Throughput and Stability in a Two-Layered Tandem of Multi-Server Queues’

2R.D. van der Mei%®, B.M.M. Gijsen® and S. Mohy el Dine

¢CWI, Advanced Communication Networks, Amsterdam, The Netherlands
®Vrije Universiteit, Faculty of Sciences, Amsterdam, The Netherlands
°TNO Telecom, Center of Excellence Quality of Service, Delft, The Netherlands

We consider a tandem of multi-server queues, each with an arbitrary number of servers and gen-
eral service-time distributions, and where the busy servers share a common underlying resource
in a processor-sharing fashion. For this model we derive a complete and explicit characterization
of the per-queue stability, and a closed-form expression for the per-queue throughput considered
as a function of the arrival rate, in a general parameter setting. Then, we consider the problem
of assigning of the number of servers to each of the queues that maximizes the overall through-
put uniformly over all possible values of the arrival rate, ranging from zero to infinity. For this
optimal server assignment problem, we derive an explicit and strikingly simple pc-like solution
The results provide new and fundamental insights in the per-queue stability and the throughput
of the individual queues in layered queueing models.

1 Introduction

Business of modern companies relies increasingly on the performance of information and com-
munication technology. For example, many companies in competitive markets are becoming
more cost-efficient by automating their business processes. One of the most prominent examples
is the automation of sales by E-commerce applications. A consequence of this trend is that per-
formance and capacity management of information and communication technology is becoming
a necessity. In today’s information and communication infrastructures we observe a growing
diversity and heterogeneity in applications that share parts of the infrastructure. Examples of
such infrastructures are Web-based multi-tiered system architectures, with (1) a client tier to
provide an interface to the end users, (2) a business logic tier to coordinate information retrieval
and processing, and (3) a data tier with legacy systems to store and access customer data. In
such environments different applications compete for access to shared infrastructure resources,
both on the software level (e.g., mutex and database locks, thread pools) and on the hardware
level (e.g., bandwidth, processing power, disk access). Hence, the performance of these applica-
tions is an interplay between software and hardware contention. These observations have raised
the need to perform an in-depth analysis of multi-layered performance models. To this end,
in this paper we study perhaps one of the simplest non-trivial multi-layered queueing models,
namely, a two-layered tandem of multi-server queues, where each of the active servers share an
underlying resource in a processor-sharing (PS) fashion.

Many of today’s application servers need to properly handle huge amounts of transaction within
a reasonable time frame. Each transaction typically consists of several sub-transactions that

!This work has been carried out in the context of the project End-to-end Quality of Service in Next
Generation Networks (EQUANET), which is supported by the Dutch Ministry of Economic Affairs via
its agency SenterNovem.

ZCorresponding author: email mei@cwi.nl.

have to be processed in a sequential order. To this end, application servers usually imple-
ment a number of thread pools; a thread is software entity that can perform a specific type
of sub-transaction. Consider for example the Web server performance model proposed in [3].
Each HTTP request that requires server-side scripting consists of two subsequent phases: (1)
a document-retrieval phase, and (2) a script processing phase. To this end, the Web server
implement two thread pools, a dedicated pool of threads performing phase-1 processing, and
a pool of threads performing phase-2 processing. The Web server model consists of a tandem
of two multi-server queues, where servers at queue 1 represent the phase-1 threads, and the
servers at queue 2 represent phase-2 threads. A particular feature of this model is that at any
moment in time the active threads share a common Central processing Unit (CPU) hardware
in a PS fashion. Other examples of performance models with software-hardware interaction are
presented in [3, 5, 7]. In the context of the application areas addressed above a well-known, yet
unresolved, issue is how to dimension thread pools. In almost all application servers the thread
pool size (i.e. the maximum number of threads that can simultaneously be executing transac-
tion requests) is a configurable system parameter. The thread pool dimensioning problem is the
question how many threads should be dedicated to each thread pool as to optimize performance.
Assigning too few threads to any of the server’s functional steps may lead to relative starvation
of processing. This creates a bottleneck that may reduce the overall throughput of the server,
when the workload increases. Conversely, the total number of threads running on a single server
is too high, performance degradation due to context switching overhead may occur. Despite the
fact that thread pool dimensioning may have a dramatic impact on the performance perceived
by the application end user, in practice thread pool dimensioning is performed by system engi-
neers on a trial-and-error basis, if done at all. This observation has raised the need for a simple
and easy-to-implement ” Golden Rule” for dimensioning thread pools.

The classical literature on single-layered queueing networks is widespread and has been suc-
cessfully applied in many application areas (see [1]). However, only a limited number of papers
focus on the performance of multi-layered queuing networks. Rolia and Sevcik [9] propose the
so-called Method of Layers (MoL), i.e., a closed queuing-network based model for the respon-
siveness of client-server applications, explicitly taking into account both software and hardware
contention. Another fundamental contribution is presented by Woodside et al. [12], who propose
to use the so-called Stochastic Rendez-Vous Network (SRVN) model to analyze the performance
of application software with client-server synchronization. The contributions presented in [9] and
[12] are often referred to as Layered Queuing Models (LQMs). Another class of layered queuing
models are so-called polling models, i.e., multi-queue single-server models where the available
service capacity is alternatingly allocated to one of the queues in some round-robin fashion (see
[10, 11]). Another related class of models are so-called coupled-processor models, i.e., multi-
server models where speed of a server at a given queue depends on the number of servers at
the other queues (see [2, 4, 6, 8] for results). A common drawback of the available results on
multi-layered queuing models is that exact analysis is primarily restricted to special cases, and
numerical algorithms are typically required to obtain performance measures of interest (see for
example [12]). Consequently, in-depth understanding in the behavior of multi-layered queuing
models is limited.

The contribution of this deliverable is twofold. First, fundamental insight in the performance
of multi-layered queuing models is provided, by considering an N-node tandem of multi-server
queues with general service-time distributions, where all busy servers share a common underly-
ing resource in a processor-sharing (PS) fashion. In particular, we provide explicit expressions

for the per-queue stability and the per-queue throughput of the system, which have not been
published before and lead to new and fundamental insights in multi-layered performance mod-
els. Second, motivated by the thread pool dimensioning problem addressed above, we derive a
”?Golden Rule” that optimizes the throughput by assigning the appropriate number of servers
to each of the queues, uniformly over all values of the request arrival rate. The rule is strikingly
simple and easy to implement, and as such provides an excellent starting point for the develop-
ment of rules for thread pool dimensioning.

The remainder of this paper is organized as follows. In Section 2 the model is described,
and the optimisation problem is defined. In Section 3 we derive exact characterizations of the
per-queue stability and per-queue throughput. In Section 4 we present the explicit solution to
the optimal server assignment problem. Finally, in Section 5 we address a number of topics for
further research.

2 Model and optimisation problem

Consider a tandem of N multi-server queues, Q1,...,Q N, with an infinite buffer space. Cus-
tomers arrive at Q1 according to a Poisson arrival process with rate A\g. The service times at Q;
are generally distributed with finite mean §;. Let 8 := (81, --,8n), and define B := {5 : §; >
0(:=1,...,N)}. Let ¢; the number of servers at Q;, define ¢ = (c1,-..,cn), and let C be the set
of possible combinations of the number of servers, i.e., C:={c:¢; € {1,2,...} (i=1,...,N)}.
Denote by N; the random variable indicating the number of customers present (i.e., either waiting
or being served) at @;. Then at any time the number of busy servers at Q; is M; := min{N;, ¢;}.
The total service capacity is shared by the active servers in a Processor Sharing (PS) fashion.
That is, the service rate of each of the busy servers is 1/ Zf\il M;; if the system is empty, then
all servers are idle. Denote by \; the departure rate of customers from Q; (i = 1,...,N), i.e,
the mean number of departuring customers from @Q; per time unit. The load at Q; (i.e. the
amount of arriving work at Q;) is defined as p; := A\;_15;, and the total load offered to the
system is denoted by p := Ag Zfil Bi. We will refer to Q; as stable if and only if the arrival
rate of customers at the queue equals the departure rate, i.e., A\; = A\;_1. Q; is called unstable
if A;—1 > A;. The system is called stable if all queues are stable. The throughput of @Q; is
Ai (1 =1,...,N), and the overall throughput is Axy. Note that in general); is a function, say
T;i(-), of B, c and Ay, i.e.,

Ai=TiB,ch), i=1,...,N. (1)

The model is illustrated in Figure 1 below. The ultimate goal of this study is to solve the
problem of assigning the number of servers to each of the queues in such a way that the overall
throughput is optimised, uniformly over all values of Ay, both in the stable and the unstable
domain. The optimization problem can be formulated as follows.

Optimization problem
For given B € B, find c* € C such that for each c € C and A9 > 0,

Tn(B,c*, Ao) > Tn(B, ¢, Ao)- (2)

In general such an optimum uniformly over all values of \g, does not necessarily exist, because
the optimal number of servers may depend on the value of Ag. In the sequel, however, it will be
shown that for the tandem model under consideration such a uniform optimum does exist, and

Cy Servers

c,servers
C, Servers
o [@
|, _
= TTHe

all active servers-.»;
share PS node

Figure 1: Illustration of the model.

moreover, that an explicit solution of the optimal server assignment problem can be derived. We
reemphasize that we do not restrict the value of Ag to those for which the system is stable: we
are particularly interested in optimising throughput for unstable, overloaded systems.

3 Analysis

In this section we derive an exact characterization of the per-queue stability and the per-queue
throughput, considered as a function of Ao, for given 8 € B and ¢ € C. In the next section these
results will be used to solve the optimization problem.

3.1 Preliminaries

Lemma 1 (Per-queue stability for stable systems)
Define
s 1
Ai=—————,
Pr+--+Bn

If \g < :\, then all queues are stable.

Proof: The results follows directly from the overall stability condition p < 1 and the defi-
nition of p in Section 2. Note that the case p = 1 is a boundary case, where the rate into each
queue still equals the rate out of that queue. By the definition of stability in Section 2, the
individual queues are stable. O

The following results gives the throughput for values of A\¢ for which the system is stable.

Lemma 2 (Per-queue throughput for stable systems)
If Ao <) then,

Al == AN = Ao- (4)
Proof: The result follows directly from simple rate-in-rate-out balance equations. O

The throughput functions T;(8, ¢, Ag) for values for \g > \ are more complicated to charac-
terize. To this end, notice that for any 8 € B,c€ C, A\ >0andi=1,...,N,

Ti(B, ¢, Ao) < min{Ao, A}. (5)

It is readily verified that this upper bound is tight for non-layered queueing models such as the
classical M/G/1-PS model, which occurs as a special case of the present model by taking N = 1
and ¢; = 1. However, for the class of layered models under consideration, in many cases strict
inequality holds, i.e., there are exist 3 € B, c € C, Ao > 0 and i such that T;(5, ¢, \g) < A (see
below for an example). Moreover, it is important to note that not necessarily all queues are
unstable when A\g > A. To analyze the stability of the individual queues, the following notation
is useful. For given B € B, c€ C, Ag > 0, define

S(Xo) := {i: Q; is stable for given Ao},

and its complement
I(Ng) := {i: Q; is unstable for given Ag}.

In the next subsection we analyze the per-queue stability and throughput for unstable queues.

3.2 Per-queue throughput and stability

To derive a characterization of the per-queue throughput function, T;(53, ¢, Ag), we proceed along
the following steps. First, for given (3, ¢, and combinations (Ao, I(Ag), S(Ao)), we derive a set of
linear equations that unigely determines the per-queue throughput functions T;(8, ¢, Ao) = A;,
i=1,...,N (Lemmas 3 to 6). Second, we provide an explicit characterization of I(-), S(-), for
values of)¢ at which one or more queues become saturated, and determine the corresponding
throughput values (Lemma 7 and Theorem 1). Third, we show that the throughput function is
a piecewise linear function that is uniquely determined by these saturation points, which leads

an explicit expression for the per-queue throughput function (Theorem 2).

Lemma 3 (Work conserving)
If A\g > A, then

N
S NBi = 1. (6)
i=1

Proof: This result follows directly from the fact that the underlying PS-server is work conserv-
ing, and as such is always working at unit speed whenever there is work in the system. O

Lemma 4 (Throughput for stable queues)
Ifi € S(\o), then

X1 = A (7)

Proof: This follows directly from the definition of stable queues in Section 2. O
The following result gives the ratios between the throughputs for the unstable queues.

Lemma 5 (Fairness for unstable queues)
Ifi,j € I(\o), then

v ®
Proof: The validity of this property follows from the observation that if @; is unstable, then
effectively all ¢; servers are busy at any time (with probability 1). Consequently, the ratio of
the mean amounts of work handled per time unit at unstable queues 7 and j, A\;8; and \;5;
respectively, in a PS node is equal to ¢;/c;, which immediately leads to (8). O

We are now ready to determine the per-queue throughput values Ai,...,An, considered as
a function of A\g. To this end, we first observe that for given combinations of (Ag, I(Xo), S(Ao)),
Lemmas 3, 4 and 5 constitute a set of N linear equations with N unknowns Ay,...,An. It is
easy to see that this set of equations leads to a unique solution. To this end, note that Lemmas
4 and 5 determine the ratios between the throughput values A1,..., Ay, while Lemma 3 leads
to a normalizing constraint.

Lemma 6
For given 8 € B and c € C, the following two properties hold:
AZA1 2> AN 20, 9)
and
i € S(Xo) and j € I(Xg), then)\;—ﬁl < Ai—ﬁ] (10)
i J

Proof: Equation (9) stems from the fact that the rate out a queue cannot exceed the rate into
that queue. Moreover, equation (10) follows from the observation that for unstable queues all
servers are busy (almost surely), whereas for stable queues the servers are idle for a nonzero
fraction of the time. Hence, the load per server for unstable queues must always be strictly
larger than the load per server for stable queues.

Definition
For given 8 € B and ¢ € C, the triple (Ao, I(Xo), S(Ao)) is called feasible if the unique solution

(M,-..,An) of the set of equations (6), (7) and (8) satisfies equations (9) and (10). The set of
feasible triples (Ag, I(Ao), S(Ag)) is denoted by F.

We are now ready to give an explicit expression for the per-queue throughput, for given (Ao, I(Ag), S(Ag)) €
F. To this end, the following notation is useful. We partition the index set {1,..., N} into

{17"'7N} :FO()‘O) U U Fk()‘O)a (11)
ke€I(Xo)

where

To(Xo) :={l:j€S(N) for j=1,...,1}, (12)
and for k € I(\g),

Tr(No):={l:5€S\o) for j=k+1,...,1}. (13)

In words, T'g(Ag) is the set of queues left to the first unstable queue (if any; otherwise all
queues are stable and T'g(Ag) = {1,...,N}), and T'x(Ag), for k € I()\g), is the set of queues [for
which Q) is the last unstable queue to the left of [. To illustrate this definition, consider the case
N = 11, with unstable queues I(\g) = {3, 8,9} and stable queues S()\g) = {1, 2,4,5,6,7,10,11}.
Then it is readily verified that T'g(Ag) = {1,2}, I's(Xo) = {3,4,5,6,7}, I's(Ao) = {8} and
To(Ao) = {9,10,11}.

Lemma 7 (Per-queue throughput)
For given (Ao, I(Xo),S(Xo)) € F, the throughput at Q; is given by the following expression: If
j S Fo()\o) ,

Aj = Ao, (14)
and if j € Tx(Xo), k € I(No), then,
1 — X0 X iero(ro) Bi

B Z‘er (A)),Bj ’
e 21el(X) (%)

Proof: Equation (14) follows directly from Lemmas 1 and 2, and (15) follows from Lemmas 3,
4 and 5. O0.

A= (15)

Lemma 7 reveals a number of interesting properties of the throughput considered as a func-
tion of Ag.

Property 1 (Monotonicity and piecewsie linearity of the per-queue throughput)
For each (Ao, I(Xo),S(No)) € F,

(1) A;j is a linearly increasing function of Ao for j € To(Ao),
(2) Aj is a linearly decreasing function of Ao for j € Ty(Xo) for k € I(Xo).

In other words, the throughput of all queues preceding the first unstable queue (if any) in-
creases linearly in)\, whereas the throughput of all other queues decreases linearly in \g. Note
that if all queues are stable, then we have indeed T'y(Ag) =0 and \; = --- = Ay = Ao.

We will now take a closer look at the stability of each of the queues. To this end, we first
observe that for given Ag > 0, the index sets I()\g) and S()\g) cannot be freely chosen, and many
triples (Ao, I(Xg), S(Ao)) are infeasible. To illustrate this, consider for example the following
model: N =3, = (1,2,3) and ¢ = (1,1,1). Then if we assume that Q1 and Q3 are stable, and
Q)2 is unstable, the given Ao, Lemma’s 3 and 4 lead to the following set of equations for A1, A2
and A\3: A1 = Mg, A2 = A3 (both from Lemma 4), and A1 +2X2+3\3 = 1 (from Lemma 3), which
leads to the solution A1 = Ag, A2 = A3 = (1 — Ag)/5. Equation (9) implies that 1/6 < g > 1.
This, however, is easily seen to imply that A282/ca = 2(1 — Ag)/5 < 3(1 — Ag)/5 = A3f3/cs,

so that feasibility constraint (10) is violated, and hence, the solution is unfeasible: there is no
value of Ag for which I(Ag) = {2} and S(Xo) = {1, 3}.

We will show that Ag uniquely determines the index sets I(Ag) and S(\g), and more importantly,
give an explicit characterization of these sets, and the corresponding per-queue throughput val-
ues. For ease of the discussion, we will focus on I()\g), noting that its complement S(Ag) can
then be directly obtained. Define
T:= {z for which there exists no j < i such that ;—] < ﬁ&} , and M :=|Z|. (16)
j i
In words, Z is the set of queues i whose ¢/f ratio is smaller than its predecessors. Throughout
it will be shown that 7 is the set of queues that eventually become unstable when \g grows
without bound. For convenience, write

I:{il,...,iM}, with 4y < -+ <y, Ty i =M41, (17)
and define form =1,..., M,
L = {im,tm+1,- -, im}, Tmtr = 0. (18)

Note that by definition, 1 € Z and i; = 1. The following result shows that for feasible triples
(Mo, I(Xo), S(Ao)) the set I(Ag) has a specific form. Then the following result shows that the
stability and unstability sets have a specific form.

Lemma 8 (Specific form of the stability and unstability sets)
For any Ay > 0,

I(No) =TI, for somem=1,...,M + 1. (19)

Proof: For \g < \ Lemma 1 implies that I(A\g) = 0 = Zp41. Take Ao > M. Then Lemma
1 implies that I(Ag) # 0. Assuming k € I()\g), Lemma 5 and equations (9) and (10) imply
that k = 4, for some n (as argued above). We need to show that i,41 € I(Xg), if n < M. To
this end, suppose in41 ¢ I(XAg). Then Lemma 4 implies that A;,,, = A;,, while by definition,
see (16), we have f;,.,,/¢i,.1 < Pi./ci,- However, equation (10) implies that A, Bi, 1 /Cinsy
< AinBi,/ci,. Contradiction. Thus, i,4+1 € I(Ag). Moreover, it follows directly from Lemma
4 that ¢/Br < ¢j/Bj for j = in +1,...,in41 — 1, which implies that j ¢ Z,. These obser-
vations indicate that if & = i, € I(A\g),n < M, then i,.1 € I(\), whereas j ¢ I()\g) for
j=1tin+1,...,ip41 — 1. Consequently, I(\g) = Z,, for some m. O

Lemma 9
T is the set of potentially unstable queues: j € T if and only if there exists Ny such that j € I(Xg)
for all Ao > Xp.

Proof: Assume j ¢ Z. Then by definition there exists k < j such that ¢x/Bk < ¢;/B;. Now, if
we assume j € I()g), then if k£ € I(\g) then Lemma 5 implies that A\yS8x/cx = A;8;/cj, and (9)
implies that A; < Ag, which is a contradiction. Alternatively, assume j € I(Ag) and k£ € S(\o).
Then (10) implies that AxBk/cr < A;B;j/cj, whereas (9) implies Ay, > A;. Contradiction. Thus,
j € S(Xo) for each \g. Conversely, it will be shown below that for each j € Z we have j € I(Ao)
when g is large enough. O

We are now ready to give an explicit expression for the stability and unstability sets S(Ao)
and I(Ag)for any given value of Ag. In fact we will show that the set of possible values for A can
be partitioned into a number of (mutually exclusive) intervals in such a way that I(\g) remains

constant over each interval. Define form =1,..., M,
“ 1
Am = . (20)
Bing—m Bi, ++Bi; ;-1 Biny++Bnr
Bl +oo Tt B’.M—m+2_1 + czll\\; = (Zl =M—-—m+2 l ﬂ,-l/c,-lﬁ_1 + %M/C,M)

Note that for m = 1 it is easily verified by using (17) that A; = A, defined in (3). Moreover, we
partition the set of nonnegative real numbers R into

§R+=AOUA1U - U Ay, (21)
where ;\0 := 0, and

Ap := |0, 3\1], Ay, = [j\m,j\nﬁ_l) form=1,...,M —1, and Ap; := [S\M,oo). (22)

Theorem 1 (Characterization of stability and unstability sets)
For given Mg > 0,

I(XNo) =Zrm—m+1 if and only if Ao € A, (m=0,1,...,M). (23)

Proof: For compactness of the presentation we only give a brief sketch of the proof. To this end,
suppose (Ao, I(Ao), S(Xo)) € F, with I(Ao) = Zar—m+1 = {iM—m+1,sM—m+2,- - -, iM }, defined in
(18). Then for m = 1,..., M, queue ip_m+1 is unstable by definition, which implies

)‘iN—m+1*1 >)‘iM—m+1' (24)
Then using Lemma 7 this relation implies

L—Xo(Br+ -+ Binsemii—1)
Birg—m Bt +Biy 1 | Biy+tBum
PIM—m+1 (Zl M—mtl 1 1411 + M M)

Cipf—m+1 Bi/eiy Bing /€ing

Ao >

(25)

which is readily seen to lead to the inequality Ag > Am (by splitting off the term with [=
M —m +1). Recall that for the special case A\ = 0 we have I(\g) = 0 = Zps41, as defined in
(18). Moreover, for m < M queue ip/_,, by assumption is stable and queue %7, +1 is unstable,
so that equation (10) implies that

Az'M—'rn/BiM—'rn > AZ.M—'rn—}—l/B'iM—'m,+1 . (26)

Cirt—m Cir—m+1

Then using Lemma 7 and standard algebraic manipulation is it readily verified that this implies

Y BiM—m > 1—-20 (61 +eeet BiM—m+1*1) BiM—m-H (27)
0% Bt~ tBuin 1 | By t+Bu | ¢ '
M=m iyl mtl T By /e, T Biry Jing —mt

Standard algebraic manipulations then simply lead to Ay < 3\m+1, defined in (20). The case
Ao = 5\m+1 occurs at the value of A\¢ for which queue i ,, becomes unstable, in which case
equality holds in (26) and (27). Conversely, using the same inequalities it is easy to verify that
if A € Ay, then I(Ng) = Zar—m+1- O

The following two properties follow immediately from Theorem 1 and Lemma 6.

Property 2 (Monotonicity of stable sets)
Assume (Ao, I(Ao), S(X0)), (MG, I(AG), S(AG)) € F. If My > Ao, then I(Xo) C I(Xg), S(Ny) C
S(Xo)-

In words, Property 2 states that an unstable queue cannot become stable when the load in-
creases. We are now ready to present the main result of the paper, providing explicit expression
for the per-queue throughput values, T;(8, ¢, Ao) = A (1 = 1,...,N), as a function of A\g > 0.

Theorem 2 (Characterization of the per-queue throughput function)
For given 8 € B, c€ C,1=1,...,N, and \g > 0, the throughput function is given by the
following expression: for A\g € Ag, 1 =1,..., N,

T;(B, ¢, Ao) = Ao, (28)
fordg € Ay (m=1,...,M —1),

E [R=3) X777, - T'Z [R=3) j‘m N
(g c i +1) _ (é c)(AO _ Am)7 (29)
)\m—l—l -)\m

E(é)g7 A0) = E(éa C, X‘rn) +

and for A\g € Ay,
Ti(B,¢ M) = Ti(B, ¢, Am)- (30)

where the values of Ay, (m =1,..., M) can be obtained from (20).

Proof: Equation (28) follows from Lemma 2, and equations (29) and (30) follows directly
from Theorem 1, Lemma 6 and and the piece-wise linearity Property 1. O

To illustrate the results presented in Theorems 1 and 2, consider the following model: N = 5,
B =(1,2,1,2,4) and ¢ = (1,1,1,1,1). Then it is readily verified that the set of potentially
unstable queues is 7 = {1,2,5}, and hence M = 3. Then equation (20) implies that the break
points are given by A = 1/10, Ay = 1/8, and A3 = 2/9, and hence, Ag = [0, 1/10], Ay =
(1/10,1/8], Ag = (1/8,2/9] and Az = (2/9,). The system is stable whenever A\g < A; = 1/10,
and in this case the per-queue throughput is Ag. If 1/10 < A9 < 1/8), then I(Ag) = {5}.
When)¢ increases to 1/8, Q2 becomes unstable, and the per-queue throughput values become
A=A =X =X =X =1/8and A5 = 1/16. If 1/8 < A\g < 2/9, then I(\g) = {2,5}.
When)\ increases to 2/9, Q1 becomes unstable, and the per-queue throghput values become
A=A =2/9, A2 =3 =X =1/9 and A5 = 1/18. If \g > 2/9 then I = {1,2,5}, and the
per queue throughputs will be 2/9, 1/9, 1/9, 1/9 and 1/18 for queues 1 to 5. Figure 2 below
shows the overall throughput, i.e. T5(53, ¢, Ag) = As, as a function of Ag. Note that for the overall
throughput is strictly less that the upper bound A = A; = 1 /10, see (3), when)\ is large enough,
and consequently, implies that the server assignment ¢ = (1,1,1,1,1) is not optimal.

4 Optimal server assignment

We are now ready to formulate the solution to the server assignment problem defined in Section 2.

Q, becomes unstable

Y

> Q; becomes unstajjle {y becomes unstable
ol i (774 ROl A SO N - I
5 all queues stable
o all queues
'g, unstable
g1/16 / i
2 1/18 e ——
£
bl
®
1™
o
3

0 >

Ay =0 - A=18 4=2/9 A
4 =119

Figure 2: Overall throughput as a function of \g.

Theorem 3 (Optimal server assignment)

For given B € B, the server assignment ¢ € C' is uniformly optimal over all values of Ao > 0 if
and only if

C1 Cj .
— <= forj=2,...,N. 31
p1~ B (31)

and the per-queue throughput is given by the uniform optimum
min{ g, A}. (32)

Proof: From Theorem 2 it follows directly that the overall throughput, Tn (5, ¢, Ao) = An,
considered as a function of)g, is optimal when M = 1, or equivalently, (J; has the smallest
c¢/pB-ratio among all queues, which immediately leads to the result. O

This result gives an explicit solution to the optimization problem formulated in Section 2.

Remark 4.1

The optimal server assignment rule in Theorem 2 is strikingly simple, and simply says that the
number of servers at @1 should be taken is small as possible, in such a was that relation (31)
is satisfied. The physical interpretation of this rule is that once a server is allowed to enter the
system (at (1) it should not face a bottleneck queue: it better to wait in front of Q1 than to wait
in front of Q; for j > 1. The intuition behind this rule is that if Q; (j > 1) is the first bottleneck,
then when the system is unstable the customers that are served at the stable queues Q1,...,Q;_1
use the processing power of the underlying PS-server (by an amount Ao(81 + --- + Bj—1) per
time unit) that goes at the expense of the processing power that is left behind for Q;,...,Qn,

which leads to a decrease of the per-queue throughput of queues j up to N, see also equation (15).

Remark 4.2
In the analysis performed in sections 3 and 4 the numbers of servers at the different queueus,
c1,...,cn were assumed to be finite. The assumption, however, is not essential and mainly

served the ease discussion. Let is consider what happens if ¢; is allowed to be equal to infinity.
First we observe that if ¢; = co then Theorem 1 implies that); will never become unstable,
unless ¢ = 1 and Ao is large enough. Second, the optimal server assignment rule in Theorem
3 is still valid if ¢; = oo for some (or all) ¢ € {2,...,N}, orif ¢ = --- = ¢y = oo0. Note
that in the latter case the model is equivalent to the classical processor sharing system, where
the service-time distribution is the convolution of the service-time distributions at the different
queues, which is known to lead to upper bound throughput, see (5).

5 Conclusion and further research

The present paper is focused on optimisation of the maximal throughput for a tandem of mul-
tiserver queues in which the busy servers share a common underlying amount of processing in a
processor-sharing fashion. The results show that the optimal number of servers follows a uc-like
rule, stating that the number of servers at)1 should be taken such that the ratio ¢; /81 should
be taken to be minimum of the ¢;/f3; ratios of all the other queues. We believe that these results
provide new and fundamental insight in the behavior of a class of layered queueing models. These
are just the first results for the topic of layered queueing networks and a number of challenges
for further research are still open. First, for some applications the most important performance
metric is the total amount of delay incurred at each of the queues, rather than the maximum
throughput. A challenging extension of this deliverable is to identify the optimal number of
servers at each queue to optimise the mean sojourn time of a customer in the system, or some
related performance metric. The results is this research within the context of EQUANET will
be reported in deliverable D4.2.3. Second, in the present paper we consider a tandem queue,
whereas in many distributed applications nodes are visited according to a more random routing
scheme. A very interesting topic for further research is to analyze and optimise performance of
networks of shared-server queues. Third, the optimal server assignment rule can be used as an
excellent starting point for tackling the thread-pool dimensioning problem in application servers
(see section 1). Finally, in object-oriented (OO) software replication and caching schemes are
typically deployed to improve performance. In this context, a key issue is to decide where, and
how many, replications of server objects should be located on the different servers of distributed
application platforms. The results in this paper provide a good starting point for addressing
this type of issues.

References

(1] Boxma and Daduna (1990). Sojourn times in queueing networks. In: Stochastic Analysis
of Computer and Communication Systems. Elsevsier Science Publishers.

[2] Cohen and Boxma (1983). Boundary value problems in queueing system analysis. North
Holland, Amsterdam.

(3]

[5]

[11]

[12]

Ehrlich, Hariharan, Reeser and Van der Mei (2001). Performance of Web servers in a dis-
tribuetd computing environment. In: Teletraffic Engineering in the Internet Era, proceed-
ings ITC-17 (Salvador, Brazil), 137-148.

Fayolle and Iasnogorodski (1979). Two coupled processors: the reduction to a Riemann-
Hilbert problem. Zeitschrift fuer Wharscheinlichketistheorie und Verwandte Gebiete 47,
325-351.

M. Harkema, B.M.M. Gijsen, R.D. van der Mei and Y. Hoekstra (2004). Middleware per-
formance modelling. To appear in Proceedings international Symposium on Performance

Evaluation of Computer and Telecommunication Systems, SPECTS (San Jose, CA, July
2004).

Konheim, Meilijson and Melkman (1981). Processor-sharing of two parallel lines. Journal
of Applied Probability 18, 952-956.

Van der Mei, Hariharan and Reeser. A Web server performance model. Telecommunication
Systems 16, 361-378.

Resing and Ormeci (2002). A tandem queue with coupled processors. Preprint.

Rolia and Sevcik (1995). The method of layers. IEEE Transactions on Software Engineering
21, 689-699.

H. Takagi (1990). Queueing analysis of polling models: an update. In: Stochastic Analysis
of Computer and Communication Systems, ed. H. Takagi (North-Holland, Amsterdam),
267-318.

Takagi, H. (1997). Queueing analysis of polling models: progress in 1990-1994. In: Frontiers
in Queueing: Models, Methods and Problems, ed. J.H. Dshalalow (CRC Press, Boca Raton,
FL).

Woodside, Neilson, Petriu and Majumdar (1995). The Stochastic Rendezvous Network
model for the performance of synchorous client-server like distributed software. IEEE Trans-
actions on Computers 44, 20-34.

