

1 Background and Motivation
Today, services based on web technology are a hot
topic and popularity of e-commerce is growing. The
increasing role of web technology is particularly strong
in business areas such as travel and ticket booking
and online banking. In this context it is striking that the
maturity level of web browsing performance is still low,
or at least unstable. In current practise, popular web
servers can suffer from severe, and often only
temporarily, server overload. Server overload causes
web browsing performance to degrade, in terms of
increasing response times or even server
unavailability. In the e-commerce context, customer
dissatisfaction about overly long response times or
unavailable servers will directly cause a decrease in
revenues for e-commerce applications. It was
estimated that in 1998 about 10% to 25% of e-
commerce transactions were aborted owing to long
response delay, which translated to about 1.9 billion
dollars loss of revenue [1]. Therefore controlling web
server performance (even under temporarily overload
situations) is essential for companies whose business
relies on web-based services. This problem is
acknowledged by for instance Intel Corporation [2], HP
Labs [6] and illustrated by numerous web server
incidents all over the world.

Web server capacity planning is one important ‘means’
to control web browsing performance. But even with
good capacity planning one will not be able to avoid
overload circumstances every now and then, due to
peaks of request arrivals. Especially, in case of

growing server utilisation, temporary overloads will
occur more frequently just before the server capacity is
expanded. Thus, effective control over web browsing
performance requires more than server capacity
planning. Most contemporary web servers do not
feature intelligent request discard mechanisms to
handle temporary overload. As a result requests are
randomly discarded during temporary overload. In [6] it
is experimentally shown that the impact of random
discarding on web-browsing performance is dramatic.

An effective technique for resolving this problem of a
total performance collapse is admission control. In
essence, admission control is an ‘intelligent discard’
mechanism. For example, the impact of server
overload on user perception could be reduced by
deploying session based, or user selective, admission
control. User selective admission control means that
server-access is denied to requests from some users
in order to let the other users browse at a satisfactory
performance level. With such a mechanism one will
improve the average user perceived performance level
and one would be able to postpone web server
investments, leading directly to lower server cost.

Admission control is well known in the field of
telecommunication, but it is hardly used in the field of
web servers (see also [2]). In the field of web servers
alternative mechanisms such as load balancers and
(extended) firewalls are much more popular, see for
example [7 -10]. However, load balancing and firewall
functionality are much less effective for protection
against server overload than admission control.

WEB ADMISSION CONTROL:
IMPROVING PERFORMANCE OF WEB-BASED SERVICES

B.M.M. Gijsen a, P.J. Meulenhoff a , M.A. Blom a, R.D. van der Mei b,c
and B.D. van der Waaij a

a TNO Telecom, Delft, The Netherlands
b Free University, Amsterdam, The Netherlands

c CWI, Amsterdam, The Netherlands

Nowadays, services based on web technology are "hot" and e-commerce
revenue is growing fast. In this context it is striking that popular web servers
often suffer from severe temporary overload, causing web browsing
performance to degrade dramatically. Therefore controlling browsing
performance is essential in the e-commerce market. Server capacity
planning is important for controlling browsing performance, but more is
required to resolve the problem of a total performance collapse during
temporary server overload. In this paper we present a novel intelligent
request discard mechanism that resolves this problem.

Although less popular than these load balancing and
firewall products, there do exist web server admission
control products. In the literature a number of
admission control concepts can be found, some of
which are correlated to user selective admission
control, see [2-6] (a survey of these references is
given in the next section).

In this paper we present the state of the art regarding
overload control for web-based services by means of
admission control schemes and we highlight several
opportunities for improvement. Based on these
improvements we present a novel web admission
control scheme and demonstrate its effectiveness.

The remainder of this paper is organized as follows. In
Section 2 we highlight the key issues of web
admission control and we present the state of the art.
In Section 3 we present our web admission control
scheme, for which we demonstrate its effectiveness in
Section 4. In the final section we present our
conclusions and topics for further research.

2 Web admission control: state of the art

2.1 The web admission control challenge
By default, contemporary web servers implement
simple tail-dropping mechanisms to handle temporary
overload. With such mechanisms requests are
randomly discarded during temporary overload. The
impact of random discarding on web-browsing
performance is dramatic. In general a web-page (URL)
download requires more than one browser request
towards the server. If the server does not respond to
one of the requests, for example due to random
discarding of a request, then the browser will show a
failure message instead of the requested web page
(see Figure 1) and the requests that were responded
correctly have become useless. This random reques t
discarding (during temporary server overload) is a
major drawback of current web server technology.
Figure 1 illustrates the impact of random request
discard on a page download for an individual user.
Typically, a large number of users will be downloading
pages from a web server simultaneously, during
temporary server overload. In that case, random
request discard will typically lead to degradation of
browsing performance for all active users during
overload

 Web browser

(client)
Web server

Browser user
clicks on

hyper-link
request for URL *.htm
arrives at server and
server returns *.htm

document

Browser detects
references in *.htm
and automatically

sends new request to
retrieve reference

Server does not respond to
reference request due to

temporary server overload

Figure 1: impact illustration of random request discard
on page download

An effective technique for resolving this problem of a
total performance collapse is admission control. In
essence, admission control is an ‘intelligent discard’
mechanism. For example, the impact of server
overload on user perception could be reduced by
deploying session based, or user selective admission
control. User selective admission control means that
server-access is denied to requests from some users
in order to let the other users browse at a satisfactory
performance level. With such a mechanism one will
improve the average user perceived performance level
and one would be able to postpone web server
investments, leading directly to lower server
investments.

Although the general idea of web admission control is
very attractive, the details of how to apply admission
control are far from trivial. In particular, admission
control is potentially dangerous: one does not want an
admission control mechanism that unnecessarily
discards requests. In this respect a good choice of
congestion detection criteria is very important. A
complicating factor is the fact that ‘server overload’
may be the result of one or more causes, such as CPU
overload, database contention or transmission
overload. Overload on the server’s CPU will typically
be caused by a large number of requests for (CPU
demanding) server scripts, e.g. cgi or asp scripts.
Transmission overload will typically be caused by
downloads of large files. It will be intuitively clear that it
is more effective to discard cgi and asp requests,
during CPU overload, instead of discarding requests
that are less CPU demanding. This observation raises
a number of challenges:

a) at which load (or congestion) level should requests

be discarded to reduce server congestion level?
b) how can specific types of congestion, based on

the cause of congestion, be detected?
c) which requests should be discarded during

congestion, based on the congestion cause (i.e.
effective enforcement)?

Further, it should be noted that the request discard
policy, also called enforcement, might be based on
more information than the cause of congestion only.
For example, if a web master indicates that a specific
group of URLs that support business critical
transactions should only be discarded under extreme
load conditions, then one may include this in the
enforcement policy. Similarly, one may distinguish
request discarding priorities based on the user that
sent the request. For example, one may prioritise
access to web-based services for subscribed
customers over access for non -subscribed (best-effort)
customers. In this case information regarding service
level agreements (SLA) with customers is used in the

enforcement policy. We will refer to this as SLA
checker functionality. We emphasise that flexibility to
incorporate this kind of information in the enforcement
policy is important.

Admission control is not entirely new in the field of
web-based services. Below we present a survey of the
state of the art in web admission control.

2.2 Literature

In [3] Chen et al. propose a “Periodical Admission
Control based on Estimation of Request rate and
Service time” (PACERS). The PACERS mechanism
discriminates between high and low priority requests
and ‘guarantees’ performance for high priority requests
by rejecting low priority requests during overload. The
service time estimate is based on a priori configured
“computation quantums” for each of the “object types”.
For example, Chen et al. state that cgi scripts require
one order of magnitude higher CPU service times than
processing of plain html requests. The request rate
estimation (per object type) is based on measured
values. The PACERS mechanism is not a user
selective admission control mechanism, nor does it
take the cause of contention into account explicitly.

Rumsewicz et al. [4] developed the Eddie admission
control scheme, which is available as an open source
prototype. The Eddie admission control scheme is
aimed at improving web performance during overload,
by:

• monitoring critical resource usage on the web

server,
• determining the rate at which new requests can be

accepted while still providing acceptable
performance for already accepted requests,

• maintaining a table of currently active ‘sessions’,
• accepts an appropriate rate of new requests while

rejecting other new requests.

‘Sessions’ may be determined by means of cookies, or
based on the IP source address. The state of a
‘session’ can be active or inactive. Based on a time-
out an active ‘session’ will change its state to an
inactive ‘session’. The accept/reject decision is based
on resource utilisation, such as CPU utilisation,
memory used, number of disk input/output operations
and average disk delay. For each resource a
congestion (high and low) threshold is defined. Once
the resource utilisation exceeds the (high) threshold,
the resource is marked as congested. The more
resources are congested the higher the web server
congestion level. The admitted rate of new ‘sessions’
is inversely proportional to the web server’s congestion
level. In this sense the Eddie algorithm does not take
into account the cause of the congestion.

Eggert and Heidemann [5] propose a server side,
application-level mechanism to provide two different
levels of web -based service: regular and low priority.
The idea is that not all requests are equally important.
As examples Eggert and Heidemann mention that
prefetching web page requests by proxies are less
important than user-initiated requests. Therefore the
terms foreground (e.g. user-initiated) requests and
background (e.g. proxy prefetching) requests are
introduced. The mechanisms to enforce the
differentiated web-based service levels are: limiting
process pool sizes, lowering process priority and/or
limiting transmission rate via operating system
mechanisms.

In [6] Bhatti and Friedrich propose the Web QoS
architecture for supporting server QoS and in
particular tiered (i.e. differentiated) QoS levels. The
Web QoS architecture contains several modules. The
request classification module sets QoS attributes
based on the filters and policies defined by the system
administrator. After classification the admission control
module determines whether the request is rejected or
executed according to the scheduling policy of the
class. If executed, then the classification attributes are
used for request scheduling to determine how to
enqueue and dispatch the request. Session
management is used to provide session semantics
and maintain session state for the stateless HTTP
protocol. Session management is both based on a
combination of cookies and IP source addresses.
Resource scheduling ensures that high priority tasks
are allocated and executed as high priority processes
by the host operating system. The Web QoS
architecture also supports integration with network
QoS mechanisms such as reading and marking of IP
Type of Service (ToS) header bytes, or Differentiated
Services (DiffServ) fields.

From the literature we conclude that the idea of
session based admission control is not available in all
implementations. For example, even in [3] and [5] the
admission control schemes do not feature session
based admission control. In the literature we did not
find any reference to a web admission control
mechanism that discards only ‘appropriate’ requests,
based on the cause of congestion. Nor did we find
references stating that user subscription information
can be taken into account regarding decisions about
which sessions should be admitted or restricted. In the
next section we present our admission control scheme
that does take these aspects into account.

3 New Web Admission Control Scheme
In this section we present our new web admission
control scheme (WAC) and its goal. The best one can
do under overload circumstances is to minimise the
number of users that will suffer from the overload.
Therefore, the goal of our WAC scheme is to maximise

the number of users that can be handled with
satisfactory performance, during server overload
periods.

Web admission control can be implemented as
software on a web, application or proxy-server or as
hardware tha t is placed directly in front of a web
server, similar to the implementation of a firewall. In
any case the WAC functionality should be executed
before the ‘regular’ web server functionality, as
indicated in Figure 2. Figure 2 also indicates that SLA
checker functionality can be added to the WAC
functionality, in order to include customer subscription
information in the enforcement policy.

Mobile data
network

Internet

Front-end
server

Content
servers

Web
Control

Router

Mobile data
network

Internet

Front-end
server

Content
servers

Web Admission
Control

Router

SLA checkerMobile data
network

Internet

Front-end
server

Content
servers

Web
Control

Router

Mobile data
network

Internet

Front-end
server

Content
servers

Web Admission
Control

Router

SLA checker

Figure 2: architectural location of WAC and SLA checker

functionality

The WAC module consists of congestion detection and
admission enforcement functionality. In the following
subsections several implementation guidelines for
WAC are specified.

3.1 Congestion detection module
The congestion detection sub-module detects either
one or a combination of the following criteria:

a) the overall frequency of requests exceeds a

threshold value;
b) the frequency of a specific type of requests

exceeds a threshold value;
c) the overall response time of requests exceeds a

threshold value;
d) the response time of a specific type of requests

exceeds a threshold value;
e) the number of simultaneously active TCP/IP

sessions exceeds a threshold value;
f) the number of concurrent (web)sessions exceeds

a threshold value;
g) the server’s CPU utilisation exceeds a threshold

value;
h) another ‘application’ triggers ac tivation of

admission control.

In these criteria the term ‘frequency’ denotes a number
of events per fixed time period. For example, the
frequency of URL requests means the number of
arriving URL requests per time period. The time period
should be a configurable time parameter and the

frequency can be implemented as the (exponentially
weighted) ratio between the time period and the event-
interval. The term ‘request’ can denote arriving IP
packets, TCP/IP session set-up requests, or URL
requests. By ‘frequency of a specific type of requests’
we mean the frequency of IP packets, or TCP/IP
session set-ups with a particular IP address, or the
frequency of a particular URL. The threshold
mentioned above can be either pre-specified
thresholds, or adaptive thresholds. An adaptive
threshold should adapt itself to a value based on
measured values. An example of an adaptive
threshold is the well-known Retransmission Time-Out
(RTO) parameter from the TCP protocol. Based on
measurements of round trip times (RTT) of TCP/IP
packets, the TCP algorithm calculates the
exponentially weighted mean and standard deviation
of the RTT. From that mean and standard deviation
the TCP algorithm calculates the adaptive parameter
value for the RTO. Further, the term ‘response time’
can denote the average response time, or variation in
response time, etc. Finally, the server’s CPU utilisation
can typically be obtained from the server’s operating
system.

Each of the criteria presented above can be
implemented in the form of ‘resource’ objects. Each
‘resource’ object represents the resource which is
protected by WAC, e.g. CPU utilisation, number of
concurrent sessions, request rate for a (group of) web-
page(s), etc. and must implement two interfaces:

1. An update() procedure is used to update the

internal data in the resource object. This can either
be done at the arrival of a new HTTP request
(web-resources) or initiated by another process
operating at a different timescale.

2. A congestion() function that returns a
parameter indicating the level of congestion of the
resource. The type of the congestion-parameter is
boolean (true, false), enumerated (green, orange,
red) or fraction α (0≤ α ≤1).

The result of the congestion function of each resource
is grouped in a list, and forwarded to the decision/rules
module which implements the logic in order to
accept/reject a new request.

3.2 Decision module
Once the congestion detection module has detected
either one or a combination of the congestion criteria,
the admission enforcements module will either accept
or reject the arriving request. The decision to accept or
reject is based on decision rules, implemented in the
decision module. The decision rules specify what
enforcement policy is executed for specific
combinations of congestion criteria. Possible
enforcement policies are (this list is not exhaustive;
more policies can be implemented):

a) reject newly arriving ‘web-sessions’;
b) reject newly arriving ‘web -sessions’ with exception

of several URLs;
c) reject all arriving requests;
d) reject arriving requests of a specific type;
e) for any URL forward only one URL request, per

configurable time-period, towards the web server
and broadcast the server’s response to all
requests (i.e. ‘URL multicast’);

f) poll other ‘applications’ for additional enforcement
information.

In the above policies the notion of ‘web-session’ can
be directly correlated to the establishment of a TCP/IP
session on the web-server, or one can implement a list
of ‘active IP addresses’ based on the time-stamp of
latest packet arrival per IP address. Alternatively, the
notion of ‘web-session’ can be implemented by using
application level ‘cookies’. The last method is
preferable, especially for clients that are browsing with
multiple established TCP/IP sessions and for requests
that arrive through a proxy server (in that case all IP
addresses are the same). Further, the notion of a
session should be configurable with a parameter
specifying after how much time a ‘session’ is removed
form the list of active sessions.

Accepting and rejecting at ‘web -session’ level, instead
of at URL request level has the advantage that it will
enable to control the performance level at user level,
instead of at request level. In fact, with web -session
level admission control some of the users will
experience normal web-browsing performance, while
others will not be allowed to browse on the server at
all. In this sense web-session level admission control
maximises the number of users that can be handled
with satisfactory performance, during overload.

To enable appropriate tuning of WAC to any specific
web-based service, that is independent of the used
internet access medium, the decision module enables
non-real-time configuration of any (combination of)
condition detection criteria to initiate any (combination)
of the described admission enforcement policies. This
enables that if, for example, the CPU utilisation
exceeds its threshold, then newly arriving requests of
URL-types *.cgi and *.asp can be rejected.

3.3 Admission enforcement module
Once the decision module has determined which
enforcement policy should be executed, based on the
input from the congestion detection module, the
enforcement module executes the policy by performing
one of the following actions:

a) Reject the request at application level;
b) Reroute to a less resource intensive response;
c) Send an ‘overloaded’ response;
d) Reject the request at connection level;

e) Terminate the active connection;
f) Immediately stop sending any data.

3.4 WAC guidelines

As illustrated in Figure 2 the WAC functionality should
be implemented directly in front of the ‘regular’ web
server functionality. Figure 3 illustrates the sequence
of accept / reject actions, depending on the congestion
status, by the WAC module.

Client WAC Server

Request

Request

Congestion detection

Response

Reject notification

 If no congestion

If congestion

Determine if in a state of congestion

Figure 3: Sequence diagram of accept / reject actions by
WAC

A more detailed view on the sub-modules in WAC is
presented in Figure 4. This figure illustrates how
requests that arrive at the WAC module flow through
the WAC module.

Updating
monitoring
counters

Execute
congestion
detection

rules

Congestion detection module

No congestion

Congestion Requests
arriving at

WAC module

Congestion trigger
from other

(monitoring)
applications

Execute
enforcement

rules

Forward request
towards ‘regular’

web server

Reject

Accept

Administrate
admission
counters

Enforcement module

Polling of other
applications

(and type)

Figure 4: flow chart of requests through WAC module

Besides executing the actual congestion detection
rules, the congestion detection module will constantly
update monitoring counters (such as time since last
request arrival, for calculation of request arrival
frequency) that are input for the congestion detection
rules. Similarly, the enforcement module does not only
execute the enforcement rules, but it will also keep
track of admission statistics, such as number of
accepted and rejected requests. Note, that if none of
the congestion criteria indicate congestion (denoted by
“No congestion” in Figure 4), then the enforcement
rules need not be executed.

Since the detection, decision and enforcement actions
are executed in real-time, all steps are implemented
such that it can be done very fast (say within 0.01
seconds). Further, the WAC module should be
scalable in order to prevent overload on the admission
control module. To this end, the congestion detection

sub-module features a configurable sampling routine.
For example, by letting the WAC module verify a
criterion for only one in every two (or more) requests
instead of verifying a criterion for each arriving
request. Typically, the sampling routine depends on
the detection criterion: for a URL request arrival
criterion the sampling frequency shall be based on the
number of arriving URL requests, while for a TCP/IP
session based criterion the sampling frequency shall
be based on the number of initiated TCP/IP sessions.
Possibly the sampling routine could be configured
dynamically. This can for example be achieved by
letting the sampling frequency depend on the
measured number of IP packets per second, or on the
number of requested URL, etc.

4 WAC improvement results

In order to validate the effectiveness of the proposed
web admission control scheme we conducted
numerous experiments. Below we present some of te
results.

4.1 Experiment set-up
For the experiments we used the configuration
depicted in Figure 5. We used a number of Pentium III
(400 Mhz) PCs to execute client browsing scripts, an
HTTP proxy and a web server. All requests generated
by the clients are directed towards the proxy server
which is equiped with WAC functionality.

Figure 5: configuration of experiment set -up

In case WAC functionality is switched off, then the
proxy server will forward all requests towards the web
server. If the WAC functionality is switched on, then
the WAC module decides whether the request is
forwarded to the web server or not.

The client browsing scripts that are executed by the
PCs generate sessions of requests. In each session
seven subsequent requests are sent to the proxy
server, with a sleep time between the response of
request i and the sending of request i+1. This sleep

time emulates a user reading time. The sleep time is
randomly drawn from a uniform distribution between 2
and 4 seconds. All the requests in a ses sion are
targeted at the same URL, but with different
parameters. After the client receives the response to
the last request the client sleeps for a time between 16
and 40 seconds before repeating itself and sending a
new session of requests.

The server executes a parameterized script, where the
parameter is read from the URL parameter in the
request. The processing time of the script is a function
of this parameter. The average processing times for
each of the seven consecutive requests in a session
are: 0.25, 0.39, 0.61 , 0.05, 0.03, 0.39 , respectively
0.25 seconds. Of course, the request completion times
will become larger than the processing times in case
the web server is handling requests simultaneously.

The session time-out parameter in the WAC module is
configured at 15 seconds. Recall that a client sleeps at
least 16 seconds between two sessions, so the WAC
module will time-out between two sessions of a client.
Due to this time-out the WAC module ‘recognizes’ the
client sessions in this experiment set-up. Further, in
these experiments the admission decision is solely
based on the number of simultaneous sessions. The
number of simultaneously admitted sessions is
configured at 10.

The duration of the experiments was set at 20 minutes
for each set of parameters. For scenarios with six
clients or more this results in experiments consisting of
the generation of several thousands of requests.

4.2 Numerical results
For validating the effectiveness of the WAC module we
compare the average response time and the session
goodput. We define the goodput as the average
number of good sessions per minute, where a good
session is a session for which the response times of all
seven requests were smaller than 5 seconds.

Figure 6 shows the comparison of average response
times between the scenarios with and without the
WAC module. In this graph the response time in
seconds (y-axis) is plotted against the number of
configured clients (x-axis). Figure 7 shows the
improvement of the WAC module regarding the
session goodput (in sessions / minute).

web
server

WAC enabled
proxy server

Figure 6: comparison of response times

Figure 7: comparison of session goodput

4.3 Discussion
First of all, note that in an uncongested system the
average session duration equals the sum of the
processing and sleep times. The average sleep time
equals 6 x 3.0 + 1 x 28.0 = 46.0 seconds. The sum of
the processing times of all seven requests per session,
averaged over all sessions, approximately equals 2.0
seconds. So, the total session duration in a light
loaded scenario equals approximately 48.0 seconds.
Further, each session roughly induces a processing
load on the web server of: 2.0 / 48.0 = 4.2%. Simular,
the theoretical maximum number of sessions per
minute that the web server can handle equals
approximately 60.0 / 2.0 = 30 sessions per minute.
Observe that this calculation is confirmed by the
experimental results, where the experimental peak
goodput lies at 24 sessions per minute.

Note that the calculation above provides a
good starting point for configuration of the WAC
parameter regarding the maximum simultaneously
admissible sessions. In particular, the product of the
maximum number of sessions per minute and the
average session duration (in minutes) represents the

maximum number of sessions that the web server can
handle simultaneously. Given this value (for example,
based on measurements) one may choose to
configure the maximum number of sessions WAC
parameter at, for example, 90% of this value.

Figure 6 clearly illustrates that the WAC module
succeeds in maintaining the response times at a
relatively low level. Without WAC the response times
grow unbounded.

Figure 7 illustrates the impact of randomly discarding
requests on session goodput. Once the number of
clients exceeds 25 clients the goodput totally
collapses. The results with the WAC module show a
lower peak goodput, relative to the scenario without
WAC. This is due to the choice of the WAC parameter.
Limiting the maximum number of simultaneous
sessions at 10 appears to be too res trictive. Fine-
tuning this parameter remains a topic for further
research, yet. In any case the WAC module appears to
prevent the total goodput collapse, as seen for the
results without WAC.

5 Concluding remarks & further research
In this paper we presented a novel web admission
control scheme, called WAC. Three distinguishing
features of WAC are:

1. Its session based admission control feature to

maximise user perceived browsing performance;
2. The ability to detect several types of congestion

and the freedom to configure any specific
enforcement policy for each congestion type to
ensure an effective admission control mechanism;

3. A separate implementation of congestion
detection and enforcement enable flexibility with
respect to the integration of other monitoring tools
(for congestion detection) and/or user profile
applications (as additional input for enforcement).

We demonstrated the performance improvements that
can be obtained with WAC, both in terms of reduced
response times and in terms of controlled session
goodput under heavy overload.

As mentioned in the discussion of the numerical
results investigation of the WAC configuration
parameters and thresholds remains a subject for
further research. Besides that we implemented the
WAC module as an HTTP proxy. By implementing the
software as add-on on a web server one can strongly
improve the speed of the WAC module, which would
make it better scalable. Finally, in the scenarios that
we investigated so far we only demonstrated a small
part of the WAC functionality. We emphasize that
WAC can be applied in a much broader setting.
Nevertheless we have shown that WAC has much

0.0

5.0

10.0

15.0

20.0

25.0

0 5 10 15 20 25 30 35

number of clients

G
oo

dp
ut

 (
se

ss
io

ns
 /

m
in

ut
e)

With WAC

Without WAC

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 5 10 15 20 25 30 35

number of clients

R
es

p
o

n
se

 t
im

e
(i

n
 s

ec
o

n
d

s)

With WAC

Without WAC

potential for improving performance of web-base
services.

6 References

[1] E-biz bucks lost under ssl strain, T. Wilson,

Internet Week Online, May 20 1999,
http://www.internetwk.com/lead/lead052099.htm

[2] Overload Control Mechanisms for Web Servers,
R. Iyer, V. Tewari, K. Kant (Server Architecture
Lab, Intel Corporation)

[3] An Admission Control Scheme for Predictable
Server Response Time for Web Accesses, X.
Chen, P. Mohapatra, H. Chen,
http://www10.org/cdrom/papers/249

[4] Admission Control Scheme: Algorithm
description, prototype design details and
capacity benchmarking, M. Rumsewicz, M.
Castro, M. Tai Le,
http://eddie.sourceforge.net/faq.html.Eddie

[5] Application-level differentiated service from an
internet server, L. Eggert and J. Heidemann,
World Wide Web Journal, vol. 3, no. 2, 133-142,
1999

[6] Web server support for Tiered Services, N.
Bhatti, R. Friedrich (Internet Systems and
Applications Laboratory, HP Laboratories), IEEE
Network, 64 -71, September/October 1999

[6] http://modules.apache.org provides a list of add -
on modules for Apache web servers

[8] http://www.coyotepoint.com contains
information about Coyote Point System’s load
balancer solutions

[9] http://www.availinux.com/modules.php?name=N
ews&file=article&sid=36 contains information
about a clustering and load balancing tool for
Apache

[10] http://www.cisco.com/warp/public/cc/pd/cxsr/40
0/index.shtml provides information about load
balancing functionality in Cisco routers

