
 

  

Abstract— This paper describes our Java Performance 

Monitoring Tool (JPMT), which is developed for detailed 

analysis of the behavior and performance of Java applications.  

JPMT represents internal execution behavior of Java 

applications by event traces, where each event represents the 

occurrence of some activity, such as thread creation, method 

invocation, and locking contention.  JPMT supports event 

filtering during and after application execution.  Each event is 

annotated by high-resolution performance attributes, e.g., 

duration of locking contention and CPU time usage by method 

invocations.  JPMT is an open toolkit, its event trace API can be 

used to develop custom performance analysis applications.  

JPMT comes with an event trace visualizer and a command-line 

event trace query tool for shell scripting purposes.  The 

instrumentation required for monitoring the application is added 

transparently to the user during run-time.  Overhead is 

minimized by only instrumenting for events the user is interested 

in and by careful implementation of the instrumentation itself. 

 
Index Terms—Measurement, Software performance. 

 

I. INTRODUCTION 

VER the past few years Java [1] has evolved into a 

mature programming platform.  Its portability makes 

Java a popular choice for implementing enterprise applications 

and off-the-shelf components, such as middleware and 

business logic.  The performance of this software is of 

particular importance when it is used by businesses to 

implement services to their customers:  software performance 

can have an immediate impact on the quality of service that 

the customers perceive, and thus also on revenue. 

There are many approaches to address performance, such as 

load/stress testing of components and applications, 

performance monitoring of deployed components and 

applications, performance prediction using models or rules of 

thumb, etcetera [8].  We developed the tool to aid us in 

constructing performance models of Java applications.  

However, we’d like to emphasize that the tool is also usable 

for performance testing, and such. 

The construction of performance models requires insight in 
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the application execution behavior (how does the application 

work) and good-quality performance measurements (how fast 

is the application performing its work) [17].  The insight in 

application execution behavior can be used to develop the 

structure of the performance model.  The performance 

measurements can be used to identify the parts of the 

execution behavior that need modeling, the model parameters, 

the values for the model parameters, and to validate 

performance models.  For Java, the relevant aspects of 

execution behavior are threading, synchronization and 

cooperation between threads, method invocation, dynamic 

object allocation, and garbage collection. 

In this paper we present our tool for monitoring these 

execution behavior aspects in Java applications.  We 

developed this tool because we found that existing tools did 

not provide us with the functionality we require, which is: (1) 

monitoring results of the aforementioned aspects of execution 

behavior, (2) precise timestamps and CPU usage 

measurements, (3) an open data format for the monitoring 

results, so that custom post-processing scripts can be 

developed, and (4) automated instrumentation at run-time 

based on a user-provided configuration file, which defines the 

execution behavior the user is interested in. 

Profiler tools, such as IBM Jinsight [5], Compuware 

NuMega DevPartner TrueTime [10], Sitraka Jprobe [14], 

OptimizeIt [16] and Intel VTune [6], do not provide complete 

traces of events that have occurred in the virtual machine; they 

employ call stack sampling (observing the state of the system 

at certain time intervals) to inform the user of execution hot 

spots, i.e., parts of the code that use the most execution time.  

These profiler tools are used to find performance problems 

and to optimize programs.  Our goal is different; we want to 

measure the performance of user specified methods and 

provide the user with a complete method invocation trace.  

Therefore JPMT instruments the software to log events, such 

as method invocations, as they happen. 

Most profiler tools restrict the user to a GUI that provides a 

fixed view on the performance.  Instead of providing fixed 

views, JPMT logs event traces in an open data format, 

allowing users to build custom tools to execute the 

performance queries they require.  Rational Quantify [13] and 

IBM Jinsight [5] allow exporting of data to, e.g., spreadsheets 

or scripts. 

Often, profilers only support filtering after program 

execution.  An exception is Rational Quantify [13], which 

allows the user to indicate which data is to be collected and 

reported, and the level of detail of the data.  JPMT supports 

both online and offline filtering of interesting events (i.e., at 
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run-time and during event trace post-processing). 

The remainder of this paper is structured as follows.  

Section 2 presents an overview of the main features of the 

tool.  Section 3 illustrates the use of the tool by applying it to 

a simple example.  Section 4 contains some concluding 

remarks. 

II. FEATURES 

The Java Performance Monitoring Tool (JPMT) is based on 

event-driven monitoring.  JPMT represents the execution 

behavior of applications by event traces, in which each event 

represents the occurrence of some activity, such as a method 

invocation or the creation of a new thread of execution.  These 

vent traces are similar to call-trees, but in addition to method 

invocations they also contain other event types.  Our 

monitoring tool implements the event-driven monitoring 

approach, since we require complete behavioral information 

(not just snapshots of the system, like tools using the sampling 

technique provide). 

The core of JPMT is an agent that is inserted into the Java 

virtual machine using the Java Virtual Machine Profiler 

Interface (JVMPI).  JVMPI agents are implemented as 

dynamically linked libraries written in C++.  The agent uses 

JVMPI to subscribe to events that occur inside the virtual 

machine, collecting information on what happens inside the 

virtual machine on behalf of the tool.  An important feature of 

JVMPI is its portability - Java implementations by Sun and 

IBM support JVMPI out-of-the-box in production virtual 

machines. 

JPMT does not use Java or JVMPI to obtain timing 

information.  The timestamps provided by Java and JVMPI 

are too coarse, they have a granularity of 10 milliseconds on 

most systems.  Also, Java and JVMPI do not provide 

information on the CPU usage.  Instead of using Java or 

JVMPI, JPMT uses native operating system APIs.  For 

instance, on the Linux operating system (and other UNIX 

systems) gettimeofday(2) can be used to obtain wall-

clock timestamps with microsecond resolution (around 7 usec 

on an Intel Pentium Pro 180 MHz and 1 usec on an AMD 

Athlon XP 2000+).  The perfctr API [12], a kernel add-on for 

Linux, can be used to obtain detailed information on CPU 

usage.  On the Windows platform similar APIs are available, 

such as the QueryPerformance(Win32) API. 

The following elements of Java’s execution behavior can be 

monitored: 

Threading:  Java applications can have multiple threads of 

execution.  The creation and destruction of these threads is 

monitored.  Each thread has its own event trace. 

Thread synchronization and cooperation:  Java uses 

monitors [3] to implement thread synchronization (Java’s 

synchronized primitive) and cooperation (Java’s wait(), 

notify(), notifyAll() methods in the Object class).  

JPMT can report how long a thread has contended for a 

monitor, how long it held a monitor, how long it spend 

waiting for a signal from another thread (cooperation), etc. 

Method invocation:  The sequence of method invocations is 

represented in a call-tree notation for each thread.  A method 

invocation event includes the timestamp of when it occurred, 

the used wall-clock time in microseconds, the used CPU time 

in microseconds, and whether or not the method was compiled 

from byte-code into native code by the Java virtual machine.  

The wall-clock and CPU time event parameters of the caller 

method include the wall-clock and CPU time of callee 

methods.  Mutual exclusion, cooperation, garbage collection, 

process scheduling events, and such, are shown within the 

method in which they occurred.  While JVMPI does have the 

ability to monitor method invocations, it does not have the 

ability to select which methods are to be monitored and which 

methods not.  When subscribed to JVMPI method invocation 

events, events are generated for every method invocation 

(including the ones the user may not be interested in), which 

can add significant monitoring overhead.  Because we wanted 

to keep the monitoring overhead down to a minimum, we 

chose to develop our own method invocation monitoring 

mechanism.  We have implemented a library written in C++ 

that can rewrite Java byte-code (the compiled form of Java 

source code).  Using the library Java methods can be 

instrumented to trigger the method invocation event handlers 

present in our JVMPI agent.  The library is linked with the 

JVMPI agent, and rewriting the byte-code occurs at run-time. 

Dynamic object allocation:  Object allocation and release 

monitoring can be used to track down excessive object 

allocation and release, which can cause performance 

problems, not only because of the allocation and release cost, 

but also because it may trigger garbage collection cycles. 

Garbage collection:  Garbage collection cycles can have a 

significant impact on the performance of applications, since 

execution is suspended during garbage collection.  JPMT can 

report when and where garbage collection cycles occur, and 

how long they take. 

Process scheduling information (Linux specific):  This 

provides information on the operating system process 

scheduling changes involving the monitored thread.  There are 

two events that represent process scheduling changes in 

JPMT: thread-in and thread-out.  Together they describe 

when a thread was actually running and when other processes 

where running.  Currently, these events are not supported on 

other platforms than Linux.  The Linux Trace Toolkit [18], a 

kernel tracing toolkit, is used to obtain this monitoring 

information. 

 

JPMT is configured using a configuration file for each 

application it monitors.  This configuration file is read by the 

JPMT when the Java virtual machine that will run the Java 

application is started.  The configuration file allows the user to 

choose an output file to log events to, whether or not object 

allocation, garbage collection, method invocation, use of Java 

monitors are to be logged (that implement synchronization 

and cooperation mechanisms), whether or not to use byte-code 

instrumentation to monitor method invocations (instead of 

using JVMPI’s method invocation monitoring mechanism), 



 

and whether or not to monitor operating system process 

scheduling.  Using the method and thread filters the user can 

specify which methods and threads should be monitored, and 

which should not be monitored.  JPMT applies these filters in 

the same order as they are specified in the configuration file 

(from top to bottom).  By default all threads are monitored and 

no method invocations are monitored, i.e. 

include_thread * and exclude_method * * are 

the default thread and method filter settings.  All ‘yes/no’ 

configuration directives (Object_Allocation, 

Garbage_Collection, Monitor_Waiting, Monitor_Contention, 

Method_Invocation, Bytecode_Rewriting, and 

LTT_Process_Scheduling) default to ‘no’. 

The following configuration file example logs events to 

log/mylogfile.bin, tells JPMT to monitor all method 

invocations in the net.qahwah.jpmt.test package 

using byte-code rewriting, and excludes all other method 

invocations from monitoring. 
 

Output log/mylogfile.bin 
Method_Invocation yes 

Bytecode_Rewriting yes 

Include_Method net.qahwah.jpmt.test.* * 

Exclude_Method * * 

 

During run-time our JVMPI agent collects the events of 

interest.  The JVMPI agent instruments the software to be 

monitored when the software is loaded into the Java virtual for 

execution.  The collected events are stored into a binary 

memory-mapped [15] file.  After monitoring this binary file 

with the collected events can be analyzed.  First, event traces 

are generated from the event collection.  These event traces 

can be inspected using the event trace API, available for C++ 

and Ruby (a scripting language).  Using the C++ event trace 

API we have implemented an event trace visualizer GUI for 

browsing event traces.  The event trace API for Ruby is useful 

for implementing custom event trace post-processing scripts. 

We have tried to keep the overhead as low as possible by 

allowing the user to specify what is to be monitored, 

implementing a fast event logging mechanism, and by 

instrumenting methods to be monitored using Java byte-code 

rewriting.  The overhead depends on how many events the 

user wishes to monitor.  The cost of monitoring and logging 

one method invocation (using byte-code rewriting) on an 

AMD Athlon XP 2000+ system (running at 1.67 GHz) is 5 

microseconds CPU time.  To put this into perspective, on the 

same machine we measured the CPU time of the method 

invocation System.out.println(“monitoring 

information”) to be 19 microseconds (after being 

compiled into native code by the Java HotSpot VM). 

More information on the implementation (of an older 

version) of our tool is available from [2]. 

III. AN EXAMPLE 

In this section we briefly illustrate how JPMT has been 

used to study performance behavior of Java software.  In this 

example we look at the CPU processing overhead of 

marshaling and un-marshaling a sequence of floating point 

numbers in a CORBA object middleware implementation.  

The Common Object Request Broker Architecture 

(CORBA) [11] [4] is the de-facto object middleware standard.  

CORBA mediates between application objects that may reside 

on different machines, by implementing an object-oriented 

RPC mechanism.  CORBA provides programming language, 

operating system, and machine architecture transparency.  For 

instance, it allows C++ objects to talk to Java objects that run 

on a remote host.  To support this transparency a common 

data representation (CDR) is needed.  Marshaling is a process 

that translates programming language, operating system, and 

machine architecture specific data types to a common data 

representation (CDR).  Un-marshaling does the reverse.  

Marshaling and un-marshaling are used in every CORBA 

method invocation (although some CORBA implementations 

do not use marshaling/un-marshaling for local method 

invocations, to optimize these).  

Our test-bed consists of 2 machines interconnected using a 

local network.  The server machine is a Pentium IV 1.7 GHz 

with 512MB RAM, the client machine is a Pentium III 550 

MHz with 256 MB RAM.  Both machines run the Linux 

operating system and the Java 2 standard edition v1.4.  The 

CORBA implementation we use in this example is 

ORBacus/Java 4.1 [7]. 

We have configured our CORBA workload generator to 

send requests consecutively (i.e. there is at most one active 

CORBA method invocation).  We have performed 21 runs of 

250 requests.  With each run we increase the size of the 

sequence of floating point numbers with 5120 elements.  In 

our experiment the float sequence is an inout parameter, i.e. it 

is sent to the server as a request parameter, and the server 

sends the (possibly modified) float sequence back to the client 

in its reply.  The method that is invoked does nothing.  The 

following is the CORBA IDL representation of our method: 

 
interface PerformanceTest 

{ 

  typedef sequence<float> FloatSeqType 

  void ping_inout_floatSeq(inout 

                    FloatSeqType floatSeq); 

}; 

 

Figure 1 presents our findings: the CPU cost of marshaling 

and un-marshaling is a significant part of the total CPU time 

used by the CORBA server while processing the request.  In 

figure 1 the top line represents the mean CPU time used for 

server-side processing of the CORBA request.  The line below 

represents the sum of the mean CPU times used for reading 

the CORBA request from the network, un-marshaling the float 

sequence (of the request), and marshaling the float sequence 

again (for the reply).  The bottom three lines represent the 

individual mean CPU times of marshaling the float sequence 

for the reply, reading the float sequence from the network, and 

un-marshaling the float sequence, respectively.  The input data 

for figure 1 is obtained from the generated event traces of the 

CORBA server application.  We can conclude that marshaling 



 

and un-marshaling is an important performance issue in 

CORBA, and thus needs modeling.  From figure 1 we can 

conclude that the CPU time of marshaling and un-marshaling 

float sequences can be effectively modeled as a linear function 

of the size of the float sequence. 

In figure 2 we show an example plot of one of the methods 

involved in the server-side request processing.  The top line 

represents the wall-clock completion time, the line below 

represents the time spent garbage collecting, the third line 

from the top represents the CPU time used, and the ‘cloud’ of 

dots in the bottom of the plot represents the parts of the 

completion time where another thread was running 

(involuntary context switches).  We found that particular 

method interesting since it shows a great gap between CPU 

time and wall-clock completion time.  According to figure 2 

the difference is caused by garbage collection occurring 

sometime during that method invocation.  The garbage 

collection cycles are caused by the large amount of dynamic 

object allocation and release to store the float sequences.  

From figure 2 we can conclude that garbage collection can be 

a significant influence on the wall-clock completion time of a 

CORBA method invocation.  JPMT can be used to determine 

when garbage collection needs to be considered for 

performance modeling. 

IV. CONCLUDING REMARKS 

In this paper we presented our Java Performance 

Monitoring Tool (JPMT) for monitoring the performance of 

Java applications.  JPMT represents Java’s execution 

behavior, such as threading, method invocation, and mutual 

exclusion, by event traces with high-resolution timestamps 

and CPU usage information. 

Our tool is under active development.  We are currently 

implementing the second version, adding new capabilities to 

the event trace API and the event trace visualizer.  The tool is 

to be released as open source software. 
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Fig. 1.  The overhead of marshaling a sequence of floating point numbers in 

ORBacus/Java. 

 
Fig. 2.  Plot of the CPU time used by the skeleton of our CORBA object 

(includes un-marshaling and marshaling overhead).  The size of the float 

sequence is 50*1024 elements in this plot. 


