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Optimal outpatient appointment
scheduling

Abstract

In this paper optimal outpatient appointment scheduling is studied. A local search pro-
cedure is derived that converges to the optimal schedule with a weighted average of ex-
pected waiting times of patients, idle time of the doctor and tardiness (lateness) as objective.
No-shows are allowed to happen. For certain combinations of parameters the well-known
Bailey-Welch rule is found to be the optimal appointment schedule.
Keywords: patient scheduling, health care, local search, multimodularity

1 Introduction
Outpatient appointment scheduling has been the subject of scientific investigation since the be-
ginning of the fifties of the previous century when Bailey and Welch wrote [1]. The objective of
appointment scheduling is trading off the interests of physicians and patients: the patients prefer
to have a short waiting time, the physician likes to have as little idle time as possible, and to
finish on time. Bailey & Welch [1] introduced the first advanced scheduling rule and tested it
through simulation. Since then many papers have appeared that analyzed appointment schedul-
ing in various settings (see Cayirli and Veral [2] for an overview). Most of them use simulation to
analyze the performance of different appointment scheduling rules. A new method is introduced
to determine optimal scheduling rules for arbitrary numbers of patients. Service time durations
are exponentially distributed and patients arrive on time. No-shows are allowed to happen. The
setting is discrete time, i.e., there is a finite number of (equally spaced) potential arrival moments.

A local search method is described that, starting from an arbitrary appointment schedule,
tries to find neighboring appointment schedules that are better. From Koole & Van der Sluis [7]
it follows that when the objective has a certain property related to convexity (called multimodu-
larity) then a locally optimal schedule is globally optimal. The main technical result of this paper
is the proof that our objective is indeed multimodular. This objective is a weighted sum of the
average expected patient waiting time, the idleness of the doctor during the session length, and
the tardiness. The tardiness is the probability that the session exceeds the planned finishing time
multiplied by the average excess.

The local search method is also implemented and available for public use on the world wide
web at obp.math.vu.nl/healthcare/software/ges. For big instances (many intervals) the computa-
tion times can be quite long. A faster local search method with a smaller neighborhood is also
implemented. It is not guaranteed that it terminates with a global optimum solution, but it gives
very good results, also for big instances, within a reasonable amount of time.

We give a short literature overview. The seminal paper on outpatient scheduling is Bailey &
Welch [1]. For an overview of the results obtained since then, see Cayirli and Veral [2]. Roughly
speaking we can classify the papers as follows: there are those that evaluate schedules (often
using simulation) and those that design algorithms to find good schedules. A recent example of
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the former, not included in [2], is Hutzschenreuter [6]. In addition to no-shows she considers
patients not arriving on time, and non-exponential service times. Those papers that present al-
gorithms to design schedules can also be divided in two: those that focus on continuous time,
which deal with finding the optimal interarrival intervals, and those that focus on discrete time,
where the question is how many arrivals should be scheduled at each potential arrival moment.
Pegden & Rosenshine [10] consider a continuous-time model. Their algorithm finds the opti-
mal arrival moments, assuming convexity of the objective in the interarrival times. Also Lau &
Lau [8] give a procedure for finding optimal arrival instants, again assuming convexity. Hassin
& Mendel [5] extend this work to no-shows. Wang [16, 17] proves optimality, for phase-type
service-time distributions, but for a limited number of patients. Denton and Gupta [3] formulate
the problem as a two-stage stochastic linear program. Their algorithm is a good approach for
quickly approximating large-scale systems. Also Robinson and Chen [12] consider a stochastic
linear program. They derive a fast heuristic for finding good and robust interarrival times, using
the fact that interarrival times are dome-shaped, meaning that they are shorter at the beginning
and near the end of the session, and longer in the middle.

Let us now consider papers that are most relevant to the current work as they are dealing
with discrete time, i.e., a finite number of potential arrival moments. In Liao et al. [9] a branch-
and-bound method is used to find the optimal schedule. This works only for small instances.
Vanden Bosche, Dietz & Simeoni [15] use a method that resembles the method of this paper in
a number of ways. They derive upper and lower bounds for the optimal appointment schedule.
To show these bounds they use what they call submodularity (Lemma 1 of [15]), which is in
fact multimodularity on a subset of the equations that we use (see the appendix). Using the
results of [15] upper and lower bound schedules (which often coincide) can be made starting
from specific schedules. Our results give convergence to the optimal schedule starting from any
schedule. The results of [15] are extended to different types of patients in Vanden Bosche &
Dietz [13], and also to no-shows in Vanden Bosche & Dietz [14]. The inclusion of different
types of patients is relatively straightforward, the sequence is optimized using local search, and
for each sequence the optimal schedule is determined using the method of [15]. Also our proofs
nowhere use the fact that service times are equally distributed. Summarizing, compared to the
work of Vanden Bosche and co-authors, our stronger sub/multimodularity results allow us to
formulate an algorithm that converges from any initial schedule to the optimal one.

The paper is structured as follows. In Section 2 a model is defined, in which we can compute
for an arbitrary appointment schedule the objective. In Section 3 the local search algorithm is
described. Section 4 is devoted to numerical results. The proof that our objective is multimodular
is given is Appendix A.

2 Model
For the scheduling problem we have to introduce some variables. A treatment/operation room is
operational during T intervals with length d (for example a day from 8.00AM till 4.00PM split in
intervals with length 10 minutes gives T = 48 and d = 10). Within these T intervals a total of N
patients should be scheduled. Patient service times are assumed to be exponentially distributed
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with rate µ (and expectation µ−1).
Let xt ∈ {0, . . . ,N} be the number of patients scheduled at the start of interval t. A schedule

is a vector (x1, . . . ,xT ) with
∑T

t=1 xt = N. So we have:

• β = 1
µ : average service time

• T : number of intervals

• d: length of interval

• N: total number of patients

• xt : number of patients scheduled at the start of interval t, t = 1, . . . ,T

In the model we make the following assumptions:

• The service times of patients are independent and exponentially distributed.

• Patients always come on time (no-shows are modeled later on).

In the following sections we will give the formulas for calculating for a given schedule the
mean waiting time, idle time and tardiness (lateness), which we call W (x), I(x) and L(x), re-
spectively. To compare schedules we give weights αW , αI , and αL to the three main factors to
obtain the overall objective function C(x) = αWW (x)+ αII(x)+ αLL(x). Our problem can now
be stated as follows:

min
{

αWW (x)+αII(x)+αLL(x)
∣∣∣ ∑t xt = N

xt ∈ N0

}
(1)

For a given schedule (x = (x1, . . . ,xT )) the probabilities of having i patients in the queue just
before new arrival(s) and just after arrival(s) can be calculated. This can be used to calculate the
mean waiting time, idle time and tardiness. We introduce the following notation:
pt−(i) = P(i patients in queue just before the arrival(s) at interval t) and
pt+(i) = P(i patients in queue just after the arrival(s) at interval t).

We start empty, thus p1−(0) = 1. Iteratively the other probabilities can be calculated as
follows:

p1−(0) ≡ 1,
pt+( j) = 0, 0 ≤ j < xt ,
pt+( j) = pt−( j− xt), j ≥ xt ,

p(t+1)−(0) =
∑N

i=0 pt+(i)bi,

p(t+1)−( j) =
∑N

i= j pt+(i)ai− j, j ≥ 0.

where

ai = P(# potential departures = i) =
(µd)i

i!
e−µd
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and

bi = P(# potential departures ≥ i) = 1−
i−1∑
j=0

ai.

Because of the exponential service time distributions the potential number of departures in any
interval has a Poisson distribution.

2.1 Mean waiting time of a patient
If a patient arrives and finds k patients in the queue (including the patient who is currently being
treated), then the mean waiting time of that patient will be k/µ. In our model patients arrive just
before a new interval alone or in groups. The ith one of that group has a mean waiting time of∑N

j=0 pt−( j) · ( j + i− 1)1
µ . This is just the mean waiting time of one patient, so we must sum

them all over the groups and intervals an divide that through all N patients. Thus we find the
following formula for the mean waiting time:

W (x) =
1
N

T∑
t=1

xt∑
i=1

N∑
j=0

pt−( j) · ( j + i−1)
1
µ

(2)

2.2 Mean idle time of a doctor
For calculating the mean idle time of a doctor, we calculate first the mean makespan M(x),
which is the time the last patient finishes. Then it is easy to find the mean idle time I(x), because
I(x) = M(x)−N/µ.

Set t̃ ≡{max t|xt > 0}. Now we know for sure that the makespan is greater than (t̃−1)d. The
distribution of the number of patients in the queue at time t̃ is known. So the average makespan
is

M(x) = (t̃−1)d +
N∑

j=1

pt̃+( j) · j
µ
.

So now we obtain the following formula for the mean idle time:

I(x) =
(
(t̃−1)d +

N∑
j=1

pt̃+( j) · j
µ

)
− N

µ
(3)

2.3 Mean tardiness
For the mean tardiness of the day we look at the end of the last interval. Now if there are j
patients in queue, then the extension is on average j 1

µ . We know the patient distribution just after
the last interval T , so the tardiness function is as follows:
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L(x) =
N∑

j=1

p(T+1)−( j)
j
µ

(4)

2.4 Including No-shows
We can add no-shows to our model. This is an important generalization as no-shows occur
frequently in practice. Every patient now has a probability ρ of not showing up. We assume that
ρ is the same for all patients and that the patients are independent. Thus the number of arrivals
at time t has a Binomial(xt ,ρ) distribution.

This changes the formulas used in the model as follows. pt−(i) remains the same. pt+(i) is
somewhat different, because it is not known how many patients are exactly coming. We must
sum over the distribution of how many patients will be arrive. This gives for pt−(i) and pt+(i):

p1−(0) ≡ 1,
pt+( j) =

∑xt
k=0

(xt
k

)
ρxt−k(1−ρ)k · pt−( j− k), j ≥ 0,

p(t+1)−(0) =
∑N

i=0 pt+(i)bi,

p(t+1)−( j) =
∑N

i= j pt+(i)ai− j, j ≥ 0.

2.4.1 Mean waiting time of a patient

For the mean waiting time, for all intervals we must additionally sum the waiting time over the
distribution of the number of arriving patients. This gives the following equation:

W (x) =
1

N(1−ρ)

T∑
t=1

xt∑
k=1

(
xt

k

)
ρ

xt−k(1−ρ)k
( k∑

i=1

N∑
j=0

pt−( j) · j + i−1
µ

)
(5)

2.4.2 Mean idle time of a doctor

Again we first calculate the makespan. Now we do not know when the last patient is coming.
But we can calculate the probability that the last patient is coming at interval t. This probability
is

P(last patient is coming at interval t)
= P(all patients after interval t are no-shows)P(# arrivals at time t ≥ 1)

= ρ
N−

Pt
i=1 xi(1−ρ

xt ).

If the last patient is coming at interval t, we know for sure the makespan is greater than
(t − 1)d. To calculate the excess after interval t, we sum over the distribution of the number of
patients that come (having in mind that at least one patient comes) times the mean excess.

6



What we find is then:

M(x) =
∑

t:xt>0

P(last patient is coming at time t)E(mean makespan|last patient is coming at time t)

=
∑

t:xt>0

ρ
N−

Pt
i=1 xi(1−ρ

xt )

(
(t−1)d +

xt∑
k=1

(xt
k

)
ρxt−k(1−ρ)k

1−ρxt

N∑
i=0

pt−(i) · i+ k
µ

)

The mean idle time is then given by:

I(x) = M(x)−N(1−ρ)
1
µ

(6)

The question can be asked how important this mean idle time is, because now the time be-
tween the real last patient and the last planned patient is not added as idle time. So in the case of
no-shows the idle time is less relevant as objective and should have a relatively low weight.

2.4.3 Mean tardiness

The formula of the mean tardiness is the same (of course with the new probabilities pt−(i) and
pt+(i)).

3 Local search
To compute the schedule with the lowest objective value we could try all possible schedules (the
solution space) and look which one has the lowest objective value. But the number of all possible
schedules is huge (it is

(N+T−1
N

)
), so we need a search algorithm to reduce the computation time.

A local search algorithm starts with a feasible solution and tries iteratively to improve the current
solution by searching a better solution in its neighborhood until a local minimum is found.

In general the local minimum is not a global minimum, but for the current problem and a
well-chosen neighborhood it is possible to show that the local search algorithm finishes in the
global minimum.

We introduce our neighborhood. Define the vectors

u1,
u2,
u3,
...

uT−1,
uT


=



(−1,0, . . . ,0,1),
(1,−1,0, . . . ,0),

(0,1,−1,0, . . . ,0),
...

(0, . . . ,1,−1,0),
(0, . . . ,0,1,−1)


,

and take V ∗ = {u1, . . . ,uT}. As the neighborhood of schedule x we take all vectors of the form
x + v1 + · · ·+ vk with v1, . . . ,vk ∈ V ∗ such that x + v1 + · · ·+ vk ≥ 0. Then the algorithm is as
follows.
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Algorithm for computing an optimal schedule
1. Start with some schedule x
2. For all U ( V ∗:

for y = x+
∑

v∈U v such that y ≥ 0 compute C(y);
if C(y) < C(x) then x := y and start again with step 2

3. x is the optimal schedule

A vector ut can be interpreted as moving a patient from time slot t to time slot t − 1. Thus
the neighborhood of x consists of all combination of single-interval shifts starting from x. In
Appendix A we prove that with this neighborhood the local search algorithm converges to the
global optimal solution.

In the online tool we also implemented a smaller neighborhood that gives much faster results.
Under this option we simply take y = x+u for all u ∈ U in step 2 of the algorithm, thus we only
consider U with |U|= 1.

4 Numerical examples
In this section we give some numerical examples. All these computations were done with our
webtool which is available for experimentation at obp.math.vu.nl/healthcare/software/ges.

Let the following be the base-case scenario. A medical practice is operational between
8.00AM and 12.00AM. We split this interval up in 48 intervals of 5 minutes. Thus T = 48
and d = 5. A treatment duration is on average 20 minutes (1/µ = 20) and the percentage of
no-shows is 10% (ρ = 0.10). We want to plan 10 patients (N = 10).

To analyze this model with the small neighborhood (which is not guaranteed to give the
optimal solution) took a few seconds, analyzing the full neighborhood (what we did for all cases
considered in this section) took around 12 hours for each instance.

First we compute for base-case scenario the the optimal schedule, for different weights in our
objective function. The weight for the tardiness is taken 1 (αL = 1), for the idle time it is taken
0.2 (αI = 0.2). The idle time has a relatively low weight because of the no-shows. We took four
different weights for αW (0.5, 1, 2, and 10), and determined the optimal schedules for each of
these cases. The schedules are given in Figure 1.
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Figure 1: Base-case scenario with different weights

It is seen that if the waiting time has given a bigger weight then the patients are more spread
out to the end of the schedule, as one would expect. In the optimal schedule with αW = 0.5
there are two patients scheduled at the beginning of the day. Note that the optimal schedule for
αW = 0.5 is close to the Bailey-Welch rule. In all cases the times between consecutive arrivals
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first increases and then decreases again. This is the dome-shaped form that we discussed in the
literature overview.

To have a better look on the results we compare the optimal schedules with two existing
schedules: the individual block schedule and the Bailey-Welch rule. With the individual block
schedule the working day is divided in the same number of intervals as there are patients. In each
block exactly one patient is scheduled. The Bailey-Welch rule is similar as the individual block
schedule, but with the last patient moved to the beginning of the day. So in our base-case scenario
the individual block schedule and the Bailey-Welch rule plan every 24 minutes a patient, with the
exception that the Bailey-Welch rule schedules two patients at 8.00AM and none at 11.36AM.

αW = 0.5 αW = 1 αW = 2 αW = 10 Individual Bailey-Welch
Mean Waiting Time 26.46 19.90 15.35 9.85 12.37 16.75
Mean Idle Time 21.86 36.69 54.02 88.58 72.14 50.07
Mean Tardiness 7.99 9.60 12.61 29.79 19.62 11.42
Object value (αW = 0.5) 25.59 40.23 29.81
Object value (αW = 1) 36.83 46.41 38.18
Object value (αW = 2) 54.12 58.78 54.94
Object value (αW = 10) 146.00 157.72 188.95

Table 1: Outcome values for different schedules

The results of the schedules are given in Table 1. The optimal schedules are of course better
than the two existing schedules, but it can been seen for αW = 2 that the Bailey-Welch schedule
is almost as good as the optimal one.

Now we will look what happens with the optimal schedules if we change some parameters.
The changes are chosen such that the total workload does not change. The workload for the
base-case scenario is Nβ(1−ρ) = 10∗20∗0.9 = 180 minutes. We change the parameters two at
a time, ρ and β, N and β, and N and ρ, respectively. Let αW = 2 and the other parameters fixed
as in the base-case scenario. The optimal schedules are given in Figure 2. The corresponding
outcome values are shown in Table 2.

From Table 2a we see that if ρ becomes larger (thus β decreases) the mean waiting time,
idle time and tardiness all becomes larger, because of the higher uncertainty. From the results of
Table 2b it is seen that if β becomes smaller (thus N increases) then the mean waiting time, idle
time and tardiness all becomes smaller because of reduced uncertainty. The results of Table 2c
show us that if ρ becomes larger (thus N decreases) the mean waiting time, idle time and tardiness
all becomes larger because of the higher uncertainty.

A final change in parameters would be changing T and d. This would evidently lead to more
simultaneous arrivals.

5 Conclusions
In this paper a method is presented to obtain optimal outpatient schedules in case of a finite num-
ber of possible arrival epochs. The proof of the optimality relies on showing that the objective is
multimodular, which is a generalization of convexity to lattices.

Numerical results are presented. The interarrival times have a dome shape, as observed earlier
in the literature: the first interarrival times are short, then they get longer, and become again short.
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Figure 2a: Optimal schedules (ρ against β)
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Figure 2b: Optimal schedules (N against β)
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Figure 2c: Optimal schedules (N against ρ)

Note that in certain cases the optimal rule is close to the Bailey-Welch rule. For certain parameter
values the Bailey-Welch rule is indeed optimal.
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A Local search method
To prove that the local search algorithm converges to the global optimum, we first show that our
objective function is multimodular. We start by defining multimodularity.

A.1 Multimodularity
Multimodularity (Hajek [4]) is a property of functions on Zm. Define the vectors v0, . . . ,vm ∈ Zm

as follows:

v0 = (−1,0, . . . ,0)
v1 = (1,−1,0, . . . ,0)
v2 = (0,1,−1,0, . . . ,0)

...
vm−1 = (0, . . .0,1,−1)

vm = (0, . . . ,0,1)

Let V = {v0, . . . ,vm}. Now:

Definition A.1 A function f : Zm → R is called multimodular if for all x ∈ Zm,v,w ∈ V ,v 6= w,

f (x+ v)+ f (x+w)≥ f (x)+ f (x+ v+w) (7)

Central in the theory of multimodular functions is the concept of an atom.

Definition A.2 For some x ∈ Zm and σ a permutation of {0, . . . ,m}, we define the atom S(x,σ)
as the convex set with extreme points x+ vσ(0),x+ vσ(0) + vσ(1), . . . ,x+ vσ(0) + · · ·+ vσ(m).

It is shown in Hajek [4] that each atom is a simplex, and each unit cube is partitioned into m!
atoms; all atoms together span Rm.

In Koole and Van der Sluis [7] the following theorem is shown. It forms the basis of our
neighborhood choice.

Theorem A.3 For f multimodular, a point x ∈Zm is a global minimum if and only if f (x)≤ f (y)
for all y 6= x such that y ∈ Zm is an extreme point of S(x,σ) for some σ.
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Our problem (1) is a T − 1 dimensional problem: given x1, . . . ,xT−1 we derive xT by xT =
N −

∑T−1
t=1 xt . We will show that it has a multimodular objective function. The set of allowable

solutions is given by {x ∈ ZT−1|x ≥ 0,
∑T−1

t=1 xt ≤ N}. This domain is not equal to ZT−1, so the
question arises if the local search algorithm still converges to the global minimum. According
Lemma 2 in Koole and Van der Sluis [7] Theorem A.3 remains valid for this subset of ZT−1.
Proving that our objective function is multimodular for the T − 1-dimensional problem (1) is
equivalent to showing that the objective function in T dimensions satisfies Equation (7) for v,w∈
V ∗, where

V ∗ =



u1,
u2,
u3,
...

uT−1,
uT


=



(−1,0, . . . ,0,1),
(1,−1,0, . . . ,0),

(0,1,−1,0, . . . ,0),
...

(0, . . . ,1,−1,0),
(0, . . . ,0,1,−1)


.

Note that ut is nothing else then moving a patient from time slot t to time slot t−1. Now we
show that our objective function is multimodular and that it can be minimized by a local search
algorithm that is guaranteed to terminate in the global minimum. Our neighborhood is the set of
all possible combinations of the vectors ut added to the current schedule.

Theorem A.4 The waiting time function W (x), the idle time function I(x) and the tardiness
function L(x), as defined in Equations (2)-(4), are multimodular for all ui,u j ∈ V ∗ for which
i 6= j.

Proof of theorem A.4 It is easy to see that if the makespan is multimodular then also the idle
time is multimodular. Thus it is sufficient to show that the makespan, the waiting time and the
tardiness are multimodular. Thus it has to be shown that

W (x+ui)+W (x+u j) ≥ W (x)+W (x+ui +u j) ,

M(x+ui)+M(x+u j) ≥ M(x)+M(x+ui +u j) and
T (x+ui)+T (x+u j) ≥ L(x)+T (x+ui +u j)

for every possible i and j with 1≤ i < j ≤ T . We use coupling (see Righter [11]) for this proof, to
compare the different schedules x, x+ui, x+u j and x+ui +u j. For every possible combination
of i and j, all different possibilities of patient flows are distinguished to detect the difference
between the number of patients in queue for each schedule for each time interval. First the proof
is given for 2 ≤ i < j ≤ T .

In Figure 3, different paths are shown for the different schedules.

(A) Let us start with Case A. Schedule (A1) and schedule (A3) are following the same path
until time j−1. Also Schedule (A2) and schedule (A4) are following the same path until
that time. In Case A the queue empties between time i and time j− 1, so from that time
on all the paths are the same. Thus just before time j−1, there are say k patients in queue.
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Figure 3: Case A & B (2 ≤ i < j ≤ T )

Let k′ = k + x j−1. Then just after time j− 1 there are k′ patients in queue for schedules
(A1) and (A2) and k′+1 for schedules (A3) and (A4). Thus after time j−1 schedule (A1)
and schedule (A2) are following the same path and also schedule (A3) and schedule (A4)
are following the same path.

Now say that until time j− 1 schedule (A1) has a total waiting time α1, then schedule
(A3) also has that total waiting time α1. Say that until time j− 1 schedule (A2) has a
total waiting time α2, then schedule (A4) has the same total waiting time. Just after time
j− 1 schedules (A1) and (A2) follow the same path, so they have the same total waiting
time, say β1. Schedule (A3) and (A4) also follow the same path, thus they also have
the same total waiting time, say β2. Now it is easy to see that the waiting time satisfies
α2 +β1(A2)+α1 +β2(A3)=α1 +β1(A1)+α2 +β2(A4).

For the makespan and tardiness only the end of a day is important, so we want to know
what happens at the end of the path of each schedule. Schedules (A1) and (A2) follow
after time j−1 the same path, and therefore they have the same makespan and tardiness.
Schedules (A3) and (A4) follow after time j− 1 the same path, therefore they also have
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the same makespan and tardiness. So (A2)+(A3)=(A1)+(A4) for the makespan and the
tardiness.

(B) Now look at “Case B”. The queue does not empty between time i and j− 1, so now just
before time j− 1 it can be that for schedules (B2) and (B4) there is one patient less in
queue, because one patient more could be treated (because the movement of one patient
from time i to time i− 1). Otherwise all different schedules will have the same number
in queue and then “Case A” applies. So for schedule (B2) and (B4) there are then k− 1
patients in queue and for schedules (B1) and (B3) there are k patients in queue. Concerning
the waiting time, let us say again that schedules (B1) and (B3) have a total waiting time of
α1 and that schedules (B2) and (B4) have a total waiting time of α2.

Define again k′ = k + x j−1. Then just after time j− 1 there are k′ patients in queue for
schedule (B1), k′− 1 for schedule (B2), k′ + 1 for path (B3), one more because of the
movement of one patient from time j to time j−1 and k′ for schedule (B4).

Now we distinguish between the following three possibilities for the number of departures
between time j−1 an j. Let l′ = l + x j.

a) The number of departures is less than k′.

• For schedule (Ba1) there will be say l(≥ 1) patients left just before time j and just
after time j it will be then l′. Let the total waiting time between time j−1 and j be
β and after time j γ1.

• For schedule (Ba2) the number of patient is l−1 just before time j. So just after time
j there are l′−1 patients in queue and the total waiting time between time j−1 and
j is then β−d and after time j γ2.

• For schedule (Ba3) the number of patient is l + 1, just before time j. Just after time
j there are l′ patients in queue (one patient less arrives) and the total waiting time
between time j−1 and j is then β+d and after time j again γ1.

• For schedule (Ba4) the number of patient is l, just before time j. Just after time j
there are l′− 1 patients in queue (one patient comes less) and the total waiting time
between time j−1 and j is again β and after time j again γ2.

Now we see that the waiting time satisfies α2+β−d+γ2(Ba2)+α1+β+d+γ1(Ba3)=α1+
β+ γ1(Ba1)+α2 +β+ γ2(Ba4)

The end of the path (after time j) of schedules (Ba1) and (Ba3) is the same. The same
holds for (Ba2) and (Ba4). So in this case (Ba2)+(Ba3)=(Ba1)+(Ba4), for the makespan
and tardiness.

b) The second possibility is that there are exactly k′ departures between time j−1 and j.

• For schedule (Bb1) there will be k′− k′ = 0 patients left just before time j and just
after time j it will be l′. Let the total waiting time between time j− 1 and j β and
after time j γ1.
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• For schedule (Bb2) the number of patients is also 0, just before time j. So just after
time j there are l′ patients in queue and the total waiting time between time j−1 and
j is then β−d and after time j again γ1.

• For schedule (Bb3) the number of patients is k′ + 1− k′ = 1, just before time j. So
just after time j there are l′ patients in queue and the total waiting time between time
j−1 and j is then β+d and after time j again γ1.

• For schedule (Bb4) the number of patients is k′− k′ = 0, just before time j. So just
after time j there are l′−1 patients in queue and the total waiting time between time
j− 1 and j is then β (same as (Bb1)) and after time j γ2 which is of course smaller
then γ1.

Now we see that the waiting time satisfies α2 + β− d + γ1(Ba2)+α1 + β + d + γ1(Ba3)≥
α1 +β+ γ1(Ba1)+α2 +β+ γ2(Ba4).

The end of the path (after time j) of schedules (Bb1), (Bb2) and (Bb3) are the same so
the makespan and tardiness are the same for these schedules. At the end of the path of
schedule (Bb4) there is one patient less (or in the worst case the same), so the makespan
and tardiness is also less or equal than the other schedules. So we can conclude that
(Bb2)+(Bb3)≥(Bb1)+(Bb4), for the makespan and tardiness.

c) The last possibility is that there are more than k′ departures between time j− 1 and j.
So for all paths ((Bc1), (Bc2), (Bc3) and (Bc4)) there will be no patients left just before
time j.
Just after time j there will be for schedule (Bc1) and (Bc2) l′ patients in queue and have
a total waiting time of γ1. (Bc3) and (Bc4) have then l′− 1 patients in queue and a total
waiting time of γ2.

Now the total waiting time between time j−1 and time j, if there are s > k departures is∑m
n=1

(n−1)d
s = m(m−1)d

2s (the first patient has a waiting time of 0, the second d
s , the third

2d
s , etc. . .), with m the number of patients just after time j− 1. Because this is a convex

function it is clear that the waiting time function satisfies α2 + (k−1)(k−2)d
2s +γ1(Bc2)+α1 +

(k+1)kd
2s + γ2(Bc3)≥ α1 + k(k−1)d

2s + γ1(Bc1)+α2 + k(k−1)d
2s + γ2 (Bc4).

The ends of the paths of schedule (Bc1) and (Bc2) are the same and the ends of paths of
schedule (Bc3) and (Bc4) are the same. Therefore is (Bc2)+(Bc3)=(Bc1)+(Bc4), for the
makespan and tardiness.

All cases for 2 ≤ i < j ≤ T are done. Now for 1 = i < j ≤ T . For “Case C” until “Case
E” (Figure 4) counts that before time j− 1 the queue somewhere empties, so after that time all
schedules will following the same path and just before time j− 1 there are k patients in queue
for all schedules. until time j−1 schedule (1) and (3) have a total waiting time α1 and schedule
(2) and (4) a total waiting time α2.

Just after time j− 1 there will be k′ patients for schedule (1) and (2) and k′ + 1 patients for
schedule (3) and (4). Now after time j−1 we can distinguish the following four possibilities.
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Figure 4: Case C, D & E (1 = i < j ≤ T )

(C) Now for “Case C” there are equal or less than k′ departures so just before time j there are
for schedule (C1) and (C2) l patients left and for schedule (C3) and (C4) l +1 patients left.
Between time j−1 and j schedule (C1) and (C2) have the same total waiting time, say β1
and schedule (C3) and (C4) have the same total waiting time, say β2.
Just after time j there are for all schedules l′ patients. So after time j follows schedule (C1)
and (C3) the same path and have a total waiting time of γ1 and follows schedule (C2) and
(C4) the same path and have a total waiting time of γ2. Now is easy to see that the waiting
time satisfies α2 +β1 + γ2(C2)+α1 +β2 + γ1(C3)=α1 +β1 + γ1(C1)+α2 +β2 + γ2(C4).

The ends of paths of schedule (C1) and (C3) are the same and the ends of paths of schedule
(C2) and (C4) are the same. Therefore is (C2)+(C3)=(C1)+(C4), for the makespan and
tardiness.

(D,E) Now for “Case D” and “Case E” there are more than k′ departures between time j−1 and
time j. So just before time j there are no patients left for all schedules. Between time j−1
and j schedule (1) and (2) have the same total waiting time, say β1 and schedule (3) and
(4) have the same total waiting time, say β2.
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Just after time j there are for schedule (1) and (2) l′ patients in queue and for schedule (3)
and (4) l′−1. Between time j and time T schedule (1) and (2) have a total waiting time of
say γ1 and schedule (3) and (4) have a total waiting time of say γ2. Between time j and T
can happen the following two cases:

(D) The queue empties. So for all schedules there are say m patients left just before
time T (”Case D”). Let m′ = m + xT . Just after time T there will be then m′ patients
for schedule (D1) and (D3), with a total waiting time of δ1 and m′ + 1 patients for
schedule (D2) and (D4), with a total waiting time of δ2. So the waiting time function
satisfies α2 +β1 + γ2 +δ2(D2)+α1 +β2 + γ1 +δ1(D3)=α1 +β1 + γ1 +δ1(D1)+α2 +
β2 + γ2 +δ2(D4).
The ends of paths of schedule (D1) and (D3) are the same and the ends of paths of
schedule (D2) and (D4) are the same. Therefore is (D2)+(D3)=(D1)+(D4), for the
makespan and tardiness.

(E) Now empties the queue not between time j and time T , so now just before time T
there is one patient less (m′−1) in queue for schedule (E3) and (E4). Just after time
T there will be for schedule (E1) and (E4) m′ patients, for schedule (E2) m′+ 1 and
for schedule (E3) m′−1 in queue. Now the total waiting time if there is m patients left

is given by
m(m−1) 1

µ
2 . Because this is a convex function it is clear that the waiting time

function satisfies α2 + β1 + γ2 +
(m′+1)m′ 1

µ
2 (D2)+α1 + β2 + γ1 +

(m′−1)(m′−2) 1
µ

2 (D3)≥

α1 +β1 + γ1 +
m′(m′−1) 1

µ
2 (D1)+α2 +β2 + γ2 +

m′(m′−1) 1
µ

2 (D4).

Let s = d(T −1). The main finishing time of the day will be at s+m′ 1
µ for schedule

(E1) and (E4), s +(m′ + 1)1
µ for schedule (E2) and s +(m′− 1)1

µ for schedule (E3).
So s+(m′+1)1

µ (E2)+s+(m′−1)1
µ (E3)=s+m′ 1

µ (E1)+s+m′ 1
µ (E4) for the makespan

and tardiness.

For “Case F” until “Case I” (Figure 5) counts that before time j−1 the queue does not empty,
so just before time j− 1 there are k patients in queue for schedule (1) and (3) and for schedule
(2) and (4) one less, so k−1. Until time j−1 schedule (1) and (3) have a total waiting time α1
and schedule (2) and (4) a total waiting time α2.

Just after time j− 1 there will be k′ patients fore schedule (1) and (4), k′− 1 patients for
schedule (2) and k′+1 patients for schedule (3).

(F) For “Case F”, after time j−1 we can distinguish the following four possibilities.

• For schedule (F1) there are say l patients left just before time j and just after time j it
is l′. Say that the total waiting time between time j−1 and j is β and after time j γ1.

• For schedule (F2) the number of patient is l−1 just before time j. So just after time
j there are l′−1 patients in queue and the total waiting time between time j−1 and
j is then β−d and after time j γ2.
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Figure 5: Case F, G, H & I (1 = i < j ≤ T )

• For schedule (F3) the number of patient is l + 1 just before time j. Just after time
j there are l′ patients in queue (one patient comes less) and the total waiting time
between time j−1 and j is then β+d and after time j again γ1 (same path as schedule
(F1)).

• For schedule (F4) the number of patient is l just before time j. Just after time j there
are l′−1 patients in queue (one patient comes less) and the total waiting time between
time j−1 and j is again β and after time j again γ2 (same path as schedule (F2)).

Now we see that the waiting time satisfies α2 +β−d + γ2(F2)+α1 +β+d + γ1(F3)=α1 +
β+ γ1(F4)+α2 +β+ γ2(F4)

The end of the path (after time j) of schedules (F1) and (F3) are the same, and also (F2) and
(F4) are the same. So in this case (F2)+(F3)=(F1)+(F4), for the makespan and tardiness.

(G) Now for “Case G” there are exactly k′ departures between time j−1 and j.

• For schedule (G1) there will be k′− k′ = 0 patients left just before time j and just
after time j it will be l′. Say that the total waiting time between time j−1 and j is β

and after time j γ1.
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• For schedule (G2) the number of patient shall also be 0 just before time j. So just
after time j there are l′ patients in queue and the total waiting time between time j−1
and j is then β−d and after time j γ2.

• For schedule (G3) the number of patient shall be k′ + 1− k′ = 1 just before time j.
So just after time j there are l′ patients in queue and the total waiting time between
time j−1 and j is then β+d and after time j again γ1 (same path as schedule (G1)).

• For schedule (G4) the number of patient shall be k′−k′ = 0 just before time j. So just
after time j there are l′−1 patients in queue and the total waiting time between time
j− 1 and j is then β (same as (G1)) and after time j γ3 which is of course smaller
than γ2, because 1 patient is less to do.

Now we see that the waiting time satisfies α2 + β− d + γ2(G2)+α1 + β + d + γ1(G3)≥
α1 +β+ γ1(G1)+α2 +β+ γ3(G4).

The end of the path (after time j) of schedules (G1) and (G3) are the same so the makespan
and tardiness are the same for these schedules. At the end of the path of schedule (G4)
there are one patient less (or in the worst case the same) than at the end of path (G2), so the
makespan and tardiness shall also be less or equal than schedule (G2). So we can conclude
that (G2)+(G3)≥(G1)+(G4), for the makespan and tardiness.

(H,I) Now for Case “H” and “I” there are more than k′ departures between time j−1 and time j.
So just before time j there are no patients left for all schedules. Between time j−1 and j
schedules (1) and (4) have the same total waiting time of k′(k′−1)d

2s , schedule (2) (k′−1)(k′−2)d
2s

and schedule (4) (k′+1)k′d
2s (same as in “Case Bc”).

Just after time j the schedules will follow the same path as in ”Case D” and “Case F”,
which we already discussed, so for the makespan and tardiness it is immediately clear that
it satisfies the multimodularity.

Now for the waiting time it is also clear because before time j it satisfies the multimodu-
larity, and after time j also.

Now we distinguished all possible cases and we proved that in each case the waiting time,
makespan and tardiness are multimodular. Thus the same holds for the idle time.

The proof can easily be extended to include no-shows. This is done by conditioning on the
no-shows: we get the same model as without no-shows but with less patients planned.
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