
Performance Comparison of Middleware Threading Strategies

M. Harkema1 B.M.M. Gijsen2 R.D. van der Mei2,3 L.J.M. Nieuwenhuis1

1
Department of Computer Science

University of Twente
The Netherlands

m.harkema@utwente.nl
l.j.m.nieuwenhuis@utwente.nl

2
Expertise Group QoS Control

TNO Telecom
The Netherlands

b.m.m.gijsen@telecom.tno.nl

3
Faculty of Exact Sciences

Vrije Universiteit Amsterdam
The Netherlands

mei@cs.vu.nl

ABSTRACT

The spectacular growth of E-business applications on the Internet

has boosted the development of middleware technology.

Middleware is software that manages interactions between

applications distributed across a heterogeneous computing

environment. In the competitive E-business market the ability to

deliver a high and predictable performance of E-business

applications is crucial to avoid customer churn, and thus loss of

revenue. This raises the need for service providers to be able to

predict and control performance. The performance of

middleware-based applications depends strongly on the choice of

the so-called threading strategy, describing how the middleware

layer handles competing method invocation requests.

The goal of this paper is to provide an understanding of the

impact of threading strategies on the performance of middleware-

based applications. To this end, we (1) develop new quantitative

models for the performance of middleware under different

threading strategies, (2) perform extensive test lab experiments to

compare the performance under different threading strategies, and

(3) explain the experimental results by relating them to the

quantitative models. As such, this paper provides new and

fundamental insight in the impact of threading strategies on the

performance of E-business applications.

Keywords: Middleware, CORBA, Java, threading strategies,

performance measurement, performance modeling

1. Introduction
The dramatic growth of the Internet, the developments in the

hardware and software industry, and the recent advances in

networking technology have boosted the emergence of distributed

computing. Distributed computing enables applications to be

divided in components that can be executed on geographically

distributed information systems. Distributed computing provides

the fundamental technology for the realization of enterprise-wide

and even global information systems. This development has led to

the emergence of a wide variety of E-business applications that

have been brought to the market. In this competitive market of E-

businesses a critical success factor for E-business applications is

the performance. Performance problems can directly lead to

customer churn, and thus loss of revenue. Typical examples of E-

business applications are online airline ticket reservation, online

banking and online purchasing of consumer products. For this

type of applications, the most relevant performance aspects are

service availability, payment transaction security and

performance. This paper is focused on performance, particularly

in terms of server throughput.

Distributed applications typically run in a heterogeneous

environment of networks, hardware and software components.

Middleware architectures have been developed to shield

developers of distributed application from interoperability

problems. Middleware is software that resides between the

application and the operating system. As such, middleware

performance is an important part of the end-to-end performance

of distributed applications. The performance of distributed

middleware-based applications depends on many factors,

including network performance, the performance of the

application code and middleware, and the performance of the

hardware on which the application and middleware is being

executed.

Over the past few decades, many commercially available

middleware products have been brought to the market. The

application developer can choose between a variety of threading

strategies (and related configuration settings) offered by the

middleware, while the proper choice of the threading strategy

may have a dramatic impact on the performance of the application

perceived by the end user. Consequently, it is important to be able

to compare the implications of the choices of the threading

strategies and the configuration settings prior to the actual

implementation, which is usually very time consuming and hence

costly.

Today, however, the understanding of the implications of the

choices of the threading strategies is very limited. Therefore, in

this paper we develop quantitative performance models several

frequently implemented threading strategies. We compare the

performance under these threading strategy alternatives on basis

of extensive experiments performed in a test lab environment. The

comparison of the performance under the different threading

alternatives is explained by relating the results to the models

developed, providing new and fundamental insight in the

implications of threading strategy alternatives.

In this paper our focus is on CORBA Middleware [Vinoski97]

[OMG01], the de-facto standard for middleware. The remainder

of this paper is structured as follows. Section 2 discusses

threading as specified by the OMG CORBA specification, and the

implementation of threading strategies in CORBA

implementations for Java. Section 3 describes performance

models of threading strategies implemented in the IONA

ORBacus CORBA implementation. Section 4 discusses the

performance experiments we have conducted to compare these

threading strategies in a test-lab setting. Section 5 concludes this

paper and addresses topics for further research.

2. Specification & implementation of CORBA

threading
In this section we describe what threading strategies are, and what

kind of threading strategies are implemented in popular CORBA

implementations. A CORBA threading strategy determines how

communication and execution of requests take place. A thread is

a light-weighted process, having its own execution context

(processor and memory state), but sharing memory and file-

descriptors with other threads inside the process. By using

multiple threads, an ORB can receive and execute multiple

requests concurrently. Threading allows for more efficient use of

the system’s resources, to achieve a higher request throughput.

2.1 The OMG CORBA specification
The CORBA specification [OMG] specifies multi-threading

policies for portable object adapters (POA). It doesn’t specify

how ORBs should implement threading and what threading

strategies they should implement. Multi-threading

implementation in the ORB itself is left as platform-specific. The

POA threading policies are there to ‘support threads in a portable

manner across those ORBs’ that implement multi-threading. The

CORBA specification doesn’t require the ORB to be multi-

threaded, however ORBs are required to implement the POA

threading policies if they are multi-threaded.

The specification defines three threading policies for portable

object adapters: the Single Thread Model, the ORB Controlled

Model, and the Main Thread Model. These threading policies

determine what concurrency constrains the POA will enforce

while executing requests. The ORB Controlled Model (the

default) doesn’t impose any concurrency constrains, requests to

objects managed by the POA may execute in parallel. The Single

Thread Model only allows one request to objects managed by the

POA at a time (the POA dispatches requests sequentially).

Requests to a single threaded POA are mutual exclusive, a lock

(mutex) is introduced (by the ORB vendor in the middleware

implementation), and locking contention may occur. The Main

Thread Model only allows one request at a time to be processed

by any POA with the main thread policy. Requests to any POA

with main thread policy are mutual exclusive, a lock (mutex) is

introduced, and locking contention may occur. The lock is shared

by all main threaded POAs. The Main Thread Model was

introduced in the CORBA 2.4 specification. In this paper we

focus on the ORB Controlled Model (the default).

2.2 Server-side thread categories
On the server-side of a CORBA application we can distinguish

the following kinds of threads:

• I/O threads: a common way of implementing I/O, i.e.

connection setup and exchange of GIOP (General Inter-

ORB Protocol, CORBA’s messaging protocol) messages

between client and server, is to use a specific acceptor

thread for listening to incoming connections to CORBA

objects (really the POA manager that manages the object).

Typically, for every new connection a receiver thread is

spawned that will handle the exchange of GIOP messages.

• GIOP messages are received in receiver threads. In some

threading strategies the method invocations to CORBA

objects are executed in receiver thread. During this time

the receiver thread cannot handle new GIOP messages (like

a new method invocation request). For applications that

use method invocations with longer completion times it

may be better to ‘delegate’ the execution to a separate

thread (the dispatcher thread). The dispatcher thread will

then handle the dispatching of the method invocation

request to the servant. The method invocation will be

executed in the context of the dispatcher thread. After

delegating the method invocation request to the dispatcher

thread, the receiver thread is free to receive the following

GIOP message. Some time may elapse between the

receiver thread handing over the request to a dispatcher

thread, and the dispatcher thread actually handling the

request.

• The application running on top of the ORB can be multi-

threaded also. Usually the ‘ORB Controlled Model’

threading policy is used in POAs that manage servants for

that application. The application (including the servants

belonging to that application) is designed to handle requests

concurrently – the application takes care of implementing

critical sections (mutual exclusion) where required.

Besides the abovementioned kinds of CORBA related threads

several Java virtual machine related administrative threads, such

as Java garbage collection threads, will be active.

2.3 CORBA threading strategies
In general, the performance of CORBA-based applications

depends on the choice of the threading strategies. To assess the

impact of threading strategies on server performance used an

IONA ORBacus implementation to conduct an experimental

performance comparison. The reason for using ORBacus is

threefold. First, ORBacus provides a complete set of threading

strategies, which is most important to make a complete

performance comparison of the most widely used threading

strategies. Second, ORBacus is widely applied and available for

both C++ and for Java. Third, ORBacus is both commercially and

academically available. Other implementations, such as Orbix,

Visibroker, JacORB and OpenORB, support comparable

threading strategies with comparable features. Based on

extensive experience with middleware performance testing, it is

our expert opinion that the impact of the implementation details

are negligible compared to the impact of threading strategies. As

such, we expect that the results presented below are representative

for implementations other than ORBacus.

The thread-per-client threading strategy uses receiver threads for

both receiving and dispatching the requests to servants. Because

requests are dispatched by the same thread as they are received in,

following requests by the client are blocked until the receiver

thread is done processing the current request. Effectively, only

one request per client is active in user-code, i.e. in the servants.

Each client-server connection has its own receiver thread, so

multiple requests from different clients can be active in user-code.

The threaded threading strategy is the same as the thread-per-

client model, but with an additional constraint: only one request

may be active in user-code. The ORB serializes requests from the

receiver thread when dispatching them to servants. While in the

thread-per-client model one request per client could be active in

user-code (so multiple requests could be active if multiple clients

are connected to the ORB), only one request ORB-wide can be

active in user-code in the threaded model.

Both the thread-per-client and the threaded threading strategies

use the receiver thread for receiving and dispatching requests to

servants. The thread-per-request threading strategy separates

receiving requests and dispatching requests in separate threads.

After receiving a request from a client, the receiver thread creates

a new dispatcher thread. That thread dispatches the request to the

servant, and sends the reply back to the client. Meanwhile the

receiver thread can receive new requests (and dispatch them in

new dispatcher threads). Thus, in the thread-per-request model

multiple requests from the same client can be active in user-code.

The thread-pool threading strategy is a refinement of the thread-

per-request model. It addresses several issues that may arise

when using the thread-per-request model. First, the number of

dispatcher threads is not bounded in the thread-per-request model.

This can lead to an uncontrolled growth of the number of

dispatcher threads. With many dispatcher threads active, the

context switch overhead becomes very large, and even trashing

behavior may occur, where the machine is mostly busy switching

contexts rather than executing user-code. Another problem of the

thread-per-request model is that thread creation and destruction is

needed for each request. Especially for requests that don’t require

a large amount of processing time, the added overhead of thread

creation and destruction is relatively large, thus leading to

inefficiencies. The thread-pool model addresses these issues by

pre-allocating a fixed number of dispatcher threads when the

ORB starts. Instead of creating new dispatcher threads, the

receiver thread en-queues requests in the FIFO request queue of

the dispatcher thread-pool. The dispatcher thread-pool assigns a

dispatcher thread to process the request when an idle (non-

working) dispatcher thread is available.

3. Performance models of threading strategies
To highlight the differences in the dynamic behavior of the four

threading strategies we present performance models for each of

the threading strategies. We present the performance models in an

extended queuing network notation [LZG84] [Jain]. Figure 1

depicts some modeling constructs that require further explanation.

First, a thread is modeled by a service center inside a square. All

steps inside the dashed box are executed in the context of that

thread. These steps contribute to the holding time of the thread.

While the thread is busy requests can queue in the FIFO queue in

front of the thread. A thread-pool is a group of threads that can

execute some steps depicted in the dashed box. A thread-pool is

modeled as a multi-server with a FIFO queue in front of it. A

mutex is modeled by a queue and a dashed box denoting the

processing steps inside the critical section of the mutex. Finally,

we use a kind of zooming construct to denote the steps taking

place inside a POA. We separate the logical and physical

resource layers. The logical resource layer contains the threads

and mutexes, while the physical resource layer contains the CPUs.

I/O and memory resources are left outside the scope of this paper.

The CPU service demands described in the logical resource layer

are executed on the CPUs in the physical resource layer.

∞

POA Steps ...
∞

∞

Thread-pool

Thread

Mutex (critical

section)

Steps taking

place in POA

Figure 1. Performance model notation

3.1 Thread-per-client
The simplest threading strategy available in ORBacus is the

thread-per-client model. In the thread-per-client model a receiver

thread is created for every incoming connection request of a

client. Most CORBA implementations share TCP connections

between a client and a server for invocations to different objects.

However, some CORBA implementations offer private

connections to specific objects to increase performance. When

private connections are used, a better name for the thread-per-

client strategy would be thread-per-connection. This section

discusses the performance model of the thread-per-client

threading strategy. Figure 2 contains the performance model in

an extended queuing network notation.

Performance model description

Requests arrive at receiver threads with connection k (of Ncon

connections) arrival rate λi,j,k for POA i and Object j. During

request processing the receiver thread is occupied, this resource

possession is depicted by a dashed line around the receiver thread

logical resource. The thread-per-client model implements the

same-thread dispatching model: requests are received and

dispatched to servants in the same thread (the receiver thread).

While the receiver thread is processing a request, newly incoming

requests queue in the FIFO queue.

The receiver thread first receives the request from the network,

then it un-marshals the request header and a part of the request

body, to obtain the POA and object identifiers. A series of request

de-multiplexing steps is needed to locate the target POA, target

object, and target method implementation. The POA identifier is

used to locate the POA. In the performance model the

aforementioned processing steps (including the de-multiplexing

step to obtain the target POA, but excluding the other de-

multiplexing steps) are modeled by a service demand brec.

The request is forwarded to the located POA, one of Npoa POAs.

De-multiplexing continues with locating the target object in the

POA’s active object map, using the earlier obtained target object

identifier. Now we have located the CORBA skeleton of the

target object. The last de-multiplexing step is to locate the method

implementation inside the skeleton. Finally, the request is

dispatched to the target object’s skeleton. These two de-

multiplexing steps and the dispatching are modeled by a service

demand bdisp.

The remainder of the request (partial un-marshaling already took

place earlier), including the request parameters, is un-marshaled

by the skeleton. This un-marshaling step is modeled by a service

demand bunm_i,j. The service demand depends on the amount and

type of data that needs to be un-marshaled. The method

implementation is invoked with the un-marshaled method

parameters. The service demand of the method implementation is

modeled by bser_i,j (CPU service demand) and bsern_i,j (delay

introduced by non-CPU resources, e.g. remote database access or

remote procedure calls).

A POA may be configured using the single-thread threading

policy, meaning that only one method at a time can be active

inside the POA (i.e. in the objects managed by that POA). Access

to the objects managed by this POA needs to be serialized. In

single-threaded POAs the un-marshaling of the request

parameters and the invocation of the method implementation are

protected by a mutex, as depicted in the performance model by

the ST-POA mutex (a FIFO queue). The critical section,

protected by the mutex, is denoted by a dashed line drawn around

the involved service centers. The Root POA, the POA created

when the ORB starts, is always configured to be multi-threaded (it

uses the ORB Controlled Model threading policy by default).

The servant implementation may have a critical section too,

which can also be modeled by FIFO queues as depicted in the

model. The service centers that represent the servants with

service demand bser_i,j and delay bsern_i,j may be replaced by sub-

models if the performance behavior of the servant cannot be

captured using these parameters.

After method invocation the return parameters need to be

marshaled. This is modeled by a service demand bmar_i,j. The

service demand depends on the amount and type of data that

needs to be marshaled. Finally, a reply message is created with

the marshaled return parameters. The reply is sent back to the

client over the same TCP/IP connection as the request arrived.

This last step is modeled by a service demand breply.

The threads that execute the mentioned steps for each request that

is being served, share the physical server resources (such as the

CPU, memory and I/O), as indicated in Figure 2.

3.2 Threaded
The threaded threading strategy is similar to the thread-per-client

threading strategy. The only difference is that in the threaded

threading strategy there may only be one active request at a time

in the servants. Access to the servants is serialized by an ORB-

wide mutex. This threading strategy is used by CORBA

applications that are not multi-thread aware. For instance, legacy

CORBA applications that are developed for single-threaded

ORBs can use this threading strategy. Similar to the thread-per-

client model, the threaded model also implements the same-thread

dispatching model, where the receiver thread both receives

requests from clients and dispatches them to the servants.

The performance model of the threaded threading strategy is

similar to the one of thread-per-client, except that the mutex for

single-threaded POAs is removed (the ORB wide mutex basically

makes all POAs single-threaded) and an ORB-wide mutex has

been added in the POA model.

∞ λ
i,j,1

Root POA b rec

∞
b ser
b sern

b ser
b sern

b disp b unm b mar b reply

POA 2

ST
POA N POA

∞

∞
b ser
b sern

b ser
b sern

b disp b unm b mar b reply

∞ λ
i,j,2

b rec

∞ λ
i,j,k

b rec

Receiver
threads

Servant 1
POA 1

Servant N ser_1
POA 1

Servant 1
POA N POA

Servant N ser_1
POA N POA

logical resource layer

physical resource layer
All threads share CPU, I/O

and memory resources

N
con

ST POA

mutex

Figure 2. Server side performance model for the thread-per-client model

Figure 3 contains the performance model in an extended queuing

network notation.

Performance model description

Requests arrive at receiver threads with connection k (of Ncon

connections) at rate λi,j,k for POA i and Object j. During request

processing the receiver thread is occupied, this resource

possession is depicted by a dashed line around the receiver thread

logical resource. The threaded model implements the same-

thread dispatching model: requests are received and dispatched to

servants in the same thread (the receiver thread). While the

receiver thread is processing a request, newly incoming requests

queue in the FIFO queue.

The receiver thread first receives the request from the network,

then it un-marshals the request header and a part of the request

body, to obtain the POA and object identifiers. A series of

request de-multiplexing steps is needed to locate the target POA,

target object, and target method implementation. The POA

identifier is used to locate the POA. In the performance model

the aforementioned processing steps (including the de-

multiplexing step to obtain the target POA, but excluding the

other de-multiplexing steps) are modeled by a service demand

brec.

The request is forwarded to the located POA, one of Npoa POAs.

De-multiplexing continues with locating the target object in the

POA’s active object map, using the earlier obtained target object

identifier. Now we have located the CORBA skeleton of the

target object. The last de-multiplexing step is to locate the

method implementation inside the skeleton. Finally, the request is

dispatched to the target object’s skeleton. These two de-

multiplexing steps and the dispatching are modeled by a service

demand bdisp.

The remainder of the request (partial un-marshaling already took

place earlier), including the request parameters, is un-marshaled

by the skeleton. This un-marshaling step is modeled by a service

demand bunm_i,j. The service demand depends on the amount and

type of data that needs to be un-marshaled. The method

implementation is invoked with the un-marshaled method

parameters. The service demand of the method implementation is

modeled by bser_i,j (CPU service demand) and bsern_i,j (delay

introduced by non-CPU resources).

In the threaded threading strategy only one method at a time can

be active inside any POA. Access to all objects needs to be

serialized. The un-marshaling of the request parameters and the

invocation of the method implementation are protected by a

mutex, as depicted in the performance model by the ORB mutex

(a FIFO queue). The critical section, protected by the mutex, is

denoted by a dashed line drawn around the involved service

centers. In this threading strategy the servants don’t have critical

sections, as they are single-threaded. As with the thread-per-

client model, the service centers that represent the servants with

∞ λ i,j,1
Root POA b rec

∞
b ser
b sern

b ser
b sern

b disp b unm b mar b reply

POA 2

ST
POA N POA

∞
b ser
b sern

b ser
b sern

b disp b unm b mar b reply

∞ λ i,j,2
b rec

∞ λ i,j,k
b rec

Receiver
threads Servant 1

POA 1

Servant N ser_1
POA 1

Servant 1
POA N POA

Servant N ser_1
POA N POA

logical resource layer

physical resource layer

All threads share CPU, I/O
and memory resources

N
con

∞
ORB
Mutex

Figure 3. Server side performance model for the threaded model

service demand bser_i,j and delay bsern_i,j may be replaced by sub-

models if the performance behavior of the servant cannot be

captured using these parameters.

After method invocation the return parameters need to be

marshaled. This is modeled by a service demand bmar_i,j. The

service demand depends on the amount and type of data that

needs to be marshaled. Finally, a reply message is created with

the marshaled return parameters. The reply is sent back to the

client over the same TCP/IP connection as the request arrived.

This last step is modeled by a service demand breply.

3.3 Thread-per-request
The thread-per-request threading strategy separates the request

receiving and dispatching steps into separate threads. After the

receiver thread receives a request from a client, a new thread is

spawned to dispatch the request to the servant. Execution of the

method implementation takes place in that dispatcher thread.

After spawning the dispatcher thread and forwarding the request

to that thread, the receiver thread is ready to receive the next

request from the client. When the dispatcher thread is done with

dispatching the request to the servant and sending the reply back

to the client, it kills itself. The advantage of this threading

strategy is that multiple requests from the same client can be

dispatched to servants concurrently. The disadvantage of this

threading strategy is the costs of thread creation and destruction

for every request. Especially for requests that require little time

to complete, the added overhead of thread creation and

destruction is relatively high. However, for requests that take a

long time to complete this threading strategy is useful, because it

doesn’t block further requests by the same client. Because the

number of dispatcher threads is unbounded (they are created by

receiver threads for incoming requests, as long as the operating

system has sufficient resources for the threads) it can lead to an

uncontrolled growth of dispatcher threads. When a lot of threads

are simultaneously active the memory resources of the machine

are drained, and the overhead caused by thread context switches

can lead to trashing behavior, where little time is left for actual

request processing. Figure 4 contains the performance model in

an extended queuing network notation.

Performance model description

Requests arrive at receiver threads with connection k (of Ncon

connections) with request arrival rate λi,j,k for POA i and Object j.

During request processing the receiver thread is occupied, this

resource possession is depicted by a dashed line around the

receiver thread logical resource. The thread-per-request model

implements the separate-thread dispatching model: requests are

received in receiver threads and dispatched to servants in other

threads, the dispatcher threads. While the receiver thread is

receiving a request, newly incoming requests queue in the FIFO

queue.

The receiver thread first receives the request from the network,

then it un-marshals the request header and a part of the request

body, to obtain the POA and object identifiers. A series of

request de-multiplexing steps is needed to locate the target POA,

target object, and target method implementation. The POA

identifier is used to locate the POA. In the performance model

the aforementioned processing steps (including the de-

multiplexing step to obtain the target POA, but excluding the

∞ λ
i,j,1

Root POA b rec
∞

b ser
b sern

b ser
b sern

b disp b unm b mar b reply

POA 2

ST
POA N POA

∞
b

ser
b sern

b ser
b sern

b disp b unm b mar b reply

∞ λ
i,j,2

b rec

∞ λ
i,j,k

b rec

Receiver
threads

Servant 1
POA 1

Servant N ser_1
POA 1

Servant 1
POA N POA

Servant N ser_1
POA N POA

logical resource layer

physical resource layer
All threads share CPU, I/O

and memory resources

N con

b tc

b tc

b tc

b tk

Dispatcher
threads

∞

ST POA
mutex

Figure 4. Server side performance model for the thread-per-request model

other de-multiplexing steps) are modeled by a service demand

brec.

Then, a new dispatcher thread is created by the receiver thread.

The cost of thread creation is modeled by the service demand btc.

The dispatcher thread continues processing the request, and the

receiver thread is now ready to receive the next request from the

queue.

The dispatcher thread forwards the request to the located POA,

one of Npoa POAs. De-multiplexing continues with locating the

target object in the POA’s active object map, using the earlier

obtained target object identifier. Now we have located the

CORBA skeleton of the target object. The last de-multiplexing

step is to locate the method implementation inside the skeleton.

Finally, the request is dispatched to the target object’s skeleton.

These two de-multiplexing steps and the dispatching are modeled

by a service demand bdisp.

The remainder of the request (partial un-marshaling already took

place earlier), including the request parameters, is un-marshaled

by the skeleton. This un-marshaling step is modeled by a service

demand bunm_i,j. The service demand depends on the amount and

type of data that needs to be un-marshaled. The method

implementation is invoked with the un-marshaled method

parameters. The service demand of the method implementation is

modeled by bser_i,j (CPU service demand) and bsern_i,j (delay

introduced by non-CPU resources).

A POA may be configured using the single-thread threading

policy, meaning that only one method at a time can be active

inside the POA (i.e. in the objects managed by that POA). Access

to the objects managed by this POA needs to be serialized. In

single-threaded POAs the un-marshaling of the request

parameters and the invocation of the method implementation are

protected by a mutex, as depicted in the performance model by

the ST-POA mutex (a FIFO queue). The critical section,

protected by the mutex, is denoted by a dashed line drawn around

the involved service centers. The Root POA, the POA created

when the ORB starts, is always configured to be multi-threaded (it

uses the ORB Controlled Model threading policy by default).

The servant implementation may have a critical section too,

which can also be modeled by FIFO queues as depicted in the

model. The service centers that represent the servants with

service demand bser_i,j and delay bsern_i,j may be replaced by sub-

models if the performance behavior of the servant cannot be

captured using these parameters.

After method invocation the return parameters need to be

marshaled. This is modeled by a service demand bmar_i,j. The

service demand depends on the amount and type of data that

needs to be marshaled. Finally, a reply message is created with

the marshaled return parameters. The reply is sent back to the

client over the same TCP/IP connection as the request arrived.

This last step is modeled by a service demand breply.

Now that the request dispatching is done and a reply has been sent

to the client, the dispatcher thread kills itself. The cost of killing

the thread is modeled by a service demand btk.

3.4 Thread-pool
The thread-pool threading strategy addresses the disadvantages of

the thread-per-request threading strategy, while still implementing

the separate-thread dispatching model. In the thread-pool model

the dispatcher threads are pre-created. Idle dispatcher threads are

put in a pool, the dispatcher thread-pool. When a request arrives

at the receiver thread, it doesn’t need to create a new thread for

request dispatching, instead the receiver thread forwards the

request to the thread-pool, where it is queued (in FIFO order).

The thread-pool request queue is monitored by the idle dispatcher

threads. Idle dispatcher threads remove requests from the queue,

and dispatch them to servants. When the dispatcher thread is

done, it doesn’t kill itself, but instead it returns to the thread-pool.

The thread-pool has a fixed size. Therefore the thread-pool

threading strategy doesn’t suffer from the uncontrolled thread

growth phenomena, unlike the thread-per-request model. Also,

since threads are pre-created, the thread creation and destruction

costs btc and btk of the thread-per-request model are not present

here. Figure 5 contains the performance model in an extended

queuing network notation.

Performance model description

Requests arrive at receiver threads with connection k (of Ncon

connections) with arrival rate λi,j,k for POA i and Object j. During

request processing the receiver thread is occupied, this resource

possession is depicted by a dashed line around the receiver thread

logical resource. The thread-pool model implements the separate-

thread dispatching model: requests are received in receiver

threads and dispatched to servants in other threads, the dispatcher

threads. While the receiver thread is receiving a request, newly

incoming requests queue in the FIFO queue.

The receiver thread first receives the request from the network,

then it un-marshals the request header and a part of the request

body, to obtain the POA and object identifiers. A series of

request de-multiplexing steps is needed to locate the target POA,

target object, and target method implementation. The POA

identifier is used to locate the POA. In the performance model

the aforementioned processing steps (including the de-

multiplexing step to obtain the target POA, but excluding the

other de-multiplexing steps) are modeled by a service demand

brec.

Then, the receiver thread forwards the request to a FIFO request

queue in front of the dispatcher thread-pool. The dispatcher

thread-pool contains Ndisp threads. The request remains in the

queue until a dispatcher thread is available to dispatch the request.

The dispatcher thread forwards the request to the located POA,

one of Npoa POAs. De-multiplexing continues with locating the

target object in the POA’s active object map, using the earlier

obtained target object identifier. Now we have located the

CORBA skeleton of the target object. The last de-multiplexing

step is to locate the method implementation inside the skeleton.

Finally, the request is dispatched to the target object’s skeleton.

These two de-multiplexing steps and the dispatching are modeled

by a service demand bdisp.

The remainder of the request (partial un-marshaling already took

place earlier), including the request parameters, is un-marshaled

by the skeleton. This un-marshaling step is modeled by a service

demand bunm_i,j. The service demand depends on the amount and

type of data that needs to be un-marshaled. The method

implementation is invoked with the un-marshaled method

parameters. The service demand of the method implementation is

modeled by bser_i,j (CPU service demand) and bsern_i,j (delay

introduced by non-CPU resources).

A POA may be configured using the single-thread threading

policy, meaning that only one method at a time can be active

inside the POA (i.e. in the objects managed by that POA). Access

to the objects managed by this POA needs to be serialized. In

single-threaded POAs the un-marshaling of the request

parameters and the invocation of the method implementation are

protected by a mutex, as depicted in the performance model by

the ST-POA mutex (a FIFO queue). The critical section,

protected by the mutex, is denoted by a dashed line drawn around

the involved service centers. The Root POA, the POA created

when the ORB starts, is always configured to be multi-threaded (it

uses the ORB Controlled Model threading policy by default).

The servant implementation may have a critical section too,

which can also be modeled by FIFO queues as depicted in the

model. The service centers that represent the servants with

service demand bser_i,j and delay bsern_i,j may be replaced by sub-

models if the performance behavior of the servant cannot be

captured using these parameters.

After method invocation the return parameters need to be

marshaled. This is modeled by a service demand bmar_i,j. The

service demand depends on the amount and type of data that

needs to be marshaled. Finally, a reply message is created with

the marshaled return parameters. The reply is sent back to the

client over the same TCP/IP connection as the request arrived.

This last step is modeled by a service demand breply.

Now that the request dispatching is done and a reply has been sent

to the client, the dispatcher thread returns to the thread-pool and is

ready to process the next request.

4. Performance experiments of threading

strategies
In this section we compare the performance of the four common

threading strategies implemented in the IONA ORBacus CORBA

implementation for Java. We start by explaining the workload

generator and our performance measurement tool. After

describing the experimental set-up we present and discuss the

experimental results, including some recommendations for when

to use a certain threading strategy.

4.1 Workload generation
For the presented experiments we used a closed-loop request

arrival process, as illustrated in Figure 6. Initially each client

sends a single request and waits for the reply. Then a new request

is sent after the reply to the previous request is received by the

client. This way each client has at most one outstanding request.

The reason for using a closed arrival process, instead of an open

arrival process, is twofold. First of all, in a set-up with open

arrivals TCP/IP sessions have to be set-up and terminated during

the experiments. This overhead will degrade the end-to-end

performance, and the performance of the threaded and thread-per-

client strategy will be affected most. Because we are focusing on

a fair comparison of server performance we want to exclude this

effect from our results. Secondly, since we are comparing the

performance of several threading strategies, the most interesting

results are regarding the performance under ‘maximum load’

instead of under light load. With the closed loop arrival process

used in this paper, the ‘maximum load’ for each strategy is

realized automatically.

∞ λ
i,j,1

Root POA b rec
∞

b ser
b sern

b ser
b sern

b
disp b

unm b
mar b

reply

POA 2

ST
POA N

POA
∞

b
ser

b sern

b ser
b sern

b disp b unm b mar b reply

∞ λ
i,j,2

b rec

∞ λ
i,j,k

b rec

Receiver
threads

Servant 1
POA 1

Servant N ser_1
POA 1

Servant 1
POA N POA

Servant N ser_1
POA N POA

logical resource layer

physical resource layer
All threads share CPU, I/O

and memory resources

N con

Dispatcher
threads

∞

Pool of
N disp

threads

∞

ST POA
mutex

Figure 5. Server side performance model for the thread-pool model

Client

Network

Server

time

blocked
busy busy

busy

busy

busy
idle

idle idle

A B C D E

Figure 6. Request timing diagram

We developed a workload generator to automate performance

experiments with different scenarios. The workload generator

consists of a client and server application. The client-side

application executes a given workload on the server application.

The workload description consists of a collection of arrival

processes. An arrival process description consists of:

• The number of clients that generate requests.

• The total number of requests to generate.

• The targets of the arrival process. A description of a target

consists of the name of the remote object, the name of the

method to invoke, and (if applicable) requests parameters

(payload). If an arrival process has multiple targets, then by

default the requests are equally distributed over the targets.

The server-side application offers the following scenario

configuration options:

• Specification of the POA hierarchy, including POA

managers and POA policies (e.g. single-threaded POAs).

• Deployment of objects on the specified POAs.

• Service demands for methods in the object implementation.

Both CPU time usage and idle, waiting time can be

described. The CPU time can be used to model work that is

done by the object implementation. The waiting time can be

used to simulate that the object implementation is waiting for

an external entity, for instance a query to a remote SQL

database.

• Configuration options for the ORB, for instance which

threading strategy to use or connection reuse policies.

We emphasize that support for non-synthetic workload generation

with open request arrival processes (e.g., trace-driven load

generation) can easily be added to the experimental setup.

However, the focus of the present paper is on modeling of the

server-side dynamics, and therefore, detailed characterization of

the request patterns generated by the client side is beyond the

scope of this paper.

Performance experiments often iterate one or more parameters in

the scenario. For instance, a series of experiments can be

performed to study the effect of an increasing number of clients.

We use scripts that iterate these parameters and instantiate

workload scenario templates using the parameter values.

4.2 Performance measurement
In this section we shortly describe how we obtain performance

measurements of the ORBacus CORBA implementation using the

Java Performance Monitoring Toolkit (JPMT) [HQG+02].

JPMT represents the execution behavior of applications by event

traces, in which each event represents the occurrence of some

activity, such as a method invocation or the creation of a new

thread of execution. JPMT’s event traces are similar to call-trees,

but in addition to method invocations they also contain other

event types. Events are annotated with high-resolution

timestamps, and depending on the event type other attributes such

as used CPU time.

The event traces produced by JPMT provide highly detailed

performance information. We developed post-processing scripts

to interpret this information, by traversing the event traces and

summarizing the measurements. The CORBA experiment report

produced by the post-processing scripts includes detailed

information, regarding request throughput, completion times and

a break-down of completion times in terms of CPU time usage,

garbage collection, and time spent waiting for locks. The

throughput is defined as the total number of requests handled by

the server, divided by the elapsed time between end and start of

the experiment. The completion time of a request is defined as the

elapsed time between request arrival at the server and sending the

reply towards the client. Further, the queuing times at the

dispatcher thread pool and the request throughput are reported.

For the purpose of performance comparison of threading

strategies we focus on a comparison of the throughputs.

4.3 Experimental setup
We compare the four threading strategies of ORBacus with an

increasing number of connected clients. Each client has its own

TCP/IP connection to the server ORB, and thus its own receiver

thread on the server. Our test-bed consists of two machines:

Utip267 and Utip442. Utip267 is a Pentium IV 1.7 GHZ with 512

MB of memory. Utip442 is a Pentium III 550 MHz with 256 MB

of memory. In these experiments Utip442 acts as the CORBA

server and Utip267 as the CORBA client. Notice that we used the

faster machine as the client in order to make sure that the client

does not become the bottleneck in the experiments. In particular,

for all results presented below we verified that the request rate

generated by the client was at least enough to keep the server

busy at all times (i.e. the client is not the bottleneck). Both

machines run the Linux 2.4.19 operating system and the Sun Java

2 standard edition v1.4.1. The Java virtual machine is configured

with default garbage collection settings and without run-time pre-

compilation optimization features. The CORBA implementation

we use in this example is IONA ORBacus/Java 4.1.1. The thread-

pools used in the experiments with the thread-pool strategy hold a

number of threads equal to the number of clients (i.e. it varies

with the number of clients). The following is a fragment of the

IDL definitions used in the experiments.

interface PerformanceTest

{

 long doSomeWork();

};

The doSomeWork method executes a configured work-load on

the system. In the experiments we use three workload cases. The

1 ms CPU demand scenario represents the CPU processing cost of

a simple method. The 5 ms CPU demand represents the CPU

processing costs of a scenario with a more complex method (a

CPU bound application). Finally, the 50 ms delay (not CPU

processing time) represents the delay induced from a simple SQL

query on a database server running on another machine (an I/O

bound, database driven application). All service demands and

delays are configured to have an exponential distribution.

We run the experiment with 2, 4, 8, 16, 32 and 64 clients. Some

experiments are also executed with 128 clients, depending on the

CPU utilization at 64 clients. Each client executes a work-load of

200 requests on the server. We also have configured a minimum

duration of 45 seconds for each experiment, so that we get enough

measurements for runs with a small number of clients.

4.4 Experimental results
This section summarizes the experimental results. In all

experiments the thread-per-client threading strategy is expected to

be the most efficient, since we use single-threaded clients

executing one blocking request at a time. In this scenario it

doesn’t make sense to release the receiver thread for processing

forthcoming requests, since they won’t arrive because the client is

single threaded and blocking until it receives a reply for the

current outstanding request. Therefore, the results for the thread-

per-client strategy can be regarded as best case results. We

emphasize that this observation is based on our choice to use a

closed arrival process.

1 ms servant CPU demand

Figure 7 shows the throughput (in number of requests per second)

as a function of the number of clients, for the different threading

strategies. The results demonstrate that the thread-per-client and

thread-pool threading strategies perform best in this experiment

and scale well with the number of connected clients. The slow

decrease of the throughput presented in Figure 7 is due to the fact

that the CPU service time per request increases slightly from

roughly 1.8 ms for 2 clients to 2.3 ms for 64 clients. This increase

in CPU service time is most likely due to additional context

switching activity.

The thread-per-request strategy suffers from high thread creation

and destruction costs, especially compared to the small service

demand of 1 ms CPU time. This is the reason why the throughput

obtained with the thread-per-request strategy is lower than the

throughput for the thread-per-client and thread-pool strategy.

For the threaded strategy the ORB mutex turns out to be a

bottleneck, especially with a large number of clients. In particular,

the locking activity strongly increases the processing time. For 2

clients the CPU service time per request is approximately equal to

1.8 ms, while for 64 clients the CPU times have increased to 5.4

ms. The increase of CPU times causes the linear decrease of

throughput for the threaded strategy shown in Figure 7.

5 ms servant CPU demand
Figure 8 contains the throughputs for the different threading

strategies and the scenario with 5 ms CPU servant demand. First

of all, note that the throughputs are significantly lower than the

throughputs for the previous case. Of course, this is due to the fact

that the servant is now more CPU demanding. Similar as for the

previous scenario the thread-per-client and thread-pool perform

best of the four threading strategies.

Throughput comparison (1 ms servant CPU)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

number of clients

Thread-per-client

Threaded

Thread-per-request

Thread-pool

Figure 7. Throughput for 1 ms servant CPU demand

The throughput for the thread-per-request strategy remains

smaller than the throughput for the thread-per-client and thread-

pool strategy, but relatively the thread-per-request strategy

performs better in this scenario. For a scenario with 1 ms CPU

servant demand the throughput for the thread-per-request strategy

was between 75 and 80% of the throughput for the thread-per-

client strategy. For the 5 ms CPU servant demand the relative

throughput increases to between 85 and 90%. This relative

improvement of the thread-per-request strategy is due to the fact

that the thread creation and destruction overhead becomes less,

relative to the increased servant CPU demand.

For the threaded strategy we observe the same phenomenon as for

the previous scenario. For a small number of clients the

throughput performance is comparable to the throughput achieved

with the thread-per-client and thread-pool strategy. However, for

a large number of clients the throughput performance becomes

significantly worse. Again this is caused by the additional CPU

demand for handling locking contention for the ORB mutex of the

threaded threading strategy.

50 ms servant delay
Figure 9 contains the throughput comparison for the thread-per-

client, thread-per-request, thread-pool and threaded threading

strategies, for 50 ms ‘sleep time’ at the servant. The performance

of thread-per-client and thread-pool is the same again. Observe

that the throughput curves are different from the previous

throughput curves. In particular, for a low number of clients the

throughput increases linear with the number of clients. This effect

is due to the servant ‘sleep time’ of 50 ms. Observe that the sleep

time causes that the request ‘loop time’ (i.e. the elapsed time

between two consecutive arrivals of a request at the server) is at

least 50 ms and this provides an upper bound on the maximum

throughput per client, of 1 / 0.05 = 20 requests/s. Then, for n

clients the maximum achievable throughput equals n x 20

requests/s. For a large number of clients the CPU becomes the

bottleneck. For the thread-per-client and thread-pool strategy this

point is reached at approximately 30 clients. For the more CPU

demanding thread-per-request strategy this point is reached

around 20 clients.

For the threaded strategy we observe a completely different

throughput performance. Again, this is due to the ORB mutex,

which does not allow the servant to be invoked by more than one

request at the time. In combination with the ‘loop time’

observation above, it follows that the servant can never handle

more than 20 requests/s. And this exactly corresponds to the

throughput results shown in Figure 9.

To summarize, the thread-per-client threading strategy is the best

performer. This was to be expected since the work-load of clients

executing one request at a time perfectly fits that threading

strategy. The thread-pool is overall the second best performer.

Contrary to the thread-per-client threading strategy, the thread-

pool model also copes with multi-threaded clients, which invoke

more than one method at a time over a client-server connection.

In the thread-per-client threading strategy the receiver thread is

not separated from the method dispatching thread, i.e. the server

ORB cannot handle requests coming from the same client

concurrently. The thread-pool model is a good choice for

applications that have multi-threaded clients.

4.5 Guidelines for choosing threading

strategy
When designing and implementing an application, the choice of

which threading strategy to use is an important issue. In many

cases the requirements of an application already point to certain

threading strategies. For instance,

Throughput comparison (5 ms servant CPU)

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

number of clients

Thread-per-client

Threaded

Thread-per-request

Thread-pool

Figure 8. Throughput for 5 ms servant CPU demand

• Legacy applications would use the threaded model if they

cannot handle concurrent requests.

• Applications that want to restrict the number of

simultaneous method invocations by a client can use

thread-per-client, so that only one request at a time is

handled for each client.

• Thread-per-client or thread-pool would be used for

applications with multi-threaded clients.

• Applications that will likely suffer from uncontrolled

thread growth, for instance, when bursts of requests are

expected at times, can use thread-pool with a number of

pre-allocated threads.

• Applications with CPU intensive servants will likely want

to limit the number of simultaneously active dispatching

threads, for instance for QoS reasons. These applications

would use the thread-pool threading strategy. The thread-

per-client threading strategy could also be used to this end,

but the number of clients should be bounded.

Applications whose client-side is not multi-threaded will not

benefit from the thread-per-request and thread-pool threading

strategies. The server-ORB should be deployed with the thread-

per-client threading strategy if only single-threaded clients

connected, or clients that only invoke one (blocking) method at a

time. Single-threaded clients that use non-blocking requests

(oneway asynchronous or deferred synchronous), could still

benefit from the concurrency of thread-per-request or thread-pool.

5. Future work
The results presented in this paper one the one hand provide new

and fundamental insight in the impact of the different threading

strategies on the performance, but on the other hand raise a

number of challenges for further research in this area. First, it is

necessary to investigate the performance under other

implementations of middleware, such as Visibroker, Orbix,

JacORB and OpenORB. As indicated in section 2.3, we expect

that the impact of the implementation details are negligible

compared to the impact of threading strategies. Nonetheless,

investigation of other CORBA implementations is a challenging

topic for further research. Second, the models presented in this

paper may be refined in various directions (as indicated in the

discussion of the numerical result), for example by adding the

impact of context switching and the processing time involved in

locking activity. Third, our experiments may be performed with

open arrival processes instead of the closed-loop approach taken

in the current measurement setup. Finally, since performing

simulation experiments may be very time consuming, we plan to

develop and validate simple, fast and fairly accurate

approximations for the throughput for the different threading

strategies.

6. Acknowledgements
This work was partly carried out within the EQUANET project,

an “ICT-doorbraakproject” which is supported by the Dutch

Ministry of Economic Affairs via its agency Senter. Information

on the EQUANET project is available from

http://equanet.cs.utwente.nl/.

7. References
HQG+02 M. Harkema, D. Quartel, B.M.M. Gijsen, R.D.

van der Mei, Performance Monitoring of Java

Applications, Proc. of the 3rd Workshop on

Software and Performance (WOSP) 2002,

ACM Press, Rome, Italy.

Jain91 R. Jain, The art of computer systems

performance analysis: Techniques for

experimental design, measurement, simulation,

and modeling, John Wiley & Sons, 1991.

Throughput comparison (50 ms servant delay)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

0 10 20 30 40 50 60 70

number of clients

Thread-per-client

Threaded

Thread-per-request

Thread-pool

Figure 9. Throughput for 50 ms servant delay

LZG+84 E.D. Lazowska, J. Zahorjan, G.S. Graham,

K.C. Sevcik, Quantitative system performance,

Computer system analysis using queueing

network models, Prentice Hall, Inc., 1984.

OMG01 Object Management Group, The Common

Object Request Broker: Architecture and

Specification, revision 2.5, OMG document

formal/2001-09-01, 2001.

Vinoski97 S. Vinoski, CORBA: Integrating diverse

applications within distributed heterogeneous

environments, IEEE Communications

Magazine, February, 1997.

