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Abstract

We consider asymmetric cyclic polling systems with an arbitrary number of queues, with general mixtures of exhaustive
and gated service and with generally distributed service-times and switch-over times, in heavy traffic. We derive closed-form
expressions for the Laplace–Stieltjes transform (LST) of the steady-state delay incurred at each of the queues, under standard
heavy-traffic scalings. The expressions give an explicit characterization of the complete (scaled) waiting-time distributions at
each of the queues. The results are strikingly simple and provide a variety of new insights into the behavior of heavily loaded
polling systems. In addition, the results lead to simple and fast-to-evaluate approximations for the waiting-time distributions in
stable polling systems that are close to saturation. Numerical results demonstrate that the approximations are highly accurate
in many practical heavy-traffic scenarios. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The basic polling system consists of a number of queues attended by a single server that visits the
queues in cyclic order to render service to the customers waiting at the queues. Polling models occur
naturally in the modeling systems in which service capacity (CPU, bandwidth, processing power) is
shared by different types of users, each having specific traffic characteristics and Quality of Service (QoS)
requirements. Polling models find many applications in areas like computer-communication networks,
production systems and maintenance and manufacturing. We refer to [21] for an extensive overview of
the applicability of polling models. Because of their wide applicability, polling models have received a lot
of attention in the literature since the late 1960s (cf. [25,26] for overviews). An exact analysis of the delay
in polling models is generally difficult, and hopes for explicit solutions are often abandoned in favor of
numerical methods. However, the usefulness of numerical techniques is limited in the sense that they do
not reveal explicitly how the system performance depends on the system parameters, and therefore, can
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only provide limited insight into the behavior of the system. Exact solutions provide much more insight
into the dependence of the performance measures on the system parameters. Moreover, the efficiency
of the numerical algorithms may degrade significantly for heavily loaded, highly asymmetric systems
with a large number of queues, while the proper operation of the system is particularly critical for those
systems. These observations raise the importance of an exact asymptotic analysis of the performance of
polling models in heavy traffic.

In the literature, exact results on polling models are scarce. The most general results are the formulations
of pseudo-conservation laws, giving exact expressions for a specific weighted sum of the expected waiting
times [4]. Exact results on the complete probability distribution of the delay are mainly restricted to
two-queue models (cf., e.g., [5,12,14,34]), but even in those cases non-trivial numerical techniques need to
be used to obtain the tail probabilities of the delay. In the absence of exact distributional results, numerical
techniques have been proposed to calculate the waiting-time and queue-length distributions, like Blanc’s
power-series algorithm [1], Leung’s technique based on discrete Fourier transforms [20] or the numerical
transform inversion technique [8]. Federgruen and Katalan [15] propose a method to approximate the
queue-length and waiting-time distributions in a class of polling models. Recently, several papers have
focused on the heavy-traffic behavior of polling models. For a two-queue model with exhaustive service at
both queues and with zero switch-over times, Coffman et al. [10] show that the total amount of unfinished
work in the system tends to a Reflected Brownian Motion, under standard heavy-traffic scalings. In [11],
the results in [10] are extended to the case of nonzero switch-over times. Using the results in [10], Reiman
and Wein [23] study set-up scheduling problems for two-class single-server queues. Van der Mei and
Levy [27,28] and Van der Mei [29–31] use the concept of descendant sets to obtain expressions for the
moments of the delay in heavy traffic. Kroese [19] analyzes the heavy-traffic behavior of continuous
polling systems, and shows that the total number of customers has approximately a gamma distribution.

We consider asymmetric cyclic polling models with general mixtures of exhaustive and gated service,
and with general service times and switch-over times. We study the distribution of the delay incurred at
each of the queues in heavy traffic, i.e., in which the load (denoted byρ) tends to unity. Since all queues
become instable in the limiting case, we focus on the limiting distribution of the random variable(1−ρ)Wi ,
referred to as the scaled delay at queuei. We derive closed-form expressions for the Laplace–Stieltjes
transform (LST) of the limiting distribution of the scaled delay at queuei, in a general parameter setting.
The key observation underlying these results of the fact that both the (scaled) cycle times and intervisit
times can be shown to converge to gamma-distributions with known parameters. This leads to an explicit
and complete characterization of the complete waiting-time distributions in heavy traffic. The results are
remarkably simple and provide a variety of insights into the heavy-traffic behavior of the system that have
not been observed before. In addition, the results suggest simple and fast-to-evaluate approximations for
the waiting-time distributions in stable polling systems that are close to saturation. Numerical results
show that the approximations are highly accurate in many practical heavy-traffic scenarios, where the
load is 80–90% or more.

This paper generalizes, and explicitly uses, the results obtained in [30], where we obtained expressions
for the moments of the delay incurred at the queues, in heavy traffic. The motivation for extending the
results in [30] to the complete distributions of the delay is threefold. First, in many applications (e.g.,
in telecommunication networks) the main performance measure of interest is the probability that the
delay exceeds a certain threshold, rather than more aggregated performance measures like the moments
of the delay. In view of those applications, the importance of extending the results in [30] to the complete
probability distribution of the delay is evident. Second, the computation times of the existing numerical
techniques for evaluating the tail probabilities of the delay may degrade dramatically for heavily-loaded
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systems. This raises the need for simple and fast approximations of the tail probabilities of the delay
in heavy-loaded polling systems. Such an approximation is directly obtained by the results presented in
this paper (see Section 5 for more details). Third, we have a theoretical interest in obtaining an exact
characterization of the (asymptotic) waiting-time distributions, showing explicitly how they depend on
the system parameters.

The remainder of this paper is organized as follows. In Section 2 the model is described. In Section 3
we derive closed-form expressions for the LST of the limiting distribution of the scaled delay, in heavy
traffic. In Section 4 we discuss a number of properties of the delay distribution with respect to specific
system parameters. In Section 5 we address the practicality of the results by assessing the accuracy of the
approximations suggested by the expressions obtained in Section 3. In Section 6 we address a number of
topics for further research.

2. Model description

We consider a system consisting ofN ≥ 2 infinite-buffer queues,Q1, . . . , QN , and a single server that
visits and serves the queues in cyclic order. Customers arrive atQi according to a Poisson arrival process
with rateλi , and are referred to as type-i customers. The total arrival rate is denoted byΛ = ∑N

i=1λi .
The service time of a type-i customer is a random variableBi , with LST B∗

i (·) and with finitekth
momentb(k)

i , k = 1, 2, . . . . Thekth moment of the service time of an arbitrary customer is denoted by
b(k) = ∑N

i=1λib
(k)
i /Λ, k = 1, 2, . . . . The load offered toQi is ρi = λib

(1)
i , and the total offered load

is equal toρ = ∑N
i=1ρi . Define a polling instant atQi as an epoch at which the server arrives atQi .

Similarly, a departure instant atQi is defined as an epoch at which the server departs fromQi . Denote
by Ii the intervisit time ofQi , i.e., the duration of the time between a departure of the server fromQi

and its successive visit toQi , and denote the corresponding LST byI ∗
i (·). Define the cycle timeCi at

Qi to be the time between two successive polling instants atQi , and denote the corresponding LST by
C∗

i (·). The service at each queue is either according to the gated policy or the exhaustive policy. Under the
gated policy only the customers that were present at the polling instant atQi are served; customers that
arrive atQi while it is being served are served during the next visit ofQi . Under the exhaustive policy
the server visitsQi until it is empty. The service policy at each queue remains the same for all visits.
DefineE := {i : Qi is served exhaustively} andG := {i : Qi receives gated service}. At each queue
the customers are served on a FIFO basis. The switch-over time required by the server to proceed from
Qi to Qi+1 is a random variableRi with finite moments and with meanri . Denote byr = ∑N

i=1ri > 0
the expected total switch-over time per cycle. All interarrival times and service times are assumed to be
mutually independent and independent of the state of the system. A necessary and sufficient condition
for the stability of the system isρ < 1 (cf. [17]).

Let Wi be the delay incurred by an arbitrary customer atQi . Throughout,Wi will be considered as a
function ofρ, where the arrival rates are variable, while the service-time distributions and the ratios of
the arrival rates are kept fixed. It is known that whenρ ↑ 1, all queues become unstable. Therefore, we
focus on the random variable(1 − ρ)Wi (referred to as thescaleddelay atQi), and derive its limiting
distribution whenρ tends to unity; thus, the analysis is focused on the distribution of the random variables

W̃i := lim
ρ↑1

(1 − ρ)Wi (i = 1, . . . N). (1)

The main result of the paper is the derivation of a closed-form expression for the LST ofW̃i .
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The following notation will be convenient. For an eventF , denote byIF the indicator function onF .
Denote byei the ith unit vector (i = 1, . . . , N). Finally, for each variablex that is a function ofρ, x̂

denotes its value evaluated atρ = 1.

3. Analysis

The waiting-time distribution atQi is related to the intervisit-time and cycle-time distributions accord-
ing to the following relations (cf., e.g. [25]): For Res > 0,

W ∗
i (s) = (1 − ρi)s

s − λi(1 − B∗
i (s))

· 1 − I ∗
i (s)

sE[Ii ]
(i ∈ E), (2)

W ∗
i (s) = (1 − ρi)s

s − λi(1 − B∗
i (s))

· C∗
i (λi(1 − B∗

i (s))) − C∗
i (s)

(1 − ρi)sE[Ci ]
(i ∈ G). (3)

Thus, the waiting-time distributions are completely determined by the distributions of the intervisit times
and cycle times. The following result gives an expression for the limiting moments of the (scaled) intervisit
times and cycle times whenρ tends to 1.

Theorem 1. For k = 1, 2, . . . ,

lim
ρ↑1

(1 − ρ)kE[I k
i ] = (1 − ρ̂i)

k

k−1∏
j=0

[
r + j

(
b(2)/b(1)

δ

)]
(i ∈ E), (4)

lim
ρ↑1

(1 − ρ)kE[Ck
i ] =

k−1∏
j=0

[
r + j

(
b(2)/b(1)

δ

)]
(i ∈ G), with δ := 1 −

∑
m∈E

ρ̂2
m +

∑
m∈G

ρ̂2
m. (5)

Proof. Without loss of generality, assumei = 1. Denote byX1 the number of customers atQ1 at
an arbitrary polling instant atQ1, and denote its corresponding probability generating function (PGF)
by X∗

1(·). The moments ofX1 can be obtained numerically via a set of recursive relations [18]. The
heavy-traffic behavior of these recursive relations is discussed extensively in [29]. These results, in
turn, can be used to obtain the following expressions for the moments ofX1 (cf. [30] for details): For
k = 1, 2, . . . ,

lim
ρ↑1

(1 − ρ)kE[Xk
1] = λ̂k

1(1 − ρ̂1I{1∈E})k
k−1∏
j=0

[
r + j

(
b(2)/b(1)

δ

)]
. (6)

For the case of exhaustive service atQ1, the customers present at a polling instant atQ1 are exactly those
who arrived during the preceding intervisit period. This implies, for|z| ≤ 1, X∗

1(z) = I ∗
1 (λ1(1 − z)), or

equivalentlyI ∗
1 (s) = X∗

1(1 − s/λ1), for Res > 0. Then it is readily verified by differentiating Eq. (6)k

times that, for 1∈ E, k = 1, 2, . . . ,
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lim
ρ↑1

(1 − ρ)kE[I k
1 ] = lim

ρ↑1
(1 − ρ)k

E[X1(X1 − 1) · · · (X1 − k + 1)]

λk
1

= (1 − ρ̂1)
k

k−1∏
j=0

[
r + j

(
b(2)/b(1)

δ

)]
. (7)

Similarly, for the case of gated service atQ1, the customers present atQ1 at a polling instant atQ1

are exactly those which arrived during the preceding cycle, which impliesX∗
1(z) = C∗

1(λ1(1 − z)), for
|z| ≤ 1, or equivalently,C∗

1(s) = X∗
1(1 − s/λ1). Then using it is readily verified from Eq. (6) that, for

1 ∈ G, k = 1, 2, . . . , N ,

lim
ρ↑1

(1−ρ)kE[Ck
1] = lim

ρ↑1
(1−ρ)k

E[X1(X1 − 1) · · · (X1 − k + 1)]

λk
1

=
k−1∏
j=0

[
r + j

(
b(2)/b(1)

δ

)]
. (8)

This completes the proof of Theorem 1. �
A random variableΓ with a gamma-distribution with scale parameterα > 0 and rate parameterµ > 0

has the following probability density function:

fΓ (t) := 1

Γ (α)
e−µtµαtα−1, t ≥ 0, where Γ (α) :=

∫ ∞

0
e−t tα−1dt. (9)

It is readily verified that the LST and the moments ofΓ are given by

Γ ∗(s) =
(

µ

µ + s

)α

(Res > 0), and E[Γ k] =
∏k−1

j=0(α + j)

µk
(k = 1, 2, . . . ), (10)

respectively.
A sequence of real-valued random variables{Xn, n = 1, 2, . . . } is said to converge in distribution to

a random variableX, denoted byXn →d X, if there exists a dense subsetA of R (i.e., the set of real
numbers) such that limn→∞P(Xn < a) → P(X < a), for all a ∈ A. Similarly, two random variablesX
andY are said to have the same distribution (almost surely), denoted byX =d Y , if there exists a dense
subsetA ofR such thatP(X < a) = P(Y < a) for all a ∈ A.

An important observation is that the moments expressed in Eqs. (4),(5) have the same functional
form as the moments of a gamma distribution (see (10)). More precisely, it may be shown that the
moments of the (scaled) intervisit times and cycle times converge to the moments of gamma-distributions
with properly chosen parameters (whenρ tends to 1). This convergencein momentswill be used to
show that both the (scaled) intervisit times and the cycle time also convergein distribution (which
is much stronger than convergence in moments) to gamma-distributions with known parameters. In
general, however, a probability distribution is not uniquely determined by its moments; in fact, the
moments of a probability distribution may not even exist at all. Nonetheless, a special class (sayP) of
probability distributionsis uniquely determined by its (finite) moments. For this classP of probability
distributions, the so-calledMethod of Momentsstates that convergence in momentsimpliesconvergence
in distribution. Below we show that the gamma-distribution belongs toP, so that the Method of Moments
applies.

Lemma 1. LetΓ be a gamma-distributed random variable with parametersα andµ. LetY be a random
variable with finite moments, such that
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E[Y k] = E[Γ k], k = 1, 2, . . . . (11)

ThenY =d Γ .

Proof. A sufficient condition for the (almost sure) uniqueness of the gamma-distribution is the following
(cf. [16, p. 514, Eq. (4.15)]):

limsup
k→∞

1

k
E[Γ k]1/k < ∞. (12)

Using (10), the validity of this requirement follows from the following relations:

lim
k→∞

1

k
E[Γ k]1/k = lim

k→∞
1

k


k−1∏

j=0

α + j

µ




1/k

≤ lim
k→∞

1

k

[
α + k

µ

]k/k

= lim
k→∞

α + k

kµ
= 1

µ
< ∞. (13)

This completes the proof of Lemma 1. �
The following result shows that convergence in moments implies convergence in distribution if the

limiting distribution is uniquely determined by its moments.

Lemma 2. LetY be a random variable whose distribution is uniquely determined by its finite moments
E[Y k], k = 1, 2, . . . . Suppose{Yn} is a sequence of random variables with finite momentsE[Y k

n ], k =
1, 2, . . . , and that

lim
n→∞E[Y k

n ] = E[Y k], k = 1, 2, . . . . (14)

ThenYn →d Y .

Proof. See [9, Theorem 4.5.5]. Combining Lemmas 1 and 2 leads to the following result, which will
play a key role in the derivation of the results. �
Theorem 2 (Method of Moments).Let Γ be a gamma-distributed random variable with parametersα

andµ. Let {Yn} be a sequence of random variables with finite moments, satisfying

lim
n→∞E[Y k

n ] = E[Γ k], k = 1, 2, . . . . (15)

ThenYn →d Γ .

Proof. Follows directly from Lemmas 1 and 2. �
In words, Theorem 2 states that if the moments of a sequence of random variables{Yn} converge

to the corresponding moments of a gamma-distribution, then{Yn} converges in distribution to that
gamma-distribution. Based on Theorem 2, we are now ready to formulate the distributional form of
Theorem 1.

Theorem 3(Convergence in distribution of the intervisit times).If i ∈ E, then

(1 − ρ)Ii →d Ĩi (ρ ↑ 1), (16)

whereĨi has a gamma-distribution with parameters

α := rδ
b(1)

b(2)
, µi := δ

1 − ρ̂i

b(1)

b(2)
with δ := 1 −

∑
m∈E

ρ̂2
m +

∑
m∈G

ρ̂2
m. (17)
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Proof. From Eq. (10) it is readily seen that the moments in (4) converge to the moments of a gamma-
distribution with parametersα andµi , defined in (17). Then we apply Theorem 2 to show that this
convergence in moments implies convergence in distribution. To this end, let{ρ(n), n = 1, 2, . . . } be
an arbitrary sequence ofρ-values withρ(n) ↑ 1. The results follow then from Theorem 2 by taking
Y (i)

n := (1− ρ(n))Wi (note that the distribution ofWi is also a function ofρ(n)). This completes the proof
of the result. �
Theorem 4(Convergence in distribution of the cycle times).If i ∈ G, then

(1 − ρ)Ci →d C̃i (ρ ↑ 1), (18)

whereC̃i has a gamma-distribution with parameters

α := rδ
b(1)

b(2)
, µi := δ

b(1)

b(2)
with δ := 1 −

∑
m∈E

ρ̂2
m +

∑
m∈G

ρ̂2
m. (19)

Proof. Similar to the proof of Theorem 3, by using (5) instead of (4). �
We are now ready the present the main results of the paper.

Theorem 5(Main result). For i = 1, . . . , N ,

(1 − ρ)Wi →d W̃i (ρ ↑ 1), (20)

where the Laplace–Stieltjes transform ofW̃i is given by the following expressions: ForRes > 0,

W̃ ∗
i (s) = 1

(1 − ρ̂i)rs

{
1 −

(
µi

µi + s

)α}
(i ∈ E), (21)

W̃ ∗
i (s) = 1

(1 − ρ̂i)rs

{(
µi

µi + sρ̂i

)α

−
(

µi

µi + s

)α}
(i ∈ G), (22)

where

α := rδ
b(1)

b(2)
, µi := δ

1 − ρ̂iI{i∈E}

b(1)

b(2)
, δ := 1 −

∑
m∈E

ρ̂2
m +

∑
m∈G

ρ̂2
m. (23)

Proof. For i ∈ E, relation (21) follows from the following sequence of equalities: For Res > 0,

W̃ ∗
i (s) := lim

ρ↑1
W ∗

i (s(1 − ρ)) = lim
ρ↑1

(1 − ρi)s(1 − ρ)

s(1 − ρ) − λi(1 − B∗
i (s(1 − ρ)))

· lim
ρ↑1

1 − I ∗
i (s(1 − ρ))

s(1 − ρ)E[Ii ]
(24)

= 1

(1 − ρ̂i)rs

{
1 −

(
µi

µi + s

)α}
(i ∈ E). (25)

The second equation follows from (2), and the third equality follows from Theorem 3, the observation
thatE[Ii ] = r(1− ρi)/(1− ρ) and several straightforward manipulations. Similarly, fori ∈ G, relation
(22) follows from the following equalities: For Res > 0,

W̃ ∗
i (s) = lim

ρ↑1

s(1 − ρ)

s(1 − ρ) − λi(1 − B∗
i (s(1 − ρ)))

·lim
ρ↑1

C∗
i (λi(1 − B∗

i (s(1 − ρ)))) − C∗
i (s(1 − ρ))

s(1 − ρ)E[Ci ]
(26)
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= 1

(1 − ρ̂i)rs

{(
µi

µi + sρ̂i

)α

−
(

µi

µi + s

)α}
(i ∈ G). (27)

The first equality follows from (3) and the definition ofW̃i(s) in (24). The second equality follows from
Theorem 4, the fact thatE[Ci ] = r/(1 − ρ), and several straightforward manipulations. This completes
the proof of Theorem 5. �

Theorem 5 gives a closed-form expression for the LST of the steady-state waiting-time distributions
at each of the queues, providing an explicit characterization of the complete distribution of the delay
incurred at each of the queues (under heavy-traffic scalings). To the best of the author’s knowledge,
similar expressions have not been observed in the literature in the general parameter setting of the
model.

Remark 3.1. The results in this paper are in line with a number of known results in special cases. For
the caseN = 2 andE = {1, 2}, the results correspond to those in [10] for the case of zero switch-over
times and to [11] for non-zero switch-over times. Kroese [19] considers continuous polling systems in
heavy traffic, which corresponds to the present model for the case of a fully symmetric system with
N → ∞. Note that in that case, we haveρi → 0 (i = 1, . . . , N) and δ → 1 (regardless of the
service policies). According to Theorems 3 and 4, both the (scaled) cycle times and intervisit times
(which coincide for continuous polling) converge, forρ ↑ 1, to a gamma-distribution with shape pa-
rameterα = rb(1)/b(2) and rate parameterµ = b(1)/b(2), which is in line with the results in [19].
For systems with large (deterministic) switch-over times, it is shown in [32] that theCi/r and Ii/r

converge to a deterministic distribution whenr tends to infinity (even for stable polling systems). It
is readily verified from Theorems 3 and 4 that bothĨi/r and C̃i/r converge to a deterministic distri-
bution whenr tends to infinity, which is readily shown (by using relations (2) and (3)) to imply that
W̃i/r congerves to a uniform distribution whenr grows without bound, which is in line with the results
in [32].

Remark 3.2. In many applications, the switch-over times are negligible. In this context, Theorem 5
implies that for the case of zero switch-over times, the LST of the waiting-time distribution atQi is given
by the following expressions: For Res > 0,

lim
r↓0

W̃ ∗
i (s) = δ

(1 − ρ̂i)s

b(1)

b(2)
log

(
µi + s

µi

)
(i ∈ E), (28)

lim
r↓0

W̃ ∗
i (s) = δ

(1 − ρ̂i)s

b(1)

b(2)
log

(
µi + s

µi + sρ̂i

)
(i ∈ G), (29)

where log(·) is an inverse function of the (complex) functionf (z) := exp(z). These results follows
directly from Eqs. (21)–(23) and several straightforward manipulations. We refer to [2,24] for a de-
tailed discussion of the relation between the delay in polling systems with and without switch-over
times.

Remark 3.3. Federgruen and Katalan [15] propose a numerical method to approximate the queue-length
and waiting-time distributions in polling models with exhaustive and gated service. The method is based
on fitting the first few moments of the intervisit times and cycle times to their exact values, which can be
determined numerically by means of the Descendant Set Approach (DSA) [18]. Interestingly, numerical
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experiments in [15] show that highly accurate approximations are obtained by fitting the first two moments
of the intervisit times and cycle times only. In this context, recall that Theorems 3 and 4 show that both
the (scaled) cycle times and intervisit times converge to a gamma-distribution, and hence, are completely
determined by their first two moments. In other words, the two-moment fitting of the cycle times and inter-
visit times are asymptotically exact when the load tends to unity. In this way, the results in this paper form a
theoretical basis for the observed accuracy of the two-moment fitting of the cycle times and intervisit times
in [15].

Remark 3.4. For stable systems (i.e., withρ < 1), the tail probabilities of the waiting-times distri-
bution can be computed by means of the numerical transform inversion technique (NTI) discussed in
[8]. This approach is highly effective for lightly and medium-loaded systems. However, the compu-
tation times may increase dramatically whenρ is close to 1. Alternatively, in the limiting caseρ ↑
1, the tail probabilities can be obtained almost instantaneously by applying NTI directly to the exact
expressions in Theorem 5. In this way, the limiting distribution may be used as a fast-to-evaluate ap-
proximation of the waiting-time distribution in stable systems withρ close to 1 (see Section 5 for a
discussion of the accuracy of the approximation). In this perspective, the applicability of the approach in
[8] (for light and medium load) and the approach of combining Theorem 5 with NTI (for heavy load) is
complementary.

4. Asymptotic properties

The results obtained in Section 4 reveal a number of properties of the heavy-traffic behavior of
polling systems, in a general parameter setting. In Section 4.1 we discuss a number of insensitivity
properties of the asymptotic delay distributions with respect to specific system parameters. In Sec-
tion 4.2 we discuss properties of the asymptotic tail behavior of the limiting waiting-time
distributions.

4.1. Insensitivity

Theorem 5 reveals a variety of properties about the dependence of the limiting delay distribution with
respect to the system parameters.

Property 1. For i = 1, . . . , N , the distribution ofW̃i

• is independent of the visit order,
• depends on the switch-over time distributions only throughr, i.e., the total expected switch-over time

per cycle,
• is independent of the lth moment of the service-time distributions at the queues forl > 2,
• depends on the second moments of the service-time distributions only throughb(2), i.e., the second

moment of the service time of an “arbitrary” customer.

Property 1 is known to be not generally valid for stable systems (i.e., forρ < 1), where the visit order,
the individual switch-over time distributions and the higher moments of the service-time distributionsdo
have an impact on the distribution of the waiting-times. Hence, Property 1 shows that the influence of
these parameters on the waiting-time distributionsvanisheswhen the load tends to unity, and as such can
be viewed aslower-ordereffects in heavy traffic.
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4.2. Asymptotic decay rate

Define theasymptotic decay rateof the probability distribution of a real-valued random variableY by

η(Y ) := lim
x→∞ − ln(Pr{Y > x})

x
, (30)

where the ln(·) is the inverse of the (real-valued) functionf (x) := ex . The following result gives the
asymptotic decay rate of the (scaled) waiting times in the limiting case.

Property 2. For i = 1, . . . , N , the asymptotic decay rate of̃Wi is given by

η(W̃i) = δ

1 − ρ̂i

b(1)

b(2)
(i ∈ E), η(W̃i) = δ

b(1)

b(2)
(i ∈ G). (31)

To show the validity of Property 2, note that fori ∈ E, Theorem 3 implies thatη(Ĩi) = µi (defined in
(17)), i.e., the asymptotic decay rate of the scaled intervisit timesĨi equals toµi . From Eq. (2) it follows
that the distribution ofW̃i is the forward recurrence-time distribution ofĨi . The latter is readily verified
to have the same asymptotic decay rate asĨi , which shows the validity of the result. Similar arguments
may be used to show the validity of the result fori ∈ G.

Property 2 implies the following properties of the asymptotic decay rate of the scaled waiting times
when the load tends to unity.

Property 3. For i = 1, . . . , N , the asymptotic decay rate of the distribution ofW̃i

• decreases as the variability in the service times (i.e.,b(2)) increases,
• decreases asE → E + {j} for somej ∈ G, j 6= i.
• increases asE → E − {j} for somej ∈ E, j 6= i.

In other words, part 1 implies that increasing the variability of the service times implies that the tails
of the waiting times tend to become heavier. Part 2 implies that ifQj receives exhaustive instead of
gated service for somej 6= i, then the tails of the delay atQi become heavier. Part 3 implies that ifQj

receives gated instead of exhaustive service for somej 6= i, then the tails of the delay atQi become
thinner.

Remark 4.1. A monotonicity property similar to Property 3 is not necessarily true when the service
discipline atQi itself is modified. To this end, consider for example a three-queue model withρ̂1 = ρ̂2 =
1/10, ρ̂3 = 8/10. It is readily verified by using Property 2 that ifG = {1, 2, 3}, E = ∅, then replacing
the service discipline atQ1 by the exhaustive service leads to an increase ofη(W̃1). On the other hand, if
G = {1, 3}, E = {2}, then givingQ1 exhaustive instead of gated service leads is readily verified to lead
to a decrease ofη(W̃1). Thus, a monotonicity property similar to Property 3 is not necessarily true when
the service policy atQi itself is modified.

Remark 4.2. Choudhury and Whitt [8] study the asymptotic tail bahavior of the waiting-time distribu-
tion for (stable) polling systems with gated and exhaustive service at the queues. Based on the use of
numerical transform inversion (NTI), they numerically calculate the asymptotic decay parameterη(Wi)

(among other parameters), which is the dominant singularity (i.e., the singularity closest to the ori-
gin) of the LST of the waiting-time distribution. The discussion of the numerical results in [8] leads
to a number of interesting observations, which are found empirically but are unproven: (a) compar-
ing fully symmetric systems with either gated service at all queues and systems with exhaustive at all
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queues, the asymptotic decay rate is smaller for the case of exhaustive service, (b) the dominant sin-
gularity of W ∗

i (·) is typically located “very near”−η(Wi), (c) for systems with zero switch-over times,
logarithmic singularities are observed in several cases, and (d) the asymptotic decay rate is the same
for systems with and without switch-over times (provided that the switch-over time contribution does
not dominate the zero-switch-over time contribution). Each of these observations can be shown to be
asymptotically exact in the limiting caseρ ↑ 1. (Note that in our analysis we consider the scaled de-
lay (1 − ρ)Wi , rather thanWi . It is readily verified from the definition in (30) that the corresponding
asymptotic decay rates are related asη((1 − ρ)Wi) = η(Wi)/(1 − ρ).) More precisely, in the limiting
caseρ ↑ 1, observation (a) follows from Property 3. Similarly, the asymptotic correctness of (b) follows
from Property 2. Observation (c) follows directly from Eq. (22), and finally, (d) follows directly from
Property 2. Thus, the results in this paper show that the empirical observations (a)–(d) are asymptoti-
cally exact whenρ ↑ 1, which provides a theoretical basis for the validity of the empirical observations
in [8].

Remark 4.3. An interesting observation is made by Duffield [13], who studies fully symmetric stable
polling systems with gated service, and shows that “the dominant effect on the tail of the waiting-time
distribution is from the service-time distribution or the switch-over times distribution, whichever has the
heavier tail”. Property 1, however, shows that the asymptotic decay rate of the scaled delay (i.e.,(1−ρ)Wi)
does not depend on the switch-over time distributions at all (assuming the moments are finite), when the
system is close to saturation. Apparently, the impact of the tail distribution of the switch-over times on
the asymptotic decay rate of the waiting-time distribution are of “lower order” when the system tends to
saturate.

Remark 4.4. Despite the fact that monotonicity results, like those in Property 1, are often quite intuitive,
they may not be trivial to prove. In the literature only a few monotonicity properties have been proven.
Levy et al. [22] show pathwise monotonicity properties of the total amount of unfinished work in the
system. Van der Mei and Levy [27,28] show monotonicity of the expected delay at the individual queues
with respect to the so-called exhaustiveness of the service policies (in heavy traffic). The exhaustiveness
of the service policy atQi , denoted byfi , is defined as one minus the ratio between the average number
of customers atQi at a departure epoch atQi and the average number of customers at a polling instant
at Qi . For example, it is readily verified that fori ∈ E we havefi = 1, and that fori ∈ G we have
fi = 1 − ρi . The reader is referred to [28] for more details on the notion of exhaustiveness. Borst et
al. [3] obtain semi-conjectured monotonicity properties regarding the expected delay in polling systems
with K-limited service.

To the best of the author’s knowledge, Properties 1–3, and the corresponding remarks discussed above,
have not been observed before in the literature, and provide a variety new and useful insights into the
behavior of heavily-loaded polling systems.

5. Approximation

Theorem 5 suggests the following approximation for the waiting-time distributions in stable polling
systems: Fori = 1, . . . , N, ρ < 1,

Pr{Wi < x} ≈ Pr{W̃i < x(1 − ρ)} (x > 0). (32)
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Fig. 1. Cumulative distribution function of(1 − ρ)W1 for different values of the load in a fully symmetric 5-queue model.

The right-hand side of (32) can be calculated almost instantaneously by applying the NTI directly to the
Eqs. (21) and (22) and therefore, can be used as a fast-to-evaluate approximation of the waiting-time
distributions for stable polling systems withρ close to 1 (see also Remark 3.4). In this context, Theorem
5 implies that the approximation is asymptotically exact forρ ↑ 1.

To assess the accuracy of the approximation in (28), in terms of “How high should the load be for
the approximation to be accurate?”, we consider a fully symmetric 5-queue model with gated service at
all queues, with exponential service times with mean 1 and with deterministic switch-over times with
mean 2 between all queues. We used the approach in [8] to compute the tail probabilities of the de-
lay for different values of the load. To compute the tail probabilities in the limiting case, we applied
NTI directly to expression (22) in Theorem 5. Fig. 1 shows the cumulative probability distribution of
(1 − ρ)W1 for different values ofρ, and for the limiting caseρ ↑ 1 (indicated as “limit”). The results
in Fig. 1 demonstrate that the waiting-time distribution of(1 − ρ)W1 indeed converges to the limiting
distribution when the load tends to unity, as expected on the basis of Theorem 5. Moreover, Fig. 1 shows
that the distribution of(1 − ρ)W1 converges to its limiting distribution rather quickly whenρ ↑ 1,
and is (visually) “close” to the limiting distribution for load-values, say, 80% or more. In other words,
when the load exceeds 80%, the approximation (32) is fairly accurate. This observation demonstrates
the applicability of the asymptotic results for practical heavy-traffic scenarios. (The assessment of the
accuracy of the approximation for extremely small tail probabilities, which is important in some appli-
cations but not covered by Fig. 1, is beyond the scope of this paper and is left as a topic for further
research.)

To investigate the accuracy of the approximation (32) for highly asymmetric systems, we also consider a
10-queue model with the following parameters: The ratios between the arrival rates are 1:1:10:1:1:1:10:1:
10:1. The service times atQ3 andQ10 are exponentially distributed with means 1 and 10, respectively,
whereas the service times atQ4 andQ8 are deterministically distributed with respective means 10 and 25
and all other service time are deterministic with mean 1. The switch-over times fromQ3 to Q4 are deter-
ministic with mean 1, and all other switch-over times are 0.E = {3, 4, 5, 10} andG = {1, 2, 6, 7, 8, 9}.
Clearly, the model is highly asymmetric in the arrival rates, service times and service policies. Fig. 2
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Fig. 2. Cumulative distribution function of(1 − ρ)W1 for different values of the load in a highly asymmetric 10-queue model.

shows the cumulative probability distribution of(1 − ρ)W1, for different values ofρ and for the lim-
iting caseρ ↑ 1 (“limit”). shows that the waiting-time distributions indeed converge to their limiting
values when the load tends to unity, which confirms the validity of Theorem 5. To check the accuracy
of the approximation (32) for this model, Fig. 2 shows that the convergence to the limiting distribu-
tion is somewhat slower than in the model in Fig. 1. This was to be expected because of the strong
asymmetry in the model parameters. Nonetheless, the limiting distribution still “closely” resembles the
waiting-time distribution when the load is, say, 90% or more. We emphasize that the computation times
required to obtain accurate calculations of the tail probabilities of the delay for the higher values of the
load (e.g.,ρ = 0.98 and higher) are on the order of minutes each (on a modern work station), whereas
the approximations in (32) can be obtained almost instantaneously by applying NTI directly to Theo-
rem 5. These observations demonstrate the usefulness of the asymptotic results in practical heavy-traffic
scenarios.

6. Topics for further research

The results in this paper suggest simple and fast approximations for the waiting-time distributions in
stable polling systems, which are (visually) “accurate” when the load is about 80–90% or more. However,
in some applications (e.g., in telecommunication systems) the most important performance measures are
very small tail probabilities, which are not covered in the numerical examples discussed in Section 5.
In Section 4.2 we obtained expressions for the asymptotic decay rate of the delay under heavy-traffic
assumptions. A more detailed analysis of the asymptotic tail behavior of the delay and an assessment of
the accuracy of the approximation in (32) for very small tail probabilities are left as a topic for further
research.

Theorem 5 shows that the limiting waiting-time distribution depends on the system parameters only
through a few aggregated parameters (namely,r, b(1), b(2), δ andρ̂i (i = 1, . . . , N)). This observation
greatly simplifies optimization of the system performance with respect to the configurable parameters
(e.g., service policies, visit order). Optimization of the system performance in heavy traffic is a topic
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for further research. Feasibility problems of the form “Can the system be operated such that Pr{Wi >

xi} < αi (i = 1, . . . , N) ?” are of main practical importance. Here, the values ofxi andαi are typically
specified by the users, and typical decision variables are the choice of the service policies and the visit
order. To the best of the author’s knowledge, this type of problems has not been studied before in the
polling literature. The results in this paper open possibilities for obtaining (approximative) solutions for
solving feasibility problems under heavy-traffic assumptions.

Recent studies have revealed that in many applications the arrival processes are non-Poisson. It is a
topic for further research to obtain expressions for the waiting-time distribution in heavy-traffic under
non-Poisson arrival processes. In this perspective, encouraging results are obtained by Coffman et al.
[10,11], who obtain simple expressions for the heavy-traffic limit of the waiting-time distribution for a
class of non-Poisson arrival processes.

In this paper it is assumed that all moment of the service times and switch-over times, and hence of
the cycle times and intervisit times, are finite. However, the limiting waiting-time distributions depend
on the first and first two moments of the switch-over times and service times, respectively (see Property
1). This observation suggests that the heavy-traffic results in this paper may be obtained under weaker
assumptions about the finiteness of the moments of the service times and switch-over times. Derivation
of such results is left as a topic for further research.

Another interesting topic for further research is to analyze the impact of heavy-tailed service-time and
switch-over time distributions on the distributions of the delay in heavy traffic. Boxma et al. [7] use
the theory of so-called regularly varying functions and show that in a model with gated and exhaustive
service at each queue the waiting-time distribution is regularly varying of an index one plus the index of
the heaviest service-time or switch-over time distribution. Boxma and Cohen [6] obtain the heavy-traffic
limiting distribution for the single-server queue with regularly varying service-time distributions. An
interesting observation in [6] is that the scaling factor needed to obtain a proper limiting distribution
is generally not equal to 1− ρ, as is the case for the polling systems (with finite moments) discussed
in this paper. The identification of the proper scaling factor and the limiting distribution for polling
models with heavy-tailed service-time and switch-over time distributions is left as a topic for further
research.
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