
On the value function of a priority queue with an application to

a controlled polling model

Ger Koole
Vrije Universiteit

De Boelelaan 1081a
1081 HV Amsterdam

The Netherlands
koole@cs.vu.nl

Philippe Nain
INRIA

2004 Route des Lucioles
06902 Sophia Antipolis

France
nain@sophia.inria.fr

Published in Queueing Systems 34:199-214, 2000

Abstract

We give a closed-form expression for the discounted weighted queue length and switch-
ing costs of a two-class single-server queueing model under a preemptive priority rule.
These expressions are used to do a single step of policy iteration in a polling model with
a dynamically controlled switching rule, starting from the preemptive priority rule. Nu-
merical experiments show that this leads to a policy that performs well.

Keywords: priority queues, policy iteration, µc rule, polling systems.

1 Introduction

The application of Dynamic Programming (DP) to real-world problems is hindered to a
large extent by the enormous number of possible states and controls. This phenomenon is
known as the curse of dimensionality and it renders direct computation of optimal policies
in most practical models impossible. The recent publication of [2] has renewed the interest
in reinforcement learning, which is a possible way to circumvent the curse of dimensionality.
The main idea in this approach is to construct approximate representations of the optimal
value function [2, Sec. 2]. This involves the selection of an approximation architecture, that is
a certain functional form with free parameters. These parameters have then to be tuned so as
to provide the best fit of the function to be approximated (the optimal value function in the
DP setting). The process of tuning the parameters is referred to as learning (or training) in
the literature. Once this is achieved various methods centered around the Bellman’s equation
may be used to compute the suboptimal control [2, Sec. 4]. However, in order to break the
curse of dimensionality the approximate representation of the value function — known as the
scoring function — must be described with few parameters. The choice of a “good” scoring
function is therefore the key to success. It requires in general lots of experiments as well as a
solid knowledge of the system at hand.

This paper is a first step toward the application of these ideas to queueing networks for
which optimal controls are notoriously difficult to compute due to the size of the state spaces
involved. Our main result is the derivation of the form of the scoring function for a given
two-dimensional queueing model.

1

More specifically, the subject of study is a single-server system with two classes of cus-
tomers. Customers arrive according to Poisson processes and require exponential service
times. We consider a preemptive resume priority discipline, that gives the highest priority to
class 1. This means that class 1 is served to exhaustion, and if the server is attending class
2, then as soon as a class-1 customer arrives the server switches at once to class 1. There are
holding costs for each unit of time that a customer spends in the system; furthermore there
are lump costs for every time the server changes class. We calculate in Section 2 the expected
discounted holding and switching costs over an infinite horizon associated with this policy.
The final closed form expression is a sum of terms that are linear, quadratic and exponential
in both queue lengths.

This closed form expression is useful by itself; below we discuss a direct application. But
it is also interesting to note that it is possible to explain all terms of the formula, mainly
in terms of busy periods of single server queues. This knowledge gives us a means to guess
the form or even the values of value functions for other queueing models that could later on
be used as scoring functions. As such the present results have a high potential for further
application. In future work we plan to consider systems with multiple servers and more than
two queues with applications in call centers and logistics. Although the current results give
a basis for making a sensible choice for the approximation architecture, there are still many
theoretical issues to be resolved, such as the influence of multiple servers on the form of the
value function.

After the formal proof of the closed-form expression in Section 2 we give in Section 3 an
extensive heuristic explanation of each term. In fact, we derived the formula for the holding
costs using straightforward but tedious calculations. After having understood all the terms
we were able to guess the terms concerning switching costs. Construction of a formal proof
afterwards (see proof of Theorem 2.2) confirmed that our intuition was correct.

As explained earlier we believe that with the present calculations we made an important
step towards the application of reinforcement learning type of methods to queueing systems
in the sense that what we have learned might be used to select good scoring functions.

The results in Section 2 may also be used directly to control a polling model. Indeed,
consider the model as described above but without the preemptive priority switching rule.
Instead we look for the policy that minimizes the expected discounted sum of holding and
switching costs. If the switching costs are zero then the policy that gives preemptive priority
to the class with the highest product of holding cost rate and service rate is optimal (the
so-called µc rule, see e.g. [1, 3, 9]); if the switching costs are positive then the µc rule is no
longer optimal in general. The optimal policy cannot easily be characterized and can only be
determined using an iterative procedure [7]. This has motivated us to look at approximations
of the optimal policy for which a closed-form expression exists and that perform close to
optimality. We take the µc rule, for which we obtained the value function in Section 2, as
starting point. Then we use a method of [10] that involves taking a single policy iteration
step. Doing so we find for our model policies that are surprisingly close to the optimal one.
We refer the reader to the numerical results at the end of the paper for further details.

2 Results

We consider a two-class M/M/1 queue under the preemptive resume priority discipline [6].
We assume that class-1 customers have priority over class-2 customers. We denote by λi > 0

2

(resp. µi > 0) the arrival (resp. service) rate of class-i customers.
There are holding costs (ci for customers of class-i) and switching costs when the server

switches from one class to the other. Let s1 (resp. s2) be the instantaneous cost incurred
when the server switches from class-1 (resp. class-2) to class-2 (resp. class-1) customers.

Let X(t) (resp. Y (t)) be the number of class-1 (resp. class-2) customers in the system at
time t and let S(t) ∈ {1, 2} be the position of the server at time t (S(t) = z if the server
is attending class-z customers at time t). For any r.v. Z, we denote Ex[Z] (resp. Ex,y[Z],
Ex,y,z[Z]) the conditional expectation of Z given that X(0) = x (resp. given that X(0) = x
and Y (0) = y, given that X(0) = x, Y (0) = y and Z(0) = z).

Fix β ∈ (0,∞). Given that X(0) = x, Y (0) = y and S(0) = z, the total discounted cost
V (x, y, z) incurred in [0,∞) is given by

V (x, y, z) = Ex,y,z

[∫ ∞
0

e−βt (c1X(t) + c2Y (t)) dt+
∞∑
n=1

2∑
i=1

sie
−βT in

]
(1)

where T 1
n (resp. T 2

n) denotes the nth switching time from class-1 (resp. class-2) to class-2
(resp. class-1) customers. Models with costs (or rewards) when a customer leaves the system
are also interesting. This generalization however can be incorporated in our holding cost
function, using the same arguments as in [5, Section 2]. Therefore we do not take service
completion rewards into account explicitly.

Before stating the main result of this paper, we recall below some known facts about the
queueing system at hand. Since under the preemptive priority discipline the behavior of class-
1 customers is not affected by that of class-2 customers, {X(t), t ≥ 0} is the queue-length
process in an M/M/1 queue with arrival (resp. service) rate λ1 (resp. µ1). For this queue, the
Laplace-Stieltjes Transform (LST) z(α) of the busy period is obtained as the unique root in
(0, 1) of the equation

λ1u
2 − (λ1 + µ1 + α)u+ µ1 = 0. (2)

The service completion time of a class-2 customer is the time that elapses between his first
entry in the server and his departure from the queue. Its LST C(α) is given by [6, formula
(2.13), p. 86]

C(α) =
µ2

µ2 + λ1(1− z(α)) + α
. (3)

Last, we introduce the LST B(α) of the busy period in an M/G/1 queue with arrival rate
λ2 and LST of the service times C(α). By using (3) and a standard result on the busy period
in an M/G/1 queue (e.g. see [6, Eq. (2.15), p. 10]), we get that B(α) is the unique root in
(0, 1) of the equation

u− µ2

µ2 + λ1(1− z(λ2(1− u) + α)) + λ2(1− u) + α
= 0. (4)

If we define the busy period of class-2 customers as the time that elapses between the moment
that a class-2 customer enters an empty system and the first time that a class-2 customer
leaves an empty system behind, then the LST of the busy period of class-2 is given by B(α).

An important role is played by the optimality equation. The term optimality equation
comes from dynamic programming, which usually involves minimization as well. Here we
apply it to a single fixed policy, the priority rule, but we stick to the terminology.

3

Lemma 2.1 (Optimality equation) The value function V (x, y, z) of the preemptive pri-
ority discipline is the unique solution of

(λ1 + λ2 + µ1 + β)V (x, y, 1) = c1x+ c2y + λ1V (x+ 1, y, 1) + λ2V (x, y + 1, 1)
+µ1V (x− 1, y, 1), x > 0, y ≥ 0 (5)

V (0, y, 1) = s1 + V (0, y, 2), y > 0 (6)
V (x, y, 2) = s2 + V (x, y, 1), x > 0, y ≥ 0 (7)

(λ1 + λ2 + µ2 + β)V (0, y, 2) = c2y + λ1V (1, y, 2) + λ2V (0, y + 1, 2)
+µ2V (0, y − 1, 2), y > 0 (8)

(λ1 + λ2 + β)V (0, 0, z) = λ1V (1, 0, z) + λ2V (0, 1, z), z = 1, 2. (9)

Proof. The value function (5)-(9) has the form of Eq. (11.3.7) in [11], with the direct cost
r and the sum of the switching costs (if applicable) and holding costs as in Eq. (11.3.3).

The existence and uniqueness follow from [11], Theorem 11.3.3. The conditions are satis-
fied if we take as function w for example w((x, y, z)) = (c1 + c2)((x+ y)/β + (λ1 + λ2 + µ1 +
µ2)/β2) + (s1 + s2)(λ1 + λ2 + µ1 + µ2 + β)/β (which is in fact an upper bound to the value
function V (x, y, z)).

In a heuristical manner Lemma 2.1 can be derived by conditioning on the first event
in the system. Note that delaying all costs by T units of time corresponds to discounting
with a factor E[exp(−βT)], which is exactly the LST of T in β. For example, in states
(x, y, 1) with x > 0, the time to the first event T is exponentially distributed with parameter
λ1 + λ2 + µ1. Its LST is (λ1 + λ2 + µ1)/(λ1 + λ2 + µ1 + β). As this event occurs, it is with
probability λi/(λ1 + λ2 + µ1) an arrival of a class-i customer (i = 1, 2) and with probability
µ1/(λ1 + λ2 + µ1) a departure of a class-1 customer. It can also be seen that

Ex

[∫ T

0
e−βtc1xdt

]
=

c1x

λ1 + λ2 + µ1 + β
.

Putting this together gives

V (x, y, 1) =
c1x+ c2y

λ1 + λ2 + µ1 + β
+

λ1 + λ2 + µ1

λ1 + λ2 + µ1 + β

(
λ1

λ1 + λ2 + µ1
V (x+ 1, y, 1)

+
λ2

λ1 + λ2 + µ1
V (x, y + 1, 1) +

µ1

λ1 + λ2 + µ1
V (x− 1, y, 1)

)
,

for x > 0, y ≥ 0, which is equivalent to (5). Relations (8) and (9) can be derived in a similar
manner.

We now state our main result.

Theorem 2.2 (Value function) The total discounted cost V (x, y, z) is given by

V (x, y, 1) = f(x, y) + (r1 + r′1)z(β)x + (r2 + r′2) z(g(β))xB(β)y, x ≥ 0, y > 0 (10)
V (x, 0, 1) = f(x, 0) + (r1 + r′1)z(β)x + (r2 + r′2) z(g(β))x + r′3 z(β + λ2)x, x ≥ 0 (11)
V (x, y, 2) = s2 + V (x, y, 1), x > 0, y ≥ 0 (12)
V (0, y, 2) = f(0, y) + r1 + r′1 − s1 + (r2 + r′2)B(β)y, y ≥ 0, (13)

4

with

f(x, y) := c1
λ1 − µ1

β2
+ c2

λ2

β2
+ c1

x

β
+ c2

y

β
(14)

g(β) := λ2(1−B(β)) + β (15)

r1 := c1
z(β)

β (1− z(β))
− c2

C(β)
β (1− C(β))

(16)

r′1 :=
(s1 + s2)λ1 + βs1

λ1 (1− z(β)) + β
(17)

r2 := c2
C(β)

β (1− C(β))
· λ1 (1− z(β)) + β

λ1 (1− z(g(β))) + g(β)
(18)

r′2 :=
λ1z(β + λ2)

λ1 (1− z(g(β))) + g(β)
r′3 (19)

r′3 :=
λ2s1 − λ1s2

λ1 + λ2 + β
− s1. (20)

Proof. The proof consists in checking that V (x, y, z) satisfies the Dynamic Programming
(DP) equation given by (5)-(9).

By using the definition of V (x, y, z) in (10)-(13) it is easily seen that this mapping satisfies
(6) and (7). Let us now focus on the remaining equations (5), (8) and (9).

(i) Checking validity of (5)
Assume first that x > 0 and y > 0. Introducing (10) into (5) yields, after dropping terms

that appear on both sides of (5),

(λ1 + λ2 + µ1 + β)
[
(r1 + r′1)z(β)x + (r2 + r′2)z(g(β))xB(β)y

]
= (r1 + r′1)z(β)x [λ1z(β) + λ2 + µ1/z(β)] + (r2 + r′2)z(g(β))xB(β)y

× [λ1z(g(β)) + λ2B(β) + µ1/z(g(β))]

or, equivalently,

0 = (r1 + r′1)z(β)x−1
[
−λ1z(β)2 + (λ1 + µ1 + β)z(β)− µ1

]
+(r2 + r′2)z(g(β))x−1B(β)y

[
−λ1z(g(β))2 + (λ1 + µ1 + g(β))z(g(β))− µ1

]
.

This identity is indeed true as both terms between squared brackets are equal to 0 from the
definition of z(α) (see (2)).

Assume now that x > 0 and y = 0. Using now (10) and (11) it is easily seen that (5)
reduces to

0 = (r1 + r′1)z(β)x−1
[
−λ1z(β)2 + (λ1 + µ1 + β)z(β)− µ1

]
+(r2 + r′2)z(g(β))x−1

[
−λ1z(g(β))2 + (λ1 + µ1 + g(β))z(g(β))− µ1

]
+r′3z(β + λ2)x−1

[
−λ1z(β + λ2)2 + (λ1 + µ1 + λ2 + β)z(β + λ2)− µ1

]
.

We again observe that this identity holds true as each term between squared brackets vanishes
from the definition of z(α).

(ii) Checking validity of (8)

5

Replacing V (x, y, 2) in (8) by its value given in (12)-(13) and dropping terms that appear
on both sides of the resulting equation gives

0 = −(r1 + r′1)(λ1(1− z(β)) + β) + λ1(s1 + s2) + s1β + c1
µ1

β
− c2

µ2

β

+(r2 + r′2)B(β)y−1
[
λ2B(β)2 − (µ2 + λ1(1− z(g(β))) + λ2 + β)B(β) + µ2

]
. (21)

The term between squared brackets is equal to 0 from the definition (4) of B(α). This
observation, together with the use of the definition of r1 and r′1, allows us to rewrite (21) as

0 =
c1

β(1− z(β))

[
λ1z(β)2 − (λ1 + µ1 + β)z(β) + µ1

]
− c2

β(1− C(β))

[
µ2 − (µ2 + λ1(1− z(β)) + β)C(β)

]
. (22)

The first term in the left-hand side of (22) is equal to 0 from the definition (2) of z(α); the
second term too from the definition (3) of C(α).

(iii) Checking validity of (9)
Assume first that z = 1. Using (10) and (11) we get that (9) is equivalent to

0 =
c1µ1

β
− (r1 + r′1)(λ1(1− z(β)) + β)− (r2 + r′2) (λ1(1− z(g(β))) + λ2(1−B(β)) + β)

−r′3 (λ1 + λ2 + β − λ1z(β + λ2)) .

Using now the definition of r1, r′1, r2, r′2 and r′3 it is straightforward to check that indeed the
above identity holds true.

The check in the case z = 2 is similar and is therefore omitted.
For the related model with non-preemptive priority and general service times the expres-

sion equivalent to Theorem 2.2 is derived in [5], for holding costs only.

3 Interpretation

In this section we interpret the result of Theorem 2.2. To do so, we study first a simple
M/M/1 queue with rates λ1 and µ1. The objective is to find

W (x) = Ex

[∫ ∞
0

e−βtX(t)dt
]
,

with X(t) the queue length at t.
We can think of X(t) as being constructed from two independent Poisson processes

{N(t), t ≥ 0} and {M(t), t ≥ 0} with rates λ1 and µ1, respectively. If a departure occurs
while X(t) = 0 then nothing happens; therefore M can be seen as the potential departure
process. Let L(t) = M(t)− (X(0) +N(t)−X(t)) be the number of virtual departures up to
t. Thus

W (x) = Ex

[∫ ∞
0

e−βt (x+N(t)−M(t)) dt
]

+ Ex

[∫ ∞
0

e−βt L(t) dt
]
.

Define Tx := inf{t > 0 : X(t) = 0} with X(0) = x, the time until the system empties
for the first time starting with x customers in it. It is easily understood that Tx is the

6

sum of x independent busy periods of the M/M/1 queue. Therefore E[exp(−αTx)] = z(α)x.
Furthermore, X(t) is independent of the behavior of the queue from Tx on. Thus we can
assume that as soon as 0 is reached a new queue with initial state 0 is started, with processes
N̂ , M̂ , X̂, and L̂, with the same law, but independent of N , M , X, and L. Then

W (x) = Ex

[∫ ∞
0

e−βt (x+N(t)−M(t)) dt
]

+ Ex

[∫ ∞
Tx

e−βtL(t) dt
]

=
x

β
+
λ1 − µ1

β2
+ z(β)x E0

[∫ ∞
0

e−βt
(
X̂(t)− N̂(t) + M̂(t)

)
dt

]
=

x

β
+
λ1 − µ1

β2
+ z(β)x

[
W (0)− λ1 − µ1

β2

]
, x ≥ 0. (23)

To compute W (0) we condition on the first event:

W (0) =
λ1

λ1 + β
W (1).

Using (23) for x = 1 it easily follows that

W (0) =
λ1 − µ1

β2
+

µ1

β(λ1(1− z(β)) + β)
=
λ1 − µ1

β2
+

z(β)
β(1− z(β))

,

the last equality following from the definition of z(α), as given in equation (2). In conclusion,

W (x) =
x

β
+
λ1 − µ1

β2
+ z(β)x

z(β)
β(1− z(β))

. (24)

The previous analysis taught us a methodology for constructing the value function for the
preemptive priority model. The following key steps in the analysis of the M/M/1 queue will
appear repeatedly in the sequel:

(i) The first two terms in the r.h.s. of (24) are obtained by ignoring the fact that at some
point in time some boundary (x = 0 here) is reached. These terms consist of terms
for the initially available customers, new arrivals and departures (i.e., x/β, λ1/β

2 and
−µ1/β

2, respectively);

(ii) There is a correction term for reaching the boundary, which is the product of the LST of
the time to reach the boundary (i.e. z(β)x) and of a coefficient (see (23)) that consists
of the value function at the boundary (i.e., W (0)) minus the first terms starting from
the boundary (i.e., (λ1 − µ1)/β2). [Note that the latter term may be chosen so that
both sides of (23) are equal on the boundary. This observation will be used later on.]

We now interpret the form of the value function V (x, y, z) given in Theorem 2.2. To this
end, we split the right-hand side of (1) in three terms:

V (x, y, z) = V1(x) + V2(x, y) + V3(x, y, z) (25)

with

V1(x) := c1 Ex

[∫ ∞
0

e−βtX(t) dt
]

V2(x, y) := c2 Ex,y

[∫ ∞
0

e−βt Y (t) dt
]

V3(x, y, z) := Ex,y,z

[∞∑
n=1

2∑
i=1

sie
−βT in

]
.

7

Because the first customer class is served with preemptive priority, {X(t), t ≥ 0} behaves
as the queue length process in an M/M/1 queue and thus V1(x) = W (x) as given in (24). It
can be checked (set c2 = s1 = s2 = 0 in (10)-(13)) that Theorem 2.2 agrees with (24).

With the analysis for the M/M/1 queue in mind and, in particular, the interpretation in
(i)-(ii), we now formulate an “educated guess” for V2(x, y).

If there were always class-1 customers in the system, then the total holding cost incurred
by the y class-2 customers in the system at time 0 and by all class-2 customers arrived in
(0,∞) would be c2y/β + c2λ2/β

2.
Recall that there are no departures of class-2 customers in [0, Tx) from both the definition

of the preemptive priority rule and of Tx. Now assume that there are always class-2 customers
in the system, i.e., we ignore the fact that we reach the x-axis at some point in time. In Section
2 we defined C as the LST of the service completion time of a class-2 customer, including
interruptions by class-1 customers. Thus the nth departure of a class-2 customer occurs after
a time that has LST z(β)xC(β)n, which results in a reduction in cost of c2z(β)xC(β)n/β.
Summing this for all n ≥ 1 gives

c2
z(β)x

β

(
C(β) + C(β)2 + · · ·

)
= c2 z(β)x

C(β)
β (1− C(β))

.

Given X(0) = x and Y (0) = y, introduce Tx,y := inf{t ≥ 0 : X(t) = Y (t) = 0} and set
γx,y(α) := E[exp(−αTx,y)]. In words, Tx,y is the first time that the system is empty. Because
of the definition of B in Section 2 we find that γ0,y(α) = B(α)y. Compared to C, B is a
class-2 busy period, thus it takes also into account the arrivals of class-2 during a service
time. Let us now determine γ1,0(α). By conditioning on the first event to occur after time 0
we find the equation

γ1,0(α) =
1

λ1 + λ2 + µ1 + α

(
λ1γ1,0(α)2 + λ2B(α)γ1,0(α) + µ1

)
,

whose solution is given by γ1,0(α) = z(α+ λ2(1−B(α))), by (2). In conclusion

γx,y(α) = z(α+ λ2(1−B(α)))xB(α)y. (26)

Hence, the guess for V2(x, y) is therefore the following: for x, y ≥ 0,

V2(x, y) = c2
y

β
+c2

λ2

β2
−c2 z(β)x

C(β)
β (1− C(β))

+γx,y(β)
(
V2(0, 0)−

(
c2 λ2

β2
− c2C(β)
β(1− C(β))

))
,

(27)
the last term as to make sure that both sides of (27) coincide for x = y = 0.

It remains to evaluate V2(0, 0). For this, observe that

V2(0, 0) =
λ1

λ1 + λ2 + β
V2(1, 0) +

λ2

λ1 + λ2 + β
V2(0, 1)

which yields, with the help of (27),

V2(0, 0) =
c2C(β)(λ1(1− z(β)) + β)

β(1− C(β)) (λ1(1− z(g(β))) + λ2(1−B(β)) + β)
+
c2λ2

β2
− c2C(β)
β(1− C(β))

.

8

Introducing this value of V2(0, 0) in (27) finally gives

V2(x, y) = c2
λ2

β2
+ c2

y

β
− c2z(β)x

C(β)
β(1− C(β))

+ c2z(β + λ2(1−B(β)))xB(β)y

×
(

C(β)(λ1(1− z(β)) + β)
β(1− C(β)) (λ1(1− z(g(β))) + λ2(1−B(β)) + β)

)
. (28)

Setting c1 = s1 = s2 = 0 in Theorem (2.2) shows that this guess for V2(x, y) is indeed correct.
It is worth pointing out that V1(x) and V2(x, y) could have be computed by using standard

analytical results on priority queues (see e.g. [6]). Besides the fact that such an approach
yields lengthy calculation, it also does not give much insight on the form of these functions,
as opposed to the method used here.

We are now going to use what we have learned so far to make a guess for V3(x, y, z), a
quantity that cannot easily be derived by a direct method.

To begin with, observe that V3(x, y, z) need only to be computed for x ≥ 0, y > 0, z = 1,
for x > 0, y = 0, z = 2 and for x = y = 0, z = 1, 2. Indeed, by definition of the cost structure
we already know that

V3(0, y, 2) = −s1 + V3(0, y, 1), y > 0, (29)

and
V3(x, y, 2) = s2 + V3(x, y, 1), x > 0, y ≥ 0. (30)

Assume first that x ≥ 0, y > 0 and z = 1. If there were always class-2 customers in the
system, then the total switching cost incurred in [Tx,∞) would be

z(β)x
(
s1 +

λ1

λ1 + β

(
s2 + z(β)

(
s1 +

λ1

λ1 + β

(
s2 + · · ·

))))
= z(β)x r′1 (31)

where r′1 is defined in (17). As y > 0, we always arrive at x = y = 0 at the service completion
of a class-2 customer. Therefore the LST for reaching the origin is multiplied by V3(0, 0, 2)
plus a correction term. This term does not follow directly from V3(x, y, z) for x = y = 0, as
we assumed that y > 0, and thus the formula need not be valid at the origin. Therefore we
calculate the correction term.

If there were always class-2 customers in [Tx,y,∞) (recall that Tx,y is the first time such
that Y (t) = 0, with LST γx,y(α)), then the total switching cost would be

γx,y(β)
λ1

λ1 + β

(
s2 + z(β)

(
s1 +

λ1

λ1 + β

(
s2 + · · ·

)))
= γx,y (β)(r′1 − s1). (32)

The last term has to be subtracted, thus the following guess is made for V3(x, y, 1) when
x ≥ 0, y > 0:

V3(x, y, 1) = z(β)x r′1 + γx,y(β) (V3(0, 0, 2) + s1 − r′1). (33)

It remains to handle the case when x > 0, y = 0 and z = 1. This is the most tricky case
as state (0, 0) can either be reached from the y-axis (i.e. from (0, 1)) or from the x-axis (i.e.
from (1, 0)) depending on whether or not at least one class-2 customer enters the system in
[0, Tx).

Thus another correction term is called for. The leading term, which is the discounted
probability of reaching the origin without class-2 arrivals, is given by

Ex

[∫ ∞
0

e−βtI{no class-2 arrivals up to t}Tx(dt)
]

=
∫ ∞

0
e−(β+λ2)tTx(dt) = z(β + λ2)x.

9

The coefficient is V3(0, 0, 1) minus a correction term; this correction term is equal to s1 +
V3(0, 0, 2), because at arrival at the boundary no switch to class-2 is necessary. In conclusion,

V3(x, 0, 1) = r′1 z(β)x +
(
V3(0, 0, 2) + s1 − r′1

)
z(g(β))x

+z(β + λ2)x (V3(0, 0, 1)− V3(0, 0, 2)− s1) . (34)

It remains to evaluate V3(0, 0, z) for z = 1, 2. This is done with the identities

V3(0, 0, z) =
λ1

λ1 + λ2 + β
V3(1, 0, z) +

λ2

λ1 + λ2 + β
V3(0, 1, z), z = 1, 2

together with relations (29), (30), (33), (34) and the definition of r′1. We finally find

V3(x, y, 1) = r′1 z(β)x + r′2 γx,y(β), x ≥ 0, y > 0
V3(0, y, 2) = r′1 − s1 + r′2B(β)y, y ≥ 0
V3(x, 0, 1) = r′1 z(β)x + r′2 γx,y(β) + r′3 z(β + λ2)x, x ≥ 0 (35)

where r′2 and r′3 are defined in (19) and (20), respectively.
Setting c1 = c2 = 0 in Theorem 2.2 we indeed find the value for V3(x, y, z) given above.

4 Application

In this section we will use the result in Theorem 2.2 to control a specific polling model. (See
e.g. [13] for a general reference on polling models.) This model is the same as the model that
we studied in Section 2, except for the fact that the server is now allowed to switch class each
time an event in the system occurs. To be able to introduce the different policies in a concise
way, we introduce the following terminology. Set µ = max{µ1, µ2} and ea the ath unity vector,
v+ means max{v, 0}, componentwise if v and 0 are vectors. Define γ = λ1 +λ2 +µ+β. With
a slight abuse of terminology, customers of class-i will sometimes be referred to as customers
in queue i.

For sets A(x, y, z) ⊂ {1, 2}, A(x, y, z) 6= ∅, define the DP operator TA for some f :
IN2 × {1, 2} → IR as follows:

TAf(x, y, z) =
c1x+ c2y

γ
+ min
a∈A(x,y,z)

{
szI{z 6= a}+

λ1

γ
f(x+ 1, y, a)

+
λ2

γ
f(x, y + 1, a) +

µa
γ
f(((x, y)− ea)+, a) +

µ− µa
γ

f(x, y, a)
}
. (36)

This leads to the following optimality equation that generalizes (5)-(9):

Lemma 4.1 (Optimality equation) The value function V A(x, y, z) for some choice of ac-
tion sets A(x, y, z) is the unique solution of

V A(x, y, z) = TAV A(x, y, z). (37)

The minimizing actions constitute the minimizing policy for the specified action sets. The
value function V A can also be obtained by value iteration, i.e.,

V A(x, y, z) = lim
n→∞

(TA)n0. (38)

10

Proof. The proof is the same as that of Lemma 2.1; the conditions in [11], Theorem 11.3.3,
also guarantee the convergence of value iteration.

In fact, if we choose A(x, y, z) = 1 if x > 0, A(0, y, z) = 2 if y > 0, and A(0, 0, z) = z
then (37) corresponds to giving preemptive priority to queue 1. For later comparison this
policy is depicted in Table 1 for x, y ≤ 10. A “1” (resp. “2”) means switching to 1 (resp.
2) if the server is not already at the first (resp. second) queue; a “·” means that the server
should stay where it is. Using Theorem 2.2 we can compute the expected discounted cost in
any state. Write V µc for the value function. For instance, V µc(2, 2, 1) = 77.773347 with the
parameters given in Table 2; the holding costs account for about one third (26.147901) of the
total cost, the rest being switching costs. Note furthermore that the holding costs are at the
lowest possible level: it is known (see e.g. [3]) that for the model without switching costs the
policy that gives preemptive priority to the queue with highest value of µici (the µc rule) is
optimal. As µ1c1 > µ2c2 the µc rule corresponds in the current case to serving queue 1 with
preemptive priority.

y = 10 2 1 1 1 1 1 1 1 1 1 1
9 2 1 1 1 1 1 1 1 1 1 1
8 2 1 1 1 1 1 1 1 1 1 1
7 2 1 1 1 1 1 1 1 1 1 1
6 2 1 1 1 1 1 1 1 1 1 1
5 2 1 1 1 1 1 1 1 1 1 1
4 2 1 1 1 1 1 1 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1
0 · 1 1 1 1 1 1 1 1 1 1

x =0 1 2 3 4 5 6 7 8 9 10

Table 1. Preemptive priority rule, priority for queue 1.

We are interested in determining the optimal policy for the case that A(x, y, z) = {1, 2}
for all x, y, and z. For this choice of the action sets, denote TA by T ∗. Deriving the optimal
value function V ∗ in this case is not easy; it is not expected that there exists a derivable
closed-form expression for it. The reason for this lies in the complexity of the optimal policy
(see Table 2). The only way to determine the optimal policy is by iteration. Because of the
countable state space we had to truncate it to execute the value iteration procedure (38). We
did this at such a level that the optimal actions and the values for states close to the origin
(with queue lengths smaller than 10) did not change under further increases of the truncation
level. This way we assured that the results are valid for the original countable state model.
In Table 2 we plot the optimal policy for a certain choice of the parameters.

The total cost for the optimal policy, starting in state (2, 2, 1), is 65.416897. If we compare
the optimal policy with the µc rule (Table 1), we see several striking differences. Of course the
optimal policy switches less frequently than under the µc rule since there must be at least two
class-1 customers in the system before it is optimal to serve these customers. The threshold
level is not the same for all y: if y is close to 0, then the threshold level is higher than for
larger values of y. This has an intuitive explanation: if the server leaves queue 2 for queue
1 while leaving customers behind, then it has to return to queue 2 at some point to serve
the remaining customers. To avoid this it is cost-efficient to empty queue 2 if there are few
customers in it before switching to queue 1. Finally, the optimal policy is not work-conserving:

11

in state (0, 1, 1) it is optimal to stay at server 1. This explains the bad performance of the
µc rule, expressed by the maximum relative difference in performance:

max
x,y,z

V µc(x, y, z)− V ∗(x, y, z)
V ∗(x, y, z)

= 0.22,

where the maximum is attained in state (1, 1, 2).

y = 10 2 · 1 1 1 1 1 1 1 1 1
9 2 · 1 1 1 1 1 1 1 1 1
8 2 · 1 1 1 1 1 1 1 1 1
7 2 · 1 1 1 1 1 1 1 1 1
6 2 · 1 1 1 1 1 1 1 1 1
5 2 · 1 1 1 1 1 1 1 1 1
4 2 · 1 1 1 1 1 1 1 1 1
3 2 · · 1 1 1 1 1 1 1 1
2 2 · · 1 1 1 1 1 1 1 1
1 · · · · 1 1 1 1 1 1 1
0 · 1 1 1 1 1 1 1 1 1 1

x =0 1 2 3 4 5 6 7 8 9 10

Table 2. Optimal switching policy for λ1 = λ2 = 1, µ1 = 6, µ2 = 3, c1 = 2, c2 = 1,
s1 = s2 = 2, β = 0.05. V ∗(2, 2, 1) = 65.416897.

Due to the lack of a closed-form expression for the optimal policy it is of interest to
search for simple policies that perform close to optimality. In [7] an approximating policy
was constructed that was simple and reasonably good, by taking a work-conserving policy
with the same threshold level for all states with y > 0. This threshold policy is based
on the optimal policy for y large. The resulting policy for the current case is depicted in
Table 3. Using value iteration with the right sets A we computed the value function V ′, e.g.
V ′(2, 2, 1) = 68.137829. Compared to the µc rule it is already close to the optimal policy.
The maximum relative difference of the value function compared to the optimal policy is
0.055, attained in (1, 2, 1). However, we can find an even better policy, starting from the µc
rule.

y = 10 2 · 1 1 1 1 1 1 1 1 1
9 2 · 1 1 1 1 1 1 1 1 1
8 2 · 1 1 1 1 1 1 1 1 1
7 2 · 1 1 1 1 1 1 1 1 1
6 2 · 1 1 1 1 1 1 1 1 1
5 2 · 1 1 1 1 1 1 1 1 1
4 2 · 1 1 1 1 1 1 1 1 1
3 2 · 1 1 1 1 1 1 1 1 1
2 2 · 1 1 1 1 1 1 1 1 1
1 2 · 1 1 1 1 1 1 1 1 1
0 · 1 1 1 1 1 1 1 1 1 1

x =0 1 2 3 4 5 6 7 8 9 10

Table 3. Threshold policy for λ1 = λ2 = 1, µ1 = 6, µ2 = 3, c1 = 2, c2 = 1, s1 = s2 = 2,
β = 0.05. V ′(2, 2, 1) = 68.137829.

Consider V , the value function of the preemptive priority rule. Now for each x, y, and
z determine A∗(x, y, z), the minimizing action in T ∗V (x, y, z). The resulting policy is shown
in Table 4. Note how well this policy follows the behavior of the optimal policy close to
the origin; only for high values of y the threshold value is different for the current choice of

12

parameters. Using value iteration to compute the value V a of this approximation policy we
found V a(2, 2, 1) = 65.497223, very close to the performance of the optimal policy. The
maximum relative difference with the optimal policy is 0.009. It is interesting to observe that
this maximum is attained in the state (2, 13, 1): in contrast with the policy proposed in [7]
the current policy approximates the behavior close to the origin well, the difference with the
optimal policy is in the threshold value for y → ∞. Of course, this observation holds only
for the current set of parameters, experimentation with other sets of parameters show that
there are instances where the one step improvement coincides completely with the optimal
policy. (This occurs for example if λ1 = λ2 = 1, µ1 = µ2 = 3, c1 = 2, c2 = 1, s1 = s2 = 2,
and β = 0.05.)

y = 10 2 · · 1 1 1 1 1 1 1 1
9 2 · · 1 1 1 1 1 1 1 1
8 2 · · 1 1 1 1 1 1 1 1
7 2 · · 1 1 1 1 1 1 1 1
6 2 · · 1 1 1 1 1 1 1 1
5 2 · · 1 1 1 1 1 1 1 1
4 2 · · 1 1 1 1 1 1 1 1
3 2 · · 1 1 1 1 1 1 1 1
2 2 · · 1 1 1 1 1 1 1 1
1 · · · · 1 1 1 1 1 1 1
0 · 1 1 1 1 1 1 1 1 1 1

x =0 1 2 3 4 5 6 7 8 9 10

Table 4. One-step improvement for λ1 = λ2 = 1, µ1 = 6, µ2 = 3, c1 = 2, c2 = 1, s1 = s2 = 2,
β = 0.05. V a(2, 2, 1) = 65.497223.

To compute the value of the approximating policy we used the value iteration scheme
(38), which is an iterative procedure, and therefore numerically demanding. Computing the
value of the optimal policy (and by doing so we obtain the optimal policy) does hardly need
more computer time than computing the value of a fixed policy. Thus computing the value of
the approximating policy is about as difficult as computing the optimal policy. However, note
that to determine the approximating policy itself (and not its value), no iterative procedure
was needed: starting from the value of the preemptive priority rule the policy was determined
by executing the minimization in (36) once. Thus we derived a procedure to obtain good poli-
cies that demands hardly any computational effort, as opposed to a numerically demanding
iterative procedure for obtaining the optimal policy.

This approximation procedure can be seen as a single step of policy iteration (see e.g. [11],
Section 6.4 and its application to continuous time models in Section 11.3.4) with a policy
for which the value function is known. This idea is not new: it has already been applied to
a simple telecommunication network in [10] and to routing to parallel queues in [12, 8]. In
contrast with the current work [10, 12, 8] deal with average cost models and initial policies
for which the different state components behave independently.

Taking a single step of policy iteration from the value function of a certain policy is
equivalent to the concept of a roll-out policy with a single-step lookahead as defined in [2,
Section 6.1.3]. In a broader framework, the importance of a good initial choice of value
function is discussed in [4].

13

5 Concluding remarks

Using a single step of the policy improvement algorithm we were able to derive good policies
for a simple polling model. To do so, we computed the value function associated with a
given policy (the µc rule) and entered this value in the algorithm. In this process we gain
some insights on what a good scoring function might look like for related queueing systems
even though we might not be able to derive it explicitly. If this is the case, then the missing
coefficients could be obtained by combining learning procedures (typically simulations) and
estimation techniques (gradient methods). Ongoing research in this direction bear on the
same model but with more than 2 classes as well as on some routing problems in queues.
Work is also being conducted on average cost models.

Acknowledgement The authors would like to thank an anonymous reviewer for bringing
to their attention the work by J. M. Harrison [5].

References

[1] J. S. Baras, D.-M. Ma and A. M. Makowski. K competing queues with geometric re-
quirements and linear costs: the µc-rule is always optimal. Systems and Control Letters,
6:173–180, 1985.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

[3] C. Buyukkoc, P. Varaiya, and J. Walrand. The cµ rule revisited. Advances in Applied
Probability, 17:237–238, 1985.

[4] R.-R. Chen and S. Meyn. Value iteration and optimization of multiclass queueing net-
works. Queueing Systems, 1999. To appear.

[5] J. M. Harrison. A priority queue with discounted linear costs. Operations Research,
23:260–269, 1975.

[6] N. K. Jaiswal. Priority Queues. Academic Press, New York, 1968.

[7] G. M. Koole. Assigning a single server to inhomogeneous queues with switching costs.
Theoretical Computer Science, 182:203–216, 1997.

[8] G. M. Koole. The deviation matrix of the M/M/1/∞ and M/M/1/N queue, with
applications to controlled queueing models. In Proceedings of the 37th IEEE Conference
on Decision and Control, pages 56–59, 1998.

[9] P. Nain and D. Towsley. Optimal scheduling in a machine with stochastic varying pro-
cessing rate. IEEE Transactions on Automatic Control, 39:1853–1855, 1994.

[10] T. J. Ott and K. R. Krishnan. Separable routing: A scheme for state-dependent routing
of circuit switched telephone traffic. Annals of Operations Research, 35:43–68, 1992.

[11] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

14

[12] S. A. E. Sassen, H. C. Tijms, and R. D. Nobel. A heuristic rule for routing customers to
parallel servers. Statistica Neerlandica, 51:107–121, 1997.

[13] H. Takagi. Analysis of Polling Systems. MIT Press, 1986.

15

