
 

1 Background and Motivation  
Today, services based on web technology are a hot 
topic and popularity of e-commerce is growing. The 
increasing role of web technology is particularly strong 
in business areas such as travel and ticket booking 
and online banking. In this context it is striking that the 
maturity level of web browsing performance is still low, 
or at least unstable. In current practise, popular web 
servers can suffer from severe, and often only 
temporarily, server overload. Server overload causes 
web browsing performance to degrade, in terms of 
increasing response times or even server 
unavailability. In the e-commerce context, customer 
dissatisfaction about overly long response times or 
unavailable servers will directly cause a decrease in 
revenues for e-commerce applications. It was 
estimated that in 1998 about 10% to 25% of e-
commerce transactions were aborted owing to long 
response delay, which translated to about 1.9 billion 
dollars loss of revenue [1]. Therefore controlling web 
server performance (even under temporarily overload 
situations) is essential for companies whose business 
relies on web-based services. This problem is 
acknowledged by for instance Intel Corporation [2], HP 
Labs [6] and illustrated by numerous web server 
incidents all over the world. 
 
Web server capacity planning is one important ‘means’ 
to control web browsing performance. But even with 
good capacity planning one will not be able to avoid 
overload circumstances every now and then, due to 
peaks of request arrivals. Especially, in case of 

growing server utilisation, temporary overloads will 
occur more frequently just before the server capacity is 
expanded. Thus, effective control over web browsing 
performance requires more than server capacity 
planning. Most contemporary web servers do not 
feature intelligent request discard mechanisms to 
handle temporary overload. As a result requests are 
randomly discarded during temporary overload. In [6] it 
is experimentally shown that the impact of random 
discarding on web-browsing performance is dramatic. 
 
An effective technique for resolving this problem of a 
total performance collapse is admission control. In 
essence, admission control is an ‘intelligent discard’ 
mechanism. For example, the impact of server 
overload on user perception could be reduced by 
deploying session based, or user selective, admission 
control. User selective admission control means that 
server-access is denied to requests from some users 
in order to let the other users browse at a satisfactory 
performance level. With  such a mechanism one will 
improve the average user perceived performance level 
and one would be able to postpone web server 
investments, leading directly to lower server cost. 
 
Admission control is well known in the field of 
telecommunication, but it is hardly used in the field of 
web servers (see also [2]). In the field of web servers 
alternative mechanisms such as load balancers and 
(extended) firewalls are much more popular, see for 
example [7 -10]. However, load balancing and firewall 
functionality are much less effective for protection 
against server overload than admission control. 
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Although less popular than these load balancing and 
firewall products, there do exist web server admission 
control products. In the literature a number of 
admission control concepts can be found, some of 
which are correlated to user selective admission 
control, see [2-6] (a survey of these references is 
given in the next section). 

In this paper we present the state of the art regarding 
overload control for web-based services by means of 
admission control schemes and we highlight several 
opportunities for improvement. Based on these 
improvements we present a novel web admission 
control scheme and demonstrate its effectiveness. 
 
The remainder of this paper is organized as follows. In 
Section 2 we highlight the key issues of web 
admission control and we present the state of the art. 
In Section 3 we present our web admission control 
scheme, for which we demonstrate its effectiveness in  
Section 4. In the final section we present our 
conclusions and topics for further research.  

2 Web admission control: state of the art  

2.1 The web admission control challenge 
By default, contemporary web servers implement 
simple tail-dropping mechanisms to handle temporary 
overload. With such mechanisms requests are 
randomly discarded during temporary overload. The 
impact of random discarding on web-browsing 
performance is dramatic. In general a web-page (URL) 
download requires more than one browser request 
towards the server. If the server does not respond to 
one of the requests, for example due to random 
discarding of a request, then the browser will show a 
failure message instead of the requested web page 
(see Figure 1) and the requests that were responded 
correctly have become useless. This random reques t 
discarding (during temporary server overload) is a 
major drawback of current web server technology. 
Figure 1 illustrates the impact of random request 
discard on a page download for an individual user. 
Typically, a large number of users will be downloading 
pages from a web server simultaneously, during 
temporary server overload. In that case, random 
request discard will typically lead to degradation of 
browsing performance for all active users during 
overload  
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Figure 1: impact illustration of random request discard 
on page download 

 
An effective technique for resolving this problem of a 
total performance collapse is admission control. In 
essence, admission control is an ‘intelligent discard’ 
mechanism. For example, the impact of server 
overload on user perception could be reduced by 
deploying session based, or user selective admission 
control. User selective admission control means that 
server-access is denied to requests from some users 
in order to let the other users browse at a satisfactory 
performance level. With such a mechanism one will 
improve the average user perceived performance level 
and one would be able to postpone web server 
investments, leading directly to lower server 
investments. 
 
Although the general idea of web admission control is 
very attractive, the details of how to apply admission 
control are far from trivial. In particular, admission 
control is potentially dangerous: one does not want an 
admission control mechanism that unnecessarily 
discards requests. In this respect a good choice of 
congestion detection criteria is very important. A 
complicating factor is the fact that ‘server overload’ 
may be the result of one or more causes, such as CPU 
overload, database contention or transmission 
overload. Overload on the server’s CPU will typically 
be caused by a large number of requests for (CPU 
demanding) server scripts, e.g. cgi or asp scripts. 
Transmission overload will typically be caused by 
downloads of large files. It will be intuitively clear that it 
is more effective to discard cgi and asp requests, 
during CPU overload, instead of discarding requests 
that are less CPU demanding. This observation raises 
a number of challenges: 
 
a) at which load (or congestion) level should requests 

be discarded to reduce server congestion level?  
b) how can specific types of congestion, based on 

the cause of congestion, be detected? 
c) which requests should be discarded during 

congestion, based on the congestion cause (i.e. 
effective enforcement)? 

 
Further, it should be noted that the request discard 
policy, also called enforcement, might be based on 
more information than the cause of congestion only. 
For example, if a web master indicates that a specific 
group of URLs that support business critical 
transactions should only be discarded under extreme 
load conditions, then one may include this in the 
enforcement policy. Similarly, one may distinguish 
request discarding priorities based on the user that 
sent the request. For example, one may prioritise 
access to web-based services for subscribed 
customers over access for non -subscribed (best-effort) 
customers. In this case information regarding service 
level agreements (SLA) with customers is used in the 



 

enforcement policy. We will refer to this as SLA 
checker functionality. We emphasise that flexibility to 
incorporate this kind of information in the enforcement 
policy is important. 
 
Admission control is not entirely new in the field of 
web-based services. Below we present a survey of the 
state of the art in web admission control. 

2.2 Literature 

In [3] Chen et al. propose a “Periodical Admission 
Control based on Estimation of Request rate and 
Service time” (PACERS). The PACERS mechanism 
discriminates between high and low priority requests 
and ‘guarantees’ performance for high priority requests 
by rejecting low priority requests during overload. The 
service time estimate is based on a priori configured 
“computation quantums” for each of the “object types”. 
For example, Chen et al. state that cgi scripts require 
one order of magnitude higher CPU service times than 
processing of plain html requests. The request rate 
estimation (per object type) is based on measured 
values. The PACERS mechanism is not a user 
selective admission control mechanism, nor does it 
take the cause of contention into account explicitly. 
 
Rumsewicz et al. [4] developed the Eddie admission 
control scheme, which is available as an open source 
prototype. The Eddie admission control scheme is 
aimed at improving web performance during overload, 
by: 
 
• monitoring critical resource usage on the web 

server, 
• determining the rate at which new requests can be 

accepted while still providing acceptable 
performance for already accepted requests, 

• maintaining a table of currently active ‘sessions’, 
• accepts an appropriate rate of new requests while 

rejecting other new requests. 
 
‘Sessions’ may be determined by means of cookies, or 
based on the IP source address. The state of a 
‘session’ can be active or inactive. Based on a time-
out an active ‘session’ will change its state to an 
inactive ‘session’. The accept/reject decision is based 
on resource utilisation, such as CPU utilisation, 
memory used, number of disk input/output operations 
and average disk delay. For each resource a 
congestion (high and low) threshold is defined. Once 
the resource utilisation exceeds the (high) threshold, 
the resource is marked as congested. The more 
resources are congested the higher the web server 
congestion level. The admitted rate of new ‘sessions’ 
is inversely proportional to the web server’s congestion 
level. In this sense the Eddie algorithm does not take 
into account the cause of the congestion. 
 

Eggert and Heidemann [5] propose a server side, 
application-level mechanism to provide two different 
levels of web -based service: regular and low priority. 
The idea is that not all requests are equally important. 
As examples Eggert and Heidemann mention that 
prefetching web page requests by proxies are less 
important than user-initiated requests. Therefore the 
terms foreground (e.g. user-initiated) requests and 
background (e.g. proxy prefetching) requests are 
introduced. The mechanisms to enforce the 
differentiated web-based service levels are: limiting 
process pool sizes, lowering process priority and/or 
limiting transmission rate via operating system 
mechanisms.  
 
In [6] Bhatti  and Friedrich propose the Web QoS 
architecture for supporting server QoS and in 
particular tiered (i.e. differentiated) QoS levels. The 
Web QoS architecture contains several modules. The 
request classification module sets QoS attributes 
based on the filters and policies defined by the system 
administrator. After classification the admission control 
module determines whether the request is rejected or 
executed according to the scheduling policy of the 
class. If executed, then the classification attributes are 
used for request scheduling to determine how to 
enqueue and dispatch the request. Session 
management is used to provide session semantics 
and maintain session state for the stateless HTTP 
protocol. Session management is both based on a 
combination of cookies and IP source addresses. 
Resource scheduling ensures that high priority tasks 
are allocated and executed as high priority processes 
by the host operating system. The Web QoS 
architecture also supports integration with network 
QoS mechanisms such as reading and marking of IP 
Type of Service (ToS) header bytes, or Differentiated 
Services (DiffServ) fields. 
 
From the literature we conclude that the idea of 
session based admission control is not available in all 
implementations. For example, even in [3] and [5] the 
admission control schemes do not feature session 
based admission control. In the literature we did not 
find any reference to a web admission control 
mechanism that discards only ‘appropriate’ requests, 
based on the cause of congestion. Nor did we find 
references stating that user subscription information 
can be taken into account regarding decisions about 
which sessions should be admitted or restricted. In the 
next section we present our admission control scheme 
that does take these aspects into account. 

3 New Web Admission Control Scheme  
In this section we present our new web admission 
control scheme (WAC) and its goal. The best one can 
do under overload circumstances is to minimise the 
number of users that will suffer from the overload. 
Therefore, the goal of our WAC scheme is to maximise 



 

the number of users that can be handled with 
satisfactory performance, during server overload 
periods. 
 
Web admission control can be implemented as 
software on a web, application or proxy-server or as 
hardware tha t is placed directly in front of a web 
server, similar to the implementation of a firewall. In 
any case the WAC functionality should be executed 
before the ‘regular’ web server functionality, as 
indicated in Figure 2. Figure 2 also indicates that SLA 
checker functionality can be added to the WAC 
functionality, in order to include customer subscription 
information in the enforcement policy.  
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Figure 2: architectural location of WAC and SLA checker 

functionality 
 
The WAC module consists of congestion detection and 
admission enforcement functionality. In the following 
subsections several implementation guidelines for 
WAC are specified. 

3.1 Congestion detection module 
The congestion detection sub-module detects either 
one or a combination of the following criteria: 
 
a) the overall frequency of requests exceeds a 

threshold value; 
b) the frequency of a specific type of requests 

exceeds a threshold value; 
c) the overall response time of requests exceeds a 

threshold value; 
d) the response time of a specific type of requests 

exceeds a threshold value; 
e) the number of simultaneously active TCP/IP 

sessions exceeds a threshold value; 
f) the number of concurrent (web)sessions exceeds 

a threshold value; 
g) the server’s CPU utilisation exceeds a threshold 

value;  
h) another ‘application’ triggers ac tivation of 

admission control. 
 
In these criteria the term ‘frequency’ denotes a number 
of events per fixed time period. For example, the 
frequency of URL requests means the number of 
arriving URL requests per time period. The time period 
should be a configurable time parameter and the 

frequency can be implemented as the (exponentially 
weighted) ratio between the time period and the event-
interval. The term ‘request’ can denote arriving IP 
packets, TCP/IP session set-up requests, or URL 
requests. By ‘frequency of a specific type of requests’ 
we mean the frequency of IP packets, or TCP/IP 
session set-ups with a particular IP address, or the 
frequency of a particular URL. The threshold 
mentioned above can be either pre-specified 
thresholds, or adaptive thresholds. An adaptive 
threshold should adapt itself to a value based on 
measured values. An example of an adaptive 
threshold is the well-known Retransmission Time-Out 
(RTO) parameter from the TCP protocol. Based on 
measurements of round trip times (RTT) of TCP/IP 
packets, the TCP algorithm calculates the 
exponentially weighted mean and standard deviation 
of the RTT. From that mean and standard deviation 
the TCP algorithm calculates the adaptive parameter 
value for the RTO. Further, the term ‘response time’ 
can denote the average response time, or variation in 
response time, etc. Finally, the server’s CPU utilisation 
can typically be obtained from the server’s operating 
system. 
 
Each of the criteria presented above can be 
implemented in the form of ‘resource’ objects. Each 
‘resource’ object represents the resource which is 
protected by WAC, e.g. CPU utilisation, number of 
concurrent sessions, request rate for a (group of) web-
page(s), etc. and must implement two interfaces: 
 
1. An update() procedure is used to update the 

internal data in the resource object. This can either 
be done at the arrival of a new HTTP request 
(web-resources) or initiated by another process 
operating at a different timescale.  

2. A congestion() function that returns a 
parameter indicating the level of congestion of the 
resource. The type of the congestion-parameter is 
boolean (true, false), enumerated (green, orange, 
red) or fraction α  (0≤ α  ≤1).  

 
The result of the congestion function of each resource 
is grouped in a list, and forwarded to the decision/rules 
module which implements the logic in order to 
accept/reject a new request. 

3.2  Decision module 
Once the congestion detection module has detected 
either one or a combination of the congestion criteria, 
the admission enforcements module will either accept 
or reject the arriving request. The decision to accept or 
reject is based on decision rules, implemented in the 
decision module. The decision rules specify what 
enforcement policy is executed for specific 
combinations of congestion criteria. Possible 
enforcement policies are (this list is not exhaustive; 
more policies can be implemented): 



 

 
a) reject newly arriving ‘web-sessions’; 
b) reject newly arriving ‘web -sessions’ with exception 

of several URLs; 
c) reject all arriving requests; 
d) reject arriving requests of a specific type; 
e) for any URL forward only one URL request, per 

configurable time-period, towards the web server 
and broadcast the server’s response to all 
requests (i.e. ‘URL multicast’); 

f) poll other ‘applications’ for additional enforcement 
information. 

 
In the above policies the notion of ‘web-session’ can 
be directly correlated to the establishment of a TCP/IP 
session on the web-server, or one can implement a list 
of ‘active IP addresses’ based on the time-stamp of 
latest packet arrival per IP address. Alternatively, the 
notion of ‘web-session’ can be implemented by using 
application level ‘cookies’. The last method is 
preferable, especially for clients that are browsing with 
multiple established TCP/IP sessions and for requests 
that arrive through a proxy server (in that case all IP 
addresses are the same). Further, the notion of a 
session should be configurable with a parameter 
specifying after how much time a ‘session’ is removed 
form the list of active sessions. 
 
Accepting and rejecting at ‘web -session’ level, instead 
of at URL request level has the advantage that it will 
enable to control the performance level at user level, 
instead of at request level. In fact, with web -session 
level admission control some of the users will 
experience normal web-browsing performance, while 
others will not be allowed to browse on the server at 
all. In this sense web-session level admission control 
maximises the number of users that can be handled 
with satisfactory performance, during overload. 
 
To enable appropriate tuning of WAC to any specific 
web-based service, that is independent of the used 
internet access medium, the decision module enables 
non-real-time configuration of any (combination of) 
condition detection criteria to initiate any (combination) 
of the described admission enforcement policies. This 
enables that if, for example, the CPU utilisation 
exceeds its threshold, then newly arriving requests of 
URL-types *.cgi and *.asp can be rejected.  

3.3 Admission enforcement module 
Once the decision module has determined which 
enforcement policy should be executed, based on the 
input from the congestion detection module, the 
enforcement module executes the policy by performing 
one of the following actions: 
 
a) Reject the request at application level; 
b) Reroute to a less resource intensive response; 
c) Send an ‘overloaded’ response; 
d) Reject the request at connection level; 

e) Terminate the active connection; 
f) Immediately stop sending any data. 

3.4  WAC guidelines 

As illustrated in Figure 2 the WAC functionality should 
be implemented directly in front of the ‘regular’ web 
server functionality. Figure 3 illustrates the sequence 
of accept / reject actions, depending on the congestion 
status, by the WAC module. 
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Figure 3: Sequence diagram of accept / reject actions by 
WAC 

 
A more detailed view on the sub-modules in WAC is 
presented in Figure 4. This figure illustrates how 
requests that arrive at the WAC module flow through 
the WAC module. 
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Figure 4: flow chart of requests through WAC module 
 
Besides executing the actual congestion detection 
rules, the congestion detection module will constantly 
update monitoring counters (such as time since last 
request arrival, for calculation of request arrival 
frequency) that are input for the congestion detection 
rules. Similarly, the enforcement module does not only 
execute the enforcement rules, but it will also keep 
track of admission statistics, such as number of 
accepted and rejected requests. Note, that if none of 
the congestion criteria indicate congestion (denoted by 
“No congestion” in Figure 4), then the enforcement 
rules need not be executed.  
 
Since the detection, decision and enforcement actions 
are executed in real-time, all steps are implemented 
such that it can be done very fast (say within 0.01 
seconds). Further, the WAC module should be 
scalable in order to prevent overload on the admission 
control module. To this end, the congestion detection 



 

sub-module features a configurable sampling routine. 
For example, by letting the WAC module verify a 
criterion for only one in every two (or more) requests 
instead of verifying a criterion for each arriving 
request. Typically, the sampling routine depends on 
the detection criterion: for a URL request arrival 
criterion the sampling frequency shall be based on the 
number of arriving URL requests, while for a TCP/IP 
session based criterion the sampling frequency shall 
be based on the number of initiated TCP/IP sessions. 
Possibly the sampling routine could be configured 
dynamically. This can for example be achieved by 
letting the sampling frequency depend on the 
measured number of IP packets per second, or on the 
number of requested URL, etc. 
 

4 WAC improvement results 
 
In order to validate the effectiveness of the proposed 
web admission control scheme we conducted 
numerous experiments. Below we present some of te 
results. 

4.1 Experiment set-up 
For the experiments we used the configuration 
depicted in Figure 5. We used a number of Pentium III 
(400 Mhz) PCs to execute client browsing scripts, an 
HTTP proxy and a web server. All requests generated 
by the clients are directed towards the proxy server 
which is equiped with WAC functionality.  

 
Figure 5: configuration of experiment set -up 

 
In case WAC functionality is switched off, then the 
proxy server will forward all requests towards the web 
server. If the WAC functionality is switched on, then 
the WAC module decides whether the request is 
forwarded to the web server or not.  
 
The client browsing scripts that are executed by the 
PCs generate sessions of requests. In each session 
seven subsequent requests are sent to the proxy 
server, with a sleep time between the response of 
request i and the sending of request i+1. This sleep 

time emulates a user reading time. The sleep time is 
randomly drawn from a uniform distribution between 2  
and 4 seconds. All the requests in a ses sion are 
targeted at the same URL, but with different 
parameters. After the client receives the response to 
the last request the client sleeps for a time between 16  
and 40 seconds before repeating itself and sending a 
new session of requests.  
 
The server executes a parameterized script, where the 
parameter is read from the URL parameter in the 
request. The processing time of the script is a function 
of this parameter. The average processing times for 
each of the seven consecutive requests in a session 
are: 0.25, 0.39, 0.61 , 0.05, 0.03, 0.39 , respectively 
0.25 seconds. Of course, the request completion times 
will become larger than the processing times in case 
the web server is handling requests simultaneously.  
 
The session time-out parameter in the WAC module is 
configured at 15 seconds. Recall that a client sleeps at 
least 16 seconds between two sessions, so the WAC 
module will time-out between two sessions of a client. 
Due to this time-out the WAC module ‘recognizes’ the 
client sessions in this experiment set-up. Further, in 
these experiments the admission decision is solely 
based on the number of simultaneous sessions. The 
number of simultaneously admitted sessions is 
configured at 10. 
 
The duration of the experiments was set at 20 minutes 
for each set of parameters. For scenarios with six 
clients or more this results in experiments consisting of 
the generation of several thousands of requests.  

4.2  Numerical results 
For validating the effectiveness of the WAC module we 
compare the average response time and the session 
goodput. We define the goodput as the average 
number of good sessions per minute, where a good 
session is a session for which the response times of all 
seven requests were smaller than 5 seconds. 
 
Figure 6 shows the comparison of average response 
times between the scenarios with and without the 
WAC module. In this graph the response time in 
seconds (y-axis) is plotted against the number of 
configured clients (x-axis). Figure 7 shows the 
improvement of the WAC module  regarding the 
session goodput (in sessions / minute). 
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Figure 6: comparison of response times 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: comparison of session goodput 

4.3 Discussion 
First of all, note that in an uncongested system the 
average session duration equals the sum of the 
processing and sleep times. The average sleep time 
equals 6  x 3.0 + 1  x 28.0 = 46.0 seconds. The sum of 
the processing times of all seven requests per session, 
averaged over all sessions, approximately equals 2.0 
seconds. So, the total session duration in a light 
loaded scenario equals approximately 48.0  seconds. 
Further, each session roughly induces a processing 
load on the web server of: 2.0 / 48.0 = 4.2%. Simular, 
the theoretical maximum number of sessions per 
minute that the web server can handle equals 
approximately 60.0  / 2.0 = 30 sessions per minute. 
Observe that this calculation is confirmed by the 
experimental results, where the experimental peak 
goodput lies at 24 sessions per minute. 

Note that the calculation above provides a 
good starting point for configuration of the WAC 
parameter regarding the maximum simultaneously 
admissible sessions. In particular, the product of the 
maximum number of sessions per minute and the 
average session duration (in minutes) represents the 

maximum number of sessions that the web server can 
handle simultaneously. Given this value (for example, 
based on measurements) one may choose to 
configure the maximum number of sessions WAC 
parameter at, for example, 90% of this value. 
 
Figure 6 clearly illustrates that the WAC module 
succeeds in maintaining the response times at a 
relatively low level. Without WAC the response times 
grow unbounded. 
 
Figure 7 illustrates the impact of randomly discarding 
requests on session goodput. Once the number of 
clients exceeds 25 clients the goodput totally 
collapses. The results with the WAC module show a 
lower peak goodput, relative to the scenario without 
WAC. This is due to the choice of the WAC parameter. 
Limiting the maximum number of simultaneous 
sessions at 10 appears to be too res trictive. Fine-
tuning this parameter remains a topic for further 
research, yet. In any case the WAC module appears to 
prevent the total goodput collapse, as seen for the 
results without WAC. 

5 Concluding remarks & further research 
In this paper we presented a novel web admission 
control scheme, called WAC. Three distinguishing 
features of WAC are: 
 
1. Its session based admission control feature to 

maximise user perceived browsing performance; 
2. The ability to detect several types of congestion 

and the freedom to configure any specific 
enforcement policy for each congestion type to 
ensure an effective admission control mechanism; 

3. A separate implementation of congestion 
detection and enforcement enable flexibility with 
respect to the integration of other monitoring tools 
(for congestion detection) and/or user profile 
applications (as additional input for enforcement). 

 
We demonstrated the performance improvements that 
can be obtained with WAC, both in terms of reduced 
response times and in terms of controlled session 
goodput under heavy overload. 
 
As mentioned in the discussion of the numerical 
results investigation of the WAC configuration 
parameters and thresholds remains a subject for 
further research. Besides that we implemented the 
WAC module as an HTTP proxy. By implementing the 
software as add-on on a web server one can strongly 
improve the speed of the WAC module, which would 
make it better scalable. Finally, in the scenarios that 
we investigated so far we only demonstrated a small 
part of the WAC functionality. We emphasize that 
WAC can be applied in a much broader setting. 
Nevertheless we have shown that WAC has much 
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potential for improving performance of web-base 
services. 
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