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1. This exercise summarises the abstract framework used in the weak solution
approach in Chapter 6. Recall that, if H is a real Hilbert space and f : H → IR

is a linear function, continuity of f in any point is equivalent to

||f || = sup{|f(x)| : ||x||H ≤ 1} < ∞.

Boundedness of this norm ||f || is called boundedness of f . This defines a norm
on the space H ′ of continous linear real valued functions on H . The Riesz
representation theorem states that H ′ is isometrically isomorphic to H : the
continous linear real valued functions f : H → IR are precisely the functions
f : x → (x, y), where y ∈ H is fixed. In particular ||f || = ||y||.

Now let H and V be Hilbert spaces such that V ⊂ H . The inner product
on H is denoted by single brackets, the inner product on V by double brackets.
We shall write

(u, u) = |u|2 for u ∈ H and ((u, u)) = ||u||2 for u ∈ V

We assume that V is dense in H and that the inclusion map is continuous.

(i) Let f ∈ H . Prove that there exists a unique u ∈ V such that ((u, v)) = (f, v)
for all v ∈ V . Denote u = Af .

(ii) Prove that A : H → V is injective.

(iii) Prove that A : H → H is linear, symmetric (meaning (Au, v) = (u, Av))
and continuous.

(iv) Prove that also A : V → V is linear, symmetric and continuous.

(v) Prove that A : H → H and A : V → V are positive, i.e. (Af, f) > 0 if
f 6= 0.

We also assume that V is compactly embedded in H , meaning that bounded
sequences in V have convergent subsequences in H .

(vi) Prove that A : H → H is compact (if un is a bounded sequence in H then
Aun has a convergent subsequence in H). Prove that A : V → V is compact.
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If A : H → H is a positive, symmetric, compact linear operator, then H has
an orthonormal basis {φ1, φ2, . . .} of eigenvectors of A corresponding to positive
eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ · · · , with λn → 0 as n → ∞, where

λ1 = max
f∈H

(Af, f)

(f, f)

and, more generally, for n > 1,

λn = max
f∈H,(f,φ1)=···=(f,φn−1)=0

(Af, f)

(f, f)

The proof of this statement is based on the existence of a maximizing vector φ1

for

max
f∈H

(Af, f)

(f, f)

combined with the observation that every such maximizing vector is an eigen-
vector of A. This produces λ1 and φ1. The proof is completed by induction.
Since A maps Hn = {u ∈ H : (u, φ1) = · · · = (u, φn) = 0} to it self, the same
argument produces λn+1 and φn+1.

(vii) The above statement applies to A : H → H defined in (i) but also to
A : V → V . Relate the resulting orthonormal bases to oneanother. Evaluate
the eigenvalue formula’s for A : V → V in terms of norms only, i.e. without A

appearing in the formula’s.

2. Let

H = L2(0, 1) = {f : (0, 1) → IR | f is measurable,

∫ 1

0

f2 < ∞},

equipped with the inner product (f, g) =
∫ 1

0
fg. Let

V = {f ∈ C1([0, 1]) | f(0) = f ′(0) = f(1) = f ′(1) = 0, f ′′ exists, f ′′ ∈ L2(0, 1)},

with inner product ((f, g)) =
∫ 1

0
f ′′g′′. Define A as in Exercise 1. Which

boundary value problem does this A solve? Show that this problem has a unique
solution u ∈ C4([0, 1]), provided f ∈ C([0, 1]). Compute a function D(λ) such
that the zero’s of D(λ) are the eigenvalues of A.

3. Let Ω be a bounded domain in IRm with smooth boundary ∂Ω. Denote
the outward normal on ∂Ω by ν. The divergence theorem says that for v ∈
C1(Ω, IRm)

∫

Ω

∇ · v =

∫

∂Ω

v · ν

Consider the problem
−∆u = f in Ω (1)
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∂u

∂ν
= 0 on ∂Ω (2)

(i) Suppose that u ∈ C2(Ω) is a classical solution of Problem (1,2). Derive an
integral condition (IC) that f must satisfy. Show that Problem (1,2) also has a
solution which satisfies (IC).

(ii) Suppose that also φ ∈ C2(Ω). Evaluate

∫

Ω

∇u · ∇φ (3)

Writing ∇u = (D1u, . . . , Dmu), let

H1(Ω) = {u ∈ L2(Ω) : D1u, . . . , Dmu ∈ L2(Ω)}

with the (standard Sobolev) inner product norm

||u||1 =

(∫

Ω

(

|u|2 + |∇u|2
)

)
1

2

This space is compactly embedded in L2(Ω), meaning that a sequence which is
bounded in H1(Ω), has a subsequence convergent in L2(Ω).

(iii) Which integral equality for u and arbitrary φ ∈ H1(Ω) would you suggest
as the defining property for a function u ∈ H1(Ω) to be a weak solution of
Problem (1,2)?

(iv) Show that (3) defines an inner product on

H̃1(Ω) = {u ∈ H1(Ω) : u satisfies (IC)}

The inner product norm corresponding to (3) will be equivalent to the norm
|| · ||1 on H̃1(Ω), provided there exists a constant C such that for all u ∈ H̃1(Ω)
the following inequality holds:

∫

Ω

|u|2 ≤ C

∫

Ω

|∇u|2

(v) Show, arguing by contradiction and using the compactness of the embedding
H̃1(Ω) → L2(Ω), that there is no sequence un ∈ H̃1(Ω) which has

∫

Ω |un|
2 = 1

and
∫

Ω |∇un|
2 → 0. Deduce that indeed both norms are equivalent on H̃1(Ω).

(vi) Let f ∈ L2(Ω) satisfy (IC). Show, applying the Riesz representation theorem
in H̃1(Ω), that Problem (1,2) has a weak solution u ∈ H1(Ω) which is unique
up to an additive constant.

(vii) The construction of u in the proof of (vi) works equally well without the
assumption that f satisfies (IC). Which problem does u solve then?
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4. With Ω as above consider the problem

∆∆u = f in Ω (4)

u =
∂u

∂ν
= 0 on ∂Ω (5)

Let
H2(Ω) = {u ∈ L2(Ω) : Diu, Diju ∈ L2(Ω), i, j = 1 . . .m}

with the (standard Sobolev) inner product norm

||u||2 =





∫

Ω



|u|2 +

m
∑

i=1

|Diu|
2 +

m
∑

i,j=1

|Diju|
2









1

2

The space H2
0 (Ω) is the closure of C∞

c (Ω) in H2(Ω). Discuss how you would
formulate (and establish the unique) existence of weak solutions of Problem (4,5)
in H2

0 (Ω). Hint: show for functions u, v ∈ C∞

c (Ω) that
∫

Ω

∑m

i,j=1 DijuDijv =
∫

Ω
∆u∆v, that on C∞

c (Ω) the corresponding norm is equivalent to the || · ||2-
norm, and apply the Riesz theorem to the appropriate weak formulation in
H2

0 (Ω).
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