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1 Introduction 

A polling system consists of a number of queues, attended to by a single server. 
A larger number of queueing theoretic studies about polling systems has been 
published with the analysis focussing on characterizing the system performance 
(cf. [18] for an overview). The vast majority of those studies considers polling 
systems with service policies commonly used in industry: the exhaustive, the 
gated and the limited service strategies. The main disadvantage of those tradi- 
tional systems is the inability to exercise control and to affect their design by 
optimizing a performance measure such as the mean waiting time of an arbitrary 
customer in the system or the mean amount of unfinished work in the system. 

As computer and telecommunication systems become more complicated and 
the processing power of micro processors becomes less inexpensive, the advan- 
tage of more sophisticated polling systems becomes apparent. Recently, new 
service policies have been introduced, such as the fractional service policies (cf. 
[13, 14]), the Bernoulli-type policies (cf. [16]) and the Bernoulli service policy 
(cf. [12]). In this paper we will focus on the Bernoulli service strategy. 

The Bernoulli service strategy with parameter p (0 < p < 1) is described as 
follows. When the server arrives at a queue at least one customer is served if the 
queue is not empty; otherwise, the server immediately starts to move to the next 
queue. After each service which does not leave the queue empty, with probability 

0340- 9422/94/40: 3/289 - 303 $2.50 �9 1994 Physica-Verlag, Heidelberg 



290 J.A. Weststrate and R. D. van der Mei 

1 - p another customer is served at that queue; otherwise, the server proceeds 
to the next queue. Note that p = 0 and p = 1 correspond to the exhaustive and 
the l-limited service strategy, respectively; thus, the Bernoulli service policy 
generalizes both the classical l-limited policy and the exhaustive policy. An 
advantage of the Bernoulli service policy is that the parameter p allows both 
flexible modeling and system optimization. 

Fuhrmann [10] classifies service policies into two classes, depending on 
whether or not the policies satisfy a certain property (cf. Section 5 below), and 
he shows that models in which all service policies satisfy this property are 
relatively easy to analyze. For such models Resing [16] gives an exact expression 
for the joint queue length distribution at polling instants. One may verify that 
the exhaustive, the gated, the Bernouli-type and the fractional service policies in 
[13, 14] satisfy this property, whereas the limited policies and the Bernoulli 
policy generally do not.  For polling systems in which not all service strategies 
satisfy Fuhrmann's property, exact results are very scarce and are restricted to 
two-queue or fully symmetric models. Boxma and Groenendijk [5] and Cohen 
[7] used the theory of Riemann-Hilbert boundary value problems to determine 
the waiting times at both queues for two-queue models with either l-limited or 
semi-exhaustive service at both queues. The reader is referred to [3] for further 
discussions of the application of the technique of boundary value problems to 
two-queue models and to [1, 2, 12, 15, 17, 19, 21] for references on queueing 
systems with Bernoulli service policies. 

Our motivation is two-fold. Firstly, we have a mathematical interest in the 
analysis of a generalization of the most basic service disciplines, the exhaustive 
and the l-limited service disciplines. Secondly, we would like to use the insight 
and exact results to be developed in the present study, for deriving and testing 
waiting time approximations in polling systems with Bernoulli service. 

This paper concerns the waiting times in a polling system with two queues in 
which one queue has a Bernoulli service policy with parameter p (0 < p < 1) and 
the other one a Bernoulli service policy with a parameter equal to zero, the 
exhaustive service policy. We shall indicate this system as the two-queue Ex- 
haustive/Bernoulli (p) system. For this system exact expressions for the Laplace- 
Stieltjes Transforms (LST) of the waiting time distributions are derived via an 
iteration procedure; so, we need not solve a Riemann-Hilbert boundary value 
problem. 

The paper is organized as follows. In Section 2 the model description is given. 
In Section 3 we determine the generating function of the joint equilibrium queue 
length distributions at polling instants. To this end, we first derive recurrence 
relations between the generating functions of the joint equilibrium queue length 
distributions at polling instants at both of the queues. Then these recurrence 
relations are used to give explicit expressions for the generating functions of 
the steady-state queue lengths at polling instants via an iteration scheme. In 
Section 4 these results are used to obtain the mean waiting times at both queues 
in the system parameters. In Section 5 we discuss some topics for further 
research. 
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2 Model Description 

A single server S serves two queues Q1 and Q2 in cyclic order. Both queues have 
an infinite buffer capacity. Type-/customers arrive at Qi according to a Poisson 
process with rate 2~, i = 1, 2. The service times at Qi are independent, identically 
distributed (i.i.d.) stochastic variables with LST Bi{.}, first moment fl~ and 
second moment fll 2), i = 1, 2. 

The offered load p~ to Q~ is defined by 

Pi : =  )'ifli , i = 1, 2 , (1) 

and the total offered load, p, to the system is given by: 

P :=P l  + P 2  �9 (2) 

The service strategy at Q1 is the exhaustive service policy; Q2 is served 
according to the Bernoulli service strategy with parameter p (0 < p < 1). The 
times needed by the server to move from Q1 to Q2 are i.i.d, random variables 
with LST $12{.}, mean s12 and second moment o12,~ the switch-over times to 
move from Q2 to Q1 have parameters $21 {. }, s21 and s~2~, respectively. The first 
and second moment of the total switchover time during a cycle are denoted by 

S : =  S12 "+" $21 (3) 

and 

~(2) ~(2) 
S (2) : =  312 + 2S12S21 "Jr o21 �9 (4) 

All stochastic processes are assumed to be mutually independent. 
Necessary and sufficient conditions for the stability of polling systems have 

been derived in [9]. For the present model this condition reads: 

p q- ~.2ps < 1 . (5) 

Throughout it is assumed that the stability condition (5) is satisfied. 
For convenience, we introduce the following notation. If X{(1 - zl)21 + 

(1 - Zz)22} is the LST with argument (1 - zl)21 + (1 - z2)22 of a certain sto- 
chastic variable, then we define for IZll < 1, Izzl <- 1: 
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X{z,, ~2} := x{(1  - z~)~  + (1 - z~)~},  

XY{z,,  z2} := Xiz, ,  z2} Yiz,, z2} 

J. A. Weststrate and R. D. van der Mei 

and 

3 Derivation of the Generating Functions of the Queue Lengths at Polling 
Instants 

In this section we determine the generating functions of the joint equilibrium 
queue length distributions at so-called polling instants of Q~ and Q2, i.e., the 
instants at which S arrives at the queues. To this end, we first derive recurrence 
relations between the generating functions; secondly, these recurrence relations 
are used to obtain explicit expressions for the generating functions of the steady- 
state queue lengths at polling instants. 

3.1 Determination of Recurrence Relations Between the Generating Functions 

Let x~ ~ denote the number of type-i customers in the system at the n-th polling 
instant, i = 1, 2, n = 1, 2, . . . .  Then the joint queue length process at Q~ and Q2 
at successive polling epochs, M := {(x~l), ..~,(2)1,, n = 1, 2 , . . .  }, forms an irreduc- 
ible and positive recurrent bivariate Markov process. 

By convention, visits to QI correspond to the cases in which n is odd; Q2 is 
visited when n is even, n = 1, 2 . . . . .  Hence, M is clearly periodic. However, the 
embedded Markov processes M 1 = {(X(212+1, X (2) "l,n ~---0, 1 . . . .  } and M2 2 n + l !  

"~2n+2J, n : 0,  1 , . . . }  a r e  irreducible, positive recurrent and aperiodic 
Markov processes with stationary transition probabilities, so that their limiting 
distributions exist. They shall be determined in the following. Define for Izxl -< 1, 
Izzl-< 1: 

~ (  X(1) X(2)3 
Ft")(zl, z : ) :=  ~ l z  F z2" ~ , n = 1, 2 . . . . .  (6) 

A study of the one step transition probabilities of the Markov chain M yields 
recurrence relations for the generating functions of the queue lengths at polling 
instants, F~")(zl, z2), Izll < 1, Iz21-< 1, n = 1, 2 . . . . .  For the derivation of those 
relations we need some additional definitions and a theorem concerning the 
joint distribution of the length of a busy period and the number of customers at 
the end of that busy period in an M/G/1 queue with vacations and a Bernoulli 
service discipline. Define for such a queue: 
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Sj(t, k) := the joint cumulative probability distribution of the length of a 
busy period and the queue length at the end of that busy period, 
conditioned on the fact that the busy period starts with j 
customers, t >_ O,j, k = O, 1 , . . . .  

Note that for all t > 0 So(t, 0) := 1 and So(t, k) := 0 for k > 0. We also define 
the joint LST and generating function: 

~j(r, s):= ~ s~ ~ e-"a,S~(t, k), I~1 <- 1, Re ~ >_ o,; = 0,1 . . . . .  (7) 
k---O t=O 

Using Theorem I in [15], we can write for Iz,l <-_ 1, Iz2l ~< 1, p ~ [0, 1]: 

o)((1 - z l ) 2 ~ ,  z2) = Op(zl, z2)z• + [1 - I2p(Zx, z2 ) ]#2 (z~ ,  PY, j = 0, 1 . . . . .  
(8) 

with 

p/~2 { z .  z2 } 
O~(zl, z2):= (9) 

z~ - (1 - p ) B ~ { ~ ,  z ~ }  ' 

and for [zt[ -< 1, #2(zl, p) the unique solution of 

z 2  = (1 - p ) B 2 { z l ,  z2} , Iz21 ~ 1, p ~ [0, 1] . (lO) 

Moreover, for [z2l _ 1 we introduce/~1(z2) as the unique solution of: 

Z 1 = BI{Z1 ,  Z2} , [Zll ~ 1 . (11) 

Remarks: aj((1 - zl)21, z2) is the joint generating funtion of the number of 
type- 1 arrivals during a busy period of the Bernoulli queue and the number of 
type-2 customers in the system at the end of that busy period, conditioned on 
the fact that the busy period starts with j (type-2) customers, j = 0, 1 . . . . .  

/t2(zl, p) is the joint generating function of the number of type-1 arrivals and 
the number of customers served during a busy period of an ordinary M/G/1 
queue with the same traffic characteristics as Q2; this result can be obtained by 
means of the so-called method of collective marks (eft [6] (p. 340)). 
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~l(zz) is the generating function of the number of type-2 arrivals during an 
ordinary M/G/1 busy period in a queue with the same traffic characteristics as 
Q1. 

The existence of a unique root in (10).is demonstrated in [6] (Appendix 6). It 
is also shown there that if P2 < 1 then I/~2(zl, P)I < 1 for p e [0, 1], Izll < 1, 
except ifp = 0 and simultaneously z~ = 1; in the latter case #2(Zl, p) = 1. 

We are now nearly ready to present the derivation of the recurrence relations 
between the generating functions (6). We have obtained those results by a 
tedious, but straightforward, calculation using indicator functions, but we prefer 
to present them in another more intuitive way. Before we do so, we define 

y~,~) := the number of type-/arrivals during the n-th visit of the server to a 
queue, i = l ,  2, n =  1 , 2 , . . . .  

Let us first consider a case in which n is odd; then the (n + 1)-th polling epoch 
marks the beginning of a visit to Qz. Then, because of the exhaustive service 
discipline at Q1, the only type-1 customers present at Q1, ,.(1) ~.+1, are those who 
arrived during the switch-over period between Q1 and Qz. Moreover, the set of 

..(2) is composed of: the type-2 customers at Qz, -~.+1, 
(i) the type-2 customers present at the n-th polling epoch, x(.2); (ii) the type-2 

customers who arrived during the subsequent visit of S to Qx, the n-th visit of 
the server, and (iii) the type-2 customers who arrived during the switch-over 
period between Q1 and Q2. 

Using these observations we can write for Izxl -< 1, Izzl <- 1: 

(1) (2) (2) X(2) 
E{z'~"+'z~ "+1} = $12{z 1, z2}E{z~" zz" } , n = 1, 3, 5 . . . . .  (12) 

If the server arrives at Q1 and finds i type-1 customers present then we can 
view the visit period to Q1 as a sequence of i.i.d. M/G/1 busy periods, (cf. [6] (p. 
250), [16]). If we denote by Pk the k-th busy period in the sequence of i busy 
periods we can write for Iz~l ___ 1: 

iz  2 z2" ) = ~ E{z~'(x(~ ') i))[E{e-'l-~2)a2r'}] ' 
i=0 

= i ) } , l ( z 2 ) '  
i=0 

= E{{pl(z2)}X~)z~)} , n = 1, 3, 5 , . . . .  (13) 

Combining (12) and (13) and using definition (6) gives for Izll ~ 1, I zzl ~ 1: 

F("+1)(zl, z2) = $12{zi, z2}F(")(#I(z2),z2) , n = I, 3, 5 . . . . .  (14) 
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Similarly, consider the case that n is even; then the (n + 1)-th polling epoch 
marks the beginning of a visit to QI. The set of type-1 customers at Qx, ~.+x,"~ is 
composed of: (i) the type-1 customers present at the n-th polling instant, x~. ~), (ii) 
the type-1 arrivals during the visit of the server to Q2, the n-th visit, and (iii) the 
type-1 arrivals during the switchover period between Q2 and Q~. Moreover, the 
set of type-2 customers at Q2 is composed of: (i) the type-2 customers present at 
the end of the previous visit, which we shall denote by ,,." ~2), and (ii) the type-2 
arrivals during the switchover period between Q2 and Q1. 

Using these observations we can write for Izal -< 1, Iz21 < 1: 

(1) ~c(2) .j r v(I) jc{~.) U(2)-~ 
E{z~"+~z2 "+~ } = S z t { z  ~, z2)E~zi"  z~- z2- ~ , n = 2, 4, 6 . . . . .  (15) 

where the second factor in the right hand side of (15) can be rewritten for 
Iz~l_< 1, Iz21-< 1 as follows: 

z z ) P r ~ x  n = i ; . ~ .  = j }  
i=o j = o  

= Qp(za,z2) z l [z~  - p2(za, p)i]Pr{x~ x) = i;--~ 2).~. = j )  
i=o j =o  

p)SPrl~ . = i; x .  = j }  
i=o j=o  

= 12v(zl, z2)[F~")(zl, z2) -- F(")(zl, #2(zl ,  P))] 

+ F(n)(z1, ] A 2 ( Z 1 ,  p ) )  , r/ = 2, 4, 6 . . . . .  (16) 

Combining (15) and (16) gives for Izxl ~ 1, Iz21 < 1: 

F(n+l), tz , z2) = s21 re(z1, p)) + {zl, 

x [Ft")(zl. z2) - F~")(zl, #2(za, P))] , n = 2, 4, 6 . . . . .  (17) 

Define the limiting distributions for the embedded Markov processes M1 and 
M2 as follows: for [zll < 1, Iz21 -< 1: 

FI(z l ,  z2) := lim F ~ 2 " + l ) ( z l ,  z z ) ,  Fz(z l ,  z2) := lim F~Zm+2~(za, z2) �9 (18) 
m ~ o o  rn--.* oo 

Using the recurrence relations (14) and (17) together with definition (18) we 
can relate Fl(z l ,  z2), F2(zl ,  z2) as follows for Izl[ < 1, Iz21 - 1, p ~ I-0, 1]: 
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F l (g i ,  z2) = S21 {zl,  g2}~Qv(zl, zz)F2(zx, g2) 

+ Szi {zi, Zz} [1 - g2v(zl, z2)]F2(zl, #z(Zi, P)) ; 

F2(zl, z2) = $12{zl, z2}Fa(#i(z2), z2) . 

J. A. Weststrate and R. D. van der Mei 

(19) 

(20) 

3.2 Determination of Explicit Expressions for F~(z 1, z2) and F2(zl, Z2) 

In this section explicit expressions for FI(Z1, z2) and F2(Z1, g2) will be derived 
from (19) and (20) via an iterative procedure. 

Taking Zl = / l l  (Zz) in relation (17) and combining the result with (18) gives for 
[Zl[ _< 1, [Z2[ _< 1 and p e [0, 1]: 

F~(zl, z~) = Sl~ {Z~, z~ } S~  { U~ (z~), z2} • a.(t,,(z~), z~)V~(u, (z~), z~ 

+ Sl~{Z~, ~.}S~i{#l(Z~), ~} 

• [1 -- Ov(Ul(Z2) , z2)]V2(#l(z2)  , #2(/Al(z2), p)) . (21) 

We will now solve equaton (21) by means of an iterative procedure. To this 
end, we define for Iz[ < 1 and p e [0, 1]: 

6~~ := z; 6.(z) = 6~"(z) := m(~ l (z ) ,  p) ; 

6~")(z) := @ ) ( 6 ~ " - ~ ) ( z ) )  , n = 1, 2 . . . . .  

(22) 

Taking zl = #1(z2) in (21) and replacing z2 by 6v(z ) gives for Izl ~ 1 and 
p e [0, 1]: 

v~(ul(6.(z)). 6p(z)) = v~(u1(6p(z)), 6~2~(z)) 

~Sl~S2l {ul(6.(z)), 6.(z)} [1 - aAul(6.(z)), ~.(z))]~ 
(23) 

Moreover, taking z2 =/./2(Zl, p) in (21) and replacing Zl by #l(Z) in the 
resulting equation gives for Izl < 1 and p e [0, 1]: 
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F2 (#1 (z), 6.(z)) = $12 {#1 (z), 6p(z)} $21 { ~1 (6p(z)), 6p(Z) } 

x {(2~,(#l(6p(Z)) , 6p(z))F2(#x(fp(z)) , 6.(z)) 

+ [1 - Qp(l~l(6p(Z)). 6p(z))]V2(#x(6.(z)), 6~2)(z))} 
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(24) 

Combining (23) and (24) leads for Izl < 1 and p ~ [0, 1] to: 

F2(#l(z), 6p(Z)) = Dt,(fp(z))F2(#l(6p(z)), 6~2~(z)) , (25) 

with 

Dp(bp(z)) = $12 { #1 (z), 6p(z)} $21 {l~ 1 (6p(z)), 6p(z)} [1 - (2p(#1 (6p(z)), 6p(z))] 
1 - s , ~ s 2 1  {~1(6,(z)). 6,(z)}a,(~q(6p(z)). 6,(z))  

(26) 

Then, if we repeatedly replace z by 6p(z) in (25), n times in succession, we have 
for [zl < 1 and p e [0, 1]: 

= (k) Z F 2 ( ~ l ( z ) ,  t~p(7,)) [k=FI1Dp(t~ ( ))lF2(#l(t~(pn)(z)), ~(pn+l)(z)) . (27) 

It is shown in [21] tha t  for Izt < 1 and p ~ [0, 1] there exist a e (0, 1] and 
b 6 (0, ~ )  such that: 

lim 6~"'(z) = a; f i  Dp(h~k'(z)) = b , 
n--~oo k=l  

(28) 

and that, using the continuity of F2(u, v)in u and v, 

1 22ps 
1 - p  

lim F2(pl(6~")(z)), 6~"+1~(z)) = F2(#l(a), a) = i_i~o= 1 Ckl .-~o Dp(~ (1)) 
(Z9) 

Finally, after some algebraic manipulations, using (27), (20), (cf. [21] for a 
complete derivation), the generating functions of the queue lengths at polling 
instants can be obtained as follows for Izxl < 1, Iz21 -< 1, p 6[0,  1]: 
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FI(zl, z2) = I1 
22ps q 

(k) Z 
X ~'~p(Zl, z2)S12{Z1, Z2}~(Z2) f i  Dp(fp (2)) 

k=l Dp((~(pk)(1)) 

+ [1 - -  g2p(Zl, z2)]S12{za, #2(za, P)}Gp( l~2(zx ,  P)) 

• f i  DP(fi~k)(#z(z"P)))~ 
k=, Dp(6~k)(1)) J ' 

J. A. Weststrate and R. D. van der Mei 

(30) 

and 

I ~,2p S ] F2(z 1, z2) = 1 f - ~ p  Sa2{Z1, z2}Gp(22) f i  OP(6~k)(z2)) 
k=l D,(~k)(1)) ' 

where for [z[ < 1 and p e [0, 1]: 

S2x {~,(z), z} [1 -- g2p(#,(z), z)] 
G.(z )  : =  

1 - s,2s2  z } a . ( U l ( Z ) ,  z) " 

(31) 

(32) 

Remark: One may verify that in the special case p = 0 or p = 1, expressions (30) 
and (31) are identical to those derived in 1-8] and [11] (Section 6.3) for the 
Exhaustive/Exhaustive and the Exhaustive/l-limited case, respectively. These 
verifications are discussed in more detail in [21]. 

4 The Waiting Times 

This section is concerned with the waiting times at the queues. Firstly, the 
waiting time distribution at the exhaustive queue, Q a, is obtained; subsequently, 
we will consider the waiting time distribution at the Bernoulli queue, Q2. In both 
cases we first give the LST of the waiting time distribution at that particular 
queue expressed in the generating functions derived in the previous section, and 
subsequently we calculate the mean waiting time. 

To this end, define for i = 1, 2, 

W~ := the waiting time of a type-/customer. 



Waiting Times in a Two-Queue Model with Exhaustive and Bernoulli Service 299 

Let us first consider the waiting time at Q~. The generating function of the 
queue lengths at polling instants of QI, the queue with the exhaustive service 
strategy, and the waiting time, W~, of a type-1 customer are related as follows 
(cf. [20]): 

E { e _ O _ z ) ~ , w ,  } = 1 - -  21f l  1 1 - Fa(z ,  1) 

I FI(z ,  1) 
z = l  

Iz[ < 1 . (33) 

Taking the derivative of (33) and evaluating in z = 1 yields: 

d 1 - F i ( z ,  1)3 
21EW1 = az ] ~ z  z=l 

•2R(2) 1/-'1 + - -  (34) 
2(1 - p , )  

To get an expression for the mean waiting time at QI, we first expand, using 
equation (30), the function ( 1 -  Fl(z ,  1))/(1- z) in a power series in the 
neighbourhood of z = 1. Noting that for p ~ [0, 1] we have Fz(1,  p2(1, p)) = 
1 - 22psi(1 - p) (cf. (31)), we find after a lengthy but straightforward calculation 
the following expression for the mean waiting time at QI: 

= 21 (12) 1 --  p ~s (2) 1 - p 22fl z t 2  EWx f12(1 + 22fl~22) + - + - -  + 
- Pl)  1 -  pl  ( 2s p 1 -  p p 

[ l 
- 1 1 - p A s  P 

[1 22ps12~ps[~H~(l~z(z,p))]==, } 
1 - pJ 

(35) 

with 

HI(#2(z, p)):= fi Dv(6(Pk)(#z(Z' p))) (36) 

In order to derive an expression for the waiting time at the Bernoulli queue, 
Q2, we use the relation between the generating function of the queue lengths at 
polling instants of Q2 and the LST of the distribution of the waiting time at Q2 
(cf. [19]). For Izl < 1, p ~ [0, 1]: 
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p F2(1 ,  z) - -  F2(1 ,  #2 (1 ,  p))  (37)  
E{e-(t-~)x~w~} = 1 -- F2(1,/~2(1, p)) z -- (1 - p)B2{1, z} 

Using F2(1, p2(1, p ) )=  1 -  ,~2ps/(1- p) (cf. (31)), we can rewrite (37) as 
follows for [zl < 1, p e [0, 1]: 

E{e_tl_z)x2w~ } _ 1 - p F2(1 , z) - 1 
22s z -  (1 - p)B2{1, z} 

+ P (38) 
z - (1 - p)B2{1, z} " 

Taking the derivative of (38) and evaluating it in z = 1 gives for p ~ [0, 1]: 

A,2EW2 = •2 s P 
1 --(1 --P)P2 

(39) 

To  express EW2 in the system parameters,  we expand F2(1, z) (cf. (31)) in a 
power series in the ne ighbourhood of z = 1. After some further calculations we 
get for p e [0, 1]: 

21fl~z) + 2zflt22' 1 1 Fs (2) ] 1 

e w z  = 2(1 - 01)(1 - p) 1 ,~2ps + ~ I _ N  + lJz ,Z2ps 
1 - p  1 - p  

1 1 
+ sl,, + ~ j ~ p s  + ~ n2(z) 

L _lz=l "~2P s 

1 - p  1 - p  

1 - (1 - p)pz 

22 p 

(4o) 

with 

co (k) z ()) 
Ih(z) := 11 (k) 1 " k = l  Dv(6~ ( ) )  

(41) 

Remarks: By applying the chain rule to Dv(f~k-X)(#2(#l(z), p))) and noting that  
#1 (1) = 1 we get the following relation between the infinite products  in (36) and 
(41): 

zz/h I~/_/l(~2(z, p))],=l. I O H z ( Z ) ] z = l - l _ p l  (42) 
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A pseudo-conservation law for the present model has been derived in [4, 19]: 

S S 2 
+ ~_pPlP2 + ~_pP2P �9 (43) 

Using relation (42) we find after a tedious but straightforward calculation that 
the expressions for the mean waiting times in (35) and (40) satisfy this pseudo- 
conservation law. 

5 Discussion 

Recently, Resing [16] and Fuhrmann [10] have considered cyclic polling 
systems in which the service disciplines satisfy the following 'additivity property': 
if S arrives at a queue to find k customers there, then during the course of the 
server's visit, each of these k customers will be effectively replaced in an i.i.d. 
manner by a random population. For polling systems with an arbitrary number 
of queues and in which each of the service disciplines satisfies this property, it is 
shown in [16] that the joint queue length process constitutes a multi-type 
branching process (MTBP) with immigration. The p.g.f, of the joint queue length 
distribution at polling instants at a particular, but arbitrary, queue can be 
expressed in terms of the joint queue length distribution at the polling instant at 
the same queue in the previous cycle. The theory of MTBP's then leads to an 
iterative procedure to obtain the joint queue length distribution. 

Although the Bernoulli service discipline does not satisfy the additivity prop- 
erty (except for the case p = 0), for the Exhaustive/Bernoulli (p) model analyzed 
in this paper the joint queue length distribution at polling instants is also 
obtained via an iterative procedure. This procedure is based on expression (25), 
in which the joint queue length distributions at two successive polling instants 
at Q2 are related. The terms 6~1~(z) defined in (22) can be interpreted as follows. 
Let n denote the number of customers served during a busy period of an 
ordinary M/G/1 queue. Moreover, let v2(p tl~) denote the number of type-2 
arrivals during a busy period of Q1 and let v~(pt2J(n)) denote the number of 
type- ! arrivals during a busy period at an ordinary M/G/1 queue with the same 
traffic characteristics as Q2, at which busy period n customers are being served. 
Then we can write for Izl -< 1 and p e [0, 1]: 
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6~l)(z) = E{(1 - p)"z E~'~'" ~(e'")'} ; (44) 

the exponent of z denotes the number of type-2 arrivals during a sequence of 
vl(p(2)(n)) busy periods at Q1. In the case p = 0 (exhaustive) the factor (1 - p)n 
equals one, so that (44) expresses the p.g.f, of the number of effective replacants 
of a customer served at Q2 just like in the MTBP set-up of [16]. In the analysis 
presented in this paper, a key role is played by relation (8). The second term in 
(8) would lead to a simple iterative procedure as in [16], whereas the first term 
(which disappears when p = 0) disturbs such a simple iterative solution. Never- 
theless, the structure of the first term is such that the present model is still 
solvable by means of the more complicated itera~ive procedure presented in the 
previous sections. As a consequence, the Bernoulli service discipline seems to 
possess a sort of 'pseudo-additivity' property, as opposed to, e.g., the limited 
service disciplines. 

It might be interesting to pursue this further. Moreover, it would be interest- 
ing to investigate to what extent the iterative approach of the MTBP theory can 
be applied to more general polling systems. 

Acknowledgements: The authors are indebted to Onno Boxma and Hans Blanc for stimulating 
discussions and reading earlier drafts of this paper. They also wish to thank the associate editor and 
the referees for their useful comments. 

References 

[1] Blanc JPC, van der Mei RD (1992) Optimization of polling systems with Bernoulli schedules. 
Report FEW 563, To appear in Performance Evaluation. Department of Economics, Tilburg 
University The Netherlands 

[2] Blanc JPC, van der Mei RD (1992) Optimization of polling systems by means of gradient 
methods and the power-series algorithm. Report FEW 575, Department of Economics, Tilburg 
University The Netherlands 

1-3] Boxma OJ (1986) Models of two queues: A few new views. In: Teletraffic Analysis and Com- 
puter Performance Evaluation, Boxma O J, Cohen JW, Tijms HC (eds) North-Holland, 
Amsterdam, The Netherlands 75-98 

I-4] Boxma OJ (1989) Workloads and waiting times in single-server systems with multiple customer 
classes. Queueing Systems 5:185-214 

[5] Boxma O J, Groenendijk WP (1988) Two queues with alternating service and switching times. 
In: Queueing Theory and its Applications - Liber Amicorum for J.W. Cohen, Boxma O J, 
Syski R (eds) North-Holland, Amsterdam, The Netherlands 261-282 

[6] Cohen JW (1982) The single server queue (North-Holland, Amsterdam, The Netherlands; 2rid 
ed) 

[7] Cohen JW (t988) A two-queue model with semi-exhaustive alternating service. In: Perfor- 
mance '87, Courtois P J, Latouehe G (eds) North-Holland, Amsterdam, The Netherlands 19-37 



Waiting Times in a Two-Queue Model with Exhaustive and Bernoulli Service 303 

[8] Eisenberg M (1972) Queues with periodic service and changeover time. Operations Research 
20: 440-451 

I-9] Fricker C, Ja]bi R (1992) Monotonicity and stability of periodic polling models, Report FEW 
559, Department of Economics, Tilburg University The Netherlands. To appear in Queueing 
Systems 

[10] Fuhrmann SW (1992) A decomposition result for a class of polling models. Queueing Systems 
11 : 109-120 

[11] Groenendijk WP (1990) Conservation laws in polling systems. PhD Dissertation, University 
of Utrecht The Netherlands 

1-12] Keilson J, Servi LD (1986) Oscillating random walk models for GI/G/1 vacation systems with 
Bernoulli schedules. Journal of Applied Probability 23:790-802 

1-13] Levy H (1991) Binomial-gate service: A method for effective operation and optimization of 
polling systems. IEEE Transactions on Communications 39 : 1341-1350 

1,14] Levy H (1988) Optimization of polling systems: The fractional exhaustive service method. Dept 
of Comp Sc Tel Aviv University Israel 

1-15] Ramaswamy R, Servi LD (1988) The busy period of the M /G / l vacation model with a Bernoulli 
schedule. Comm Stat-Stoch Models 4:507-521 

1,16] Resing JAC (1993) Polling systems and multi-type branching processes. Queueing Systems 
13 : 409-426 

1-17] Servi LD (1986) Average delay approximations of M/G~1 cyclic service queues with Bernoulli 
schedules. IEEE Sel Areas Comm 4:813-822 

[18] Takagi H (1990) Queueing analysis of polling models. In: Stochastic Analysis of Computer 
Communication Systems, H. Takagi (ed) North-Holland, Amsterdam, The Netherlands 267- 
318 

1-19] Tedijanto TE (1992) Exact results for the cyclic-service queue with a Bernoulli schedule. 
Performance Evaluation 15:89-97 

1-20] Watson KS (1985) Performance evaluation of cyclic service strategies - a survey. In: Perfor- 
mance '84, E Gelenbe (ed) North-Holland, Amsterdam, The Netherlands, 521-533 

[21] Weststrate JA (1990) Waiting times in a two-queue model with exhaustive and Bernoulli 
service. Report FEW 437, Department of Economics, Tilburg University, The Netherlands 

Received: February 1991 
Revised version received: September 1993 


