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Abstract
Two stochastic control problems with partial observations are studied, one where the policy

or control law depends only on the latest observation (the controller does not have recall of
observations), and the other with the standard partial observations model. The equivalent full
observation problems are formulated, and the equivalence is proven using a new method. The
results are illustrated with a simple example.
Keywords: stochastic control, partial observations, no recall.

1 Introduction

In this paper we study stochastic control problems with partial observations. At each point in time
the state observation is disturbed by some noise, and the control has to be based on these noisy
observations. In the first problem that we study, the no recall model, the control can only use the
current observation. The second model is the standard partial observation model where the control
is allowed to depend on all observations up to the current epoch.

For both models we formulate an additional model where policies are allowed to use full state
observation. A new method, applicable to both information structures, is used to prove the equiv-
alence of the original and the additional model. In the last Section we illustrate the results by
analyzing a simple system.

We begin in Section 2 by describing the model in general terms. To simplify the analysis we
assume that state, action and observation sets are finite. Then we formulate the method. A second
model, using full state observations, is formulated. Both models are related by a functional relation
between their allowable policies. Then conditions are given under which minimal costs are equal,
and it is indicated how the optimal policy can be found for the original model, from the optimal
policy for the second one. This is formulated in Theorem 2.1. What remains is solving an, often
complicated, full observation problem.

One of the reasons to describe the method in general terms in a separate Section is that it can
also be used for models with other information structures, like delayed or decentralized information.
Work in this direction is currently going on.

The first model we consider (in Section 3) is one with partial observation, but without recall, i.e.,
allowable policies depend only on partial observation on the current state, on the initial distribution,
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and on the decision rules used earlier (but not on the actions taken earlier, as this would give
information on the earlier observations). The states of the equivalent full observation problem are
distributions on the states of the original model.

The case where the policies are allowed to depend on all observations up to the current is studied
in Section 4. We derive the well known result that, again, the equivalent problem uses distributions
on the original states as states. The difference with the result of Section 3 for the model without
recall lies in the transition mechanism. Note that the result can already be found in the literature
(see e.g. Kumar & Varaiya [5] or Bertsekas [2]), but that it is obtained using a different proof.

In Section 5 the results are applied to a two-state model. In spite of its simplicity, several
concepts regarding the structure of the optimal policies and the value of information are nicely
illustrated.

2 The method

First we define the stochastic control problem we consider, in a general setting, without specifying
the information structure. Then we define the possible information structures and present the
method.

The stochastic control problem is defined by (X ,Y,A, r, q, c), with X the finite state space, Y
the finite observation space, A the finite set of actions (assumed to be equal in each state), r the
transition probabilities (i.e., r(x, a, x′) is the probability is going from x to x′ using action a), q the
observation probabilities (i.e., q(x, y) is the probability of observing y in state x), and c the direct
costs (i.e., c(x, a) are the costs incurred if in state x action a is chosen).

The finiteness of the sets involved is important, as it will simplify the analysis considerably.
Other choices, as the time homogeneity, or the fact that the observation depends only on the state
and not on the action, are less important. We did not make the model more general as to avoid
further notational complexity.

Assume that the system is to be controlled from 1 to T (possibly ∞). A policy or control law
φ is a set of decision rules φ1, . . . , φT , with φt : Ht → A. Here Ht = (X × Y ×A)t−1 ×X × Y.

We could make the model more general by allowing random actions, that is by letting φt(ht)
be a distribution on the action set. Again, as to keep the notation simple, we will not do that.
This choice can be justified: we prove for the models we consider that they are equivalent to full
observation models, and for these models it is well known that there exist optimal non-randomized
policies.

Define, for a fixed policy φ, the r.v.’s Xt, Yt and At as follows (sometimes we write Xt(φ), etc., to
denote the dependence on the policy). Assume that the initial distribution of X1 is given. For each
partial realization ht = (x1, y1, a1, . . . , xt−1, yt−1, at−1, xt, yt) ∈ Ht of (X1, Y1, A1, . . . , Xt, Yt) = Ht,
At is given by φt(ht), then, given Ht = ht, Xt+1 has the value x with probability r(xt, at, x), and
Yt+1 (given Xt+1 = x) then has value y with probability q(x, y). For obvious reasons ht is called
the history of the system at t.

Now define C(φ) = E
∑T
t=1 β

tc(Xt, At), the expected discounted costs (with 0 < β ≤ 1 the
discount factor) under φ. The problem is to find a policy φ∗ such that C(φ∗) = min{C(φ) | φ ∈ Φ′ },
for some Φ′ ⊂ Φ, with Φ the set of all policies. This optimal policy φ∗ (if one exists) is notated as
φ∗(Φ′), or just φ∗.

The ideas introduced so far can be found in most books on Markov decision problems or stochas-
tic control theory, like Kumar & Varaiya [5] or Bertsekas [2].

In this paper we study models in which φt is a function of one or all of the Y-components.
By this we mean that φt(ht) = φt(h′t) if yt = y′t, or ys = y′s for s ≤ t, respectively, with ht =

2



(x1, y1, a1, . . . , xt, yt) and h′t = (x′1, y
′
1, a
′
1, . . . , x

′
t, y
′
t).

Note that other information structures can be modeled as well, like delayed information in
which φt depends on x1, . . . , xt−K for some delay K > 0, or decentralized information structures
where different controllers observe different components of the multi-dimensional states. These
other structures are the subject of ongoing research.

Let us now consider the solution method.
For the problems in the next Sections we formulate a second problem (X̃ , Ã, r̃, q̃, c̃), where the

allowable policies depend on the actual state of the system (therefore we omitted the observation
from the definition of the system). All variables related to this new problem are indicated with
a ˜. The relation between the original system and the new one is defined by a function Γ : Φ′ → Φ̃.
Our objective is to formulate the second problem and Γ in such a way that Γ(φ∗(Φ′)) = φ̃∗(Φ̃),
and that the costs of corresponding policies are equal. Having found φ̃∗(Φ̃), we know then that a
φ ∈ Φ′ with Γ(φ) = φ̃∗(Φ̃) is optimal. Let d= stand for equally distributed. Define an equivalence
relation ∼ on Φ̃ as follows: φ̃ ∼ φ̃′ if H̃t(φ̃) d= H̃t(φ̃′) for all t ≤ T . It is easily verified that this is
indeed an equivalence relation.

Theorem 2.1 Consider the stochastic control problem for the two models defined above. Assume
that there exists a function Γ : Φ′ → Φ̃. If:
i) Ec(Xt(φ), At(φ)) = Ec̃(X̃t(Γ(φ)), Ãt(Γ(φ))) for all φ ∈ Φ′ and t;
ii) in every equivalence class there is a φ̃ ∈ Φ̃ (which we call the representative of its class) such
that there exists a φ ∈ Φ′ with φ̃ = Γ(φ);
iii) there exists an optimal policy for the second problem;
then every φ ∈ Φ′ with Γ(φ) optimal in the second problem is also optimal in the original, and at
least one such φ exists.

Proof From H̃t(φ̃) d= H̃t(φ̃′) it follows that C̃(φ̃) = C̃(φ̃′). From this we conclude that if a policy
is optimal for the second problem, then so are all other policies in its equivalence class. Thus, by
iii), there exists an optimal policy φ̃∗ which is also the representative of its class, and therefore by
ii) there exists also a φ∗ ∈ Φ′ with Γ(φ∗) = φ̃∗. Thus, by i), min{C(φ) | φ ∈ Φ′ } ≤ min{ C̃(φ̃) | φ̃ ∈
Φ̃ }. Also by i) C̃(Γ(φ)) = C(φ) for all φ ∈ Φ′, and thus min{C(φ) | φ ∈ Φ′ } ≥ min{ C̃(φ̃) | φ̃ ∈ Φ̃ }.
As C(φ∗) = C̃(φ̃∗), it follows that φ∗ is optimal. Any other φ ∈ Φ′ such that Γ(φ) = φ̃∗ is also
optimal.

For the models we are going to study in the next Sections we formulate the second problem
and then we show i) and ii). As for both models this second problem has a compact state space, a
finite action space and uniformly bounded costs, optimal policies exists for the finite horizon (i.e.,
T < ∞) problem and for the infinite horizon discounted (i.e., T = ∞ and 0 < β < 1) problem
(Schäl [7]). Having thus transformed the problem into a problem with a full information pattern,
for which an optimal policy exists in the cases indicated above, we can use the standard techniques
for this (most notably dynamic programming) to find the optimal policy.

Let us finish this Section with some remarks on computational issues. Theoretically speaking,
the results of this paper gives the means to solve partial observation problems with the correct
information structure. Numerically however, the compactness of the state spaces of the problems
to be solved prohibits the direct use of standard methods like dynamic programming. This explains
the lack of models studied in the literature. A discrete approximation is used for the system of
Section 5, explaining partly why we only consider a two-state model (the other reason being that
there is no need to study a bigger model; the current model illustrates the results of this paper
already perfectly).
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For average or discounted optimality Hordijk & Loeve [4] provide a numerically attractive
computational method to solve partial observation models, although it is not guaranteed to give
the optimal policy. The first results however, as reported in Hordijk et al. [3], are promising. It
can also be applied to the no recall model of Section 3.

Several other methods, using methods such as linear programming and branch-and-bound, can
be found in the literature. See Loeve [6] for an overview.

3 No recall information pattern

The model without recall is a simple but interesting model to which the method is applicable. Here
φt can be written as φt(yt), thus Φ′ consists of all functions which depend on the last component
yt ∈ Y only: the controller forgets previous observations.

Let P denote the set consisting of all probability distributions on X . Thus P ⊂ [0, 1]|X |. For
a p ∈ P we denote with p(x) the probability mass on x ∈ X . We take X̃ = P. The action set is
defined by Ã = A|Y|, thus the actions in the second model can be seen as consisting of a vector,
one for each possible observation. For ã ∈ Ã the yth component is denoted with ã(y).

The transitions are defined as follows: r̃(p, ã, p′) = 1 for the distribution p′ such that p′(x′) =∑
x,y p(x)q(x, y)r(x, ã(y), x′). As direct costs we take c̃(p, ã) =

∑
x,y p(x)q(x, y)c(x, ã(y)). As initial

state p1 we take the distribution of X1, thus p1(x) = P (X1 = x).
Now take an allowable policy φ. We define φ̃ = Γ(φ) as follows: φ̃t(h̃t) = ã with ã(y) = φt(y),

for every history h̃t. Thus with every policy φ belongs a policy φ̃, independent of the history, which
has as yth component the action belonging to observation y under φ.

This completely defines the second problem and the relation between the two problems.

Theorem 3.1 For the problems (X ,Y,A, r, q, c), (X̃ , Ã, r̃, q̃, c̃), and the function Γ as defined above
the conditions i) and ii) of Theorem 2.1 are satisfied, and therefore an equivalent problem with full
observation exists.

Proof First note that, for an arbitrary policy φ̃, in view of the transition structure, the history
ĥt = (p1, ã1, . . . , pt−1, ãt−1, pt) with ãs such that ãs = φ̃s(ĥs) and ps+1 such that r̃(ps, ãs, ps+1) = 1
occurs a.s.

We show that, for φ̃ = Γ(φ), pt(x) = P (Xt = x) for all x and t. Because of our choice of initial
distribution it holds for t = 1. Given pt(x) = P (Xt = x) for some t,

P (Xt+1 = x′) =
∑
x,y

P (Xt = x)q(x, y)r(x, φt(y), x′) =
∑
x,y

pt(x)q(x, y)r(x, ãt(y), x′) = pt+1(x′),

according to the definition of Γ and r̃. Therefore

Ec(Xt, At) =
∑
x,y

p(x)q(x, y)c(x, φt(y)) =
∑
x,y

p(x)q(x, y)c(x, ãt(y)) = Ec̃(X̃t, Ãt),

giving i).
To prove ii) note that we observed that for an arbitrary φ̃ there is a single path with non-zero

probability of occurring, with histories ĥt. The values of φ̃t for other values of h̃t have no influence
on H̃T . This defines the equivalence relation. As a representative for each class take the policy
with φ̃t constant, i.e., with φ̃t(h̃t) = φ̃t(ĥt) for all h̃t. It is clear that φ for which Γ(φ) = φ̃ is the
policy with φt(y) = ã(y), where ã = φ̃t (note that φ̃t is constant). This proves ii).
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Remark 3.2 Theorem 3.1 shows that a separation principle [9, 8] holds: based on φ1, . . . , φt−1

(but not on the actual observations) the state distribution at t is computed (the estimation part),
and based on this distribution the optimal control is computed (the control part). The crucial
difference with the model with recall in the next Section is that there the estimation is based also
on the actual observations before t.

Remark 3.3 Note the crucial role that the initial state plays. As we saw in the proof of Theorem
3.1 there is for the second problem, for a given initial state (being the initial distribution in the
original problem), only a single path that can occur. This path defines the equivalence relation. A
different initial state results in a different path and therefore a different equivalence relation. Most
solution methods solve full observation problems for each initial state. Then the various policies
within an equivalence class get a meaning too. It also illustrates the dependence of the optimal
policy on the initial distribution.

4 Partial observation information pattern

In the second model φt is allowed to depend on all previous observations y1, . . . , yt. Note that we
could let φt also depend on the previous actions, but as we can reconstruct all actions taken from
the old observations, there is no need in doing so.

The result states that the distribution on the states, conditional on the previous observations
and actions, gives the states for the second problem. At each stage this distribution is updated in
a Bayesian manner (this in contrast with the no recall model).

This result is well known, see for example the textbooks Kumar & Varaiya [5] (p. 84–87) or
Bertsekas [2] (p. 98–102); these results are based on the work of Striebel [8] and Witsenhausen [9].

Let us define the second model, formulating the well known result. As state space we take
X̃ = P (defined in Section 3 as the set of distributions on X ), the action set remains the same,
thus Ã = A. The transitions are as follows: r̃(p, a, p′) =

∑
x,x′ p(x)r(x, a, x′)q(x′, y), for p′ such

that p′(x′) =
∑
x p(x)r(x, a, x′)q(x′, y)

/∑
x,x′ p(x)r(x, a, x′)q(x′, y). This p′ is notated as T (p, a, y).

In the case that for fixed (p, a) there are different y and y′ such that T (p, a, y) = T (p, a, y′), then
the probabilities in the definition of r̃ should be summed, or, alternatively, we could define r̃ as
r̃(p, a, p′) =

∑
x,x′,y p(x)r(x, a, x′)q(x′, y)I{T (p, a, y) = p′} (with I{·} the indicator function). As

direct costs we have c̃(p, a) =
∑
x p(x)c(x, a), and as initial distribution p1 we take the conditional

distribution of X1 given Y1.
The interpretation of the variables is as follows: p should be considered as the state distribution,

based on all observations, just after an observation. Then an action a is chosen, the system changes
state and a new observation occurs. These two steps are reflected in the transition function r̃.

Theorem 4.1 For the problems (X ,Y,A, r, q, c), (X̃ , Ã, r̃, q̃, c̃), a function Γ can be defined such
that the conditions i) and ii) of Theorem 2.1 are satisfied, and therefore an equivalent problem with
full observation exists.

Proof Unfortunately we cannot follow right away the proof of Theorem 3.1, because it can occur
that different histories result in the same distribution, for example because different observations
may result in the same conditional distribution of the state given the same previous observations.
(At first sight it looks as if such observations should be treated as identical; however, it can be
the case that the conditional distribution is different for other past observations.) Thus different
histories for the partial observation model can lead to the same history for the full observation
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model. This gives us problems defining Γ. Therefore we introduce a third problem, based on the
full observation of distributions, with states cthat ontain also the observation. Now we can define
Γ, and it is easily shown that adding the observation in this way to the second problem does not
give any additional information, i.e., the value functions of the second and the third model are the
same.

The third problem is defined by (X̂ , Â, r̂, q̂, ĉ). Here X̂ = X̃ × Y, Â = A, r̂(x̂, a, x̂′) = r̃(p, a, p′)
with x̂ = (p, y) for some y and x̂′ = (p′, y′) with y′ the observation occurring in the definition of
r̃(p, a, p′) (which was denoted as y). Finally ĉ(x̂, a) = c̃(p, a) for x̂ = (p, y) and all y.

Writing V̂ t(x̂) and Ṽ t(p) for the corresponding dynamic programming value functions, it can
be proven easily by induction that V̂ t(x̂) = Ṽ t(p) for x̂ = (p, y), because the transitions and costs
do not depend on y. Also the equivalence between the optimal policies for both models is easily
seen. Thus it remains to prove that the first and the third problem are equivalent.

Thus we define φ̂ = Γ(φ) as follows: for the history ĥt = (x̂1, . . . , x̂t) with x̂s = (ps, ys) take
φ̂t(ĥt) = φt(ht) with ht = (y1, . . . , yt).

Fix φ and φ̂ = Γ(φ). For a given history ht = (y1, . . . , yt), there is a history ĥt = (x̂1, . . . , x̂t)
with x̂s = (ps, ys) which occurs with probability 1, namely the one where ps+1 is the distribution
resulting from a transition from ps, while observing ys, and taking action a = φs(hs).

Next we show that, for ht and ĥt as above, P (Ht = ht) = P (Ĥt = ĥt) and that pt(x) = P (Xt =
x | Ht = ht). Assume that both hold for t. Then, with a = φt(ht),

P (Ht+1 = ht+1 | Ht = ht) = P (Yt+1 = yt+1 | Ht = ht) =∑
x

P (Xt = x | Ht = ht)P (Yt+1 = yt+1 | Xt = x,Ht = ht) =∑
x,x′

pt(x)r(x, a, x′)q(x′, yt+1) = r̂(x̂t, a, x̂t+1),

for x̂t+1 = (pt+1, yt+1), with pt+1 the distribution corresponding to the observation yt+1. That
Xt+1 given Ht+1 = ht+1 has the conditional distribution pt+1 follows from

P (Xt+1 = x′ | Ht+1 = ht+1) =
P (Xt+1 = x′ | Ht = ht)P (Yt+1 = yt+1 | Xt+1 = x′,Ht = ht)∑
x′ P (Xt+1 = x′ | Ht = ht)P (Yt+1 = yt+1 | Xt+1 = x′,Ht = ht)

=∑
x P (Xt = x | Ht = ht)P (Xt+1 = x′ | Xt = x,Ht = ht)q(x′, yt+1)∑
x,x′ P (Xt = x | Ht = ht)P (Xt+1 = x′ | Xt = x,Ht = ht)q(x′, yt+1)

=∑
x pt(x)r(x, a, x′)q(x′, yt+1)∑
x,x′ pt(x)r(x, a, x′)q(x′, yt+1)

.

Now we can verify i) and ii). It follows that

Ec(Xt, At) =
∑
ht

P (Ht = ht)E[c(Xt, At) | Ht = ht] =

∑
ht

P (Ht = ht)
∑
x

pt(x)c(x, φt(ht)) =

∑
ht

P (Ĥt = ĥt)
∑
x

pt(x)c(x, φ̂t(ĥt)) = Eĉ(X̂t, Ât),

giving i). Also ii) follows easily. We already saw that for each ht there was only ĥt which could
occur. Thus we can take policies φ̂ ∈ Φ̂ which only depend on the Y-component as representatives
of their classes. The corresponding φ ∈ Φ′ takes exactly the same actions. This proves ii).
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Remark 4.2 As in the previous Section we have the separation of estimation and control, but in
the current case the estimation is also based on the past observations.

5 An example

We compute the optimal policies for both information patterns for a simple two-state model, which
is as follows. Consider a system which can be either up or down. Whether or not the system is up
or down cannot be observed directly, but if the system is up this is observed with probability q.
This models for example a machine that detects rare particles: when a particle is detected this
means that the system is functioning, but when no particle is detected this can be due to the fact
that the machine is down or because there is no particle to be detected.

When the system is up, it fails with probability r. At each moment in time we can choose to
repair the system (action 1, with direct costs 1) or leave it as it is (action 0, costs 0). For each
unit of time that the system is up we earn a reward R. Costs and rewards are discounted with a
factor β.

This system can be modeled as a stochastic control problem with the following parameters:

X = {0, 1} (with 0 the down state);

Y = {0, 1} (observation 1 means a particle detected);

A = {0, 1};

r(0, 0, 0) = r(0, 1, 1) = r(1, 1, 1) = 1, r(1, 0, 0) = 1− r(1, 0, 1) = r;

q(0, 0) = 1, 1− q(1, 0) = q(1, 1) = q;

c(0, 0) = 0, c(0, 1) = 1, c(1, 0) = −R, c(1, 1) = 1−R.

Using the results presented in this paper we can formulate the equivalent dynamic programming
problem. We computed the optimal policy by approximating the continuous state space (X̃ = [0, 1])
by a discrete one ({0, 1/1000, 2/1000, . . . , 1}). For this model we computed the discounted optimal
policy. In the following table we present some of the results. State p is the probability that the
system is down (i.e., in state 0).

q 0 0.1 0.25 0.5 0.75 1
no recall -7.8065 -7.8549 -7.9307 -8.0984 -8.3615 -9.1324

with recall -7.8065 -7.9448 -8.1137 -8.3659 -8.5903 -9.1388
Table. Minimal discounted costs for starting state 1 (the up state),

r = 0.05, R = 1, β = 0.9 and varying q.

Some interesting phenomena can be derived from the table. First we see that the costs are
decreasing in q. This is not surprising: q can be seen as the amount of information available to
the controller, and costs decrease as the amount of information increases. When comparing both
models it is seen that the costs for the partial observation case are lower than for the no recall
case. This is also easily explained, as the no recall policy is allowable in the partial observations
model. For q = 0, there are no observations, and both methods coincide. For q = 1 there are
complete observations, and thus the optimal policy depends only on the current observation. Here
the optimal policies are also equal, the difference in the numbers in the tables can be explained by
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a combination of the discrete approximation and the difference in the methods for computing the
optimal policies.

Let us now take a closer look at the optimal policy, for the case from the table with q = 0.5.
For the no recall case the actions are two-dimensional, the first (second) entry being the action
taken if no (a) particle is detected. The action (0, 0) (thus no repair under both observations) is
taken in the states {0, 1

1000 , . . . ,
212
1000}, and (1, 0) (thus a repair if no particle is detected) is chosen

in { 213
1000 , . . . , 1}, the optimal policy is thus of threshold type. Starting from state 0, we finally end

up in the following cycle, with the actions written on top of the arrow:

19
1000

(0,0)−→ 115
1000

(0,0)−→ 159
1000

(0,0)−→ 201
1000

(0,0)−→ 241
1000

(1,0)−→ 19
1000

.

The fact that this cycle does not return to 0 can be explained by the fact that if the system is in
state 1, it is not repaired and can fail therefore. Thus the optimal policy repairs the system every
5th time unit, unless it is observed to be operating at that moment.

The optimal policy for the model with recall is also of threshold type. If 1 is observed, repair
is never undertaken. If 0 is observed, action 0 is chosen up to 461

1000 , and from 462
1000 on action 1 is

chosen. Describing the policy however is somewhat more complicated. If 1 is observed, the system
returns to 0. If 0 is observed then, starting from 0, state 639

1000 is reached in 4 steps, and action 1 is
taken. Thus the optimal policy repairs if it has observed 0 four times in a row.

Structural results In Albright [1] structural properties for partially observed stochastic control
problems with two states are studied. Unfortunately, his results cannot be used to explain the
optimality of the threshold policies found above: his condition in Theorem 3 that p22(a)− p12(a) is
isotone is not valid for the current model. (Indeed, on p. 1050 of [1] it is stated that this condition
is equivalent to “more maintenance is felt more in the good state than in the bad state”. That is
clearly not the case in our model: maintenance is felt in state 0 (the bad state) and not in state 1.)

However, due to the simplicity of our model a proof of the optimality of threshold policies for
the model with recall is easily given. The dynamic programming equation has the following form:

Ṽ t(p) = min
{
− (1− p)R+ β[1− (1− p)(1− r)q]Ṽ t+1(p′) + β(1− p)(1− r)qṼ t+1(0),

1− (1− p)R+ βṼ t+1(0)
}
,

for p′ = [T (p, 0)](0), with T (p, 0) the a posteriori distribution after observing 0, as defined in
Section 4. To show that a threshold policy is optimal it suffices to show inductively that Ṽ t(p) ≤
Ṽ t(p′) if p ≤ p′. Indeed, from this and [T (p, 0)](0) ≤ [T (p′, 0)](0) it follows that(

− (1− p)R+ β[1− (1− p)(1− r)q]Ṽ t([T (p, 0)](0)) + β(1− p)(1− r)qṼ t(0)
)

−
(
1− (1− p)R+ βṼ t(0)

)
is increasing in p, which gives the optimality of a threshold policy. Proving Ṽ t(p) ≤ Ṽ t(p′) is
straightforward.

For the model without recall the situation is more complicated due to the fact that there are
four possible actions, and because after action (1, 0) the system does not return to state 1. For this
case we were unable to derive structural results.
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6 Conclusion

A technique which transforms stochastic control problems with partial observations into equivalent
full observation problems is formulated and applied to two specific models, the model with and the
model without recall of observations. The results are applied to a simple system with two states
and two possible observations. The optimal policy for the system without recall has a remarkably
simple cyclic structure.

The technique is also applicable to models with delayed and/or decentralized information. This
is subject of ongoing research.
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