system (10), see Fig. 4.

We shall show that, at appropriate non-trivial steady states
(that is: R2 �= 0), the averaged system is susceptible to Hopf
bifurcations, which seems to explain the aforementioned beating
phenomena. In order to simplify the computations further, we
assume from now on that

χ1 = 0, μ1 > 0 and μ2 > 0. (33)

Actually, this is in accordance with the practical situation.

Let Z = (Z1, Z2, Z3, Z4) be a steady state, that is, a solution
of (24)–(27). Given (33), the matrix of the linearization around Z
reads (see Box II). Using (32), the fact that Z1Z4 = R2

1, Z2Z3 = R2
2

and (25) and (26), we obtain for A the characteristic equation

((μ1Ω + λ)(μ2Ω + λ + θ) + δ1δ2R
2
2)((μ1Ω + λ)

× (μ2Ω + λ − θ) + δ1δ2R
2
2) = 0, (34)

where

θ2 = μ2
2Ω

2 − 12δ3χ2R
2
2 − 9δ2

3R
4
2. (35)

(Note that θ ∈ C.) The next step is to identify situations where
(34) has a pair of purely imaginary roots. First, we claim that, in
situations where (34) has purely imaginary roots, θ2 > 0.

Indeed, in cases where θ = 0, (34) essentially reduces to

λ2 + (μ1 + μ2)Ωλ + μ1μ2Ω
2 + δ1δ2R

2
2 = 0.

Purely imaginary roots imply that μ1 + μ2 = 0, which is not the
case.

When θ2 = −b2 and λ = −ai, with a, b ∈ R, then without loss
of generality we have

(μ1Ω − ai)(μ2Ω − (b + a)i) + δ1δ2R
2
2 = 0.

Therefore,

μ1μ2Ω
2 − a(a + b) + δ1δ2R

2
2 = 0,

μ2a + μ1(a + b) = 0

and

μ1μ2Ω
2 + μ2

μ1

a2 + δ1δ2R
2
2 = 0,

a contradiction, which proves the claim. So, in order that purely
imaginary roots do exist, we must have that

θ2 > 0, (36)
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A =

⎛
⎜⎜⎜⎜⎜⎝

−μ1Ω iδ1Z2 0 0

iδ2Z3 −μ2Ω + 2iχ2 + 3iδ3Z2Z3 iδ2Z1 + 3iδ3Z
2
2

2
0

0 −iδ2Z4 − 3iδ3Z
2
3

2
−μ2Ω − 2iχ2 − 3iδ3Z2Z3 −iδ2Z2

0 0 −iδ1Z3 −μ1Ω

⎞
⎟⎟⎟⎟⎟⎠

Box II.

whichwe shall assume fromnowon. In particular, this implies that
each factor of the characteristic polynomial has real coefficients,
and if λ is a purely imaginary root of such a factor, than −λ is the
second root. Without loss of generality we have

λ2 + ((μ1 + μ2)Ω − θ)λ + μ1Ω(μ2Ω − θ) + δ1δ2R
2
2 = 0, (37)

which implies that

θ = (μ1 + μ2)Ω. (38)

This in turn implies that (37) reads

λ2 − μ2
1Ω

2 + δ1δ2R
2
2 = 0. (39)

This implies an additional necessary condition for the existence of
purely imaginary eigenvalues:

δ1δ2R
2
2 > μ2

1Ω
2. (40)

Note that (38) implies (36) and that (35) and (38) imply that

(μ2
1 + 2μ1μ2)Ω

2 + 12δ3χ2R
2
2 + 9δ2

3R
4
2 = 0. (41)

On the other hand, suppose that (41) holds true. Then θ2 =
μ2

2Ω
2−12δ3χ2R

2
2−9δ2

3R
4
2 = (μ1+μ2)

2Ω2, so thatwemay assume
(38). Thus, we have established

Theorem 3.1. In a steady state situation, the matrix of the lineariza-
tion admits a pair of purely imaginary eigenvalues if and only if (41)
and (40) are satisfied.

Note that R2 must be positive and, since δ3 is positive, that
χ2 < 0 in order that beating phenomena may be observed. This
is in accordance with experimental evidence.

Taking into account that χ1 = 0, recall that the equation for the
steady-state R2 reads(
1 + 9δ2

3μ
2
1Ω

2

δ2
1δ

2
2

)
R4
2 +

(
4μ1μ2Ω

2

δ1δ2
+ 24χ2δ3μ

2
1Ω

2

δ2
1δ

2
2

)
R2
2

+ 4μ2
2Ω

2 + 16χ2
2

δ2
1δ

2
2

μ2
1Ω

2 − 4
g2

δ2
1

= 0. (42)

When all other parameters are kept fixed, (42) defines a curve
Γ in the (upper half) (g2, R2

2)-plane, germinating at (g∗2, 0), where

g∗2 = (μ2
2Ω

2 + 4χ2
2 )μ2

1Ω
2

δ2
2

.

Note that (42) may alternatively be written as

(
R2
2 + 2μ1μ2Ω

2

δ1δ2

)2

+ μ2
1Ω

2

δ2
1δ

2
2

(3δ3R
2
2 + 4χ2)

2 = 4
g2

δ2
1

,

which implies that g2 remains strictly positive along Γ . Clearly,
Γ is a parabola. The strict positivity of g2 implies that Γ cannot
have a turning point at values g2 > g∗2. This leaves us with two
possibilities for the shape of Γ , vs. (see Fig. 5).

Type 1: Γ has a turning point to the left of g∗2, and
Type 2: Γ does not have a turning point.

Fig. 5. Curves Γ for various values of χ2 and μ2.

Actually, depending on the values of the parameters, both

possibilities actually occur. See Fig. 5. We remark that, when g2 <
g∗2, the trivial (in-plane-oscillation-) solution is stable, whereas

the negative-slope part of Γ in the type 1 case represents an

unstable situation. Once g2 > g∗2, the trivial solution is unstable. In

the previous section, we have seen that the the nontrivial solution

is susceptible to Hopf bifurcations. Actually, a Hopf bifurcation can

only occur in a point whereΓ has positive slope, that is, h(R2
2) > 0,

where

h(R2
2) := d(g2)

d(R2
2)

= δ2
1

2

{(
1 + 9δ2

3μ
2
1Ω

2

δ2
1δ

2
2

)
R2
2

+ 2μ1μ2Ω
2

δ1δ2
+ 12χ2δ3μ

2
1Ω

2

δ2
1δ

2
2

}
.

This may be seen as follows. By (41),

12δ3χ2 = − (μ2
1 + 2μ1μ2)Ω

2

R2
2

− 9δ2
3R

2. (43)

Inserting this value in the formula for h yields

h(R2
2) = δ2

1

2

(
R2
2 + 2μ1μ2Ω

2

δ1δ2
− (μ2

1 + 2μ1μ2)Ω
2

R2
2

μ2
1Ω

2

δ2
1δ

2

)
.

By (40),

R2
2 >

μ2
1Ω

2

δ1δ2
, which implies that

h(R2
2) ≥ δ2

1

2

{
R2
2 + 2μ1μ2Ω

2

δ1δ2
− (μ2

1 + 2μ1μ2)Ω
2

δ1δ2

}
> 0.

By (40), the occurrence of a Hopf bifurcation implies that δ1δ2R
2
2 >

μ2
1Ω

2. Writing R∗
2 := μ1Ω√

δ1δ2
, choosing R2 = R∗

2 and choosing χ2
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such that (41) is satisfied, if we plug these values for R2
2 and χ2 into

(42), we find a (positive) value for g2 which turns out to be strictly
smaller than g∗2. Indeed, by (41),

δ1δ2

((
1 + 9δ2

3μ
2
1Ω

2

δ2
1δ

2
2

)
μ2

1Ω
2

δ1δ2
+ 4μ1μ2Ω

2

δ1δ2
+ 24χ2δ3μ

2
1Ω

2

δ2
1δ

2
2

)

= 12χ2δ3R
2
2 + 2μ1μ2Ω

2 < 0.

In this situation,we again have (43). This implies that, for this value
of χ2, h(R

∗2
2 ) = 0: we are in a turning point of Γ , and therefore in

a type 1 situation. If we now let R2 grow a little bit, change χ2 in
such a way that (41) remains satisfied, and compute g according to
(42), then we are necessarily in a situation where (34) has a pair of
purely imaginary roots, and this happens at a g-value smaller than
the corresponding (χ2-dependent) value for g∗.

Let us now choose R2
2 formally as a bifurcation parameter for

the Hopf bifurcation, whereby it is understood that g2 and χ2 are
chosen accordingly. It is then clear that

1. The critical value R∗2
2 := μ2

1
Ω2

δ1δ2
can be seen as the onset of Hopf

bifurcations.
2. The ‘‘onset point’’ (g̃2, R∗2

2 ) is a turning point ofΓ , and g̃2 < g∗2.
3. For any R2

2 > R∗2
2 ,χ2 and g2 can be chosen in such away that we

are in a Hopf bifurcation situation (the other parameters should
be left fixed).

Finally, we show that Hopf bifurcationsmay also occurwhenΓ has
no turning points:

Claim. Choose δ1, δ2, μ1 and μ2 fixed, and choose δ3χ2 such that
δ1δ2μ2 + 6χ2δ3μ1 = 0, that is, h(0) = 0. For appropriate values
of δ3 and χ2 (δ3χ2 fixed!), Γ contains a point where (34) has a pair
of purely imaginary roots.

Indeed, Eq. (41) now reads

(μ2
1 + 2μ1μ2)Ω

2 − 2
δ1δ2μ2

μ1

R2
2 + 9δ2

3R
4
2 = 0.

It admits a solution

R2
2 =

δ1δ2μ2 +
√

δ2
1δ

2
2μ

2
2 − 9δ2

3(μ
4
1 + 2μ3

1μ2)Ω2

9μ1δ
2
3

.

Clearly, R2
2 can be made arbitrarily large (and therefore >

μ2
1
Ω2

δ1δ2
)

by choosing δ3 sufficiently small, and keeping fixed δ3χ2 and the
remaining parameters. By (42), it is obvious that an appropriate
value for g2 exists.

It is rather obvious that a pair of purely imaginary roots
for (34) implies the occurrence of a Hopf bifurcation if, say,
g or χ2 are varied. In order to find out whether the Hopf
bifurcation is supercritical or subcritical, we must find the flow in
the center manifold at a Hopf bifurcation point. In the previous
arguments, the complex notation turned out to be computationally
advantageous. For the present purpose, the original form of the
system: (16)–(19) turns out to be computationally more tractable.
Let U1, V1,U2, V2 represent a Hopf bifurcation situation, and let
(by abuse of notation) A be the matrix of the corresponding
linearization. Using Cayley–Hamilton and the decomposition (34),
we set

P1 := A2 + 2(μ1 + μ2)ΩA + (μ1Ω(μ1Ω + 2μ2Ω) + δ1δ2R
2
2)I4,

Q1 := A2 + (δ1δ2R
2
2 − μ2

1Ω
2)I4,

where I4 is the 4× 4 identity matrix and where we have used (38).
Note that P1 and Q1 are both rank 2 matrices, commuting with A
and each other, that P1Q1 = 0, and that P1 −Q1 has rank 4. Setting

P := (P1 − Q1)
−1P1; Q := −(P1 − Q1)

−1Q1,

we again have that P and Q are both of rank 2, commute with
each other and with A, PQ = 0 and, finally, P + Q = I4.
In the present setting, P and Q have rather tractable forms (we
have found this after computing them), which is the main reason
for returning to U1, V1,U2, V2. P is a projection on the invariant
subspace, generated by appropriate linear combinations of the
eigenvectors, belonging to the purely imaginary eigenvalues; Q
projects on the remaining invariant subspace. Let iω be a purely
imaginary eigenvalue (for the value of ω, see (39)), and let 0 �=
e1 ∈ Im(P); choose e2 = − Ae1

ω
and choose e3, e4 ∈ Im(Q ) in such

a way that {e1, . . . , e4} is a basis of R
4. Now write an orbit in the

center manifold as w(t) = w1(t)e1 + · · · + w4(t)e4, where w3 =
w3(w1, w2), w4 = w4(w1, w2), |w3|+|w4| = O(w2

1 +w2
2). Using

Maple, we were able to compute the Taylor expansion to order
three of the flow, and to compute the first Lyapunov coefficient.
The formal expressions were too complicated to print, even in
Maple output. But for specific parameter values, the first Lyapunov
coefficient can be computed without any problems. In all cases we
found it to be negative, indicating that the Hopf bifurcation is
supercritical.

4. Conclusions

The response of a MEMS resonator, driven in an in-plane
length-extensional mode of excitation, may show unwanted
clipping or beating phenomena. We have constructed a model,
in which two different response modes (say: in-plane and out-
of plane) have been incorporated, and we have shown that
the unwanted phenomena can be ascribed to energy exchange
between the modes (clipping) and a Hopf bifurcation (beating).
New experimental evidence seems to imply that still more
response modes must be incorporated in order to obtain a
sufficiently precise description. It is clear that any extendedmodel
must be expected to exhibit stability and bifurcation aspects,
similar to the model, studied in the present paper.
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