
On the Use of the Power Series Algorithm for General
Markov Processes, with an Application to a Petri Net

Ger Koole
Vrije Universiteit, Faculty of Mathematics and Computer Science

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
tel. (31) 20 4447755, email koole@cs.vu.nl

INFORMS Journal on Computing 9:51-56, 1997

Abstract

The power series algorithm has been developed as a numerical procedure for solving
queueing models. This paper shows that it can be used for each Markov process with
a single recurrent class. This applies in particular to finite state processes, which is
illustrated with the analysis of a bounded stochastic Petri net model.

Analytically obtaining performance measures of multi-dimensional queueing systems is
often very difficult. Explicit solutions are only available for some very special models, like
Jackson networks. Some specific two-dimensional models can also be solved analytically, for
example by showing that solving the problem is equivalent to solving a well-studied complex
analysis problem. See Boxma et al. [6] for an overview. The drawbacks of the analytical
methods can be summarized as follows: the resulting problems are non-trivial to solve, we
are confined to two dimensions, and small changes in the model usually lead to analytically
intractable models.

On the other hand, simply numerically solving the steady state equations usually does
not work well either. Often the state space is countable, giving need to truncation of the
state space at an appropriate level. These truncated state spaces are very big, especially if
the dimension grows large and if the accuracy must be high, resulting in very long running
times. Thus there is a need for efficient numerical methods to solve large Markov processes.
The power series algorithm (psa) aims to be such a method. It was first developed by
Hooghiemstra et al. [7] for a model in which several queues share the same servers, and
later applied to several other queueing models in a series of papers by Blanc and co-authors
(summarized in [5]). For a complete list of references see [10].

The idea behind the power series algorithm is the introduction of an artificial parameter in
the transition rates. Then the stationary probabilities become functions of this parameter ρ.
For several models it has been shown that the coefficients of the power series expansions
around ρ = 0 of these probabilities can be computed recursively, as long as ρ is incorporated
in the model in a suitable way. Based on these coefficients approximations of the stationary
probabilities and other performance measures can be computed.

1

Section 1 contains the main result of the paper. There it is shown that the psa can
(formally) be applied to any Markov process with a single recurrent class. Formally, as there
is no guarantee that the obtained power series converge. However, in section 2 we study
the ε-algorithm which is capable of finding a limit for a divergent series based on its partial
sums. It is shown that this works especially well for finite state processes; the psa can even
be used to produce exact results. This is illustrated by applying the psa with the ε-algorithm
to a small bounded Petri net in section 3. For this specific example it is shown that the psa
is well suited to produce both approximate and exact results.

Recently, Van den Hout & Blanc took a somewhat different approach in applying the psa
to general Markov processes ([8]).

1 General Markov processes

We start the analysis with an arbitrary Markov process with state space X (possibly count-
able) to which we want to apply the power series algorithm. We denote the transition rate
from x to y by qxy (for ease of notation we assume throughout that qxx = 0). To use the psa,
we construct a family of Markov processes indexed by a parameter ρ, with the same state
space X, and with transition rates ρf(x,y)qxy. The problem is how to choose f(x, y) such that
the algorithm can be applied to these additional processes. By inserting ρ = 1 afterwards,
we get results for the original process. Of course, we can choose other values for ρ, if that
amounts to a useful model.

For most processes there are several choices of f : X2 → IN which make the psa work. In
the sequel we will construct such an f based on another function l : X → IN. We call l(x)
the level of state x.

Definition 1.1 We call a level function l computable if the following three conditions hold:
(C1) There is a single state x ∈ X (denoted by 0) with l(x) = 0.
(C2) For each k, the states with level k can be ordered such that there are no transitions to
higher ordered states within that level.
(C3)

∑
y:l(y)≤l(x) qxy > 0 for all x ∈ X, i.e., in each state there are transitions to the same or

a lower level.

Often a suitable choice of level function is obvious. In many queueing model for example
it can be shown that the total number of customers in the system is a computable level
function. And even if there is no obvious choice, then we still can construct one.

Theorem 1.2 For each Markov process with a single absorbing recurrent class there exists
a computable level function.

Proof. As X is countable, it is possible to construct a list in which each element of X
will eventually occur. Now we construct a second list, for which the elements are numbered
0, 1, . . ., with as element 0 a recurrent state.

Assume now that the second list has n elements, 0, 1, . . . , n− 1. Element n is chosen to
be the first element in the first list not yet selected, from which there is a transition possible

2

to one or more states in {0, 1, . . . , n−1}. Note that every element of X will eventually occur
in the second list, as state 0 can be reached from any state in a finite number of steps. Now
let l(x) be the number of state x in this second list. Then l is a computable level function.

Now take f(x, y) = (l(y) − l(x))+ for all x and y, i.e., all transitions are of the form
ρ(l(y)−l(x))+

qxy. Thus transitions to lower level states are not changed, but transitions to
higher levels get a factor ρ for each level the next state is higher.

Note that every computable level function implies a partial ordering of the states: x ≺ y
if l(x) < l(y) or if l(x) = l(y) and there is no transition from x to y. Throughout, when
we consider a computable level function, we assume that the states are numbered 0, 1, 2, . . .
such that if x ≺ y, then x < y. We write px for the stationary probability of state x.

Lemma 1.3 If l is computable, then px = O(ρl(x)).

Proof. We are going to use the idea of the equivalent proof given in [9] for the BMAP |PH|1
queue studied there. We use induction, first considering p0. Because p0 = 1 if ρ = 0 it is
clear that p0 = O(1). Define Lz = {x|x ≤ z}. Assume that px = O(ρl(x)) for all x ∈ Lz. We
complete the induction step by looking at the balance equation between states in Lz and
states in X\Lz: ∑

x∈Lz

∑
y 6∈Lz

ρl(y)−l(x)qxypx =
∑
x 6∈Lz

∑
y∈Lz

qxypx.

Now we show that z′ = z + 1 is of the required order. Using the induction hypothesis,
and the structure of the transitions, it is clear that the left hand side of the equation is of
order O(ρl(z

′)). For z′ we have that
∑
y∈Lz qz′y > 0, and thus (using that all coefficients are

non-negative) pz′ = O(ρl(z
′)).

The last lemma implies that we can write the stationary probabilities px as

px =
∞∑
k=0

bkxρ
l(x)+k,

assuming that these series converge.

Theorem 1.4 If l is computable, all bkx can be computed recursively.

Proof. We derive the equations from which we can compute the bkx. The equilibrium
equations are: ∑

y

ρ(l(y)−l(x))+

qxypx =
∑
y

ρ(l(x)−l(y))+

qyxpy.

Inserting px = ρl(x)∑
k ρ

kbkx gives:∑
y

ρ(l(y)−l(x))+

qxyρ
l(x)

∑
k

ρkbkx =
∑
y

ρ(l(x)−l(y))+

qyxρ
l(y)

∑
k

ρkbky.

Consider for fixed x the terms with ρl(x)+k:∑
y:l(y)≤l(x)

qxybkx +
∑

y:l(y)>l(x)

qxybk−l(y)+l(x),x =

3

∑
y:l(y)≤l(x)

qyxbky +
∑

y:l(y)>l(x)

qyxbk−l(y)+l(x),y. (1)

From this equation we can derive bkx, for x 6= 0, assuming we have already calculated bky
for y < x and bly for l < k and sufficiently many y (depending on the model at hand). This
can only be done if the coefficient of bkx is positive (which is guaranteed by (C3)) and if
qyx = 0 if y > x and l(y) = l(x) (guaranteed by (C2)). This procedure can be repeated until
all coefficients which are needed have been calculated.

The bk0 can be determined from
∑
x px = 1: it easily follows that b00 = 1 (if ρ = 0 this is

the only recurrent state, by (C1)) and that for k > 0 bk0 can be computed from∑
x:l(x)≤k

bk−l(x),x = 0.

Combining the theorems 1.2 and 1.4 gives:

Corollary 1.5 For each Markov process with a single absorbing recurrent class levels l can
be chosen such that the coefficients of the power series of the stationary probabilities can be
computed recursively.

If there is more than one recurrent class each of them should be handled separately. What
remains is to compute the probabilities of entering the different recurrent classes, given the
initial distribution. Whether this is a numerically difficult task depends on the model at
hand.

So far, we have only talked about continuous time Markov processes, and not about
discrete time Markov chains. They can be dealt with as well, simply by taking ρ = 1 in a
model with

∑
y qxy = 1 for each x. The only complication is that we cannot assume qxx = 0.

However, it is readily seen that the term qxxbkx cancels on both sides of (1).

1.1 Implementation

Theorem 1.4 gives us a numerical procedure to compute the coefficients. We give an algorithm
in pseudo code for the case that each level consists of a single state, i.e., l(x) = x. The
algorithm computes all coefficients up to a certain power K, i.e., all coefficients bkx with
k + l(x) = k + x ≤ K.

Power Series Algorithm
for k = 0 to K do

if k = 0 then b00 ← 1
else bk0 ← −

∑
0<x≤k

bk−x,x

endif
for x = 1 to K − k do
bkx ←

(∑
0≤y<x

qyxbky +
∑

x<y≤k+x

qyxbk−y+x,y −
∑

x<y≤k+x

qxybk−y+x,x

)/ ∑
0≤y<x

qxy

endfor
endfor

4

Based on these coefficients the partial sums of px can be computed, which serve as
approximations of the steady state probabilities. For convergence issues we refer to the
discussion of the ε-algorithm. Often however we are interested in a single performance
measure g : [0, 1]X → IR, like the expected queue length in queueing models. If g is a linear
combination of the stationary probabilities the coefficients of the power series of g(p·) can
easily be computed from the bkx. The ε-algorithm can now be applied to this power series.

The complexity of the psa is discussed in section 2.

1.2 Examples

In this subsection we discuss the choice of l for several well known queueing models. Note
however that in order to decide whether a certain level function is computable it suffices to
know which transitions have a positive rate: the actual value is not important. This gives
the possibility to change the models considerably without choosing another l.

We use the following notation: ei = (0, . . . , 0, 1, 0, . . . , 0), with the 1 in ith position, and,
for x = (x1, . . . , xm), |x| = x1 + . . .+ xm.

Birth-death processes. The m-dimensional birth-death process consists of m queues,
where arrival and departure rates depend on the state, and can occur in batches (in different
queues simultaneously). However, no arrivals and departures can occur simultaneously,
avoiding transitions between queues. Thus the possible transitions out of state x ∈ INm are
of the form x → x + y or x → x − y, with y ≥ 0 (and x − y ≥ 0). We assume that for
each x 6= 0 there is a y 6= 0 such that qx,x−y > 0. If we take l(x) = |x|, it is easily seen
that these m-dimensional birth-death processes satisfy definition 1.1. It is also a rich class.
The fork-join queue (to which the psa is applied in [10]), the shortest queue model ([1]), the
coupled processor model ([2, 7]) and numerous other systems belong to it.

Networks of queues. A tandem of queues is an example of a model which does not fall
in the class of problems described above, but where we can take l(x) = |x|. Indeed, if
customers enter queue 1, and join after service queue 2, . . . , up to m, then the possible
transitions within each level are all of the form x→ x− ei + ei+1, giving an ordering within
level k: (k, 0, . . . , 0) ≺ . . . ≺ (0, . . . , 0, k).

For models with a more general routing structure, as in Jackson networks, this does not
work any more; cycles within a level become possible. A solution is to take as state space
(x1 + . . .+ xm, x2 + . . .+ xm, . . . , xm), or, equivalently, to take l(x) = x1 + 2x2 + . . .+mxm.
For this choice of l we can allow transitions from one queue to another, i.e., transitions of
the form x→ x− ei+ ej (for x with xi > 0), in addition to the batch arrivals and departures
from the m-dimensional birth-death process.

Another approach, which does not fit into our framework, is when we take again l(x) =
|x|, but a transition of the form x → x − ei + ej with i > j gets a factor ρ. Thus we have
given a transition from queue i to queue j a factor ρ, although the states lie within the same
level. For the other transitions the factors are taken normally, including the transitions from
queue i to j if i < j. The psa works again in this case, and the ordering within a level is the
same as for the tandem model.

Now we study models where the state of the system is not completely described by the

5

queue lengths only: we consider polling models, where the position of the server is part
of the state description, and models with an additional Markov process representing the
environment (generalizing the arrival or service processes).

Markov arrival processes. First consider a single queue with arrivals according to a
Markov arrival process (MAP). Assume that the states y of the MAP are numbered, such
that the psa can be applied to the Markov process underlying the MAP, with levels l(y) = y
(which gives the restriction that there must be a single recurrent class). The states are of
the form (x, y), with y the state of the MAP and x the number of customers in the queue.
State (x, y) has level x + y. The only possible transitions within a level are of the form
(x, y)→ (x+ 1, y − 1), thus (C2) is easily satisfied. The same holds for (C3), assuring that
the psa works for this model. Note that the rates at which arrivals occur do not necessarily
have a factor ρ in it (as in the transition above), because the state of the MAP changes
also. Only if the state of the MAP remains the same at arrival instants (the special case
of a Markov modulated Poisson process), then each arrival has factor ρ. The term MAP
is somewhat misleading, as it suggests that the transition rates within the Markov process
governing the arrivals must be independent of x. As this is not true, it is perhaps better to
speak of an auxiliary Markov process.

General service times. Such an auxiliary Markov process (AMP) can also be used to
model (potential) departures from a queue with Poisson arrivals. For example, the state
of the AMP can represent the current service phase. Note that the service times need
not be independent. For example, we can easily model the consecutive service times to be
dependent, or let the service times depend on the queue length. When modeling departures,
it is natural to freeze the AMP (i.e., keep it in the same state until a customer arrives) when
the queue is empty, instead of letting it make transitions without having customers in the
queue to serve. But, as transitions to lower level states must be possible from each state
except 0, it can only be frozen in state 0, which is therefore of the form (0, 0). Thus the
AMP can only be frozen if the transition in the AMP generating the departure is of the form
y → 0. If we want to be able to freeze the AMP in different states, a less obvious choice of
levels has to be made.

Polling models. An interesting generalization of an auxiliary Markov process governing
departures (and possibly also arrivals) is to multiple queues. As Blanc [4] shows, an impor-
tant class of models which can then be modeled are the polling models. In its simplest form,
the state of the AMP denotes the position of the server (i.e., at or between which queues the
server is), but generalizations in different directions are possible, like the AMP denoting the
service phase, or even the number of customers already served at the current queue, to be
able to model for example the limited service discipline. When the server in a polling system
finds an empty queue, the server usually moves to the next server; therefore the problem
with freezing the departure process occurs only in the single queue case.

6

2 The ε-algorithm and finite state processes

In general the power series expansions of steady state probabilities will not converge at ρ = 1.
This is not surprising: the psa develops each stationary probability as a power series around
ρ = 0, and the radius of convergence of such a series is in general unknown. This section is
devoted to the study of the convergence properties. To improve the convergence properties
we make use of an algorithm applicable to arbitrary power series, the ε-algorithm, which was
first used by Blanc ([3]) in conjunction with the psa.

After introducing the ε-algorithm, we restrict to finite state processes. This allows us to
write the stationary probabilities as quotients of polynomials in ρ. From this we conclude
that the ε-algorithm, if applicable, produces exact results. This is illustrated in the next
section with the analysis of a bounded Petri net.

2.1 The ε-algorithm

The ε-algorithm was introduced by Wynn (see e.g. [12]) to accelerate the convergence of
power series. Given the partial sums Sm =

∑m
k=0 ckρ

k, a two-dimensional array with entries
ε(m)
r is computed, using the formula

ε
(m)
r+1 = ε

(m+1)
r−1 + (ε(m+1)

r − ε(m)
r)−1,

with initial conditions
ε

(m)
−1 = 0, m = 1, 2, . . . ,

and
ε

(m)
0 = Sm, m = 0, 1,

Now ε(m)
r with r even is used instead of Sm to approximate the limit S∞. The numbers ε(m)

r

with r odd are only used as intermediate results.
The idea behind the ε-algorithm is that ε

(m)
2r approximates S∞ by a quotient of polyno-

mials, the numerator of degree m + r, the denominator of degree r, which are completely
determined by the first 2r + m coefficients of the power series to be approximated. In the
cases considered in this paper, the zeros of the denominator apparently converge to the
singularities of S∞, thereby extending the region of convergence.

Although the ε-algorithm involves repeated subtraction and division, Wynn [12] states
that it is often remarkably stable. This is in compliance with our findings.

2.2 Finite state processes

Consider a Markov process with N < ∞ states. Let G be its infinitesimal generator, i.e.,
gij = qij if i 6= j, and gii = −∑j qij. Construct G′ from G by replacing the last column by
e = (1, . . . , 1). Then the steady state vector is the unique solution of the equation pG′ = eN ,
if we assume that the process consists of a single recurrent class. Note that all elements of
G′ are polynomials of ρ.

To compute the stationary probabilities px we can apply Cramer’s rule, that is,

px =
|G′x|
|G′|

,

7

where G′x is obtained from G′ by replacing the xth row by eN , and where we denote by | · | the
determinant of a matrix. As all entries of both matrices are polynomials in ρ, we conclude
that px is a quotient of polynomials in ρ, i.e., it is a rational function.

Again, assume that the maximum number of levels a transition can go up is k. Then
all entries are of order ≤ k, and as the last column consists of 1’s, both determinants are of
order ≤ (N − 1)k. As it is useless to have more levels than states, and thus k ≤ N − 1, we
can assume in general that each determinant is of order ≤ (N − 1)2.

From [12] we know that ε
(0)
2r approximates S∞ with a uniquely determined rational func-

tion where both the numerator and the denominator are of order r. Thus to compute the
stationary probabilities exactly it is sufficient to compute ε

(0)

2(N−1)k
. If k is small (in most

examples we had k = 1), this can often be done, even for reasonably sized models.
Another interesting implication of px being a rational function is that px is analytic in

ρ = 0. Indeed, px has a finite number of poles, each of which is unequal to 0, because px = 1
(0) for x = 0 (x > 0), for ρ = 0. Thus, for ρ small enough, the power series converge, without
applying the ε-algorithm.

2.3 Complexity

The psa is above all a method to derive approximations for performance measures of queueing
systems. However, as it can also be used to derive exact results for finite processes, it is
of interest to study its complexity. We do this for the case that each level consists of a
single state. As is derived above, in the worst situation we have to compute the bkx for
all k and x such that k + x ≤ 2(N − 1)2. Together with the fact that there are N states,
and N − 1 possible transitions, this results in a complexity of O(N4). Thus compared to
standard methods which are based on the inversion of a matrix (with complexity O(N3))
the psa behaves poorly.

However for special cases the situation can be better; in the next section a Petri net is
studied for which the psa has a complexity of O(N2). The reason for this is that the psa
utilizes the sparseness of the transition matrix.

3 A Petri Net Example

To illustrate the ideas of the previous section, we analyze the simple stochastic Petri net
depicted in figure 1. We denote its markings with (x1, . . . , x5), where xi is the number of
tokens at place Pi. As initial markings we take (n, 0, 0, 0, 0), for various n. This marked
graph is live and bounded, and to represent its reachability set we can restrict ourselves to
(x1, x2, x3), as x4 = n − x1 − x2 and x5 = n − x1 − x3. (For an introduction to Petri nets,
see [11].) Transition ti has an exponential firing time with rate λi.

8

&%
@
@R
�

�	

��������? ?

? ?

��������
�
�	
@
@R

?

����?
'$

P4 P5

P2 P3

P1

t4

t2 t3

t1

Figure 1. A stochastic Petri net

Note that this Petri net is strongly related to the fork-join queue. Indeed, transition
t1 corresponds to the fork primitive. Transitions t2 and t3 correspond to the distributed
processing of the tasks, and transition t4 is only enabled if there is both a token at P4 and
at P5, that is, if a job has finished service in the fork-join queue. Thus, in queueing terms,
the Petri net consists of a closed cycle of three centers, one of which is a fork-join queue,
and two of them are simple single server queues.

To apply the psa, we have to partition the state space into levels. We took as levels
l(x1, x2, x3) = n− x1. Consequently, transition t1 gets a term ρ, thus λ1 is replaced by ρλ1.
Equation (1) becomes:

bkx{λ2(x2 > 0) + λ3(x3 > 0) + λ4(x1 + x2 < n, x1 + x3 < n)}+

bk−1,xλ1(x1 > 0, k > 0) =

bk,(x1+1,x2−1,x3−1)λ1(x2 > 0, x3 > 0)+

bk,(x1,x2+1,x3)λ2(x1 + x2 < n) + bk,(x1,x2,x3+1)λ3(x1 + x3 < n)+

bk−1,(x1−1,x2,x3)λ4(x1 > 0, k > 0).

We are interested in the throughput of the system, i.e., the average number of firings of
t1 per unit of time. This is equivalent to computing the stationary probability of having 0
tokens in P1 (denoted by p), as the throughput is equal to (1− p)λ1.

First we have computed the coefficients of the power series of p. As p =
∑
x2+x3≤n p(0,x2,x3),

this is the sum of the stationary probabilities of all level n states. Thus, the first n coefficients
of this power series are 0. There are no transitions 2 or more levels up, and therefore only 2
arrays the size of the state space (which isN = 12+22+. . .+(n+1)2 = (n+1)(n+2)(2n+3)/6)
and 1 array with the coefficients of p need to be kept in memory (see [10]). After computing

9

all coefficients of p up to a certain K, we have applied the ε-algorithm, after omitting the
trailing zeros. To apply this algorithm, 3 arrays of size K have to be stored.

Let us consider the complexity of the psa for this specific problem. The time to compute
each bkx is O(1) as the number of transitions is bounded in each state. To get exact results
only O(N) coefficients need to be computed for each state, as k = 1. As there are N states,
this results in an overall complexity of O(N2). The complexity of the ε-algorithm is also
O(N2), as we start with O(N) partial sums. Thus the psa allows us to make use of the
special structure of the problem to reduce its complexity. Also Gaussian elimination can be
seen to have complexity O(N2) by using the special structure of the problem. The memory
requirements are much bigger however, as the whole transition matrix needs to be stored in
memory.

Typical output for λi = 1 and n = 3 (30 states) can be found in table 1, where ε(m)
r can

be found for the series without trailing zeros. For reasons of space we left out the ε(m)
r with

m > 7.

m = 0 1 2 3 4 5 6 7

r = 0 6.125000 -8.593750 1.455729 0.643993 51.176851 -128.409830 99.173984 -14.747156

1 -0.067941 0.099508 -1.231927 0.019789 -0.005568 0.004394 -0.008778 0.002312

2 -2.621754 0.704660 1.442896 11.740703 -28.031678 23.255298 75.427968 63.409885

3 0.400132 0.122653 0.116897 -0.030711 0.023892 0.010389 -0.080896 -0.003497

4 -2.899217 -172.300284 4.966029 -9.717844 -50.802362 64.473330 76.329890 -84.021912

5 0.116750 0.122538 -0.098813 -0.000448 0.019064 0.003445 -0.009733 0.002105

6 0.448322 0.448332 0.448334 0.448328 0.448333 0.448330 0.448332

7 1.03× 105 6.14× 105 −1.73× 105 1.78× 105 −2.56× 105 4.30× 105

8 0.448334 0.448332 0.448331 0.448331 0.448331

9 −1.14× 104 −7.77× 105 2.38× 106 −6.91× 106

10 0.448331 0.448331 0.448331

11 −2.95× 107 3.65× 107

12 0.448331

Table 1. Approximations ε(m)
r of p for the Petri net example

with λi = 1 and n = 3

The table shows some interesting phenomena. First note that the series itself clearly
diverges. (Remind that ε

(m)
0 = Sm, so that the first row contains the partial sums.) As r gets

large, for r even, the approximation gets better. Note that as ε(m)
r gets close to ε(m+1)

r for

r even, then ε
(m)
r+1 (which is only used as intermediate step, as r + 1 is odd) gets very large.

This does not lead to numerical instabilities (at least not in this case), as can be seen from

the table. Even if we take r very large, we find the correct answer (e.g., ε
(0)
100 = 0.448331)

although, theoretically speaking, this leads to repeated division by zero.
Note that, as k = 1 and the number of states is 30, ε

(0)
58 should give the correct answer

(and it does: 0.448331), but in the present case it suffices to compute ε
(0)
10 to obtain an

approximation correct up to 6 digits.
In the following table results are given for various values of the number of initial tokens n,

and again λi = 1. The first column gives n, the second the total number of states N , the third

10

the computed value of p, and the fourth the lowest value of r for which ε(0)
r approximates p

with a precision of 5 digits. Note that this value of r is considerably lower than 2(N−1), the
value for which ε(0)

r = S∞. This shows again the value of the psa as a means to approximate
performance measures. A good indication that the approximations are close are the values
of ε(m)

r for r odd; if they are big, ε
(0)
r+1 is close. To compute ε(0)

r for n = 100 and for r up to
500 took ≈ 15 minutes on a fast workstation.

n N p r
1 5 .714286 2
2 14 .551546 6
3 30 .448331 8
5 91 .325768 16
10 506 .193286 30
25 6201 .087018 82
50 45526 .045405 198
100 348551 .023207 382

Table 2. Approximations of p for the Petri net example
with λi = 1

For n = 1 the computation of the bkx can easily be done by hand, and we find (for general
firing rates) that p = α − α2ρ + α3ρ2 − . . ., with α = λ1(λ2 + λ3 + 3λ4)/((λ2 + λ3)λ4). If

we apply the ε-algorithm once, i.e., if we compute ε
(m)
2 , we find that ε

(m)
2 = α(1 + αρ)−1 for

all m. Thus indeed, if we take λi = ρ = 1, we get p = 5
7
≈ 0.714286, coinciding with our

numerical results.

Acknowledgements. I like to thank Prof. J.W. Cohen for many interesting discussions on
this subject, and an anonymous referee for his thorough reviews and useful comments.

This research was carried out at CWI, Amsterdam, and supported by the European
Grant BRA-QMIPS of CEC DG XIII.

References

[1] J.P.C. Blanc, 1987. A note on waiting times in systems with queues in parallel,
Journal of Applied Probability 24, 540–546.

[2] J.P.C. Blanc, 1987. On a numerical method for calculating state probabilities for
queueing systems with more than one waiting line, Journal of Computational and
Applied Mathematics 20, 119–125.

[3] J.P.C. Blanc, 1990. A numerical approach to cyclic-service queueing models, Queue-
ing Systems 6, 173–188.

[4] J.P.C. Blanc, 1992. Performance evaluation of polling systems by means of the power-
series algorithm, Annals of Operations Research 35, 155–186.

11

[5] J.P.C. Blanc, 1993. Performance analysis and optimization with the power-series
algorithm, in L. Donatiello and R. Nelson (eds.), Performance Evaluation of Computer
and Communication Systems, Lecture Notes in Computer Science 729, Springer-Verlag,
pp. 53–80.

[6] O.J. Boxma, G.M. Koole and Z. Liu, 1994. Queueing-theoretic solution methods
for models of parallel and distributed systems, In O.J. Boxma and G.M. Koole (eds.),
Performance Evaluation of Parallel and Distributed Systems — Solution Methods, CWI
Tract 105, pp. 1–24.

[7] G. Hooghiemstra, M. Keane and S. van de Ree, 1988. Power series for stationary
distributions of coupled processor models, SIAM Journal on Applied Mathematics 48,
1159–1166.

[8] W.B. van den Hout and J.P.C. Blanc, 1994. The power-series algorithm for a
wide class of Markov processes, CentER Discussion Paper 9487, Tilburg University.

[9] W.B. van den Hout and J.P.C. Blanc, 1995. Development and justification of the
power-series algorithm for BMAP-systems, Stochastic Models 11, 471–496.

[10] G.M. Koole, 1994. On the power series algorithm, In O.J. Boxma and G.M. Koole
(eds.), Performance Evaluation of Parallel and Distributed Systems — Solution Meth-
ods, CWI Tract 105, pp. 139–155.

[11] T. Murata, 1989. Petri nets: Properties, analysis and applications, Proceedings of the
IEEE 77, 541–580.

[12] P. Wynn, 1966. On the convergence and stability of the epsilon algorithm, SIAM
Journal on Numerical Analysis 3, 91–122.

12

