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Modeling the emergency cardiac in-patient flow  

An application of queuing theory 

    

    

 

Abstract 
 

This study investigates the bottlenecks in the emergency care chain of cardiac in-patient flow. The 

primary goal is to determine the optimal bed allocation over the care chain given a maximum number 

of refused admissions. Another objective is to provide deeper insight in the relation between natural 

variation in arrivals and length of stay and occupancy rates. The strong focus on raising occupancy 

rates of hospital management is unrealistic and counterproductive. Economies of scale cannot be 

neglected. An important result is that refused admissions at the First Cardiac Aid (FCA) are primarily 

caused by unavailability of beds downstream the care chain. Both variability in LOS and fluctuations in 

arrivals result in large workload variations. Techniques from operations research were successfully 

used to describe the complexity and dynamics of emergency in-patient flow. 
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1. INTRODUCTION 

Capacity decisions in hospitals are made in general without the help of quantitative model-based 

analyses [12]. Over the past years hospital managers have been stimulated to reduce the number of 

beds and increase the occupancy rates to improve operational efficiency. This strategy is 

questionable. Variability in length of stay (LOS) has a major impact on day-to-day hospital operation 

and capacity requirements. If this variability is disregarded during modeling an unrealistic and static 

representation of reality will emerge. A model, only based on average numbers, is not capable of 

describing the complexity and dynamics of the in-patient flow. This is also known as the flaw of 

averages. 

Management does not consider the total care chain from admission to discharge, but mainly focuses 

on the performance of individual units. Not surprisingly, this has often resulted in diminished patient 

access without any significant reduction in costs. The suggested solutions are suboptimal. 

In this study we investigate the emergency in-patient flow of cardiac patients in a university medical 

centre. This particular patient flow is characterized by time-varying arrivals at the First Cardiac Aid 

(FCA), the department where emergency cardiac patients enter the hospital. After initial treatment 

patients are transferred to the Coronary Care Unit (CCU) before they go to the normal care clinical 

ward (NC). 

Many hospitals have trouble keeping the right resources, such as beds and personnel, available for 

arriving patients. Measurements show that the CCU in the considered hospital operates at occupancy 

rates greater than 95%. As a result, it frequently occurs that the CCU has insufficient capacity 

because the unit is full. Consequently, the number of refused admissions at the FCA is significant and 

numerous patients are turned away to other referring hospitals.  

This is unacceptable and puts a great pressure on the required quality of care. More and more 

hospitals have to account for their quality of care. An admission guarantee for all patients entering the 

emergency department is one of the main goals of the hospital. Besides this service requirement, one 

has to consider the medical emergency aspect. In case of a heart attack, the sooner someone gets to 

the emergency room, the better his or her chance of not only surviving, but also of minimizing heart 

damage following the attack. This is often referred to as the ‘Golden Hour’ [14]. This study applies a 

queuing model to analyze congestion in the emergency care chain. With this model the number of 

beds in the care chain is determined for several service levels. 

In section 2 the structural model is constructed followed by the data analysis in section 3. Section 4 

describes the impact of fluctuations in arrivals and variation in LOS on capacity requirements. In 

section 5 the phenomenon of blocking and the mathematical model are introduced. Section 6 gives 

the results and the paper ends with the conclusion and discussion in section 7. 
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2. STRUCTURAL MODEL 

The first phase of the study is the construction of a structural model (or flowchart) of the patient flow. 

Such a model describes the different patient routings in a qualitative manner and defines the relations 

between different hospital units. After expert meetings with cardiologists we decided to identify two 

different patient flows. The primary patient flow enters the system at the FCA and leaves the hospital 

after a stay at the CCU and NC. The different departments are defined as follows: 

• First Cardiac Aid: A hospital unit intended to provide rapid diagnosis and initiation of treatment for 

subjects with acute symptoms probably due to cardiac disease (for example chest pain, syncope, 

palpitations, dyspnea) 

• Coronary Care Unit:  A hospital unit that is specially equipped to provide intensive care of patients 

with severe acute or chronic heart disease (for example acute coronary syndromes, arrhythmia, 

heart failure) 

• Normal Care: A hospital unit equipped to provide non-intensive care to a particular group of 

patients, in this case patients with cardiac disease.   

 

A secondary patient flow, originating from surrounding hospitals, enters the CCU and returns to other 

hospitals after treatment, thus bypassing the NC. These patients are hospitalized to have immediate 

percutaneous (or balloon) angioplasty (PTCA) [3]. This kind of treatment is referred to as top-clinical 

care. Only certified hospitals are allowed to perform this type of medical procedure. 

The structural model with the two different patient flows is shown in Figure 1. 

 

(please insert Figure 1 about here) 

 

Health care processes are characterized by a great uncertainty. A large variety of possible patient 

routings can be distinguished. If we investigate the different flows throughout the hospital in great 

detail the flowchart becomes like the path of a pinball. Therefore, Figure 1 is not striving for 

completeness. Nevertheless, it is possible to reduce complexity without losing integrity by focusing on 

the most critical patient flows. In this study both the primary and secondary patient flow are taken into 

account. 
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3. DATA ANALYSIS 

Computerized hospital records of all admissions at the FCA in 2003 have been used to analyze the 

arrival pattern of new patients. The patient flow is also quantified with the use of this data, in which the 

different routings and LOS distributions at the CCU and NC have been determined.  

 

 

3.1 Arrivals 

Historical data shows that the total number of annual arrivals (primary patient flow) fluctuates around 

3000. In 2003, the total number of arrivals at the FCA was 2838. The average number of patients 

arriving per day is therefore 7.78. The unscheduled arrivals at the FCA are modeled as a Poisson 

process with intensity λ = 7.78, see Figure 2. The Poisson arrival assumption has been shown to be 

fitting in studies of unscheduled arrivals [19]. 

 

(please insert Figure 2 about here) 

 

The FCA is characterized by time-varying arrivals during the day. Therefore, the arrival pattern over a 

twenty-four hour period has been determined, see Figure 3. Respectively, 14%, 55% and 31% of all 

patients arrive in the intervals 00.00-08.00, 08.00-16.00 and 16.00-24.00. 

 

(please insert Figure 3 about here) 

 

As the LOS at the FCA (± 6 hrs) is of the same order as the interval length in the arrival pattern (8 

hours) transient effects occur. The secondary patient flow is also unscheduled and modeled as a 

Poisson process with parameter λ = 1.37. 

 

 

3.2 Routings 

In section 2 the different patient routings are visualized in a flowchart. These routings are quantified in 

Table 1. Notice the alarming amount of refused admissions. In general, a high percentage of refused 

admissions is not uncommon for emergency departments [10]. Therefore, the organization of the 

emergency care is a hot topic for hospital professionals, managers and policy makers. 

 

(please insert Table 1 about here) 

 

The refused admissions are calculated as a percentage of the total number of presentations at the 

FCA and are only observed in the primary patient flow. 
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The term ‘refused admission’  is to some extent misleading. All arriving patients are admitted to the 

FCA for initiation of treatment. After this first aid some patients have to be transferred to surrounding 

hospitals due to unavailability of beds downstream the care chain. This is what we entitle a refused 

admission.  

 

3.3 Length of Stay distributions 

The number of days in hospital for a patient is described by the term length of stay (LOS). LOS is 

defined as the time of discharge minus time of admission. Following, the average length of stay is 

abbreviated as ALOS. In relation to industrial service times LOS distributions are characterized by a 

relatively high variability and a heavy tail. In probability theory the coefficient of variation (CV) is a 

measure of dispersion of a probability distribution. It is defined as the ratio of the standard deviation 

(σ) to the mean (µ): 

µ

σ
=VC

 

This coefficient is an important measure when describing health care processes. Values of the CV are 

usually ≥ 1 [8]. For the exponential distribution the CV equals 1. Another important factor is that the 

real (or measured) LOS is generally not equal to the LOS indicated by hospital professionals. Both 

medical and logistic reasons determine the LOS. The difference between the two, the additional LOS, 

is often caused by congestion or chain effects [11]. When a patient is ready to be transferred to 

another unit where no beds are available the patient remains at his current station and waits for a free 

bed. This type of congestion also occurs between hospitals and other health care institutions such as 

nursing homes. In other words, a certain part of the total LOS consists of additional time [2]. This 

fraction is often substantial; measurements indicate 20-30% of total LOS.   

In the next three sections LOS-values are presented that were subtracted from the hospital 

information system, thus corresponding with the real LOS, including the additional time. 

 

3.3.1 First Cardiac Aid (FCA)  

For 2401 (85%) of all arrivals the LOS was registered. The ALOS at the FCA is 6.4 hours and patients 

never stay longer than 24 hours. The median is 5 hours and the CV equals 0.7. 

 

3.3.2 Coronary care unit (CCU) 

At the CCU two types of patients can be identified. The first originates from the primary patient flow 

which enters the hospital at the FCA. The secondary patient flow consists of the emergency PTCA’s 

(see Figure 1). The ALOS of the primary patient flow at the CCU is 67 hours, the median is 48 hours 

and the coefficient of variation equals 0.99.  
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For the secondary patient flow, the ALOS is 18 hours (median is 5), which is relatively short compared 

to the primary patient flow at the CCU. Nevertheless, the variability is remarkable (CV = 2.6). About 

80% of all patients (group 1, N = 394) leaves within the first 12 hours of their hospital stay. The 

remaining 20% (group 2, N = 100) has a prolonged hospital stay and occupy a relatively great part of 

the available resources. We define this demand as Total Resource Consumption (TRC) which is 

defined as the sum of all individual LOS values for both groups. The TRC of group 1 and group 2 is 

respectively 19% and 81%. Thus, we see that approximately 80% of the available resources are 

occupied by only 20% of the patients. This is known as Pareto’s Principle or the 80/20 rule and is 

recognized in many quantitative studies. Due to the smaller volume of group two hospital 

professionals and management easily concentrate on group one. Thinking in terms of TRC group two 

is far more interesting as the potential gain in terms of resource consumption, patient flow and 

consequently throughput is higher. Thus, the value of Pareto’s Principle is that it reminds you to focus 

on the 20 percent that matters. 

 

3.3.3 Normal Care clinical ward (NC) 

The ALOS at the ward is 164 hours, about 7 days. The median equals 113 hours and the CV is 1.07. 

As in the previous section two groups are identified. Group one, those patients with a LOS smaller 

than 240 hours (10 days), contains 81% off the total number of patients, and consumes 47% of the 

available resources. Group two contains patients who stay longer than 10 days. This is the remaining 

19% and they consume 53% of the capacity. The tail of the distribution is not as ‘heavy’ as at the CCU 

but the disproportional demand of both groups on the available resources remains remarkable. The 

LOS distribution at the NC is presented in Figure 4. 

 
(please insert Figure 4 about here) 

 

Table 2 summarizes the LOS characteristics of the emergency care chain. As stated before these 

numbers can not be interpreted as constants of nature. The consequence of chain effects, such as 

congestion, on LOS-values must be considered seriously. The general conclusion is that health care 

processes are characterized by large variability in LOS. Coefficients of variation are often equal or 

greater than 1.  

(please insert Table 2 about here) 
 

Many hospitals put energy in reducing the average length of stay. When a LOS-reduction has been 

realized at a particular nursing unit hospital management has two options: 

1. Increasing the number of admissions on the same amount of beds. 

2. Keeping the production targets constant while reducing the number of beds of the unit. 

In both cases turnover per bed will rise. The choice depends largely on the type of contract hospitals 

make with health insurance companies. 
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4. IMPACT OF VARIATION ON CAPACITY REQUIREMENTS 
In this section the impact of fluctuations in arrivals and variation in LOS on capacity requirements is 

demonstrated. Queuing theory is used to quantify this impact. To demonstrate the effects we assume 

Poisson arrivals, exponential service times and an infinite number of beds. The outcome of this 

analysis is the number of beds required to accommodate all arrivals. This is relevant because one of 

the main goals of the hospital is providing an admission guarantee for all arriving patients. 

Nevertheless, in real life the number of beds is fixed and as a consequence patients are turned away. 

This situation, with limited capacity and blocking, is described in section 5. 

As mentioned in section 3 Poisson arrivals can be used to describe unscheduled hospital admissions 

[19] and for simplicity we assumed exponential service times. The queuing system under investigation 

is referred to as M\M\∞ in Kendall’s notation [18]. The following parameters describe the queuing 

system: 

 

λ =  average arrival rate    

µ =  average length of stay 

B(t) =  number of patients in the system at time t or number of beds occupied at time t 

 

A very important and powerful formula in the operations research, defined by Little [13] can be applied 

to almost every queuing system (Eq. 1). It shows the relation between the expected number of 

patients in the system, EB(t), and the average length of stay (µ), 

 

λµ=Ε )t(B   [1] 

 

Due to variations in number of arrivals and LOS the average value is exceeded on a regular basis. 

For example, at an intensive care unit (ICU) 5 patients arrive per day on average. The average LOS is 

6 days. The parameters of this queuing system are: λ = 5 and µ = 6. Using Little’s formula, the 

expected number of patients at the ICU is 30. If management decides to size the unit on this average 

based calculation, operational problems will occur on a regular basis. For the M\M\∞ model one can 

easily calculate the probability that i beds are occupied (Eq. 2). It is just a function of EB(t), or λµ, the 

expected number of patients in the system, 

 

!i

)(
eP

i

i

λµ
= λµ−

 
 [2] 
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The probability that more than 30 beds are occupied is easily calculated, 

 

45.0
!i

)30(
eP)30i(P

31i

i

31i

30
i∑ =∑==>

∞

=

∞

=

−
 

 

In other words, due to variability in arrivals and LOS, in 45% of the time more than 30 beds are 

required. Thus, the average based calculation is not feasible. This is entitled the flaw of averages. 

Gallivan [5] demonstrates that a high degree of reserve capacity (up to 30%) is required to avoid high 

rates of operation cancellation due to unavailable beds downstream the care chain. This is a first 

illustration of the huge impact of variation on capacity requirements. The next sections describe this in 

more detail. 

 

 
4.1 Multiple state analysis 

In this section the occupation of the FCA is investigated. As stated in section 3 the arrivals at the FCA 

are characterized by a strong fluctuation over a 24-hour period. The probability distribution of the 

number of beds occupied at the FCA is calculated with the use of a M\M\∞-model. First, the average 

arrival rate (λ = 7.78) is assumed to be constant over the day. The ALOS (µ) equals 6.4/24 = 0.27 

days. Thus, the expected number of beds occupied is 2.1.  

Then, the 24-hour period is divided in three intervals of each eight hours. This is a practical choice 

driven by the observed arrival pattern and by the working hour’s schedule of personnel. Table 3 

derives the values of the arrival rate for these different intervals (notated as λ
*
). The arrival rate during 

office hours (08.00-16.00) increases significantly compared to the situation in which λ is kept constant. 

This is an important conclusion. 

 

(please insert Table 3 about here) 

 

Figure 5 presents the probability distributions for the number of beds occupied for λ = 7.78 (mean) 

and λ
*
 = 12.8 (max). The expected number of beds occupied increases from 2.1 to 3.4 (+ 62%). 

Flexible staffing levels are a possible answer to this strong variation in workload [6]. 

 

(please insert Figure 5 about here) 

 

The approach via the definition of multiple states is just a first rough method to gain insight in the 

effects of variation in arrival rate. Simulation is often useful to capture the impact of time variant arrival 

rates at emergency departments [1]. 
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4.2 Steady state analysis 

For both the CCU and the NC a steady state analysis has been performed. This means that 

fluctuations in arrival rate are neglected. The M\M\∞-model is used again to calculate the state 

probabilities. 

The expected number of beds occupied is 6 for the CCU and 16 for the NC. The probability 

distribution of the number of beds occupied can be described with an exponential distribution. 

Therefore, using respectively 6 and 16 beds will result in day-to-day operational difficulties. 

 

4.3 The situation in the hospital under investigation 

In this section we compare the actual situation in the hospital with the quantitative analysis performed 

so far. The number of beds on the FCA and CCU is respectively 5 and 6. The NC is a mixed ward 

where both cardiothoracic and cardiac (scheduled and emergent) patients stay. The number of beds 

was 28 but as a consequence of the mixed population it is not possible to compare required and 

available resources for only the emergency cardiac in-patient flow.  

The occupancy rate at the FCA is unknown but the analysis in section 4.1 illustrates that bed capacity 

seems sufficient. Hospital professionals confirm this conclusion. In the average (λ = 7.78) and 

maximum workload case (λ
*
 = 12.8) the probabilities that the number of beds required exceeds 5 are 

respectively 2% and 13% (Figure 5).  

As stated in section 4.2 we expect a CCU with 6 beds to have frequent operational difficulties. The 

occupancy rate distracted from management information is approximately 97%. This is consistent with 

the model and gives a good example of the flaw of averages in practice.  
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5. MODELING THE EMERGENCY CARDIAC CARE CHAIN 

This chapter describes the model which has been developed for the primary goal of this study. In the 

previous section we assumed an infinite number of beds. In this section capacity is limited. First, in 

section 5.1 the phenomena of blocking and economies of scale are introduced. Both blocking (e.g. 

refused admissions) and economies of scale are important features of health care processes and are 

directly related to the quality of care. Ridge et al [15] also describe the non-linear relationship 

between number of beds, mean occupancy level and the number of patients that have to be 

transferred through lack of bed space. In section 5.2 the queuing system which is used for this 

particular case is described shortly.  

 

5.1 The phenomenon of blocking and impact of economies of scale on occupancy rates 

An important model from queuing theory is the Erlang Loss model [4] or M\M\c\c in Kendall’s notation. 

In this model customers (for example patients) arrive according to a Poisson process with intensity λ. 

This is the real demand, thus including the refused admissions. The LOS of arriving patients is 

independent and exponentially distributed with expectation µ. The number of beds is equal to c. There 

is no waiting area, which means that an arriving patient who finds all beds occupied is blocked. In 

real-life the consequence of blocking could well be a refused admission. 

This is a more realistic representation of emergency in-patient flow. The fraction of patients which is 

blocked and sent away to other hospitals in the long run (Pc) can be calculated with the Erlang Loss 

formula, 

( )

( ) !k/

!c/
c c

0k

k

c

P
∑

=

=

λµ

λµ   
[3]

 

 

The occupancy rate (ρ) is related to the real demand (λ) and LOS (µ) and can be defined as follows, 

 

c

)P1(

availablebedsofnumber

occupiedbedsofnumberAverage c µ⋅λ−
==ρ

   
[4]

 

 

 

The term (1-Pc)λ can be entitled as the effective demand as the refused admissions are subtracted 

from the real demand. Furthermore, the product λµ is known as the workload of the system.  

Many hospitals use the same target occupancy rate for all hospital units, no matter the size of the unit. 

In general the unit size varies between 6 and approximately 60 beds. The target occupancy rate is 

typically set at 85% and has developed into a golden standard [7]. The feasibility of this target is no 

matter of discussion in the considered hospital.  
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In order to demonstrate the relation between the size of a hospital unit, the feasibility of the 85% 

target and the fraction of refused admissions two calculations have been made. Both calculations 

have been performed via iteration of Eq. 3 and 4. 

1. The percentage of refused admissions (Pc) given an occupancy rate (ρ) of 85% (2 ≤ c ≤ 60) 

2. The target occupancy rate (ρ) for PC = 0.05 (5% refused admissions) (2 ≤ c ≤ 60) 

 

Table 4 and Figure 6 present the results both numerically and graphically.  

 

(please insert Table 4 about here) 

 

(please insert Figure 6 about here) 

 

The conclusion is clear and important. Larger hospital units can operate at higher occupancy rates 

than smaller ones while attaining the same percentage of refused admissions. Therefore, one target 

occupancy rate for all hospital units is not realistic. The 85% target is only attainable for units with 

more than 50 beds, assuming Pc = 0.05 is acceptable. If we hold the 85% target for a small unit such 

as the CCU (6 beds) nearly half of all arriving patients is blocked.  

Currently, the discussion about refused admissions does not focus on the direct relation between the 

size of a hospital unit and the feasibility of target occupancy rates. 

 

5.2 Two-dimensional Markov process 

Simulation models have been frequently used to describe the emergency in-patient flow [1, 9, 16, 17]. 

Although simulation is a powerful tool for investigating complex systems, we belief the choice is often 

made arbitrarily and too easily. The complexity of the care chain in this study does not necessarily 

require simulation. Therefore, a two-dimensional Markov process with blocking is applied to analyze 

the congestion in the acute cardiac care chain. An analytical approach has several advantages over 

simulation: 

• Costs are less  

• Easier to implement  

• Generates exact solutions 

 

Two important reasons to choose for simulation models are: 

• The graphical interface 

• Simulation models are often more understood by doctors and managers and, therefore, more 

convincing 
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Furthermore, simulation can analyze the impact of time-varying arrival rates while a math model 

cannot. Also, simulation can be valuable when LOS data cannot be fit by any distribution. 

Nevertheless, we preferred an analytical approach for this particular case study. 

The primary goal was to determine the optimal bed allocation over the emergency care chain. In the 

current situation capacity at the FCA seems sufficient, and therefore, this station is left out of the 

analysis. This choice reduces the complexity of the model. The following parameters are introduced, 

 

N1 = number of beds at the CCU 

N2  = number of beds at the NC 

x  = number of CCU-patients 

y = number of NC-patients 

 

with the following constraints, 

 

x + y ≤ N1 + N2 the total number of patients in the care chain is less than or equal to the total 

amount beds in the care chain 

x ≤ N1 the number of CCU-patients is less than or equal to the number of beds at  

the CCU 

 

A graphical representation of the problem is shown in Figure 7. The connection line between x and N1 

means that CCU patients can only stay at the CCU. NC-patients (y) can stay in the CCU as well as in 

the NC which is visualized in Figure 7 by the two lines starting at ‘y’. Furthermore, there are three 

possible transitions: 

 

1 Patient is transferred from the FCA to the CCU 

2 Patient is transferred from the CCU to the NC 

3 Patient is discharged from the NC  

 

To reduce complexity the re-admissions (flowing from NC to CCU, see Figure 1) are left out of the 

analysis. 

(please insert Figure 7 about here) 

 

A computer program has been written that computes numerically the stationary distribution of this two-

dimensional Markov process. As output it gives the number of refused admissions for given arrival 

rate, number of beds at the CCU and NC and LOS at these stations. 

 

Input variables 
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6. RESULTS OF CASE STUDY 

In this section the numerical results of this study are presented. The primary goal is to determine the 

optimal bed allocation over the emergency cardiac care chain, given a required service level. Defining 

target service levels is relatively new for healthcare institutions and originates from the service sector 

(e.g. call centers). The definition of what service level exactly means and how it is measured is critical. 

Service level in this study is closely related to the percentage refused admissions. The decision to 

refuse a patient will be influenced by patient characteristics, to what extent is unclear. The choice of 

how high the target service level must be is made arbitrarily.  

The service level requirement is set at a maximum of 2% refused admissions at the FCA. This is a 

major improvement compared to the current fraction of refused admissions (13%). In our model, as 

described in section 5.2, the blocking percentage at the CCU is calculated. Therefore, the service 

level requirement is rewritten into a maximum of 5% blocking at the CCU. In terms of number of 

refused patients that is equivalent.  

A baseline measurement shows that the fraction of refused admission at the CCU equals 

383/(383+314+500) = 32%. We relate the number of refused admissions to all arrivals at the CCU, 

thus including the secondary patient flow (500 pts). The outcome of this calculation of refused 

admissions is even more excessive than the calculation in Table 1. Approximately 1 out of 3 arrivals 

at the CCU is sent away. 

 

We varied the number of CCU beds from 5 to 15 and the number of NC beds from 12 to 19. This 

choice is driven by an educated guess. The following assumptions were made concerning the LOS. 

• The LOS at the CCU is corrected for the additional waiting time (based on measurements). 

The additional waiting time was 27% of the original length of stay. The ALOS at the CCU now 

equals 44 – 0.27 * 44 = 44 -12 = 32 hours (1.3 days). 

• The LOS at the NC is corrected for the additional time at the CCU. Furthermore a LOS-reduction 

of 20% is assumed. The ALOS at the NC now equals 0.80 * (164 + 12) = 141 hours (5.9 days). 

 

Table 5 shows the results. The solution area is defined by those values which are closest to 5%. 

 

(please insert Table 5 about here) 

 

Table 5 makes clear that several bed combinations are possible to meet the service level 

requirement. In this case the optimal solution is defined as the one with minimal personnel costs. In 

order to determine personnel costs for each bed combination the following conversion rates are used: 

• 2,2 fte (full time equivalent) per CCU bed 

• 0,95 fte per NC bed 
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In Table 6 the costs are given for each bed combination. The cheapest combination within the solution 

area is 8 CCU beds and 16 NC beds (32.8 fte). Note that the model allows NC-patients on the CCU. 

For both hospital professionals and patients this is an undesirable situation as the patient is fit to go to 

the ward and should be transferred. In this scenario on average 0.28 bed at the CCU is occupied by a 

NC patient.  

The occupancy rate (ρ) at the CCU is now 55%, which means that on average only 4.4 beds out of 8 

are occupied. The average number of beds occupied at the NC equals 12.5 (ρ = 12.5/16 = 78%). 

Thus, the amount of reserve capacity which is needed to meet the service level requirement is 

substantial. As usual a balance between quality and costs must be found. 

 

(please insert Table 6 about here) 

 

As mentioned in section 3.3 the LOS is not a constant of nature. For the optimal solution a sensitivity 

analysis for the LOS at the CCU has been performed (Figure 8). A reduction of the LOS with 12 hours 

(0.5 day) reduces the blocking percentage with approximately 5% and is therefore significant. For this 

reason, quality improvement programs to reduce the ALOS are very useful. 

 

(please insert Figure 8 about here) 

 

For the optimal solution a sensitivity analysis for the number of arrivals at the CCU is performed. If the 

number of arrivals per day increases from 3.3 to 3.9 (+18%) the percentage refused admissions 

doubles to 10%.  

 

When interpreting these results one must be careful as it just describes one particular case. The way 

in which hospitals deal with the emergency cardiac in-patient flow differs. Besides, the emergency 

patient flow is a very dynamic care chain. The number of arrivals is time-variant, ALOS-values are not 

constant and are strongly affected by congestion. As a consequence it is crucial that the emergency 

care chain is flexible and that the crucial parameters of this patient flow such as arrival rate, LOS and 

the number of refused admissions are measured on a regular basis. 
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7. CONCLUSION 

This paper describes how OR techniques have been applied in modeling the emergency cardiac in-

patient flow. Bottlenecks at the First Cardiac Aid (FCA),  Coronary Care Unit (CCU) and Normal Care 

clinical ward (NC) have been identified and the impact of variation has been analyzed. The outcome 

of this study can be split in general and specific results. Some of the general results are not original 

but a confirmation of earlier results. Due to the impact of process variation on hospital operations and 

the logistical problems that are still observed in day-to-day practice we chose to mention this outcome 

again. 

 

General results 

• A calculation based on average data, regarding the number of arrivals and LOS, does not meet 

the actual capacity requirements and will most certainly result in frequent operational difficulties. 

The ultimate consequence is a refused admission. At this moment many hospital professionals, 

managers and policy makers are not conscious of this flaw of averages. 

• The length of stay (LOS) of patients in hospital is highly variable (Cv ≥ 1) and congestion or chain 

effects influence the average length of stay (ALOS). This additional waiting time can be as high as 

20-30% of the ALOS.   

• The characteristics of arrival patterns and LOS distributions result in large workload variations at 

nursing units. 

• The strong focus of hospital management on raising occupancy rates is unrealistic and 

counterproductive. Larger hospital units can operate at higher occupancy rates than smaller ones 

while attaining the same percentage of refused admissions (economies of scale). Therefore, one 

target occupancy rate for all hospital units is not feasible.  

• The 85% target is only attainable for units with a minimum of approximately 50 beds. Using the 

same target for smaller units results in large numbers of refused admissions.  

• A small group of patients consumes an enormous and disproportional part of the available 

resources. In terms of number of patients this group is little but in terms of total resource 

consumption this group is vital. Nevertheless most of the attention goes out to the larger group. 

This is known as Pareto’s principle. 

 

Specific results 

• Refused admissions at the FCA are primarily caused by unavailability of beds downstream the 

care chain (CCU and NC).  

• The variation in arrival rate at the FCA increases the workload during office hours with 62%. 
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• For a maximum of 2% refused admissions at the FCA a great amount of reserve capacity is 

required at the CCU and NC. The number of beds required at the NC and CCU is respectively 8 

and 16. The occupancy rate for this ‘optimal’ situation is respectively 55% and 78%. For the CCU 

this means 2 extra beds are required, a capacity expansion of 2/6 = 33%. 

 

This paper ends with a discussion and recommendations for further research. An interesting topic is to 

what extent the long and heavy tail of the LOS distribution, as shown in Figures 4, can be influenced 

or shortened. Most studies assume that this feature of LOS is inherent to health care processes. In 

other words, patients with prolonged hospital stay cannot be denied, we just have to cope with them 

and offer them the best possible treatment. 

As mentioned in section 3 the group of patients with prolonged hospital stay might be small but their 

resource consumption is disproportional, thus, they deserve a lot of attention. The introduction of 

dedicated ‘long-stay’ meetings where the treatment of these patients is matter of discussion might 

have a positive effect on the tail of the distribution.  

 

Obviously a high degree of reserve capacity is only one possible solution to decrease the number of 

refused admissions. It is also a very expensive choice as the beds are not used in an efficient way. 

Better and more effective is to benefit from the economies of scale. Therefore, merging departments 

is a good way to increase operational efficiency. A larger department is more flexible and the 

probability of a refused admission decreases. Hospital professionals seem to be aware of this 

phenomenon. The last decade more and more specialized intensive care units (cardiac, general, etc) 

merge into larger general units.  

 

In this paper the impact of variability (in both LOS and arrivals) on capacity requirements has been 

described. Some of the variability in health care processes, such as the fluctuation in emergency 

arrivals, is natural and cannot be influenced. Another part of the variation in care chains is introduced 

by ourselves and is artificial (such as OR-schedules). This non-natural variation must be reduced or 

eliminated.   

However, to reduce the number of refused admissions and consequently raise the quality of care this 

variability must be taken very seriously. In the present situation a high degree of reserve capacity is 

required, even though this is not a very economical solution. We have to start thinking about new 

ways of organizing the emergency patient flow. 
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FIGURES AND TABLES 

 
Figure 1. Flowchart of the emergency cardiac in-patient flow 
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Figure 2. Distribution of number of arrivals per day at the FCA, primary patient flow 
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Figure 3. 24-hour arrival pattern at the FCA 

Referral from FCA to: 2003 % 

Home 1899 66.9% 
Refused admission 383 13.5% 
Coronary Care Unit (CCU) 314 11.1% 
Normal care clinical ward (NC) 128 4.5% 
Other nursing unit 104 3.7% 
Not specified 10 0.4% 
Total 2838 100% 

Table 1. Percentage routings at the FCA 

First  
Cardiac Aid 

(FCA) 
 

Coronary Care 
Unit 

(CCU) 

Normal Care 
clinical ward 

(NC) 

Emergency  
PTCA 

Emergency 
PTCA 

Emergency 
admission 

Home 

Other 
nursing unit 

Readmission 

Refused 
Admission 

Discharge 

Not 
specified 

Primary flow 

Secondary flow 

NC 

CCU 

14% 55% 31% 
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Figure 4. LOS distribution at the NC  

 
 
 
 
 
 

 
Table 2. Summary of LOS-values in the emergency cardiac care chain 

 Mean (µ) LOS [hr] Median LOS [hr] σ CV [σ/ µ] 

First cardiac aid 6.4 5 4.6 0.7 
Coronary care unit, primary patient flow 67 48 66 0.99 
Coronary care unit, secondary patient flow 18 5 47 2.6 
Coronary care unit, mixed 44 22 62 1.4 
Normal care 164 113 175 1.07 

 

*
 Equivalent value of λ for different intervals  

Table 3. Definition of arrival rate for three 8 hour intervals 

Arrival rate constant over the day Three 8 hour intervals 
Interval 

# of arrivals % λ # of arrivals % λ
* 

00.00-08.00 946 33.3% 7.8 397 14% 3.3 
08.00-16.00 946 33.3% 7.8 (mean) 1561 55% 12.8 (max) 
16.00-24.00 946 33.3% 7.8 880 31% 7.2 
Total 2838 2838 7.8 2838 100% 7.8 
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Figure 5. The effect of fluctuation in arrivals on the FCA 

N  = 523 
ALOS = 164 hr 
Median = 113 hr 
CV = 1.07 

Group 1 Group 2 
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Number of 
beds (c) 

% Refused 
admissions (Pc) for  

ρ = 0.85 

Target 
occupancy rate 

for Pc =0.05 

Number of 
beds (c) 

% Refused 
admissions (Pc) for  

ρ = 0.85 

Target 
occupancy rate 

for Pc =0.05 

2 73.6% 18.1% 32 10.0% 79.4% 
4 57.3% 36.2% 34 9.2% 80.2% 
6 46.4% 46.9% 36 8.5% 80.9% 
8 38.6% 53.9% 38 7.9% 81.6% 

10 32.7% 59.0% 40 7.4% 82.2% 
12 28.2% 62.9% 42 6.9% 82.7% 
14 24.6% 66.0% 44 6.4% 83.2% 
16 21.7% 68.5% 46 6.0% 83.7% 
18 19.3% 70.6% 48 5.6% 84.2% 
20 17.3% 72.4% 50 5.3% 84.6% 
22 15.6% 74.0% 52 5.0% 85.0% 
24 14.1% 75.3% 54 4.7% 85.4% 
26 12.9% 76.5% 56 4.4% 85.7% 
28 11.8% 77.6% 58 4.2% 86.1% 
30 10.8% 78.5% 60 4.0% 86.4% 

 
Table 4. Relation between number of beds, fraction refused admissions (Pc) and occupancy rates (ρ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Relation between number of beds, fraction refused admissions (Pc) and occupancy rates (ρ) 
 

 

Figure 7.  Graphical representation of the problem  
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 23 

NC beds 
CCU beds 

12 13 14 15 16 17 18 19 

5 27,2 25,8 24,9 24,3 23,95 23,76 23,66 23,61 

6 20,5 18,7 17,3 16,3 15,7 15,28 15,04 14,91 

7 15,7 13,6 12 10,8 9,9 9,36 8,99 8,77 

8 12 9,9 8,3 7,1 6,14 5,51 5,09 4,82 

9 9,1 7,2 5,8 4,6 3,7 3,15 2,75 2,49 

10 6,85 5,2 3,95 3 2,3 1,77 1,44 1,23 

11 5,05 3,7 2,7 1,9 1,4 0,99 0,74 0,58 

12 3,64 2,6 1,8 1,21 0,8 0,55 0,38 0,27 

13 2,55 1,75 1,2 0,8 0,5 0,31 0,2 0,13 

14 1,74 1,15 0,7 0,5 0,3 0,17 0,1 0,06 

15 1,15 0,74 0,5 0,3 0,16 0,09 0,05 0,03 

 

 

 

Table 5. Relation blocking% at CCU and bed distribution over the care chain 

NC beds 
CCU beds 

12 13 14 15 16 17 18 19 

5 22,4 23,35 24,3 25,25 26,2 27,15 28,1 29,05 

6 24,6 25,55 26,5 27,45 28,4 29,35 30,3 31,25 

7 26,8 27,75 28,7 29,65 30,6 31,55 32,5 33,45 

8 29 29,95 30,9 31,85 32,8 33,75 34,7 35,65 

9 31,2 32,15 33,1 34,05 35 35,95 36,9 37,85 

10 33,4 34,35 35,3 36,25 37,2 38,15 39,1 40,05 

11 35,6 36,55 37,5 38,45 39,4 40,35 41,3 42,25 

12 37,8 38,75 39,7 40,65 41,6 42,55 43,5 44,45 

13 40 40,95 41,9 42,85 43,8 44,75 45,7 46,65 

14 42,2 43,15 44,1 45,05 46 46,95 47,9 48,85 

15 44,4 45,35 46,3 47,25 48,2 49,15 50,1 51,05 

 

 

Table 6. Relation costs (in fte) and bed distribution 
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Figure 10.  Sensitivity analysis of the LOS at the CCU 
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