

Abstract— This paper describes our Java Performance

Monitoring Tool (JPMT), which is developed for detailed

analysis of the behavior and performance of Java applications.

JPMT represents internal execution behavior of Java

applications by event traces, where each event represents the

occurrence of some activity, such as thread creation, method

invocation, and locking contention. JPMT supports event

filtering during and after application execution. Each event is

annotated by high-resolution performance attributes, e.g.,

duration of locking contention and CPU time usage by method

invocations. JPMT is an open toolkit, its event trace API can be

used to develop custom performance analysis applications.

JPMT comes with an event trace visualizer and a command-line

event trace query tool for shell scripting purposes. The

instrumentation required for monitoring the application is added

transparently to the user during run-time. Overhead is

minimized by only instrumenting for events the user is interested

in and by careful implementation of the instrumentation itself.

Index Terms—Measurement, Software performance.

I. INTRODUCTION

VER the past few years Java [1] has evolved into a

mature programming platform. Its portability makes

Java a popular choice for implementing enterprise applications

and off-the-shelf components, such as middleware and

business logic. The performance of this software is of

particular importance when it is used by businesses to

implement services to their customers: software performance

can have an immediate impact on the quality of service that

the customers perceive, and thus also on revenue.

There are many approaches to address performance, such as

load/stress testing of components and applications,

performance monitoring of deployed components and

applications, performance prediction using models or rules of

thumb, etcetera [8]. We developed the tool to aid us in

constructing performance models of Java applications.

However, we’d like to emphasize that the tool is also usable

for performance testing, and such.

The construction of performance models requires insight in

Marcel Harkema is a computer science PhD student at the University of

Twente, Enschede, The Netherlands (e-mail: harkema@cs.utwente.nl).

Dick Quartel is with the Department of Computer Science, University of

Twente, Enschede, The Netherlands (e-mail: quartel@cs.utwente.nl).

Rob van der Mei is with TNO Telecom, Center of Excellence Quality of

Service, Leidschendam, The Netherlands, and with the Free University,

Faculty of Exact Sciences, Amsterdam, The Netherlands (e-mail:

r.d.vandermei@telecom.tno.nl).

Bart Gijsen is with TNO Telecom, Center of Excellence Quality of Service,

Leidschendam, The Netherlands (e-mail: b.m.m.gijsen@telecom.tno.nl).

the application execution behavior (how does the application

work) and good-quality performance measurements (how fast

is the application performing its work) [17]. The insight in

application execution behavior can be used to develop the

structure of the performance model. The performance

measurements can be used to identify the parts of the

execution behavior that need modeling, the model parameters,

the values for the model parameters, and to validate

performance models. For Java, the relevant aspects of

execution behavior are threading, synchronization and

cooperation between threads, method invocation, dynamic

object allocation, and garbage collection.

In this paper we present our tool for monitoring these

execution behavior aspects in Java applications. We

developed this tool because we found that existing tools did

not provide us with the functionality we require, which is: (1)

monitoring results of the aforementioned aspects of execution

behavior, (2) precise timestamps and CPU usage

measurements, (3) an open data format for the monitoring

results, so that custom post-processing scripts can be

developed, and (4) automated instrumentation at run-time

based on a user-provided configuration file, which defines the

execution behavior the user is interested in.

Profiler tools, such as IBM Jinsight [5], Compuware

NuMega DevPartner TrueTime [10], Sitraka Jprobe [14],

OptimizeIt [16] and Intel VTune [6], do not provide complete

traces of events that have occurred in the virtual machine; they

employ call stack sampling (observing the state of the system

at certain time intervals) to inform the user of execution hot

spots, i.e., parts of the code that use the most execution time.

These profiler tools are used to find performance problems

and to optimize programs. Our goal is different; we want to

measure the performance of user specified methods and

provide the user with a complete method invocation trace.

Therefore JPMT instruments the software to log events, such

as method invocations, as they happen.

Most profiler tools restrict the user to a GUI that provides a

fixed view on the performance. Instead of providing fixed

views, JPMT logs event traces in an open data format,

allowing users to build custom tools to execute the

performance queries they require. Rational Quantify [13] and

IBM Jinsight [5] allow exporting of data to, e.g., spreadsheets

or scripts.

Often, profilers only support filtering after program

execution. An exception is Rational Quantify [13], which

allows the user to indicate which data is to be collected and

reported, and the level of detail of the data. JPMT supports

both online and offline filtering of interesting events (i.e., at

A Java Performance Monitoring Tool

Marcel Harkema, Dick Quartel, Rob van der Mei, Bart Gijsen

O

run-time and during event trace post-processing).

The remainder of this paper is structured as follows.

Section 2 presents an overview of the main features of the

tool. Section 3 illustrates the use of the tool by applying it to

a simple example. Section 4 contains some concluding

remarks.

II. FEATURES

The Java Performance Monitoring Tool (JPMT) is based on

event-driven monitoring. JPMT represents the execution

behavior of applications by event traces, in which each event

represents the occurrence of some activity, such as a method

invocation or the creation of a new thread of execution. These

vent traces are similar to call-trees, but in addition to method

invocations they also contain other event types. Our

monitoring tool implements the event-driven monitoring

approach, since we require complete behavioral information

(not just snapshots of the system, like tools using the sampling

technique provide).

The core of JPMT is an agent that is inserted into the Java

virtual machine using the Java Virtual Machine Profiler

Interface (JVMPI). JVMPI agents are implemented as

dynamically linked libraries written in C++. The agent uses

JVMPI to subscribe to events that occur inside the virtual

machine, collecting information on what happens inside the

virtual machine on behalf of the tool. An important feature of

JVMPI is its portability - Java implementations by Sun and

IBM support JVMPI out-of-the-box in production virtual

machines.

JPMT does not use Java or JVMPI to obtain timing

information. The timestamps provided by Java and JVMPI

are too coarse, they have a granularity of 10 milliseconds on

most systems. Also, Java and JVMPI do not provide

information on the CPU usage. Instead of using Java or

JVMPI, JPMT uses native operating system APIs. For

instance, on the Linux operating system (and other UNIX

systems) gettimeofday(2) can be used to obtain wall-

clock timestamps with microsecond resolution (around 7 usec

on an Intel Pentium Pro 180 MHz and 1 usec on an AMD

Athlon XP 2000+). The perfctr API [12], a kernel add-on for

Linux, can be used to obtain detailed information on CPU

usage. On the Windows platform similar APIs are available,

such as the QueryPerformance(Win32) API.

The following elements of Java’s execution behavior can be

monitored:

Threading: Java applications can have multiple threads of

execution. The creation and destruction of these threads is

monitored. Each thread has its own event trace.

Thread synchronization and cooperation: Java uses

monitors [3] to implement thread synchronization (Java’s

synchronized primitive) and cooperation (Java’s wait(),

notify(), notifyAll() methods in the Object class).

JPMT can report how long a thread has contended for a

monitor, how long it held a monitor, how long it spend

waiting for a signal from another thread (cooperation), etc.

Method invocation: The sequence of method invocations is

represented in a call-tree notation for each thread. A method

invocation event includes the timestamp of when it occurred,

the used wall-clock time in microseconds, the used CPU time

in microseconds, and whether or not the method was compiled

from byte-code into native code by the Java virtual machine.

The wall-clock and CPU time event parameters of the caller

method include the wall-clock and CPU time of callee

methods. Mutual exclusion, cooperation, garbage collection,

process scheduling events, and such, are shown within the

method in which they occurred. While JVMPI does have the

ability to monitor method invocations, it does not have the

ability to select which methods are to be monitored and which

methods not. When subscribed to JVMPI method invocation

events, events are generated for every method invocation

(including the ones the user may not be interested in), which

can add significant monitoring overhead. Because we wanted

to keep the monitoring overhead down to a minimum, we

chose to develop our own method invocation monitoring

mechanism. We have implemented a library written in C++

that can rewrite Java byte-code (the compiled form of Java

source code). Using the library Java methods can be

instrumented to trigger the method invocation event handlers

present in our JVMPI agent. The library is linked with the

JVMPI agent, and rewriting the byte-code occurs at run-time.

Dynamic object allocation: Object allocation and release

monitoring can be used to track down excessive object

allocation and release, which can cause performance

problems, not only because of the allocation and release cost,

but also because it may trigger garbage collection cycles.

Garbage collection: Garbage collection cycles can have a

significant impact on the performance of applications, since

execution is suspended during garbage collection. JPMT can

report when and where garbage collection cycles occur, and

how long they take.

Process scheduling information (Linux specific): This

provides information on the operating system process

scheduling changes involving the monitored thread. There are

two events that represent process scheduling changes in

JPMT: thread-in and thread-out. Together they describe

when a thread was actually running and when other processes

where running. Currently, these events are not supported on

other platforms than Linux. The Linux Trace Toolkit [18], a

kernel tracing toolkit, is used to obtain this monitoring

information.

JPMT is configured using a configuration file for each

application it monitors. This configuration file is read by the

JPMT when the Java virtual machine that will run the Java

application is started. The configuration file allows the user to

choose an output file to log events to, whether or not object

allocation, garbage collection, method invocation, use of Java

monitors are to be logged (that implement synchronization

and cooperation mechanisms), whether or not to use byte-code

instrumentation to monitor method invocations (instead of

using JVMPI’s method invocation monitoring mechanism),

and whether or not to monitor operating system process

scheduling. Using the method and thread filters the user can

specify which methods and threads should be monitored, and

which should not be monitored. JPMT applies these filters in

the same order as they are specified in the configuration file

(from top to bottom). By default all threads are monitored and

no method invocations are monitored, i.e.

include_thread * and exclude_method * * are

the default thread and method filter settings. All ‘yes/no’

configuration directives (Object_Allocation,

Garbage_Collection, Monitor_Waiting, Monitor_Contention,

Method_Invocation, Bytecode_Rewriting, and

LTT_Process_Scheduling) default to ‘no’.

The following configuration file example logs events to

log/mylogfile.bin, tells JPMT to monitor all method

invocations in the net.qahwah.jpmt.test package

using byte-code rewriting, and excludes all other method

invocations from monitoring.

Output log/mylogfile.bin
Method_Invocation yes

Bytecode_Rewriting yes

Include_Method net.qahwah.jpmt.test.* *

Exclude_Method * *

During run-time our JVMPI agent collects the events of

interest. The JVMPI agent instruments the software to be

monitored when the software is loaded into the Java virtual for

execution. The collected events are stored into a binary

memory-mapped [15] file. After monitoring this binary file

with the collected events can be analyzed. First, event traces

are generated from the event collection. These event traces

can be inspected using the event trace API, available for C++

and Ruby (a scripting language). Using the C++ event trace

API we have implemented an event trace visualizer GUI for

browsing event traces. The event trace API for Ruby is useful

for implementing custom event trace post-processing scripts.

We have tried to keep the overhead as low as possible by

allowing the user to specify what is to be monitored,

implementing a fast event logging mechanism, and by

instrumenting methods to be monitored using Java byte-code

rewriting. The overhead depends on how many events the

user wishes to monitor. The cost of monitoring and logging

one method invocation (using byte-code rewriting) on an

AMD Athlon XP 2000+ system (running at 1.67 GHz) is 5

microseconds CPU time. To put this into perspective, on the

same machine we measured the CPU time of the method

invocation System.out.println(“monitoring

information”) to be 19 microseconds (after being

compiled into native code by the Java HotSpot VM).

More information on the implementation (of an older

version) of our tool is available from [2].

III. AN EXAMPLE

In this section we briefly illustrate how JPMT has been

used to study performance behavior of Java software. In this

example we look at the CPU processing overhead of

marshaling and un-marshaling a sequence of floating point

numbers in a CORBA object middleware implementation.

The Common Object Request Broker Architecture

(CORBA) [11] [4] is the de-facto object middleware standard.

CORBA mediates between application objects that may reside

on different machines, by implementing an object-oriented

RPC mechanism. CORBA provides programming language,

operating system, and machine architecture transparency. For

instance, it allows C++ objects to talk to Java objects that run

on a remote host. To support this transparency a common

data representation (CDR) is needed. Marshaling is a process

that translates programming language, operating system, and

machine architecture specific data types to a common data

representation (CDR). Un-marshaling does the reverse.

Marshaling and un-marshaling are used in every CORBA

method invocation (although some CORBA implementations

do not use marshaling/un-marshaling for local method

invocations, to optimize these).

Our test-bed consists of 2 machines interconnected using a

local network. The server machine is a Pentium IV 1.7 GHz

with 512MB RAM, the client machine is a Pentium III 550

MHz with 256 MB RAM. Both machines run the Linux

operating system and the Java 2 standard edition v1.4. The

CORBA implementation we use in this example is

ORBacus/Java 4.1 [7].

We have configured our CORBA workload generator to

send requests consecutively (i.e. there is at most one active

CORBA method invocation). We have performed 21 runs of

250 requests. With each run we increase the size of the

sequence of floating point numbers with 5120 elements. In

our experiment the float sequence is an inout parameter, i.e. it

is sent to the server as a request parameter, and the server

sends the (possibly modified) float sequence back to the client

in its reply. The method that is invoked does nothing. The

following is the CORBA IDL representation of our method:

interface PerformanceTest

{

 typedef sequence<float> FloatSeqType

 void ping_inout_floatSeq(inout

 FloatSeqType floatSeq);

};

Figure 1 presents our findings: the CPU cost of marshaling

and un-marshaling is a significant part of the total CPU time

used by the CORBA server while processing the request. In

figure 1 the top line represents the mean CPU time used for

server-side processing of the CORBA request. The line below

represents the sum of the mean CPU times used for reading

the CORBA request from the network, un-marshaling the float

sequence (of the request), and marshaling the float sequence

again (for the reply). The bottom three lines represent the

individual mean CPU times of marshaling the float sequence

for the reply, reading the float sequence from the network, and

un-marshaling the float sequence, respectively. The input data

for figure 1 is obtained from the generated event traces of the

CORBA server application. We can conclude that marshaling

and un-marshaling is an important performance issue in

CORBA, and thus needs modeling. From figure 1 we can

conclude that the CPU time of marshaling and un-marshaling

float sequences can be effectively modeled as a linear function

of the size of the float sequence.

In figure 2 we show an example plot of one of the methods

involved in the server-side request processing. The top line

represents the wall-clock completion time, the line below

represents the time spent garbage collecting, the third line

from the top represents the CPU time used, and the ‘cloud’ of

dots in the bottom of the plot represents the parts of the

completion time where another thread was running

(involuntary context switches). We found that particular

method interesting since it shows a great gap between CPU

time and wall-clock completion time. According to figure 2

the difference is caused by garbage collection occurring

sometime during that method invocation. The garbage

collection cycles are caused by the large amount of dynamic

object allocation and release to store the float sequences.

From figure 2 we can conclude that garbage collection can be

a significant influence on the wall-clock completion time of a

CORBA method invocation. JPMT can be used to determine

when garbage collection needs to be considered for

performance modeling.

IV. CONCLUDING REMARKS

In this paper we presented our Java Performance

Monitoring Tool (JPMT) for monitoring the performance of

Java applications. JPMT represents Java’s execution

behavior, such as threading, method invocation, and mutual

exclusion, by event traces with high-resolution timestamps

and CPU usage information.

Our tool is under active development. We are currently

implementing the second version, adding new capabilities to

the event trace API and the event trace visualizer. The tool is

to be released as open source software.

REFERENCES

[1] J. Gosling, B. Joy, G. Steele, The Java Language Specification,

Addison-Wesley, 1996.

[2] M. Harkema, D. Quartel, B.M.M. Gijsen, R.D. van der Mei,

Performance monitoring of Java applications, Proc. of the 3rd Workshop

on Software and Performance (WOSP), 2002.

[3] C.A.R. Hoare, Monitors: An Operating System Structuring Concept,

Comm. ACM 17, 10:549-557 (October), 1974.

[4] M. Henning, S. Vinoski, Advanced CORBA Programming with C++,

ISBN 0201379279, Addison-Wesley, 1999.

[5] IBM Research, Jinsight project, http://www.research.ibm.com/jinsight/,

2001.

[6] Intel, VTune Performance Analyzer,

http://developer.intel.com/software/products/vtune/, 2001.

[7] IONA Technologies, Object Oriented Concepts Inc., ORBacus 4 for

Java, 2000.

[8] R, Jain, The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling, John

Wiley & Sons, 1991.

[9] S. Liang, D. Viswanathan, Comprehensive Profiling Support in the Java

Virtual Machine, 5th USENIX Conference on Object-Oriented

Technologies and Systems, May 1999.

[10] Compuware NuMega, DevPartner TrueTime Java Edition,

http://www.compuware.com/products/numega/dps/java/tt_java.htm,

2001.

[11] Object Management Group, The Common Object Request Broker:

Architecture and Specification, revision 2.5, OMG document

formal/2001-09-01, 2001.

[12] M. Pettersson, Linux perfctr OS extensions (sofware), 2001.

http://www.csd.uu.se/~mikpe/linux/perfctr/

[13] Rational Software Corporation, Rational Quantify,

http://www.rational.com/products/quantify_nt/index.jsp, 2001.

[14] Sitraka Inc., Jprobe Suite, http://www.klg.com/software/jprobe/, 2001.

[15] Vahalia, UNIX Internals – The New Frontiers, Prentice Hall, 1996.

[16] VMGear, OptimizeIt, http://www.optimizeit.com/, 2001.

[17] M. Woodside, Software Performance Evaluation by Models, In

Performance Evaluation, LNCS 1769, 2000.

[18] K. Yaghmour, M. R. Dagenais, Measuring and Characterizing System

Behavior Using Kernel-Level Event Logging, 2000 USENIX Annual

Technical Conference, June 18-23 2000.

Fig. 1. The overhead of marshaling a sequence of floating point numbers in

ORBacus/Java.

Fig. 2. Plot of the CPU time used by the skeleton of our CORBA object

(includes un-marshaling and marshaling overhead). The size of the float

sequence is 50*1024 elements in this plot.

