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Abstract. Grids functionally combine globally distributed computers
and information systems for creating a universal source of computing
power and information. A key characteristic of grids is that resources
(e.g., CPU cycles and network capacities) are shared among numerous
applications, and therefore, the amount of resources available to any
given application highly fluctuates over time. In this paper we analyze
the impact of the fluctuations in the processing speed on the performance
of grid applications. Extensive lab experiments show that the burstiness
in processing speeds has a dramatic impact on the running times, which
heightens the need for dynamic load balancing schemes to realize good
performance. Our results demonstrate that a simple dynamic load bal-
ancing scheme based on forecasts via exponential smoothing is highly
effective in reacting to the burstiness in processing speeds.

1 Introduction

Often, grid environments are seen as the successors of distributed computing en-
vironments (DCEs). Nevertheless, these two environments are fundamentally dif-
ferent. A DCE environment is rather predictable: the nodes are usually homoge-
neous, the availability of resources is based on reservation, the processing speeds
are static and known beforehand. A grid environment, however, is highly unpre-
dictable in many respects: resources have different and usually unknown capaci-
ties, they can be added and removed at any time, and the processing speeds fluc-
tuate over time. In this context, it is challenging to realize good performance of
parallel applications running in a grid environment. In this paper we focus on the
fluctuations in processing speeds. First, we conducted elaborate experiments in
the Planetlab [1] grid environment, in order to investigate over which time scales
the processing speed fluctuates. Experimental results show fluctuations over dif-
ferent time scales, ranging from several seconds to minutes. Second, we analyze
the potential speedup of the application by properly reacting to those fluctu-
ations. We show that dynamic load balancing based on forecasts obtained via
exponential smoothing can lead to a significant reduction of the running times.

Fluctuations in processing speeds are known to have an impact on the run-
ning times of parallel applications, and several studies on analyzing the impact
of the fluctuations on the running time have been conducted. However, these
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fluctuations are typically artificially created, and hence controllable (see for ex-
ample [2]), whereas the fluctuations in grid environments are not controllable.
In the research community several groups focus on performance aspects of grid
applications. A mathematicians’ approach is to develop stochastic models for
processing speeds, latencies and dependencies involved in running parallel appli-
cations, to propose algorithms for reduction of the running time of an application,
and to provide a mathematical analysis of the algorithm [3, 4, 5]. Such a mathe-
matical approach may be effective in some cases; however, usually unrealistic as-
sumptions have to be made to provide a mathematical analysis, which limits the
applicability of the results. On the other hand, computational grid experts de-
velop well-performing strategies for computational grids, i.e., connected clusters
consisting of computational nodes. However, due to the difference in fluctuations
between general grid environments and computational grids, the effectiveness of
these strategies in a grid environment is questionable [6]. A third group of re-
searchers focuses on large-scale applications with parallel loops (i.e., loops with
no dependencies among their iterations) [7, 8], combining the development of
strategies based on a probabilistic analysis with experiments on computational
grids with regulated load. However, due to the absence of dependencies among
the iterations of those applications, these strategies are not applicable to parallel
applications with those dependencies. These observations heighten the need for
an integrated analysis of grid applications (including dependencies among their
iterations), combining a data approach with extensive experimentation in a grid
environment.

The increasing popularity of parallel applications in a grid environment cre-
ates many new challenges regarding the performance of grid applications, e.g.,
in terms of running times. To this end, it is essential to reach a better under-
standing of (1) the nature of fluctuations in processing speeds and the relevant
time scale of these fluctuations, (2) the impact of the fluctuations on the running
times of grid applications, and (3) effective means to cope with the fluctuations.
The goal of this paper is to address these questions by combining results from
lab experiments with mathematical analysis. To address these questions we have
performed extensive test-lab experiments in a grid environment called Planetlab
[1] with the classical Successive Over Relaxation (SOR) application. First, we
provide a data analysis showing how processing speeds change over time. The
results show fluctuations over multiple time scales, ranging from seconds to min-
utes. Then, we focus on the impact of the fluctuations on the running times for
SOR at different time scales. The results show a dramatic influence of fluctu-
ating processing speeds on running times of parallel applications. Subsequently,
we focus on a dynamic load balancing scheme to cope with the fluctuations
in processing speeds. We show that significant reductions in running times can
be realized by performing load balancing based on predictions via the classical
exponential smoothing technique.

This paper is organized as follows. In Section 2 we will describe the Planetlab
testbed environment and the SOR application used in our experiments. Section 3
will show the data collection procedure and results about the different time scales
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of the fluctuations in processing speeds. In Section 4 different load balancing
strategies will be presented. Finally, in Section 5 the results and in Section 6 the
conclusions will be addressed.

2 Experimental Setup

Experiments were performed with a parallel application on a grid test bed. A
main requirement for the test bed is that it needs to use a network with intrinsic
properties of a grid environment: resources with different capacities and many
fluctuations in load and performance of geographically distributed nodes. We
have performed our experiments on the Planetlab test bed [1], which meets
these requirements. PlanetLab is an open, globally distributed processor-shared
network for developing and deploying planetary-scale network services.

The application has also been carefully chosen so as to meet several require-
ments. On the one hand, the application must have dependencies between its it-
erations, because most of the parallel applications have that property, while on
the other hand the structure of the dependencies should be simple. A suitable
application is the Successive Over Relaxation (SOR) application. SOR is an iter-
ative method that has proven to be useful in solving Laplace equations [9]. Our
implementation of SOR deals with a 2-dimensional discrete state space M ×N , a
grid. Each point in the grid has 4 neighbors, or less when the point is on the bor-
der of the grid. Mathematically this amounts to taking a weighted average of the
values of the neighbors and its own value. The parallel implementation of SOR
is based on the Red/Black SOR algorithm [10]. The grid is treated as a checker-
board and each iteration is split into phases, red and black. During the red phase
only the red points of the grid are updated. Red points only have black neighbors,
and no black points are changed during the red phase. During the black phase,
the black points are updated in a similar way. Using the Red/Black SOR algo-
rithm, the grid can be partitioned among the available processors. All processors
can update different points of the same color in parallel. Before a processor starts
the update of a certain color, it exchanges the border points of the opposite color
with its neighbors. Figure 1 illustrates the use of SOR over different processors.

Fig. 1. Successive Over Relaxation
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3 Analysis of Fluctuations in Processing Speeds

To characterize the fluctuations in processor speeds in a grid environment, we
collected data about the processor speeds and the communication times by doing
10 runs of Red-Black SOR with a grid size of 5000 × 1000. Interrupted runs were
omitted. One run consists of 1000 iterations, from which there are 3 warming
up, 994 regular, and 3 cooling down iterations. Every iteration has two phases
(see Section 2), which leads to 1988 data lines per run. To increase the running
times such that parallellisation improves performance we repeated each iteration
50 times. This corresponds to a grid size of 25 · 104 × 103. Table 1 lists the
sites and node names we used during the experiments. For every run we used 4
independently chosen sites from that table. We collected data about calculation
times and receive times of each node, and wait times and send times between all
nodes. The calculation time is the time a node uses to compute one calculation
of one iteration, the wait time is the time a node has to wait for data of its
neighbors before it can do a new step, the send time is the time a node uses
to send all the relevant data to its neighbors and receive the acknowledgement,
and the receive time is the time a node uses to load the relevant data of its
neighbors from the received-data table. We do not run other applications on the
same nodes during our runs to create changing load on the processors.

Figures 2 and 3 show the calculation times as a function of the iteration
number for a set of 250 iterations for different sites. Figures 4 and 5 show the
results for the send times. The receive times were found to be negligible (mostly
less than 0.5 ms).

The results presented in Figures 2 to 5 reveal a number of interesting phe-
nomena. First, we observe that fluctuations in the calculation times and the send
times are considerable. We also observe fluctuations on multiple time scales. On
the one hand there are short-term fluctuations in both the calculation times
and the send times, on the order of seconds. On the other hand, we observe
long-term fluctuations, as can be seen from Figure 2. These fluctuations are
presumably caused by a changing load at the processor. The long-term fluc-
tuations in calculation times suggest that reduction of the running times can
be realized by dynamically allocating more tasks to relatively fast processors.
Second, Figures 2–5 show that the burstiness in the send times is larger than
in the calculation times. We observe that the send times do not have a long-
term effect, whereas the calculation times often show huge long-term fluctua-

Table 1. Used nodes in our experiments

Site Abbreviation Nodename
University of Utah utah1 planetlab1.flux.utah.edu
University of Washington wash1 planetlab01.cs.washington.edu
University of Arizona arizona1 planetLab1.arizona-gigapop.net
California Institute of Technology caltech1 planlab1.cs.caltech.edu
University of California, San Diego ucsd1 planetlab1.ucsd.edu
Boston University boston1 planetlab-01.bu.edu
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Fig. 2. Calculation times of 250 iterations in Arizona1

Fig. 3. Calculation times of 250 iterations in Utah1

tions. This observation also suggests that there is a great potential reduction
in calculation times, which can be achieved by adapting the load according
to the current speeds of the processors. Note that those findings correspond
with the results about fluctuations of CPU availability in time-shared unix
systems [11]. In this paper we do not investigate the causes of those fluctua-
tions, but we are interested in how to deal with them. That corresponds with
the idea that it will be hard to retrieve causes of fluctuations in the future
grid.

4 Load Balancing Strategies

Load balancing is an effective means to reduce running times in a heteroge-
neous environment with fluctuating processing speeds. In this section we quan-
tify the feasible reduction in running time by using different load balancing
strategies. We consider two types of load balancing strategies: static and
dynamic.
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Fig. 4. Send times of 250 iterations from Caltech1 to Arizona1

Fig. 5. Send times of 250 iterations from Boston1 to Ucsd1

4.1 Definitions

Static Load Balancing (SLB) strategies use a number of ”cold iterations” to
estimate the average processor speeds, in order to balance the load. Define

S(n) := total running time with SLB using the average calculation times
of the first n iterations.

Note that the special case S(0) corresponds to the running time of a run
without load balancing, that is, with equal loads.

Berman et al. [12] show that forecasting the performance of the network is
useful for Dynamic Load Balancing (DLB). Several prediction methods have
been developed for network performance and CPU availability [13]. We use
the method of Exponential Smoothing (ES) to predict calculation times (see
also [14]). ES appears to be a very simple and effective method to reduce run-
ning times. ES is a forecasting method that on the one hand filters out outliers
in the data, and on the other hand reacts quickly to long-term changes. Denote
by yn the realization of the n-th iteration step, and let ŷn denote the prediction
of yn. Then ES is based on the following recursive scheme:



348 M. Dobber, G. Koole, and R. van der Mei

Fig. 6. Exponential Smoothing of calculation times of Arizona1

ŷn = αyn−1 + (1 − α)ŷn−1 . (1)

Figure 6 shows the calculation times as a function of the iteration sequence
number. The results show that our ES predictor performs very well: even the
high fluctuations are well tracked by the forecasts.

In the context of the dynamic load balancing strategies the ES-based pre-
diction ŷn represents the predicted calculation time in the n-th iteration, n =
1, 2, . . ..

If we want to change the load of the processors in the case of Dynamic Load
Balancing we have to move rows in the grid from one processor to the other.
To avoid excessive communication we introduce a parameter T indicating how
often we move rows around. Define for the ES-based Dynamic Load Balancing
strategies:

D(α, T ) := running time with DLB using ES with parameter α,

and load balancing every T iterations.

4.2 Calculation of Running Times

As described in Section 3 we collected data about calculation and send times
by doing 10 runs of the Red-Black SOR. In the subsection before we defined
several Static and Dynamic Load Balancing strategies. In this subsection we will
describe the calculation methods we used to generate estimates of the running
times of runs using the optimal static and dynamic strategies from the datasets
of the original runs.

We assume a linear relation between the number of tasks (in SOR: the number
of rows) and the calculation times of those tasks together, and also a linear
relation between the amount of data (in SOR: the number of rows) sent by the
application, and the total send time. We also assume that the overhead involved
in load balancing is negligible in the long time scale (of minutes) considered here,
because calculation times are significantly higher than the overhead.
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To start, we explain how we compute an estimation of the lowest possible
running time under a DLB strategy, denoted by D∗. To this end, we use the
measured calculation times in the original run to estimate the lowest possible
calculation time with the optimal DLB strategy. Let nolb rowsj be the number
of rows assigned to processor j = 1, . . . , P in the original run, and let nolb calci,j

be the measured calculation time on processor j for the ith iteration, i = 1, . . . , I.
Then, nolb rowsj/nolb calci,j is an approximation of the number of rows that
can be executed during iteration i on processor j per time unit. The total pro-
cessing rate for iteration i is therefore

∑
j nolb rowsj/nolb calci,j , and the time

it takes under a perfect DLB strategy to do iteration i is therefore

D∗ calci =

∑P
j=1 nolb rowsj

∑P
j=1nolb rowsj/nolb calci,j

=
(
∑P

j=1nolb rowsj)(
∏P

j=1nolb calci,j)
∑P

j=1(nolb rowsj

∏
k �=j nolb calci,k)

.

(2)

Note that D∗ calci is the estimated calculation time for iteration i with
the optimal dynamic load balancing strategy, assuming all processor speeds are
known in advance, and that D∗ calci is the same for all processors. In this
calculation we assumed that the overhead in realizing the dynamic load balancing
is negligible.

Now we focus on the calculation of an estimation of the lowest possible run-
ning time under SLB, denoted by S∗. With respect to the dynamic situation, we
compute the average processing rate over the whole run, and not the rate per
iteration. This rate is given by

nolb rowsj

1
I

∑I
i=1 nolb calci,j

.

Thus the number of rows S∗ rowsj that have to be assigned to processor k
under the SLB strategy is equal to

S∗ rowsj =
P∑

k=1

nolb rowsk

nolb rowsj

1
I

∑I

i=1
nolb calci,j

∑P
k=1

nolb rowsk
1
I

∑I

i=1
nolb calci,k

, (3)

and we estimate that iteration i on processor j takes

S∗ calci,j =
S∗ rowsj

nolb rowsj
nolb calci,j . (4)

time units.
To calculate the running times of the Static and Dynamic Load Balancing

strategies we first derive the number of rows, S(n) rowsj and D(α, T ) rowsi,j re-
spectively, each processor j receives from the strategy in each iteration i. For this
step we used the methods described in the previous subsection: for calculating
S(n) rowsj we used the first n iterations and for D(α, T ) rowsi,j Exponential
Smoothing. Next, with the following formulas we compute the new calculation
times of the strategies for each processor j in iteration i:
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S(n) calci,j =
S(n) rowsj

nolb rowsj
nolb calci,j , (5)

D(α, T ) calci,j =
D(α, T ) rowsi,j

nolb rowsj
nolb calci,j . (6)

Above, we explained how we calculated the new calculation times for each
strategy in each iteration. Finally, we put those new calculation times and the
send times of the original run in a plain model to derive the new wait times and
the estimated running times of the different strategies.

5 Performance Comparison: Experimental Results

To compare the performance under different load balancing strategies, we have
estimated the running times under a variety of static and dynamic load balancing
schemes. We define the speedups of S(n), D(α, T ), S∗ and D∗ as the number of
times those strategies are faster than the run without load balancing:

speedup S(n) :=
S(0)
S(n)

, (7)

speedup D(α, T ) :=
S(0)

D(α, T )
, (8)

speedup S∗ :=
S(0)
S∗ , (9)

speedup D∗ :=
S(0)
D∗ . (10)

Table 2 shows the speedups that can be made by load balancing on the basis
of ES predictions, compared to the case with no load balancing, for a variety of
load balancing strategies. Based on extensive experimentation with the value of
α, we found that a suitable value of α is 0.5.

The results shown in Table 2 lead to a number of interesting observations.
First, we observe that there is a high potential speedup by properly reacting
to fluctuations of processing speeds by dynamic load balancing. The potential
speedup is shown by the speedup of D∗ in Table 2; in the optimal dynamic load
balancing case it is possible to obtain a speedup of 2.5 minus the overhead for
the running times, and in 20% of the iterations even more than 3.6. Second, we
observe that despite the inaccuracy in the predictions of the calculation times
the speedup factor by applying dynamic load balancing is still close to the “the-
oretical” optimum. Even load balancing every 200 iterations, which relatively
causes almost no extra overhead compared to the total running time, leads to an
average speedup of 2.0 compared to the case of no load balancing. Third, we also
observe that even if a better static load balancing scheme is used as a bench-
mark, the speedup factor realized by implementing a dynamic load balancing
scheme is still significant.
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Table 2. Relative improvements compared of different load balancing strategies (com-
pared to no load balancing)

LB strategy Mean speedup of 10 runs
S(0) 1.0
S(1) 1.2
S(10) 1.2
S(20) 1.3
S∗ 1.9
D(0.5, 1) 2.5
D(0.5, 2) 2.5
D(0.5, 3) 2.4
D(0.5, 4) 2.4
D(0.5, 5) 2.4
D(0.5, 10) 2.3
D(0.5, 20) 2.3
D(0.5, 30) 2.3
D(0.5, 40) 2.3
D(0.5, 50) 2.2
D(0.5, 100) 2.2
D(0.5, 200) 2.0
D(0.5, 300) 2.0
D(0.5, 400) 1.8
D(0.5, 500) 1.7
D∗ 2.5

6 Conclusions and Further Research

The results presented in this paper raise a number of challenges for further re-
search. First, the results demonstrate the importance of effectively reacting to
randomness in a grid environment. The development of robust grid applications
is a challenging topic for further research. Second, in the results presented here
we have focused on the fluctuations in processing speeds. However, in data-
intensive grid applications the fluctuations in the available amount of network
capacity may be even more important than fluctuations in processor speed. To
this end, extensive experiments need to be performed to control changing net-
work capacities. Third, more research has to be done on the aspect of selecting
the best predicting methods for processor speeds. With those methods general
dynamic load balancing algorithms for regularly used parallel applications have
to be developed. Finally, in this paper we focus on the SOR application, which
has a relatively simple linear structure (see Figure 1). One may suspect that
even larger improvements of the running times may be obtained for more com-
plex computation-intensive applications with more complex structures, which is
an interesting topic for further research.
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