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Abstract
We study the multi-server queue with Poisson arrivals and identical independent servers
with exponentially distributed service times. Customers arriving to the system are ad-
mitted or rejected according to a fixed threshold policy. Moreover, the system is subject
to holding, waiting, and rejection costs. We give a closed-form expression for the av-
erage costs and the value function for this multi-server queue. The result will then be
used in a single step of policy iteration in the model where a controller has to route
to several finite buffer queues with multiple servers. We numerically show that the
improved policy has a close to optimal value.

1 Introduction
The application of Markov decision theory to the control of queueing networks often leads
to models with enormous state and action spaces. Hence, direct computation of optimal
policies with standard techniques and algorithms is almost impossible for most practical
models. This phenomenon is also known as ‘the curse of dimensionality’. Consequently,
there is a need for other exact or good approximation methods that avoid this problem.

Bertsekas and Tsitsiklis [1] discuss reinforcement learning. This approximation method
constructs approximations to the value function based on a certain functional form. How-
ever, choosing the initial functional form such that the resulting approximations are good is
difficult. It requires a great deal of insight into the system under study, and in particular to
the dynamic programming optimality equations.

Ott and Krishnan [6] introduce the idea of applying one-step policy improvement. In
this case one is required to obtain an explicit solution to the optimality equations for a fixed
policy. The result will then be used in one step of the policy iteration algorithm from Markov
decision theory in order to obtain an improved policy.

In this paper we study the multi-server queue with Poisson arrivals and identical in-
dependent servers with exponentially distributed service times. Customers arriving to the
system are admitted or rejected according to a fixed threshold policy. The motivation for
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studying threshold policies stems from the fact that threshold policies are optimal or close
to optimal in many queueing systems (see, e.g., Stidham, Jr. and Weber [8]). Hence, one can
expect to obtain improved policies which are good approximations by applying reinforce-
ment learning or one-step policy improvement.

Additionally, the system is subject to holding, waiting, and rejection costs. Note that
this model can also be viewed as a multi-server queue with a finite buffer where no control
is applied (the standardM/M/s/c queue). Our main result is the explicit solution to the
optimality equations under the threshold policy. From this expression one can also obtain
the solution to the optimality equations of the single and infinite server model.

The main contribution of our result with respect to reinforcement learning is the struc-
ture of the value function for the single, multiple and infinite server queues. It provides a
theoretical foundation for choices of the functional equation. The solution to the optimal-
ity equations of the three models can readily be used in the one-step policy improvement
method. This is illustrated in Section 4 where a routing problem to parallel queues is stud-
ied. We numerically show that the improved policy has a close to optimal value.

2 Multi-Server Queue
Consider a queueing system with one queue ands identical independent servers. The arrivals
are determined by a Poisson process with parameterλ. The service times are exponentially
distributed with parameterµ. Let statex denote the number of customers in the system. A
controller decides to admit or reject arriving customers to the system according to a threshold
policy with threshold levelc ∈N0 = {0,1, . . .}. Thus, when at arrivalx < c, the controller
decides to admit the customer. The controller rejects the customer whenx ≥ c. Hence,
when starting with an empty system, the states are limited tox ∈ {0, . . . ,c}. Note that a
threshold level ofc = 0 rejects every customer, whereas the limiting casec→ ∞ admits
every customer.

Additionally, assume that the system is subject to holding, waiting, and rejection costs.
Let uc

t (i) denote the total expected costs up to timet when the system starts in statei un-
der the threshold policy with levelc. The Markov chain satisfies the unichain assumption
and due to Proposition 8.2.1 of Puterman [7] the average costsϕc = limt→∞ uc

t (i)/t is in-
dependent of the initial statei. The same result holds for the limiting casec→ ∞ under
the assumption thatρ = λ/sµ< 1. The dynamic programming optimality equations for the
system are thus given by

ϕc + λVc(0) = λVc(1),
ϕc + (λ + xµ)Vc(x) = hx+ λVc(x+ 1) + xµVc(x−1), x = 1, . . . ,s−1,

ϕc + (λ + sµ)Vc(x) = hx+ λw(x−s+ 1) + λVc(x+ 1) + sµVc(x−1), x = s, . . . ,c−1,

ϕc + sµVc(c) = hc+ λ r + sµVc(c−1).

In this set of equations the constantsh, w andr denote the holding, waiting and rejection
costs respectively. The functionVc(x) is called the (relative) value function, and is the
quantity that we are interested in. The functionVc(x) has the interpretation of the asymptotic
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difference in total reward that results from starting the process in statex instead of some
reference statey. Without loss of generality we take the reference state to bey = 0. Observe
that due to linearity the value function can be decomposed intoVc(x) = Vh

c (x) + Vw
c (x) +

Vr
c (x), which are due to holding, waiting and rejection costs respectively. In the same way

the average costϕc = ϕh
c + ϕw

c + ϕr
c.

We adopt the following approach to solve the optimality equations. We first consider
the optimality equations forx = 0, . . . ,s−1. Since by definitionVc(0) = 0, the equations
have a unique solution expressed inϕc. The solution also holds forx = s when considering
holding and rejection costs. Then the optimality equations forx = s, . . . ,c−1 are solved. In
this caseVc(s−1) orVc(s) is known and again guarantees a unique solution expressed inϕc.
Finally, the equation forx = c is considered. This equation provides an expression forϕc,
which solves the complete system explicitly.

The optimality equations are so-called linear, inhomogeneous, second-order difference
equations. Mickens [5] gives a good overview of the theory of difference equations. Espe-
cially expression (3.112) is helpful, since it provides the structure of the solution to second-
order difference equations when one solution is known. Before solving the optimality equa-
tions, first define the hypergeometric functionF(x) by

F(x) =
x−1

∑
k=0

Γ(x)
Γ(x−k)

(µ
λ

)k
,

with Γ(x) = (x−1)! whenx is integer. Then the first step of our approach is given by the
following theorem.

Theorem 2.1: Let k∈ {h,w, r}, and consider the optimality equations for statesx = 0, . . . ,s
whenk∈ {h, r}, andx= 0, . . . ,s−1 whenk = w. The unique solution to this set of equations
is given by

Vk
c (x) =

ϕk
c

λ

x

∑
i=1

F(i)−
α(k)

λ

x

∑
i=1

(i −1)F(i −1),

with α(h) = h, α(w) = 0 andα(r) = 0.

Proof : Let ∆V(x) = V(x)−V(x−1) and letk ∈ {h,w, r}. Then the optimality equations for
x = 0, . . . ,s whenk ∈ {h, r}, andx = 0, . . . ,s−1 whenk = w can be written as

ϕk
c + xµ∆Vk

c (x)−α(k)x−λ∆Vk
c (x+ 1) = 0,

with ∆Vk
c (0) = 0 by definition. We check that the solution satisfies this expression by sub-
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stitution into this expression. First observe thatλ/µF(x+ 1) = λ/µ+ xF(x), and thus

ϕk
c + xµ∆Vk

c (x)−α(k)x−λ∆Vk
c (x+ 1) =

ϕk
c +

xµϕk
c

λ
F(x)−

xµα(k)
λ

(x−1)F(x−1)−α(k)x−λ∆Vk
c (x+ 1) =

ϕk
c +

xµϕk
c

λ
F(x)−α(k)xF(x) + α(k)x−α(k)x−λ∆Vk

c (x+ 1) =

ϕk
c +

xµϕk
c

λ
F(x)−α(k)xF(x)−ϕk

c F(x+ 1) + α(k)xF(x) =

ϕk
c + ϕk

c F(x+ 1)−ϕk
c−ϕk

c F(x+ 1) = 0.

Note that sinceVk
c (0) = 0 the solution is also unique.

The first term in the value function is the particular solution toϕk
c in the optimality equation.

Therefore this term appears inVk
c (x) for all k ∈ {h,w, r}. The second term is the particular

solution to the costs. Since in this case no waiting or rejections occur, the second term is
zero inVw

c (x) andVr
c (x). The terms are rather complicated due to the fact that the rates in

the optimality equation are dependent on the state. This does not occur when the rates are
constant. The following theorem shows this for the solution of the optimality equations for
x = s, . . . ,c−1.

Theorem 2.2: Consider the optimality equations forx = s, . . . ,c− 1. Let ρ = λ/sµ and
∆Vk

c (x) = Vk
c (x)−Vk

c (x−1). Then the unique solution to this set of equations is given by

Vk
c (x) = −

(
x−σ(k)

)
ρ

1−ρ
ϕk

c

λ
+

[(
x−σ(k)

)(
x−σ(k) + 1

)
ρ

2(1−ρ)
+

(
x−σ(k)

)
ρ
(
ρ + γ(k)

)
(1−ρ)2

]
β(k)

λ

+Vk
c

(
σ(k)

)
+

(
1
ρ

)x−σ(k)
−1

1−ρ

[
ρ

1−ρ
ϕk

c

λ
+

σ(k)
s

∆Vk
c

(
σ(k)

)
−

ρ
(
ρ + γ(k)

)
(1−ρ)2

β(k)
λ

]
,

for k ∈ {h,w, r} with σ(k) = s−1{k=w}, γ(k) = s(1−ρ)1{k6=w}, β(h) = h, β(w) = λw and
β(r) = 0.

Proof : Note that the optimality equations fork∈ {h,w, r} andx= s, . . . ,c−1 can be written
as

ϕk
c + sµ∆Vk

c (x)−
[
x−σ(k) +

γ(k)
1−ρ

]
β(k)−λ∆Vk

c (x+ 1) = 0.

The first term in the solutionVk
c (x) is the particular solution toϕk

c in the optimality equations.
Similarly, the second term is the particular solution to the inhomogeneous term

[
x−σ(k) +
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γ(k)/(1−ρ)
]
β(k). This fact follows directly by substitution into the optimality equations,

as follows

ϕk
c + sµ∆Vk

c (x)−
[
x−σ(k) +

γ(k)
1−ρ

]
β(k)−λ∆Vk

c (x+ 1) =

ϕk
c−

1
1−ρ

ϕk
c +

[
x−σ(k)

1−ρ
+

ρ + γ(k)
(1−ρ)2

]
β(k)−

[
x−σ(k) +

γ(k)
1−ρ

]
β(k)−λ∆Vk

c (x+ 1) =

−
ρ

1−ρ
ϕk

c +

[(
x−σ(k)

)
ρ

1−ρ
+

(
1+ γ(k)

)
ρ

(1−ρ)2

]
β(k)−λ∆Vk

c (x+ 1) =

[(
x−σ(k)

)
ρ

1−ρ
+

(
1+ γ(k)

)
ρ

(1−ρ)2

]
β(k)−

[(
(x+ 1)−σ(k)

)
ρ

1−ρ
+

(
ρ + γ(k)

)
ρ

(1−ρ)2

]
β(k) = 0.

The optimality equations also have two homogeneous solutions, which are given bya1 and
a2
(
(1/ρ)x−σ(k) − 1

)
/(1− ρ), whereai are constants fori = 1,2. This can be seen from

Theorem 4.2 of Mickens [5]. SinceVk
c (x) equals the value function of Theorem 2.1 atx = s

in casek ∈ {h, r}, and atx = s−1 whenk = w we havea1 = Vk
c

(
σ(k)

)
. The coefficienta2

easily follows from solving the equation on the boundaryϕk
c + γ(k)µ∆Vk

c

(
γ(k)

)
−α(k)x−

λ∆Vk
c

(
γ(k) + 1

)
= 0. These coefficients fix the value ofVk

c

(
γ(k)

)
andVk

c

(
γ(k) + 1

)
. Hence,

the solution is also unique.

Theorem 2.1 and Theorem 2.2 fully characterize the solution to the dynamic programming
optimality equations expressed inϕk

c. The optimality equation for statex = c can now be
used to explicitly determineϕk

c. This will also explicitly determine the solutions to the
complete set of optimality equations. The results are given by the following theorem.

Theorem 2.3: The average costsϕk
c for k ∈ {h,w, r} are given by

ϕh
c =

[
1
ρ

F(s) +
1−ρc−s+1

1−ρ

]−1

·
[
sF(s) + cρc−s+

sρ
1−ρ

+
ρ

(1−ρ)2 −
ρc−s+1

(1−ρ)2 −
cρc−s

1−ρ

]
h,

ϕw
c =

[
s−1
sρ

F(s−1) +
1−ρc−s+2

1−ρ

]−1

·
[

ρ
(1−ρ)2 −

(c−s+ 1)ρc−s+1

1−ρ
−

ρc−s+2

(1−ρ)2

]
λw,

ϕr
c =

[
1
ρ

F(s) +
1−ρc−s+1

1−ρ

]−1

· ρc−sλ r.

Proof : The optimality equations forx = c andk ∈ {h,w, r} can be written as

ϕk
c + sµ∆Vk

c (c)−1{k=h}hc−1{k=r}λ r = 0.

After substitution ofVk
c (c) from Theorem 2.2 one gets an equation inϕk

c only. With some
calculus one shows that the solution is indeed as stated in the theorem.

5



The set of optimality equations is now solved, and we have derived an explicit solution
expressed in the parametersλ, µ, sandc. Note that we did not require any restriction on the
parameters. However, when we consider the limiting casec = ∞, we require stability of the
queueing system, i.e.,ρ < 1. Assuming that the stability condition holds, one can directly
obtain that

• ϕr
∞ = 0,

•
ϕh

∞
h = ϕw

∞
wsµ+ λ

µ.

The first line directly follows from Theorem 2.3 when taking the limit, since we assumed
thatρ < 1. Indeed, when all customers are admitted the costs due to rejection are zero. The
second line is more involved and is explained as follows. The mean time spent waiting in the
queue is obtained whenw = 1/λsµ. Adding the mean service time 1/µ to it gives the mean
sojourn time. Applying Little’s Formula gives the mean queue length, and thus explains the
second result.

Let us now compute the expression forϕh
∞. For simplicity we assume thath = 1. Then from

Theorem 2.3 it follows that

ϕh
∞ = lim

c→∞
ϕh

c =
[

1
ρ

F(s) +
1

1−ρ

]−1

·
[
sF(s) +

sρ
1−ρ

+
ρ

(1−ρ)2

]

=
ρ

(1−ρ)2

[
1
ρ

F(s) +
1

1−ρ

]−1

+ sρ

=
(sρ)sρ

s! (1−ρ)2

[
(sρ)s−1

Γ(s)
F(s) +

(sρ)s

s! (1−ρ)

]−1

+ sρ

=
(sρ)sρ

s! (1−ρ)2

[
s−1

∑
n=0

(sρ)n

n!
+

(sρ)s

s! (1−ρ)

]−1

+ sρ.

Note that we have derived in an alternative way the well-known expression for the average
queue length in a multi-server queueing system with infinite buffer (see, e.g., Section 2.3 of
Gross and Harris [2]).

In literature one usually tries to derive the value function for a specific policy (see, e.g.,
Koole and Nain [3], Ott and Krishnan [6]). However, the results of Theorems 2.1–2.3 con-
cern a class of policies, in contrast to a specific policy. The results can therefore be used for
finding the best threshold policy within the class. Observe that optimizing with respect to
the threshold levelc is not difficult.

Koole and Spieksma [4] obtain expressions for deviation matrices for birth-death pro-
cesses, and in particular to theM/M/s/c queue. The deviation matrix is independent of
the cost structure. Hence, it enables one to compute the average costs and the relative value
function for various cost structures (depending on the state only) by evaluating a sum involv-
ing entries of the deviation matrix. However, the expressions they derive for the deviation
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matrix are very complicated. Therefore, evaluating the sum is not easy in many situations.
The method adopted in this paper shows the benefit of working with costs integrated into
the problem formulation. The expressions are simpler and are easier to obtain in contrast to
either working with deviation matrices or equilibrium probabilities.

The results also explicitly depict the structure of the value function. This information
can be fruitfully used in reinforcement learning to guess the structure or even the values of
value functions for other queueing models. As will become clear in Section 3, the value
function of the infinite buffer single server queue is a sum of linear and quadratic terms.
However, the finite buffer single server queue also contains exponential terms. When the
rates in the optimality equation depend on the states (as in the infinite server queue), then
also hypergeometric terms appear.

The results can also be directly applied to one-step policy improvement. In this setting
one chooses a policy which has the property that the value function and the average costs
can be computed. Then this policy will be used in one step of the policy iteration algorithm
from Markov decision theory resulting in an improved policy. The improved policy will in
general be sufficiently complicated to render another step of policy iteration impossible. In
Section 4 we will discuss routing to several parallel finite buffer queues. Before doing that,
we first consider special cases of the multi-server queue.

3 Special Cases
In this section we will consider special cases of the multi-server queue. The case where
s = 1 results in the single server queue. The case withs = c results in the infinite server
queue. We will discuss both the finite buffer (c finite) and the infinite buffer (c = ∞ and
ρ < 1) model. We first start with the treatment of the single server queue.

Single Server Queue
The single server queue can be obtained by considering the multi-server queue with one
server only, i.e.,s= 1. In this case the optimality equations become simpler. These equations
are now given by

ϕc + λVc(0) = λVc(1),
ϕc + (λ + µ)Vc(x) = hx+ λwx+ λVc(x+ 1) + µVc(x−1), x = 1, . . . ,c−1,

ϕc + µVc(c) = hc+ λ r + µVc(c−1).

The solution to this set of equations is given by the expression in Theorem 2.2 and Theo-
rem 2.3 withs= 1. After some tedious calculus one derives that the value function is given
by

Vk
c (x) = ak

1

(
1
ρ
)x
−1

1−ρ
+

x(x+ 1)
2µ(1−ρ)

β(k)−ak
1x,

for k ∈ {h,w, r} with β(h) = h, β(w) = λw andβ(r) = 0. The constantsak
1 for k ∈ {h,w, r}
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and the average costs are given by

ah
1 = −

(c+ 1)ρ

µ
((

1
ρ
)c
−ρ
)

(1−ρ)
h, ϕh

c =

[
1−

(c+ 1)(1−ρ)(
1
ρ
)c
−ρ

]
ρ

1−ρ
h,

aw
1 = −

(c+ ρ)ρ((
1
ρ
)c
−ρ
)

(1−ρ)
w, ϕw

c =

[
1−

(c+ ρ)(1−ρ)(
1
ρ
)c−1

−ρ2

]
ρ

1−ρ
λw,

cr
1 =

ρ(
1
ρ
)c
−ρ

r, ϕr
c =

1−ρ(
1
ρ
)c
−ρ

λ r.

The average costs and the value function for the single server queue with an infinite buffer,
or equivalently with no rejections, are given by

ϕk
∞ = lim

c→∞
ϕk

c =
ρ

1−ρ
β(k), and Vk

∞(x) = lim
c→∞

Vk
c (x) =

x(x+ 1)
2µ(1−ρ)

β(k).

The value function of the infinite buffer single server queue is thus the sum of linear and
quadratic terms. However, exponential terms appear in the value function when working
with a finite buffer.

Infinite Server Queue
The infinite server queue is obtained by considering the multi-server queue withs= c. The
optimality equations then become

ϕc + λVc(0) = λVc(1),
ϕc + (λ + xµ)Vc(x) = hx+ λVc(x+ 1) + xµVc(x−1), x = 1, . . . ,c−1,

ϕc + cµVc(c) = hc+ λ r + cµVc(c−1).

The solution to these equations is in fact already given in Theorem 2.1. However, the average
costs do differ and are given by

ϕh
c =

[
1−

1
F(c+ 1)

]
ρh, ϕw

c = 0, ϕr
c =

1
F(c+ 1)

λ r,

where nowρ = λ/µ. Hence, the average costs and the value function of the infinite server
queue with no rejections are given by

ϕk
∞ = lim

c→∞
ϕk

c = ρα(k), and Vk
∞(x) = lim

c→∞
Vk

c (x) =
x
µ

α(k),

with α(h) = h, α(w) = 0 andα(r) = 0. In this case we observe that the infinite server model
with no rejections has a linear value function. However, rejections cause hypergeometric
terms to appear in the value function. This is due to the fact that the rates in the optimality
equation depend on the state.
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4 Application to Routing Problems
In this section we illustrate the one-step policy improvement method by studying a routing
problem to parallel queues. The general idea is to start with a policy such that each queue
behaves as a multi-server queue. In this way, the value function and the average costs can
be determined from the results of the previous sections. Finally, one step of policy iteration
can be applied to obtain a better policy without having to compute the value function in an
iterative way.

Consider two parallel finite buffer queues. Queuei has a buffersize ofci customers and has
its own set ofsi dedicated servers, each working at rateµi for i = 1,2. Furthermore, queuei
has holding, waiting and rejection costs ofhi , wi andr i respectively. An arriving customer
can either be sent to queue 1 or to queue 2. The objective is to minimize the average costs.
The optimality equation for this system is given by

ϕ+
(
λ + (x∧s1)µ1 + (y∧s2)µ2

)
V(x,y) = h1x1 + h2x2+

λmin
{
1{x<c1}[x−s1 + 1]+ w1 +1{x=c1} r1 +V

(
(x+ 1∧c1),y

)
,

1{y<c2}[y−s2 + 1]+ w2 +1{y=c2} r2 +V
(
x,(y+ 1∧c2)

)}
+

(x∧s1)µ1V
(
[x−1]+,y

)
+ (y∧s2)µ2V

(
x, [y−1]+

)
,

with [k]+ = max{k,0}, (k∧ l) = min{k, l}, andx, y the number of customers in queue 1 and
2 respectively.

Consider the policy that splits the arrival stream in two streams, such that there are
arrivals to queue 1 at rateηλ and to queue 2 at rate(1− η)λ with η ∈ [0,1]. We call
this policy a Bernoulli policy with parameterη. Let F(x,y) and G(x,y) denote the two
expressions in the minimization in the optimality equation. Then the optimality equation
under the Bernoulli policy is obtained by changingλ min{F(x,y),G(x,y)} into ηλF(x,y)+

(1−η)λG(x,y). Hence, we can see that the two queues behave independently as a multi-
server queue. Therefore, the corresponding value function becomes

VB(x,y) = VMS(ηλ,µ1,s1,c1,h1,w1,r1)(x) +VMS((1−η)λ,µ2,s2,c2,h2,w2,r2)(y),

with VMS the value function of the multi-server queue of Section 2 with the corresponding
parameters. Similarly, the average cost is expressed as

ϕB = ϕMS(ηλ,µ1,s1,c1,h1,w1,r1) + ϕMS((1−η)λ,µ2,s2,c2,h2,w2,r2),

with ϕMS the average costs for the multi-server queue. From numerical experiments it fol-
lows that not all parameters of the Bernoulli policy result in a improved policy which is
close to the optimal value. Therefore we will use the optimal Bernoulli policy for deriving
the improved policy in the sequel. The one-step policy improvement step now follows from
the minimizing action in min{F(x,y),G(x,y)}.
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9 2 2 2 2 2 2 2 2 2 1
8 1 1 1 1 1 2 2 2 1 1
7 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 2 1 1
4 1 1 1 1 1 2 2 2 1 1
3 1 1 1 1 2 2 2 2 2 1
2 1 1 1 2 2 2 2 2 2 1
1 2 2 2 2 2 2 2 2 2 1
0 2 2 2 2 2 2 2 2 2 1

y/x 0 1 2 3 4 5 6 7 8 9

one-step improved policy

9 2 2 2 2 2 2 2 2 2 1
8 1 1 1 2 2 2 2 2 1 1
7 1 1 1 1 1 2 2 1 1 1
6 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 2 2 1 1 1
3 1 1 1 1 2 2 2 2 1 1
2 1 1 1 2 2 2 2 2 2 1
1 2 2 2 2 2 2 2 2 2 1
0 2 2 2 2 2 2 2 2 2 1

y/x 0 1 2 3 4 5 6 7 8 9

optimal policy

Table 1: Relevance of rejection costs

We first start displaying the relevance of rejection costs when working with finite buffer
queues. Seth1 = h2 = 1, w1 = w2 = r1 = r2 = 0, λ = 5, µ1 = 2, µ2 = 3, s1 = 3, s2 = 2, and
c1 = c2 = 9. Thus, we study two parallel finite buffer queues with holding costs only. The
first queue has more dedicated servers than the second, but they work at a lower rate.

The optimal Bernoulli policy yields a value ofϕB = 2.351414, the one-step improved
policy ϕ′ = 1.993648, and the optimal policyϕ∗ = 1.993563. Table 1 shows the routing
policy for the values ofx andy under the one-step improved policy and the optimal policy.
One would expect an increasing switching curve. However, when one of the queues becomes
congested, lack of rejection costs results in routing to that queue such that rejections occur.

In the previous example the one-step improved policy had a value close to the optimal
value. Table 2 shows that this also holds for other parameter values. Note that this method
can easily be used for more than two queues. In this section we restricted ourselves to
two queues, since the computation of the optimal policy becomes numerically difficult for
more than two queues. ForN stations ofM/M/s/c queues the number of states is equal to
(c+1)N; thus the complexity is exponential in the number of queues. However, a single step
of policy iteration has linear complexity.

λ µ1 µ2 s1 s2 c1 c2 h1 h2 w1 w2 r1 r2 ϕB ϕ′ ϕ∗

10 2 2 3 3 10 10 0 0 0 0 1 1 0.390401 0.082642 0.082642
10 2 2 3 3 10 5 0 0 0 0 1 1 0.836706 0.253959 0.226499
10 3 2 2 3 10 10 0 0 0 0 1 1 0.367001 0.072194 0.071396
8 2 2 3 3 10 10 0 0 1 1 1 1 8.807790 3.595779 3.531940
8 2 2 3 3 10 5 0 0 1 1 1 1 4.662343 1.917528 1.911727
8 3 2 2 3 10 10 0 0 1 1 1 1 9.945102 4.081310 3.921034
8 2 2 3 3 10 10 1 1 0 0 1 1 5.491495 4.606377 4.599034
8 2 2 3 3 10 5 1 1 0 0 1 1 4.999463 4.454041 4.425574
8 3 2 2 3 10 10 1 1 0 0 1 1 5.024346 3.950910 3.914964
8 2 2 3 3 10 10 1 1 1 1 1 114.228695 8.182282 8.092028
8 4 2 2 3 10 5 1 1 1 1 1 1 7.654585 4.386521 4.200002

Table 2: Numerical results
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