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Abstract

We consider polling systems with mixtures of exhaustive and
gated service, and in which the server visits the queues accord-
ing to a general polling table, in heavy traffic. We derive exact
expressions for the expected delay at each of the queues (under
heavy-traffic scalings), requiring the solution of a set of M — N
linear equations, where M is the length of the polling table and
N is the number of queues. The results lead to closed-form
expressions for the scaled expected delay under the commonly
used star and elevator routing schemes, in a general parameter
setting. In addition, the results reveal several insensitivity prop-
erties of the scaled expected delay with respect to the system
parameters, providing new insights into the behavior of periodic
polling systems in heavy traffic. The results also suggest simple
and fast-to-evaluate approximations for the expected delay at
each of the queues in stable polling systems. Numerical exam-
ples show that the approximations are very accurate in practical
heavy-traffic scenarios.

Keywords: polling system, polling table, periodic routing, wait-
ing time, heavy traffic.
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1 INTRODUCTION

The basic polling system consists of a number of queues attended by a single
server that visits the queues in cyclic order to provide service to the cus-
tomers waiting at the queues. Polling models find applications in the areas
of computer-communication systems, maintenance, manufacturing and pro-
duction, amongst others (cf. [16, 21] for overviews). A natural extension of
the cyclic order is periodic server routing, in which the order in which the
Server visits the queues is prescribed by a so-called polling table of finite
length.

Only a few papers in the literature have been devoted to polling systems
in heavy traffic. We refer to 8,9, 14, 23, 25, 26] and references therein for
results on (cyclic) polling systems in heavy traffic, and to [22] for periodic
polling models with multiple servers. Exact analysis of polling models is
only possible in some cases, and even in those cases numerical techniques
have to be used to obtain performance metrics of interest, like the expected
delay at the queues. For periodic polling models with gated and exhaus-
tive service at each queue, the expected delay can be determined by solving
(generally large) sets of linear equations (10, 1, 2], or by using iterative tech.
niques [13, 7]. Systems with limited-type service disciplines require more
computationally intensive techniques [3, 15]. However, a common disad-
vantage of all these numerical techniques is that their efficiency degrades
significantly for heavily-loaded, large and highly asymmetric systems, while
for these systems the proper operation of the system is particularly criti-
cal. In addition, numerical analysis in itself can only provide limited insight
into the system behavior. These observations raise the Importance an exact
analysis of the delay in polling models in heavy traffic.

In this paper we study the expected delay in periodic polling models
under heavy-traffic assumptions. We express the expected delay (under
proper scalings) as the solution of a set of M — N linear equations. The
results lead to closed-from expressions for the scaled expected delay under
polling schemes commonly used in industry, like the star and elevator polling
schemes, in a general parameter setting. Moreover, the results show that the
scaled expected delay figures depend on the system parameters only through
a few aggregated system parameters. In addition, the results suggest simple
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and fast-to-evaluate approximations for the expected delay at each of the
queues in stable polling systems. Numerical experiments show that the
approximations are very accurate in practical heavy-traffic scenarios.

In Section 2 the model is described and some notation is introduced.
In Section 3 we give some preliminary results. In Section 4 we obtain exact,
expressions for the expected delay under heavy-traffic scalings. In Section
5 the implications of the results are discussed and illustrated by numerical
examples. In Section 6 we propose and test approximations of the mean
waiting times in stable polling systems. Section 7 contains some concluding
remarks and addresses a number of topics for further research.

2 MODEL DESCRIPTION

Consider a system consisting of N infinite-buffer queues, @,...,Qxy. Cus-
tomers arrive at ); according to a Poisson arrival process with rate \;. The
total arrival rate is denoted by A = ¥, ;. The first two moments of the
service times at @; are denoted by b; and 65-2)’ Denote b = (by,...,by)
and 0¥ = P, b). The first two moments of an arbitrary ser-
vice time are denoted by b = ©¥, A;b;/A and b2 = s, AP /A, The
load offered to Q; is p; = \b;, and the total offered load is equal to
p = T, pi. A single server inspects the queues periodically according
to a general polling table of length M, described by a mapping 7'(+), which
is used such that the server visits the queues periodically in the order
T(1).7(2),...,T(M),T(1),T(2),. ... Following the approach in [2], a unique
pseudo-queue is associated with each entry in the polling table. Denote by
PQ the pseudo-queue associated with the k-th entry in the polling table;
its corresponding queue has index T'(k). Customers which arrive at Q1)
and are served at PQy are referred to as type-k customers. The moments
at which the server arrives at PQ; are referred to as the polling instants
at PQy. Define a service period at PQ; as the time between a polling in-
stant at PQy and its successive departure from PQy. Define a cycle as the
time interval between successive visits of the server to P@Q,. The service
at each pseudo-queue is either according to the gated policy or the ex-
haustive policy. For ease of the discussion, we assume that pseudo-queues
corresponding to the same queue have the same service strategy. Define
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E :={i: Q; is served exhaustively} and G := {i: Qi is served according to
the gated policy}. At each queue the customers are served on a FIFQ basis.
After completing service at PQ; the server proceeds to PQp41, incurring a
switch-over period whose first two moments are r; and r,(f). The first two
moments of the total switch-over time per cycle are denoted by r and r(2.
It is assumed throughout that » > (. Denote r=(r,..., H).

All interarrival times, service times and switch-over times are assumed
to be mutually independent and independent of the state of the system. A
necessary and sufficient condition for the stability of the system is Pies 3
(12]. Throughout, we assume that this condition is satisfied, and that the
system is in steady state, unless indicated otherwise.

Denote by W; the delay incurred by an arbitrary customer at Q;. Our
main interest is in the behavior of E[W;], the expected delay at Q;, in heavy
traffic. Throughout, E[W] is considered as function of p. We assume that,
the arrival rates are parametrized as \; = a;p, where relative arrival rates
a; remain fixed. It is known that E[W], considered as a function of p, has
a first-order pole at p = 1 (see Remark 4.1). ‘Therefore, the analysis is
oriented towards the determination of

wi=lim (1 - p)EW), i=1,.. N, (1)

the scaled expected delay at Q;. The expected delay and the scaled expected
delay at PQ, are denoted by E‘[W,,(PQJ] and wiPQ), respectively, for & =
1,... M.

Finally we introduce some notation. Denote ¢; := b; for i € G and
i = bi/(1 — p;) for i € E. Let Ti; be the entry in the polling table
corresponding to the next visit to Q; after a departure from PQ;, and let
oi; be the entry corresponding to the last visit to Q; prior to an arrival of
the server at PQ; (i=1,....M, j= 1,...,N). Ig stands for the indicator
function on the event E. Let 1 be the vector whose i-th components equals
1 for all 7. Indices i corresponding to queues and pseudo-queues should be
read as [(i — 1) mod N]+ 1 and [(i — 1) mod M] + 1, respectively.

3 PRELIMINARIES

Let X} be the number of customers at PQ; at a polling instant at PQ,.
For a customer served at PQp, we define the waiting time at PQ, to be
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the time between its arrival into the system and the moment at which the
customer starts service at PQ. The expected waiting time at PQ; can be
expressed in terms of the first two moments of X, as follows (cf. [20]): For
T(k) € G,

Var[Xy] + (E[X:])? — B[X,]
k 2A7( B[ X4 =1+ priw), (2)

EW") =

and for T'(k) € E,

Var(Xe] + (E[X)* - X4 Ay biiey
21y E[Xi] 2(1 = pruy)

Hence, to obtain expressions for E[W{" %), we need to quantify E[X] and
Var[X].

EW = (3)

To obtain expressions for E[X}], it is convenient to relate E[X}] to E[Vi],
where V. stands for the duration of a service period of the server to PQy (k =
1,..., M). To this end, it is readily verfied that, for k =1,..., M,

EVi] = eru E( Xk (4)

The variables E[V;] can be obtained by solving the following set of linear
equations (cf. also [4]): For k=1,..., M,

E[Vi] = Aryere L ; l("j + E[Vi]) + i, + EViiryecy | (5)
=l +
with I := o} 7(x), supplemented with the balancing equations
r i
m:T(m)=i =N

Notice that both E[V;] and E[X}] possess a first-order pole at p = 1. There-
fore, we define, for k =1,..., M,

vg 1= 13%*{1 (1=p)EVE], zi:= 13{{1 (1= p)E[X4). (7)
Using equations (4)-(7) it follows that the variables v, and hence zi, k =
1,..., M, are (uniquely) determined by the following set of equations: For
k=1,...,M,i=1,...,N,

k-1

Vi = AT(k)PT(k) L Y vi+ulirwmesy|, 2 Um = AT (8)

=l +1 m:T(m)=i
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where the parameter values in (8) are evaluated at p = 1. It is readily ver-
ified from equations (4)-(8) that the variables E[V] and E[X4], and hence
also 2, and Vg, can be effectively determined (by eliminating redundant
equations) by solving a set of A — N linear equations.

The derivation of expressions for Var[X,] is more involved. To this end, we
use the Descendant Set Approach (DSA). The DSA considers an arbitrary
fixed polling instant at PQu, called the reference point P¢. The idea is to
consider an arbitrary customer Ci. that wasg served at PQ; ¢ cycles ago
and to obtain recursive relations for Alic)k, defined as the number of type-k
“descendants” Cic has at P¢. By conditioning on the number of so-called
Immediate children of Cj., we obtain recursive relations for the distribu-
tion of Aiey k- These relations lead to the following recursjve relations for
ey and ‘-"i?.i},kr Le., the first two factorjal moments of Aoy k (cf. [13] for

Uie)k = bry;) [ 2 dagas+ 3 Ajag, c—l)k} (9)
JiTip > 1T <i
o _ b
2 _ i) 9 2 2)
a(i,r},k =" b2 Q(i.c),k + bT‘fi} [ Z _"\jair.'i,t:},k + Z _’\iaiﬂ;.c—l}.k} . (IO)
(i) Jimij>i Jim<i
Recursive relations for the case T'(3) € E can be obtained similarly. The inj-
tial conditions are X0k =1, a0 := 0 (=k+1, M), Q16 =
Ol = A, b 1), and a((f?m'k = Qif,i)).fc =00 = k+ Lyvo,, M),

ﬂ((?‘]q),k =0(i= Lo k—1).

The variables E[X,] and Var[X;] can be eXpressed in terms of the vari-
ables a(;, ; and (%) as follows (cf, (13]): Fork =1,. . as

M 00
E[Xk_i = Z r; Z [ z ,\ja(,ﬁ.‘w + Z ’\faffij-f—lj.kJ ; (11)
=] = JiTSe Jing <t
and

LA @) @
Var[Xk]:En-E V3 ’\j“(nj,c}‘e'*' 2% ’\J'a(r,-,-,c—lj,k (12)

i= e=0 |jir;>i Jim i
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M o0 A
+ 30 ) | T Namakt T Ame-nk| - (13)
i=1 =0 |jom;>i jimg<i
For the analysis, we also need to conduct the recursion in a different way. To
thisend, fork=1,..., M, let dji := b; forje G and dj; = I{T(k)#}bj/(l—
p;) for j € E. Then by conditioning on the number of customers present at
the beginnings of the service periods since the last visit to Q) prior to Py,
we obtain the following relations between the first moments (relations for
the second moments are not needed here) of A ) ; and Ao, With j £ k
(cf. [23] for details): For i,k =1,.. el 620, 10
k-1
Gk = Aty L | dikeolu<r T djrecgie-1).i(520) - (14)

J=0C% Tik)

It is useful to express relations (9) and (14) in matrix notation. Let o ¢« be
the vector whose i-th element is a4 fori=1,..., M. Moreover, let P; be
the M by M matrix whose (j, k)-th element equals Ifj=g) for j # 1, while
the (i, 7;)-th element equals bypA; if T(i) € G, and I{j;gq‘{ij}/\jbq'(;)/{l -
pry) if T(3) € E, and all other components of the i-th row are 0. Define
M = P, .. - Py, and let g, be the vector whose i-th element is ;o) for
ik=1,...,M. Thenitis readily verified that ¢, = Py -Pi_1€s, and that
the recursive relations (9) can be expressed as follows: For k=1,..., M,

a0k = 9 Aok = Mg c-1)k = Mcgp e=1,2;uux (15)

To express (14) in matrix notation, let a). be the vector whose k-th
element is a(ic) k) and let P, be the matrix whose (Z,7)-th element equals
Iii=j) for i # k, while the (k,j)-th element of Py is given by Arqdjx for
j = Ok k-1 and all other components of the k-th row are 0.
Define M = Py .P,, and let q; be the vector whose k-th element is
ook Then g, = Py - .Piyie;, and relations (14) can be expressed as

{ollows: Fori=1,..., M,

aGo),- =4 Qe = Magic1), = M, c=12,.... (16)

4 ANALYSIS

The variables o; ) are determined by both sets of relations (15) and (16),
which constitute a set of first-order homogeneous difference equations. The
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theory of difference equations shows that the variables Qi )k can be solved
explicitly if the eigenvalues and eigenvectors of M (M) are known. In
general, however, the eigenvalues and eigenvectors of M (M) are unknown
for p < 1. Nevertheless, to analyze the system behavior in the limiting case
P 1 1, there is no need to obtain all eigenvalues and eigenvectors of M (M)
and then let p 1 1. More precisely, since E[X,] and Var[X,] are known
to tend to infinity when p 1 1, it follows from (11)-(13) that the heavy-
traffic behavior of E[X;] and Var[Xy] is determined by the “dominant”
behavior of the sequences {a; . 4,c = 0,1,.. .} and {afﬂ)_k,c =0,1,...}
which appears to be relatively easy to analyze.

Lemmas 4.1 and 4.2 below are useful in the analysis. The proofs, which
proceed along similar lines as discussed in [23], are omitted for compactness
of the presentation.

are real-valued, posttive, have mulliplicity 1, and have associated right and

left eigenvectors Y, w, and u, w, respectively. If these are normalized so
that uTw=uT] =1, 4Ty = ']l =1, then

M = TCQQT"‘RC' M(’:,?C_zly“_}-r_!_ﬁf" (1?)

where there ezist K < oo and 5y (0 < 5 < Y,7), such that all eniries of R°
and R¢ are strictly smaller than K°,

Lemma 4.2
(1) If p< 1, then 7Y<1, and if p=1 then y=9=1.
(2) If p=1, then u s proportional to (brey, - < orany).
(3) If p=1, then U 15 proporitional o (zy,..., Tyy).

Remark 4.1

From equation (9) it is readily verified that the series 220 (i) k, cONsid-
ered as a function of P, Possesses a first-order pole at p = 1. Equation (11)
then implies that E[X] has a first-order pole at p = 1, which also follows
from equations (4)-(6). Then, equation (15) and Lemmas 4.1 and 4.2 imply
that the series P Boai cxﬁ-‘r_)rk also has a first-order pole af p = 1. Similarly,
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the series £ a%?_}c)‘k possesses a second-order pole at p = 1 (see equations
(34)-(37) in the Appendix). These observations imply that Var[X;] has a
second-order pole at p = 1, see equations (12)-(13). This implies, by using
(2) and (3), that E[W,EPQ)] (k =1,...,M) has a first-order pole at p =1,
which, in turn, implies that E{(W;] (i =1,...,N) also has a first-order pole
at.p = 1.

Theorem 1
[3er g MBS -

2o ek _ brg 2o o _ br
(1) Lim TR0 Xie)k T(:)f_ii; (2) lim =0 ((2)c)k T :ck_ (18)
ot T2 el brg) ol yogait), b o
Proof: Part 1 follows from Lemmas 4.1 and 4.2 and using the continuity
of the eigenvalues and eigenvectors at p = 1. The proof of Part 2 is given

in the Appendix.

Theorem 2
Forkil=1,...,.M,
(1) lim E[Xi] _ _ Tk, ) b Var[Xk]
i E[X] =’ Rt Var[X)] ~

(19)

Proof: Part 1 follows directly from the first part of Theorem 1 and equation
(11). Part 2 follows from the second part of Theorem 1, and the observation
that (13) is dominated by (12) in the limiting case (see Remark 4.1).

Theorem 3
Fork,d=1,....M,

w9 _w(l+ P Lir(k)eG)) / AT () PT(R)
w}PQ) w(1+ proyLyrmecy)/Arayero)

(20)

Proof: The result follows from Theorem 2 and equations (2) and (3).

The waiting times at the pseudo-queues can be related to the waiting times
at the queues by conditioning on 7, defined as the fraction of customers
which arrive at Qr) that are served at PQg (k = 1,...,M). Using this
definition, it is readily seen that, for k =1,..., M,
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T = L. - (21)
LITG=Th) Y] Pr(yT
where the second equality follows from (8). Hence, for i = | P
1
wis ¥ omuy = — 3 (P9 (22)
kT (k)=i PiT T (R)=i

The following result gives an expression for the ratios between scaled ex-
pected waiting times at the queues.

Theorem 4
Fori,j=1,... N

L

o P8 i/ P} Cheriuy=i v}
Wi /P ki vp
where ;== 1+ p; forie G and 1; := 1~ p; foric E.

(23)

Proof: The results follows directly from Theorem 3 and relation (22).

From Theorem 4, the scaled expected delays are known up to some scal-
ing factor. This factor can be obtained by using the so-called pseudo-
conservation law (PCL), i.e., an exact expression for Y, p; E[W;] = EU],
where U stands for the total amount of waiting work in the system (cf. [4]).
Denoting u := limyp1 (1= p)E[U), the PCL leads to an exact expression for
T, piwi = u, requiring only the solution of the variables v, k=1,..., M.

Theorem 5

N b2 N M
L= gt 5 (2, ot vt (24
i=1 k=1 m=c.+1

Proof: Follows from (4], definition (1) and several straightforward argu-
ments,

Theorem 6 (Main result)
Fori=1,..., N,

0/ p{) Teriay=i v (25)
2351 (M3/ i) Shery=; vE
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N

b(2) M
* -_2_& * E‘L E PEVm + pkUg“I{keG} . (26)

m=0c1+1
Proof: The result follows directly from Theorems 4 and 5.

Recall that the determination of the expression in Theorem 6 (for all :
simultaneously) generally requires the solution of a set of M — N linear
equations to determine the variables vy, from equation (8). We emphasize
that all terms in Theorems 1-6 corresponding to arrival rates and loads at
the queues have to be evaluated at p = 1.

Remark 4.2

The results presented in this paper generalize the results in [23], where we
considered the special case of cyclic polling, i.e., T = (1,2,...,N). In that
case, the balance equations (5)-(8) can be solved explicitly; it is readily ver-
ified that E[Vi] = per/(1—p) and E[X] = Ae(1 — piIirepy)r/(1—p), which
directly implies v; = ppr and z4 = Ag(1—prl{rer)). Hence, for cyclic polling
models the scaled expected delay can be expressed in closed form, whereas
for non-cyclic polling models a set of M — N equations has to solved to ob-
tain the variables v,. This observation addresses a fundamental difference
between cyclic and non-cyclic periodic polling models: in the case of cyclic
polling all customers that arrive at Q; are served at the same pseudo-queue
(namely, @; itself), whereas in non-cyclic polling customers arriving at the
same queue (say @;) may be served at different pseudo-queues (namely, any
PQ;. for which T(k) = i), depending on the position of the server upon the
arrival of a customer. In other words, in cyclic polling the arrival process at
each (pseudo-)queue is independent of the position of the server, whereas
in non-cyclic polling the arrival process at a pseudo-queue generally does
depend on the position of the server. This dependence inherently leads to
a set of linear equations for E[Vi] (and E[X}], z¢ and v¢) that can not be
solved in a general closed-form expression.

Remark 4.3
Another key difference between cyclic and non-cyclic polling is the influ-
ence of the individual switch-over times on the performance metrics. For
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cyclic polling, E[V4] and E[X\] depend on the individual switch-over time
distributions only through r, i.e., the total expected switch-over time per
cycle, whereas equation (5) implies that for general polling tables E[V}] and
E[X}] generally do depend on the individual mean switch-over times. To
explain this, recall that for cyclic polling all customers arriving at a queue
are served at the same (pseudo-)queue, whereas for non-cyclic polling cus-
tomers arriving at a queue (say Qi) during some switch-over time are served
at the pseudo-queue (say PQy, with Tik) =4) corresponding to the first
visit to Q; after that switch-over time. Hence, the mean number of cus-
tomers served at a particular pseudo-queue generally depends on the mean
individual switch-over times.,

In this perspective, Theorem 6 implies that the dependence of E[Vi]
and E[X,;] on the individual mean switch-over times, for general polling ta-
bles, vanishes in when the system reaches saturation: v, and z; depend on
the switch-over times only through r, which follows directly from equations
(5)-(8). In this way, the impact of the individual mean switch-over times
on E[Vi] and E[X,], and also on the expected delay, is of “lower order” in
the limiting case. Insensitivity properties with respect to the system pa-
rameters in heavy traffic are discussed in more detail in the next section.

Remark 4.4

The difference between cyclic and non-cyeclic polling models also manifests
itself when the switch-over times become negligible. For stable non-cyclic
polling models, the expected waiting times generally depend on how the
individual switch-over time distributions converge to (. In fact, in the case
of zero switch-over times the expected delay may not even be uniquely de-
termined (cf. [6, 11]), whereas the case of cyclic polling models similar
complications do not oceur, However, in the limiting case p 1 1, we observe
that since vy, is linear in 7, Theorem 6 implies that w; converges to a unique
value when the switch-over times vanish, regardless of how the individual
switch-over time distributions tend to 0. Apparently, the differences in the
expected delays caused by different limiting regimes (for r — 0) vanish
when the system reaches saturation.
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5 IMPLICATIONS OF THE RESULTS

In this section we discuss a number of implications of the results discussed in
Section 4. First, it is shown that the results lead to explicit expressions the
scaled expected delay under the star and elevator polling schemes. Second,
the scaled expected delays appear to depend on the system parameter only
through a few aggregated system parameters. Numerical examples are given
to demonstrate the validity of these observations.

5.1 Star and elevator polling

In the case of star polling, the server visits the queues in the order 7 =
(1,2,1,3,...,1,N).

Corollary 5.1 (Star polling)

For the star polling configuration, w; (i=1,...,N) is given by equation
(25), withoy =2N —1, op=2k (k=2,.. N), and

(1) if k even, then vy = pryyr;

(2) if k odd, then

oo =l gy
pip = PTk-1PrT (1€E), v = _ZL—_LL_NI_PI"J (1€ G). (27)
1—p Ly

In the case of elevator polling, the queues are visited in the order 7' =
(1,2,...,N,N,...,2,1).

Corollary 5.2 (Elevator polling)
For the elevator polling order, w; (i = 1,...,N) is given by equation (25),
with o3y = 2N —k+1 (k=1,...,N), and

k=1, B &
— pkf‘ Et:'l Pts va_k_'_l = pkr21=k+1 pi (k e E)’ (28)
L — py 1—py
and
PT T5_; pi prr TN, pi k
===l ket = ——=E8 (ke @), 29)
Ve 1+ p v VaN—k+1 1_{_“ ( ) (

We emphasize that the results presented here do not pose any additional
symmetry restriction on the parameters, making the results applicable in a
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general parameter setting. To the best of the author’s knowledge, similar
closed-form expressions have not been presented in the literature in this
general context.

9.2 Insensitivity properties

Theorem 6 provides new insights into how the expected waiting times de-
pend on the system parameters. In this section we discuss these properties

in more detail and provide numerical examples to illustrate the validity of
the results.

Corollary 5.3

wi (1 =1,...,N) depends on the higher moments individual service-lime
distributions only through b, ; €., the second moment of the service time
of an arbitrary customer (weighted proportionally to the arrival rates).

Notice that in stable polling systems the expected delay generally depends
on the first two moments of each of the individual service-time distribu-
tions, even when b is kept, fixed. Therefore, Corollary 5.3 implies that the
dependence of the expected delay on the second moments of the individual
service times, for given 5, vanishes when p tends to 1.

To illustrate this, we consider the model with the following parameters
(referred to as model 1)) N=4;, M =6, T = (1,2,1,3,1,4); G = {2,384},
L' = {1}, all arrival rates are equal; all switch-over times are exponentially
distributed with mean 0.05; the service times at @1 have a gamma distri-
bution with b; = 1 and b{® = 11, and the service times at all other queues
are deterministic with mean 1. For comparison, we also consider model
2, which is identical to model 1, except that the service times at Q4 are
gamma-distributed with first two moments 1 and 11, while the service time
at queues 1, 2 and 3 are deterministic with mean 1. Note that for both
models we have b(2) = 35 Hence, according to Theorem 6, the expected
waiting times at each of the queues should tend to infinity at the same

rate when p T 1. Denoting the expected waiting time at (Q; in model m by
E[W’;(m)], we define

Apin=A= ;max, abs

( EwW™ - Elw™

] ) x 100%, (30)
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Table 5.1. Expected waiting times for different values of the load:
influence of second moments of the individual service times.

[ p b = (11,1,1,1) b® =(1,1,1,11) A
070 2.1] 54| 54 54| 21] 49] 53] 6.1]111
080 3.0 93| 93| 93| 30| 85| 92| 10.3|10.8
0.90| 55| 21.2] 21.2| 21.2| 55| 20.0| 21.0] 225| 6.1
0.95[10.3| 44.9| 449| 449(103| 43.5| 44.7| 46.5| 3.6
0.98 | 24.6 | 116.1|116.1{116.1|26.6 [ 114.6 [ 115.9|118.0| 1.6
0.99 | 48.4 | 234.9 ( 234.9 | 234.9 | 48.4 | 233.3 | 234.6 | 236.8 | 0.8

i.e., the relative difference between E[W.™] and E[W‘-(")] (where the maxi-
mum is taken over all i = 1,..., N). Table 5.1 shows the expected waiting
time at each of the queues for different values of p for models 1 and 2, and
their relative differences.

Table 5.1 illustrates that the relative difference between the corresponding
expected waiting times in models 1 and 2 indeed vanishes when p T 1, as ex-
pected on the basis of Theorem 6. This illustrates that the dependencies of
the second moments of the individual service times (i.e., bEQJ,i = Ei pa s

with given 6, indeed vanish when the system reaches saturation.

Corollary 5.4

Forasdoes NV,

(1) w; depends on the individual switch-over time distributions only through
r, the expected tolal switch-over time per cycle.

(2) w;, considered as a funclion of v, is the sum of a constant and a linear
function of r.

Corollary 5.4 is known to be not generally true for systems with p < 1,
for which the mean delay generally depends on the first two moments of
each of the individual switch-over times. In this context, an interesting ob-
servation is made by Srinivasan et al. [19], who show that for cyclic polling
models with deterministic switch-over times, the (complete) waiting-time
distributions depend on the switch-over times only through r, even for sta-
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Table 5.2. Expected waiting times for different values of the load:

influence of the individual switch-over times.

p | r=(1,1,1,1,1,1) (exp) |r=(6,0,0,0,0,0) (Erlang) | A
070 4.1} 151| 151 15.1| 49 15.0] 150] 152|195
0.80| 58| 234| 23.4| 234 6.3 234 233| 235/ 86
0.90| 10.9| 48.4| 48.4| 484 11.1| 48.4| 48.4| 484 1.8
095| 20.9| 984 98.4| 984 21.0| 98.4| 98.4| 984 05
0.98 | 50.9|248.4|248.4 [248.4| 50.9 |248.4 | 248.4 | 248.4| 0.0
0.99 | 100.9 | 498.4 | 498.4 | 498.4 | 100.9 | 498.4 | 498.4 | 498.4 | 0.0

ble polling systems. However, similar insensitivity properties are not gen-
erally true for non-cyclic polling models and for cyclic polling models with
non-deterministic switch-over times,

In this context, Corollary 5.4 shows that the sensitivity of the expected
delay with respect to the individual switch-over time distributions vanishes
when the system reaches saturation, and as such can be considered to be
of “lower order” in the limiting case.

To illustrate this, we consider several variants of model 1, with ex-
ponential service at all queues, and which only differ in their switch-over
time distributions. For model 3, all switch-over times are exponentially
distributed with mean 1. For model 4, all switch-over times are 0, except
for the switch-over time from PQ, to PQ,, which consists of 6 independent
exponential phases with mean 1 and is therefore Erlang distributed with
mean r; = 6 and r§2) = 42. Note that the total switch-over time per cycle
in models 3 and 4 are identically distributed. Table 5.2 shows the expected
waiting times for models 3 and 4 for different values of p. The maximal
relative difference between the corresponding expected waiting times in the
different models is determined according to (30).

Table 5.2 illustrates that the relative difference between the corresponding
expected waiting times in models 3 and 4 tends to 0 when p 11, which we
expected on the basis of Theorem 6. This illustrates that the dependencies
of the expected waiting times with respect to the individual switch-over
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Table 5.3. Expected waiting times for different values of the load:
influence of the second moments of the switch-over times.

p |7=1(6,0,0,0,0,0) (Erlang) | r=(6,0,0,0,0,0) (exp) | A
070 4.9] 15.0] 15.0[ 152] 6.4 17.4] 17.8] 18.5]30.6
080| 63| 234| 233| 235| 76| 259| 26.2| 26.8|20.6
090 11.1| 48.4| 48.4| 484 12.1| 51.2| 51.3| 51.7| 9.0
095, 21.0| 98.4| 98.4| 98.4| 21.8]101.3]|101.4|101.6| 3.8
0.98| 50.9|248.4|248.4 | 2484 | 51.6(251.4|251.5(251.6| 1.4
0.99 | 100.9 | 498.4 | 498.4 | 498.4 [ 101.6 | 501.5 | 501.5 | 501.5 | 0.7

times, with given total switch-over time distribution per cycle, vanish in
heavy traffic.

Corollary 5.4 also suggests that the influence of the seconds moments of
the switch-over time distributions disappear when p tends to 1. To illus-
trate this, we compare the expected waiting times in model 4 with those in
model 5, which is similar to model 4, with the exception that the switch-over
times from PQ; to PQ, are exponentially (instead of Erlang) distributed
with mean 6. In this way, models 4 and 5 have the same mean total switch-
over times per cycle (r = 6), but the variability of the switch-over times in
model 5 (where r(2) = 72) is larger than those in model 4 (where r(*) = 42).
Table 5.3 shows the expected waiting times in models 4 and 5 for different
values of p. The relative differences are computed according to (30).
Table 5.3 illustrates that the relative difference in the corresponding ex-
pected waiting times in identical models which only differ in the variability
of the switch-over times vanishes when the system reaches saturation.
Notice that in all cases the expected waiting times in model 5 are larger
than those in model 4. This is due to the fact that the variability of the
total switch-over time per cycle in model 5 is larger than in model 4, which
motivates why in al cases the expected waiting times in model 5 exceed

those in model 4.
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Table 6.1. Exact and approximated expected waiting times
for different values of the load.

6 APPROXIMATION

Theorem 6 suggests the following approximation for the expected waiting
times at, each of the queues in stable systems: For Pl i= Lywuiy N

E[m(ﬂwl} s ; 1
—p

(m:/p}) Lk:T(k)=i VF [5(2) N ( M )}
295 T Um + UU'H-I i (32
Za(n5/p5) Ykre)=; vf | 2b 2 . X p PrVolikecy ||, (32)

k=1 =o1k+1

]

x (31)

expected waiting times is known to be asymptotically exact for p T1,in
the sense that lim,,, E[werr )]/E[W,-] = 1 for all . We have performed nu-
merical experiments to investigate the accuracy of the approximations for
different values of the system load. The results are outlined below. Define
the relative error of the approximated mean waiting time at Q; as follows:
Fori=1,... N,

(app)y _ ;
err;% = abs (ﬂ_pﬁ_E_[]W______fM) x 100%. (33)
Table 6.1 shows the exact and approximated expected waiting times at @
and @, for mode] 3 (defined in section 5) for different values of p.
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Table 6.1 shows that, the relative error decreases when the system load in-
creases, as expected. Moreover, we observe that the approximations are
accurate when the system load is 80-90% or more. Notice that the model
considered has a star polling configuration, so that from Corollary 5.1 the
approximations are given in closed form.

To test the accuracy of the approximation for a highly asymmetric sys-
tem, consider the following model: N =4; M =8; T =(1,2,1,3,4,2,1,3);
G = {1,4}; E = {2,3}; the ratio between the arrival rates is 5:1:1:1; the
service times are exponentially distributed with means b = (1,1,5,1); the
switch-over times are exponentially distributed with rg = 5.0, whereas all
other switch-over times have mean 0.5. The system is therefore highly asym-
metric in the arrival rates, service times and switch-over times. Table 6.2
below shows the mean waiting times, the approximations and the relative
error, for @J; and Q4.

The results in Table 6.2 show that the accuracy of the approximations may
decrease when the system is highy asymmetric. In Table 6.2, Q4 represents
the “worst case” in the sense that the relative error of the approximation of
the mean waiting time at Qq is the maximum relative error over all queues
(for all considered values of p). However, we observe that the results may
still be considered acceptable when the load is 90% or more.

The results in Tables 6.1 and 6.2 imply that for most practical cases the
approximation can be used with good confidence. This implication stems
from the fact that in practice heavy load is the main region of interest.
We emphasize that the example presented here is highly asymmetric in
the arrival rates, the service rates and the switch-over times, and that the
approximations are considerably more accurate in most cases.

The expected waiting times at @; for the different values of p were
obtained according to the following steps: (a) calculate the variables a;c)«
and a%?}c)‘k according to the recursive relations (9)-(10), for j = 1,..., M,
¢ =0,1,...,C (where C is a sufficiently large integer), and for all k for
which T'(k) = i, (b) determine E[X] (k=1,..., M) according to (11), (¢)
determine Var[X;] according to (12)-(13), for all k for which T'(k) = 7, (d)
determine E[W(’?] according to (2)-(3), for all k for which T(k) = ¢, (e)
determine E[Vi] (k = 1,..., M) according to (4), (f) determine 7 (k=
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Table 6.2. Exact and approximated expected walting times
for different values of the load.

E[W N err % EWy | EIW{™ | err, %
16.9 112 [ 275 36.2 31.5
25.4 6.0 | 44.7 54.3 21.5
50.8 22 | 979 108.5 10.8
101.6 1.0 | 2059 | 2170 5.4
253.9 03 [531.2 5426 2.9
507.8 0.1 [1073.6| 1085.2 1.1‘J

l,..., M), according to (21), where vy is replaced by E[Vi], (g) determine
E[W;] according to the right-hand side of (22), where vg and wﬁPQJ are
replaced by E[V;] and E[W,E(PQ)], respectively.

We emphasize that the computation time required to obtain the results
for the higher values of p in Tables 6.1 and 6.2 is on the order of minutes,

whereas the computation times required to obtain the approximations are
negligible.

7 CONCLUDING REMARKS AND TOPICS FOR
FURTHER RESEARCH

This paper extends the analysis of cyclic polling models in [23] to the case
of general periodic polling models. Although the derivation of the results

which provide new insights into the behavior of general periodic polling sys-
tems under heavy load. Third, the results lead to closed-form expressions
for the expected delay for the star and elevator polling schemes, and poten-
tially other polling schemes with a specific structure, Fourth, the results
suggest new, fast-to-evaluate and accurate approximations of the expected
delay in general (not necessarily cyclic) periodic polling systems.
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Finally, we address a number of topics for further research.

The ultimate goal of performance modeling is to obtain the “best” sys-
tem performance, while the proper operation of the system is particularly
critical in heavy-load scenarios. The results presented in this paper provide
new insights into how the expected delay figures depend on the routing
scheme and other system parameters, and also suggest sharp approxima-
tions for the expected delay. This opens possibilities for optimization of the
system performance, e.g., with respect to the order in which the queues are
visited (cf. [5]). Optimization of the system performance is a challenging
topic for further research.

In many cases it is important to have knowledge about more than the-
expected delay only. To this end, it is useful to extend the results presented
here to the higher moments of the delay. For the special case of cyclic polling
and zero switch-over times, explicit expressions for the delay moments are
presented in [26]. Extension to models general non-cyclic periodic polling
models is a topic for further research.
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APPENDIX

Proof of Part 2 of Theorem 1
It is convenient to write equations (10) in matrix notation. To this end, let

t_r((zc] « be the vector whose i-th component is O:E‘ 1),&- Define forc¢ = 1,2,...,
andk=1,.... M,

el 5(2)
Yor=P1 - Projge+ 1G) afio Pl Pj_ie;,(34)
=k =193y (1 = pryy Irgery) 00 =
M b2
z e Py =P ey, (35)

=1 03y (1 = prii iz ery) o

Using these definitions, equation ( 10) can be expressed in matrix notation
as follows: fork=1,...,M,e=1,...,

(2) _ (2)
@00k = Yo —(,c}k—M“’ c—l}k+_ck_ ZMJ Yeoik (36)

Denoting gy, = Y0¥, equation (36) leads to the following expression:
Fork=1,... M,

2 s 1
= e=

mrfgk + ¢, (37)

where ¢ consists of lower-order terms in the sense that they become negli-
gible when p 1 1. The first equality follows from equation (36), the second
equality is trivial, and the last equality follows from Lemma 4.1.

We first prove that in the limiting case P 1 1 the series ©2 (f)c)k Is pro-
portional to bri). This observation follows from the following sequence of
equalities: for i,k = 1,..., M,

oo (2

T.\
o= I . ulw . ] b 1
]ﬂ]—ﬁmi“llm—~ﬁ?-:l1m&=&. (38)
P

T 3 5
=0 Ak TN ULTY ALy by

The first equality follows from (37), the second equality is trivial and the
third equality follows from Lemma 4.2 and the continuity of the eigenvalues
and eigenvectors with respect to p.

It remains to prove that in the limiting case p T 1 the series  Pscke afE, l) '
1s proportional to z}. Denoting g, = (§ik, ..., Jmr), the result follows from
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the following equalities: for i, k,{=1,..., M,

(2) - 0o 2 ~0 2

i s ST LU . TR at o T .

li ﬂ%f—"’:hm‘l{—kzhm—%&-—%ﬁ‘ﬁ:hm_—gz—;. (39)
RIS Y- N L R I 1 Y B B

The first equality follows from (37). The second equality follows from the
fact that Y o and hence also g,, depends on k only through a; ., (see (34)-
(35)). The third equality follows from Lemmas 4.1 and the last equality fol-
lows from Lemma 4.2 and the continuity of the eigenvectors and eigenvalues
with respect to p.
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