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ABSTRACT 

The spectacular growth of E-business applications on the Internet 

has boosted the development of middleware technology.  

Middleware is software that manages interactions between 

applications distributed across a heterogeneous computing 

environment.  In the competitive E-business market the ability to 

deliver a high and predictable performance of E-business 

applications is crucial to avoid customer churn, and thus loss of 

revenue.  This raises the need for service providers to be able to 

predict and control performance.  The performance of 

middleware-based applications depends strongly on the choice of 

the so-called threading strategy, describing how the middleware 

layer handles competing method invocation requests. 

The goal of this paper is to provide an understanding of the 

impact of threading strategies on the performance of middleware-

based applications.  To this end, we (1) develop new quantitative 

models for the performance of middleware under different 

threading strategies, (2) perform extensive test lab experiments to 

compare the performance under different threading strategies, and 

(3) explain the experimental results by relating them to the 

quantitative models.  As such, this paper provides new and 

fundamental insight in the impact of threading strategies on the 

performance of E-business applications. 

Keywords: Middleware, CORBA, Java, threading strategies, 

performance measurement, performance modeling 

 

1. Introduction 
The dramatic growth of the Internet, the developments in the 

hardware and software industry, and the recent advances in 

networking technology have boosted the emergence of distributed 

computing. Distributed computing enables applications to be 

divided in components that can be executed on geographically 

distributed information systems. Distributed computing provides 

the fundamental technology for the realization of enterprise-wide 

and even global information systems. This development has led to 

the emergence of a wide variety of E-business applications that 

have been brought to the market. In this competitive market of E-

businesses a critical success factor for E-business applications is 

the performance. Performance problems can directly lead to 

customer churn, and thus loss of revenue. Typical examples of E-

business applications are online airline ticket reservation, online 

banking and online purchasing of consumer products. For this 

type of applications, the most relevant performance aspects are 

service availability, payment transaction security and 

performance. This paper is focused on performance, particularly 

in terms of server throughput. 

Distributed applications typically run in a heterogeneous 

environment of networks, hardware and software components. 

Middleware architectures have been developed to shield 

developers of distributed application from interoperability 

problems. Middleware is software that resides between the 

application and the operating system. As such, middleware 

performance is an important part of the end-to-end performance 

of distributed applications. The performance of distributed 

middleware-based applications depends on many factors, 

including network performance, the performance of the 

application code and middleware, and the performance of the 

hardware on which the application and middleware is being 

executed. 

Over the past few decades, many commercially available 

middleware products have been brought to the market. The 

application developer can choose between a variety of threading 

strategies (and related configuration settings) offered by the 

middleware, while the proper choice of the threading strategy 

may have a dramatic impact on the performance of the application 

perceived by the end user. Consequently, it is important to be able 

to compare the implications of the choices of the threading 

strategies and the configuration settings prior to the actual 

implementation, which is usually very time consuming and hence 

costly. 

Today, however, the understanding of the implications of the 

choices of the threading strategies is very limited. Therefore, in 

this paper we develop quantitative performance models several 

frequently implemented threading strategies. We compare the 

performance under these threading strategy alternatives on basis 

of extensive experiments performed in a test lab environment. The 

comparison of the performance under the different threading 

alternatives is explained by relating the results to the models 

developed, providing new and fundamental insight in the 

implications of threading strategy alternatives. 

In this paper our focus is on CORBA Middleware [Vinoski97] 

[OMG01], the de-facto standard for middleware. The remainder 

of this paper is structured as follows. Section 2 discusses 

threading as specified by the OMG CORBA specification, and the 

implementation of threading strategies in CORBA 

implementations for Java.  Section 3 describes performance 

models of threading strategies implemented in the IONA 

ORBacus CORBA implementation.  Section 4 discusses the 

performance experiments we have conducted to compare these 



threading strategies in a test-lab setting.  Section 5 concludes this 

paper and addresses topics for further research. 

 

2. Specification & implementation of CORBA 

threading 
In this section we describe what threading strategies are, and what 

kind of threading strategies are implemented in popular CORBA 

implementations.  A CORBA threading strategy determines how 

communication and execution of requests take place.  A thread is 

a light-weighted process, having its own execution context 

(processor and memory state), but sharing memory and file-

descriptors with other threads inside the process.  By using 

multiple threads, an ORB can receive and execute multiple 

requests concurrently.  Threading allows for more efficient use of 

the system’s resources, to achieve a higher request throughput. 

2.1 The OMG CORBA specification 
The CORBA specification [OMG] specifies multi-threading 

policies for portable object adapters (POA).  It doesn’t specify 

how ORBs should implement threading and what threading 

strategies they should implement.  Multi-threading 

implementation in the ORB itself is left as platform-specific.  The 

POA threading policies are there to ‘support threads in a portable 

manner across those ORBs’ that implement multi-threading.  The 

CORBA specification doesn’t require the ORB to be multi-

threaded, however ORBs are required to implement the POA 

threading policies if they are multi-threaded. 

The specification defines three threading policies for portable 

object adapters: the Single Thread Model, the ORB Controlled 

Model, and the Main Thread Model.  These threading policies 

determine what concurrency constrains the POA will enforce 

while executing requests.  The ORB Controlled Model (the 

default) doesn’t impose any concurrency constrains, requests to 

objects managed by the POA may execute in parallel.  The Single 

Thread Model only allows one request to objects managed by the 

POA at a time (the POA dispatches requests sequentially).  

Requests to a single threaded POA are mutual exclusive, a lock 

(mutex) is introduced (by the ORB vendor in the middleware 

implementation), and locking contention may occur.  The Main 

Thread Model only allows one request at a time to be processed 

by any POA with the main thread policy.  Requests to any POA 

with main thread policy are mutual exclusive, a lock (mutex) is 

introduced, and locking contention may occur.  The lock is shared 

by all main threaded POAs.  The Main Thread Model was 

introduced in the CORBA 2.4 specification. In this paper we 

focus on the ORB Controlled Model (the default). 

2.2 Server-side thread categories 
On the server-side of a CORBA application we can distinguish 

the following kinds of threads: 

• I/O threads: a common way of implementing I/O, i.e. 

connection setup and exchange of GIOP (General Inter-

ORB Protocol, CORBA’s messaging protocol) messages 

between client and server, is to use a specific acceptor 

thread for listening to incoming connections to CORBA 

objects (really the POA manager that manages the object).  

Typically, for every new connection a receiver thread is 

spawned that will handle the exchange of GIOP messages. 

• GIOP messages are received in receiver threads.  In some 

threading strategies the method invocations to CORBA 

objects are executed in receiver thread.  During this time 

the receiver thread cannot handle new GIOP messages (like 

a new method invocation request).  For applications that 

use method invocations with longer completion times it 

may be better to ‘delegate’ the execution to a separate 

thread (the dispatcher thread).  The dispatcher thread will 

then handle the dispatching of the method invocation 

request to the servant.  The method invocation will be 

executed in the context of the dispatcher thread.  After 

delegating the method invocation request to the dispatcher 

thread, the receiver thread is free to receive the following 

GIOP message.  Some time may elapse between the 

receiver thread handing over the request to a dispatcher 

thread, and the dispatcher thread actually handling the 

request.   

• The application running on top of the ORB can be multi-

threaded also.  Usually the ‘ORB Controlled Model’ 

threading policy is used in POAs that manage servants for 

that application.  The application (including the servants 

belonging to that application) is designed to handle requests 

concurrently – the application takes care of implementing 

critical sections (mutual exclusion) where required. 

Besides the abovementioned kinds of CORBA related threads 

several Java virtual machine related administrative threads, such 

as Java garbage collection threads, will be active. 

2.3 CORBA threading strategies 
In general, the performance of CORBA-based applications 

depends on the choice of the threading strategies. To assess the 

impact of threading strategies on server performance used an 

IONA ORBacus implementation to conduct an experimental 

performance comparison. The reason for using ORBacus is 

threefold. First, ORBacus provides a complete set of threading 

strategies, which is most important to make a complete 

performance comparison of the most widely used threading 

strategies. Second, ORBacus is widely applied and available for 

both C++ and for Java. Third, ORBacus is both commercially and 

academically available. Other implementations, such as Orbix, 

Visibroker, JacORB and OpenORB, support comparable 

threading strategies with comparable features.  Based on 

extensive experience with middleware performance testing, it is 

our expert opinion that the impact of the implementation details 

are negligible compared to the impact of threading strategies.  As 

such, we expect that the results presented below are representative 

for implementations other than ORBacus. 

The thread-per-client threading strategy uses receiver threads for 

both receiving and dispatching the requests to servants.  Because 

requests are dispatched by the same thread as they are received in, 

following requests by the client are blocked until the receiver 

thread is done processing the current request.  Effectively, only 

one request per client is active in user-code, i.e. in the servants.  

Each client-server connection has its own receiver thread, so 

multiple requests from different clients can be active in user-code. 

The threaded threading strategy is the same as the thread-per-

client model, but with an additional constraint: only one request 

may be active in user-code.  The ORB serializes requests from the 

receiver thread when dispatching them to servants.  While in the 



thread-per-client model one request per client could be active in 

user-code (so multiple requests could be active if multiple clients 

are connected to the ORB), only one request ORB-wide can be 

active in user-code in the threaded model. 

Both the thread-per-client and the threaded threading strategies 

use the receiver thread for receiving and dispatching requests to 

servants.  The thread-per-request threading strategy separates 

receiving requests and dispatching requests in separate threads.  

After receiving a request from a client, the receiver thread creates 

a new dispatcher thread.  That thread dispatches the request to the 

servant, and sends the reply back to the client.  Meanwhile the 

receiver thread can receive new requests (and dispatch them in 

new dispatcher threads).  Thus, in the thread-per-request model 

multiple requests from the same client can be active in user-code. 

The thread-pool threading strategy is a refinement of the thread-

per-request model.  It addresses several issues that may arise 

when using the thread-per-request model.  First, the number of 

dispatcher threads is not bounded in the thread-per-request model.  

This can lead to an uncontrolled growth of the number of 

dispatcher threads.  With many dispatcher threads active, the 

context switch overhead becomes very large, and even trashing 

behavior may occur, where the machine is mostly busy switching 

contexts rather than executing user-code.  Another problem of the 

thread-per-request model is that thread creation and destruction is 

needed for each request.  Especially for requests that don’t require 

a large amount of processing time, the added overhead of thread 

creation and destruction is relatively large, thus leading to 

inefficiencies.  The thread-pool model addresses these issues by 

pre-allocating a fixed number of dispatcher threads when the 

ORB starts.  Instead of creating new dispatcher threads, the 

receiver thread en-queues requests in the FIFO request queue of 

the dispatcher thread-pool.  The dispatcher thread-pool assigns a 

dispatcher thread to process the request when an idle (non-

working) dispatcher thread is available. 

 

3. Performance models of threading strategies 
To highlight the differences in the dynamic behavior of the four 

threading strategies we present performance models for each of 

the threading strategies. We present the performance models in an 

extended queuing network notation [LZG84] [Jain].  Figure 1 

depicts some modeling constructs that require further explanation.  

First, a thread is modeled by a service center inside a square.  All 

steps inside the dashed box are executed in the context of that 

thread.  These steps contribute to the holding time of the thread.  

While the thread is busy requests can queue in the FIFO queue in 

front of the thread.  A thread-pool is a group of threads that can 

execute some steps depicted in the dashed box.  A thread-pool is 

modeled as a multi-server with a FIFO queue in front of it.  A 

mutex is modeled by a queue and a dashed box denoting the 

processing steps inside the critical section of the mutex.  Finally, 

we use a kind of zooming construct to denote the steps taking 

place inside a POA.  We separate the logical and physical 

resource layers.  The logical resource layer contains the threads 

and mutexes, while the physical resource layer contains the CPUs.  

I/O and memory resources are left outside the scope of this paper.  

The CPU service demands described in the logical resource layer 

are executed on the CPUs in the physical resource layer.  

∞

POA Steps ...
∞

∞

Thread-pool

Thread

Mutex (critical

section)

Steps taking

place in POA
 

Figure 1. Performance model notation 

3.1 Thread-per-client 
The simplest threading strategy available in ORBacus is the 

thread-per-client model.  In the thread-per-client model a receiver 

thread is created for every incoming connection request of a 

client. Most CORBA implementations share TCP connections 

between a client and a server for invocations to different objects.  

However, some CORBA implementations offer private 

connections to specific objects to increase performance.  When 

private connections are used, a better name for the thread-per-

client strategy would be thread-per-connection. This section 

discusses the performance model of the thread-per-client 

threading strategy.  Figure 2 contains the performance model in 

an extended queuing network notation.   

 

Performance model description 

Requests arrive at receiver threads with connection k (of Ncon 

connections) arrival rate λi,j,k for POA i and Object j.  During 

request processing the receiver thread is occupied, this resource 

possession is depicted by a dashed line around the receiver thread 

logical resource.  The thread-per-client model implements the 

same-thread dispatching model: requests are received and 

dispatched to servants in the same thread (the receiver thread).  

While the receiver thread is processing a request, newly incoming 

requests queue in the FIFO queue. 

The receiver thread first receives the request from the network, 

then it un-marshals the request header and a part of the request 

body, to obtain the POA and object identifiers. A series of request 

de-multiplexing steps is needed to locate the target POA, target 

object, and target method implementation. The POA identifier is 

used to locate the POA. In the performance model the 

aforementioned processing steps (including the de-multiplexing 

step to obtain the target POA, but excluding the other de-

multiplexing steps) are modeled by a service demand brec. 

The request is forwarded to the located POA, one of Npoa POAs.  

De-multiplexing continues with locating the target object in the 

POA’s active object map, using the earlier obtained target object 



identifier. Now we have located the CORBA skeleton of the 

target object. The last de-multiplexing step is to locate the method 

implementation inside the skeleton. Finally, the request is 

dispatched to the target object’s skeleton.  These two de-

multiplexing steps and the dispatching are modeled by a  service 

demand bdisp. 

The remainder of the request (partial un-marshaling already took 

place earlier), including the request parameters, is un-marshaled 

by the skeleton.  This un-marshaling step is modeled by a  service 

demand bunm_i,j.  The service demand depends on the amount and 

type of data that needs to be un-marshaled.  The method 

implementation is invoked with the un-marshaled method 

parameters.  The service demand of the method implementation is 

modeled by bser_i,j (CPU service demand) and bsern_i,j (delay 

introduced by non-CPU resources, e.g. remote database access or 

remote procedure calls). 

A POA may be configured using the single-thread threading 

policy, meaning that only one method at a time can be active 

inside the POA (i.e. in the objects managed by that POA).  Access 

to the objects managed by this POA needs to be serialized.  In 

single-threaded POAs the un-marshaling of the request 

parameters and the invocation of the method implementation are 

protected by a mutex, as depicted in the performance model by 

the ST-POA mutex (a FIFO queue).  The critical section, 

protected by the mutex, is denoted by a dashed line drawn around 

the involved service centers.  The Root POA, the POA created 

when the ORB starts, is always configured to be multi-threaded (it 

uses the ORB Controlled Model threading policy by default).  

The servant implementation may have a critical section too, 

which can also be modeled by FIFO queues as depicted in the 

model.  The service centers that represent the servants with 

service demand bser_i,j and delay bsern_i,j may be replaced by sub-

models if the performance behavior of the servant cannot be 

captured using these parameters. 

After method invocation the return parameters need to be 

marshaled.  This is modeled by a  service demand bmar_i,j.  The 

service demand depends on the amount and type of data that 

needs to be marshaled.  Finally, a reply message is created with 

the marshaled return parameters.  The reply is sent back to the 

client over the same TCP/IP connection as the request arrived.  

This last step is modeled by a  service demand breply. 

The threads that execute the mentioned steps for each request that 

is being served, share the physical server resources (such as the 

CPU, memory and I/O), as indicated in Figure 2. 

 

3.2 Threaded 
The threaded threading strategy is similar to the thread-per-client 

threading strategy. The only difference is that in the threaded 

threading strategy there may only be one active request at a time 

in the servants.  Access to the servants is serialized by an ORB-

wide mutex. This threading strategy is used by CORBA 

applications that are not multi-thread aware.  For instance, legacy 

CORBA applications that are developed for single-threaded 

ORBs can use this threading strategy. Similar to the thread-per-

client model, the threaded model also implements the same-thread 

dispatching model, where the receiver thread both receives 

requests from clients and dispatches them to the servants. 

The performance model of the threaded threading strategy is 

similar to the one of thread-per-client, except that the mutex for 

single-threaded POAs is removed (the ORB wide mutex basically 

makes all POAs single-threaded) and an ORB-wide mutex has 

been added in the POA model. 
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Figure 2. Server side performance model for the thread-per-client model 



 

Figure 3 contains the performance model in an extended queuing 

network notation. 

 

Performance model description 

Requests arrive at receiver threads with connection k (of Ncon 

connections) at rate λi,j,k for POA i and Object j.  During request 

processing the receiver thread is occupied, this resource 

possession is depicted by a dashed line around the receiver thread 

logical resource.  The threaded model implements the same-

thread dispatching model: requests are received and dispatched to 

servants in the same thread (the receiver thread).  While the 

receiver thread is processing a request, newly incoming requests 

queue in the FIFO queue. 

The receiver thread first receives the request from the network, 

then it un-marshals the request header and a part of the request 

body, to obtain the POA and object identifiers.  A series of 

request de-multiplexing steps is needed to locate the target POA, 

target object, and target method implementation.  The POA 

identifier is used to locate the POA.  In the performance model 

the aforementioned processing steps (including the de-

multiplexing step to obtain the target POA, but excluding the 

other de-multiplexing steps) are modeled by a  service demand 

brec. 

 

The request is forwarded to the located POA, one of Npoa POAs.  

De-multiplexing continues with locating the target object in the 

POA’s active object map, using the earlier obtained target object 

identifier.  Now we have located the CORBA skeleton of the 

target object.  The last de-multiplexing step is to locate the 

method implementation inside the skeleton.  Finally, the request is 

dispatched to the target object’s skeleton.  These two de-

multiplexing steps and the dispatching are modeled by a  service 

demand bdisp. 

The remainder of the request (partial un-marshaling already took 

place earlier), including the request parameters, is un-marshaled 

by the skeleton.  This un-marshaling step is modeled by a  service 

demand bunm_i,j.  The service demand depends on the amount and 

type of data that needs to be un-marshaled.  The method 

implementation is invoked with the un-marshaled method 

parameters.  The service demand of the method implementation is 

modeled by bser_i,j (CPU service demand) and bsern_i,j (delay 

introduced by non-CPU resources). 

In the threaded threading strategy only one method at a time can 

be active inside any POA.  Access to all objects needs to be 

serialized.  The un-marshaling of the request parameters and the 

invocation of the method implementation are protected by a 

mutex, as depicted in the performance model by the ORB mutex 

(a FIFO queue).  The critical section, protected by the mutex, is 

denoted by a dashed line drawn around the involved service 

centers.  In this threading strategy the servants don’t have critical 

sections, as they are single-threaded.  As with the thread-per-

client model, the service centers that represent the servants with 
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Figure 3. Server side performance model for the threaded model 



service demand bser_i,j and delay bsern_i,j may be replaced by sub-

models if the performance behavior of the servant cannot be 

captured using these parameters. 

After method invocation the return parameters need to be 

marshaled.  This is modeled by a  service demand bmar_i,j.  The 

service demand depends on the amount and type of data that 

needs to be marshaled.  Finally, a reply message is created with 

the marshaled return parameters.  The reply is sent back to the 

client over the same TCP/IP connection as the request arrived.  

This last step is modeled by a  service demand breply. 

3.3 Thread-per-request 
The thread-per-request threading strategy separates the request 

receiving and dispatching steps into separate threads.  After the 

receiver thread receives a request from a client, a new thread is 

spawned to dispatch the request to the servant.  Execution of the 

method implementation takes place in that dispatcher thread.  

After spawning the dispatcher thread and forwarding the request 

to that thread, the receiver thread is ready to receive the next 

request from the client.  When the dispatcher thread is done with 

dispatching the request to the servant and sending the reply back 

to the client, it kills itself.  The advantage of this threading 

strategy is that multiple requests from the same client can be 

dispatched to servants concurrently.  The disadvantage of this 

threading strategy is the costs of thread creation and destruction 

for every request.  Especially for requests that require little time 

to complete, the added overhead of thread creation and 

destruction is relatively high.  However, for requests that take a 

long time to complete this threading strategy is useful, because it 

doesn’t block further requests by the same client.  Because the 

number of dispatcher threads is unbounded (they are created by 

receiver threads for incoming requests, as long as the operating 

system has sufficient resources for the threads) it can lead to an 

uncontrolled growth of dispatcher threads.  When a lot of threads 

are simultaneously active the memory resources of the machine 

are drained, and the overhead caused by thread context switches 

can lead to trashing behavior, where little time is left for actual 

request processing.    Figure 4 contains the performance model in 

an extended queuing network notation. 

 

Performance model description 

Requests arrive at receiver threads with connection k (of Ncon 

connections) with request arrival rate λi,j,k for POA i and Object j.  

During request processing the receiver thread is occupied, this 

resource possession is depicted by a dashed line around the 

receiver thread logical resource.  The thread-per-request model 

implements the separate-thread dispatching model: requests are 

received in receiver threads and dispatched to servants in other 

threads, the dispatcher threads.  While the receiver thread is 

receiving a request, newly incoming requests queue in the FIFO 

queue. 

The receiver thread first receives the request from the network, 

then it un-marshals the request header and a part of the request 

body, to obtain the POA and object identifiers.  A series of 

request de-multiplexing steps is needed to locate the target POA, 

target object, and target method implementation.  The POA 

identifier is used to locate the POA.  In the performance model 

the aforementioned processing steps (including the de-

multiplexing step to obtain the target POA, but excluding the 
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Figure 4. Server side performance model for the thread-per-request model 



other de-multiplexing steps) are modeled by a  service demand 

brec. 

Then, a new dispatcher thread is created by the receiver thread.  

The cost of thread creation is modeled by the  service demand btc.  

The dispatcher thread continues processing the request, and the 

receiver thread is now ready to receive the next request from the 

queue. 

The dispatcher thread forwards the request to the located POA, 

one of Npoa POAs.  De-multiplexing continues with locating the 

target object in the POA’s active object map, using the earlier 

obtained target object identifier.  Now we have located the 

CORBA skeleton of the target object.  The last de-multiplexing 

step is to locate the method implementation inside the skeleton.  

Finally, the request is dispatched to the target object’s skeleton.  

These two de-multiplexing steps and the dispatching are modeled 

by a  service demand bdisp. 

The remainder of the request (partial un-marshaling already took 

place earlier), including the request parameters, is un-marshaled 

by the skeleton.  This un-marshaling step is modeled by a  service 

demand bunm_i,j.  The service demand depends on the amount and 

type of data that needs to be un-marshaled.  The method 

implementation is invoked with the un-marshaled method 

parameters.  The service demand of the method implementation is 

modeled by bser_i,j (CPU service demand) and bsern_i,j (delay 

introduced by non-CPU resources).   

A POA may be configured using the single-thread threading 

policy, meaning that only one method at a time can be active 

inside the POA (i.e. in the objects managed by that POA).  Access 

to the objects managed by this POA needs to be serialized.  In 

single-threaded POAs the un-marshaling of the request 

parameters and the invocation of the method implementation are 

protected by a mutex, as depicted in the performance model by 

the ST-POA mutex (a FIFO queue).  The critical section, 

protected by the mutex, is denoted by a dashed line drawn around 

the involved service centers.  The Root POA, the POA created 

when the ORB starts, is always configured to be multi-threaded (it 

uses the ORB Controlled Model threading policy by default).  

The servant implementation may have a critical section too, 

which can also be modeled by FIFO queues as depicted in the 

model.  The service centers that represent the servants with 

service demand bser_i,j and delay bsern_i,j may be replaced by sub-

models if the performance behavior of the servant cannot be 

captured using these parameters. 

After method invocation the return parameters need to be 

marshaled.  This is modeled by a  service demand bmar_i,j.  The 

service demand depends on the amount and type of data that 

needs to be marshaled.  Finally, a reply message is created with 

the marshaled return parameters.  The reply is sent back to the 

client over the same TCP/IP connection as the request arrived.  

This last step is modeled by a  service demand breply. 

Now that the request dispatching is done and a reply has been sent 

to the client, the dispatcher thread kills itself.  The cost of killing 

the thread is modeled by a  service demand btk. 

 

3.4 Thread-pool 
The thread-pool threading strategy addresses the disadvantages of 

the thread-per-request threading strategy, while still implementing 

the separate-thread dispatching model.  In the thread-pool model 

the dispatcher threads are pre-created.  Idle dispatcher threads are 

put in a pool, the dispatcher thread-pool.  When a request arrives 

at the receiver thread, it doesn’t need to create a new thread for 

request dispatching, instead the receiver thread forwards the 

request to the thread-pool, where it is queued (in FIFO order).  

The thread-pool request queue is monitored by the idle dispatcher 

threads.  Idle dispatcher threads remove requests from the queue, 

and dispatch them to servants.  When the dispatcher thread is 

done, it doesn’t kill itself, but instead it returns to the thread-pool.  

The thread-pool has a fixed size.  Therefore the thread-pool 

threading strategy doesn’t suffer from the uncontrolled thread 

growth phenomena, unlike the thread-per-request model.  Also, 

since threads are pre-created, the thread creation and destruction 

costs btc and btk of the thread-per-request model are not present 

here.  Figure 5 contains the performance model in an extended 

queuing network notation. 

 

Performance model description 

Requests arrive at receiver threads with connection k (of Ncon 

connections) with arrival rate λi,j,k for POA i and Object j.  During 

request processing the receiver thread is occupied, this resource 

possession is depicted by a dashed line around the receiver thread 

logical resource.  The thread-pool model implements the separate-

thread dispatching model: requests are received in receiver 

threads and dispatched to servants in other threads, the dispatcher 

threads.  While the receiver thread is receiving a request, newly 

incoming requests queue in the FIFO queue. 

The receiver thread first receives the request from the network, 

then it un-marshals the request header and a part of the request 

body, to obtain the POA and object identifiers.  A series of 

request de-multiplexing steps is needed to locate the target POA, 

target object, and target method implementation.  The POA 

identifier is used to locate the POA.  In the performance model 

the aforementioned processing steps (including the de-

multiplexing step to obtain the target POA, but excluding the 

other de-multiplexing steps) are modeled by a  service demand 

brec. 

Then, the receiver thread forwards the request to a FIFO request 

queue in front of the dispatcher thread-pool.  The dispatcher 

thread-pool contains Ndisp threads.  The request remains in the 

queue until a dispatcher thread is available to dispatch the request. 

The dispatcher thread forwards the request to the located POA, 

one of Npoa POAs.  De-multiplexing continues with locating the 

target object in the POA’s active object map, using the earlier 

obtained target object identifier.  Now we have located the 

CORBA skeleton of the target object.  The last de-multiplexing 

step is to locate the method implementation inside the skeleton.  

Finally, the request is dispatched to the target object’s skeleton.  

These two de-multiplexing steps and the dispatching are modeled 

by a  service demand bdisp. 

The remainder of the request (partial un-marshaling already took 

place earlier), including the request parameters, is un-marshaled 

by the skeleton.  This un-marshaling step is modeled by a  service 

demand bunm_i,j.  The service demand depends on the amount and 

type of data that needs to be un-marshaled.  The method 

implementation is invoked with the un-marshaled method 

parameters.  The service demand of the method implementation is 



modeled by bser_i,j (CPU service demand) and bsern_i,j (delay 

introduced by non-CPU resources). 

A POA may be configured using the single-thread threading 

policy, meaning that only one method at a time can be active 

inside the POA (i.e. in the objects managed by that POA).  Access 

to the objects managed by this POA needs to be serialized.  In 

single-threaded POAs the un-marshaling of the request 

parameters and the invocation of the method implementation are 

protected by a mutex, as depicted in the performance model by 

the ST-POA mutex (a FIFO queue).  The critical section, 

protected by the mutex, is denoted by a dashed line drawn around 

the involved service centers.  The Root POA, the POA created 

when the ORB starts, is always configured to be multi-threaded (it 

uses the ORB Controlled Model threading policy by default).  

The servant implementation may have a critical section too, 

which can also be modeled by FIFO queues as depicted in the 

model.  The service centers that represent the servants with 

service demand bser_i,j and delay bsern_i,j may be replaced by sub-

models if the performance behavior of the servant cannot be 

captured using these parameters. 

After method invocation the return parameters need to be 

marshaled.  This is modeled by a service demand bmar_i,j.  The 

service demand depends on the amount and type of data that 

needs to be marshaled.  Finally, a reply message is created with 

the marshaled return parameters.  The reply is sent back to the 

client over the same TCP/IP connection as the request arrived.  

This last step is modeled by a  service demand breply. 

Now that the request dispatching is done and a reply has been sent 

to the client, the dispatcher thread returns to the thread-pool and is 

ready to process the next request. 

 

 

4. Performance experiments of threading 

strategies 
In this section we compare the performance of the four common 

threading strategies implemented in the IONA ORBacus CORBA 

implementation for Java.  We start by explaining the workload 

generator and our performance measurement tool.  After 

describing the experimental set-up we present and discuss the 

experimental results, including some recommendations for when 

to use a certain threading strategy. 

4.1 Workload generation 
For the presented experiments we used a closed-loop request 

arrival process, as illustrated in Figure 6. Initially each client 

sends a single request and waits for the reply. Then a new request 

is sent after the reply to the previous request is received by the 

client. This way each client has at most one outstanding request. 

The reason for using a closed arrival process, instead of an open 

arrival process, is twofold. First of all, in a set-up with open 

arrivals TCP/IP sessions have to be set-up and terminated during 

the experiments. This overhead will degrade the end-to-end 

performance, and the performance of the threaded and thread-per-

client strategy will be affected most. Because we are focusing on 

a fair comparison of server performance we want to exclude this 

effect from our results. Secondly, since we are comparing the 

performance of several threading strategies, the most interesting 

results are regarding the performance under ‘maximum load’ 

instead of under light load. With the closed loop arrival process 

used in this paper, the ‘maximum load’ for each strategy is 

realized automatically. 
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Figure 5. Server side performance model for the thread-pool model 



Client

Network

Server

time

blocked
busy busy

busy

busy

busy
idle

idle idle

A B C D E

 

Figure 6. Request timing diagram 

 

We developed a workload generator to automate performance 

experiments with different scenarios.  The workload generator 

consists of a client and server application. The client-side 

application executes a given workload on the server application.  

The workload description consists of a collection of arrival 

processes.  An arrival process description consists of: 

• The number of clients that generate requests. 

• The total number of requests to generate. 

• The targets of the arrival process.  A description of a target 

consists of the name of the remote object, the name of the 

method to invoke, and (if applicable) requests parameters 

(payload).  If an arrival process has multiple targets, then by 

default the requests are equally distributed over the targets. 

The server-side application offers the following scenario 

configuration options: 

• Specification of the POA hierarchy, including POA 

managers and POA policies (e.g. single-threaded POAs). 

• Deployment of objects on the specified POAs. 

• Service demands for methods in the object implementation.  

Both CPU time usage and idle, waiting time can be 

described.  The CPU time can be used to model work that is 

done by the object implementation.  The waiting time can be 

used to simulate that the object implementation is waiting for 

an external entity, for instance a query to a remote SQL 

database. 

• Configuration options for the ORB, for instance which 

threading strategy to use or connection reuse policies. 

We emphasize that support for non-synthetic workload generation 

with open request arrival processes (e.g., trace-driven load 

generation) can easily be added to the experimental setup.  

However, the focus of the present paper is on modeling of the 

server-side dynamics, and therefore, detailed characterization of 

the request patterns generated by the client side is beyond the 

scope of this paper. 

Performance experiments often iterate one or more parameters in 

the scenario. For instance, a series of experiments can be 

performed to study the effect of an increasing number of clients.  

We use scripts that iterate these parameters and instantiate 

workload scenario templates using the parameter values. 

4.2 Performance measurement 
In this section we shortly describe how we obtain performance 

measurements of the ORBacus CORBA implementation using the 

Java Performance Monitoring Toolkit (JPMT) [HQG+02]. 

JPMT represents the execution behavior of applications by event 

traces, in which each event represents the occurrence of some 

activity, such as a method invocation or the creation of a new 

thread of execution.  JPMT’s event traces are similar to call-trees, 

but in addition to method invocations they also contain other 

event types. Events are annotated with high-resolution 

timestamps, and depending on the event type other attributes such 

as used CPU time. 

The event traces produced by JPMT provide highly detailed 

performance information. We developed post-processing scripts 

to interpret this information, by traversing the event traces and 

summarizing the measurements.  The CORBA experiment report 

produced by the post-processing scripts includes detailed 

information, regarding request throughput, completion times and 

a break-down of completion times in terms of CPU time usage, 

garbage collection, and time spent waiting for locks. The 

throughput is defined as the total number of requests handled by 

the server, divided by the elapsed time between end and start of 

the experiment. The completion time of a request is defined as the 

elapsed time between request arrival at the server and sending the 

reply towards the client. Further, the queuing times at the 

dispatcher thread pool and the request throughput are reported. 

For the purpose of performance comparison of threading 

strategies we focus on a comparison of the throughputs. 

4.3 Experimental setup 
We compare the four threading strategies of ORBacus with an 

increasing number of connected clients. Each client has its own 

TCP/IP connection to the server ORB, and thus its own receiver 

thread on the server. Our test-bed consists of two machines: 

Utip267 and Utip442. Utip267 is a Pentium IV 1.7 GHZ with 512 

MB of memory.  Utip442 is a Pentium III 550 MHz with 256 MB 

of memory. In these experiments Utip442 acts as the CORBA 

server and Utip267 as the CORBA client.  Notice that we used the 

faster machine as the client in order to make sure that the client 

does not become the bottleneck in the experiments. In particular, 

for all results presented below we verified that the request rate 

generated by the client was at least enough to keep the server 

busy at all times (i.e. the client is not the bottleneck). Both 

machines run the Linux 2.4.19 operating system and the Sun Java 

2 standard edition v1.4.1. The Java virtual machine is configured 

with default garbage collection settings and without run-time pre-

compilation optimization features. The CORBA implementation 

we use in this example is IONA ORBacus/Java 4.1.1. The thread-

pools used in the experiments with the thread-pool strategy hold a 

number of threads equal to the number of clients (i.e. it varies 



with the number of clients). The following is a fragment of the 

IDL definitions used in the experiments.  

interface PerformanceTest 

{ 

    long doSomeWork(); 

}; 

The doSomeWork method executes a configured work-load on 

the system. In the experiments we use three workload cases. The  

1 ms CPU demand scenario represents the CPU processing cost of 

a simple method. The 5 ms CPU demand represents the CPU 

processing costs of a scenario with a more complex method (a 

CPU bound application). Finally, the 50 ms delay (not CPU 

processing time) represents the delay induced from a simple SQL 

query on a database server running on another machine (an I/O 

bound, database driven application). All service demands and 

delays are configured to have an exponential distribution. 

We run the experiment with 2, 4, 8, 16, 32 and 64 clients. Some 

experiments are also executed with 128 clients, depending on the 

CPU utilization at 64 clients. Each client executes a work-load of 

200 requests on the server. We also have configured a minimum 

duration of 45 seconds for each experiment, so that we get enough 

measurements for runs with a small number of clients. 

4.4 Experimental results 
This section summarizes the experimental results. In all 

experiments the thread-per-client threading strategy is expected to 

be the most efficient, since we use single-threaded clients 

executing one blocking request at a time. In this scenario it 

doesn’t make sense to release the receiver thread for processing 

forthcoming requests, since they won’t arrive because the client is 

single threaded and blocking until it receives a reply for the 

current outstanding request. Therefore, the results for the thread-

per-client strategy can be regarded as best case results. We 

emphasize that this observation is based on our choice to use a 

closed arrival process.  

1 ms servant CPU demand 
 

 

Figure 7 shows the throughput (in number of requests per second) 

as a function of the number of clients, for the different threading 

strategies. The results demonstrate that the thread-per-client and 

thread-pool threading strategies perform best in this experiment 

and scale well with the number of connected clients. The slow 

decrease of the throughput presented in Figure 7 is due to the fact 

that the CPU service time per request increases slightly from 

roughly 1.8 ms for 2 clients to 2.3 ms for 64 clients. This increase 

in CPU service time is most likely due to additional context 

switching activity.  

The thread-per-request strategy suffers from high thread creation 

and destruction costs, especially compared to the small service 

demand of 1 ms CPU time. This is the reason why the throughput 

obtained with the thread-per-request strategy is lower than the 

throughput for the thread-per-client and thread-pool strategy.  

For the threaded strategy the ORB mutex turns out to be a 

bottleneck, especially with a large number of clients. In particular, 

the locking activity strongly increases the processing time. For 2 

clients the CPU service time per request is approximately equal to 

1.8 ms, while for 64 clients the CPU times have increased to 5.4 

ms. The increase of CPU times causes the linear decrease of 

throughput for the threaded strategy shown in Figure 7.  

5 ms servant CPU demand 
Figure 8 contains the throughputs for the different threading 

strategies and the scenario with 5 ms CPU servant demand. First 

of all, note that the throughputs are significantly lower than the 

throughputs for the previous case. Of course, this is due to the fact 

that the servant is now more CPU demanding. Similar as for the 

previous scenario the thread-per-client and thread-pool perform 

best of the four threading strategies.  
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Figure 7. Throughput for 1 ms servant CPU demand 



The throughput for the thread-per-request strategy remains 

smaller than the throughput for the thread-per-client and thread-

pool strategy, but relatively the thread-per-request strategy 

performs better in this scenario. For a scenario with 1 ms CPU 

servant demand the throughput for the thread-per-request strategy 

was between 75 and 80% of the throughput for the thread-per-

client strategy. For the 5 ms CPU servant demand the relative 

throughput increases to between 85 and 90%. This relative 

improvement of the thread-per-request strategy is due to the fact 

that the thread creation and destruction overhead becomes less, 

relative to the increased servant CPU demand. 

For the threaded strategy we observe the same phenomenon as for 

the previous scenario. For a small number of clients the 

throughput performance is comparable to the throughput achieved 

with the thread-per-client and thread-pool strategy. However, for 

a large number of clients the throughput performance becomes 

significantly worse. Again this is caused by the additional CPU 

demand for handling locking contention for the ORB mutex of the 

threaded threading strategy. 

50 ms servant delay 
Figure 9 contains the throughput comparison for the thread-per-

client, thread-per-request, thread-pool and threaded threading 

strategies, for 50 ms ‘sleep time’ at the servant. The performance 

of thread-per-client and thread-pool is the same again. Observe 

that the throughput curves are different from the previous 

throughput curves. In particular, for a low number of clients the 

throughput increases linear with the number of clients. This effect 

is due to the servant ‘sleep time’ of 50 ms. Observe that the sleep 

time causes that the request ‘loop time’ (i.e. the elapsed time 

between two consecutive arrivals of a request at the server) is at 

least 50 ms and this provides an upper bound on the maximum 

throughput per client, of 1 / 0.05 = 20 requests/s. Then, for n 

clients the maximum achievable throughput equals n x 20 

requests/s. For a large number of clients the CPU becomes the 

bottleneck. For the thread-per-client and thread-pool strategy this 

point is reached at approximately 30 clients. For the more CPU 

demanding thread-per-request strategy this point is reached 

around 20 clients. 

For the threaded strategy we observe a completely different 

throughput performance. Again, this is due to the ORB mutex, 

which does not allow the servant to be invoked by more than one 

request at the time. In combination with the ‘loop time’ 

observation above, it follows that the servant can never handle 

more than 20 requests/s. And this exactly corresponds to the 

throughput results shown in Figure 9. 

To summarize, the thread-per-client threading strategy is the best 

performer. This was to be expected since the work-load of clients 

executing one request at a time perfectly fits that threading 

strategy. The thread-pool is overall the second best performer. 

Contrary to the thread-per-client threading strategy, the thread-

pool model also copes with multi-threaded clients, which invoke 

more than one method at a time over a client-server connection. 

In the thread-per-client threading strategy the receiver thread is 

not separated from the method dispatching thread, i.e. the server 

ORB cannot handle requests coming from the same client 

concurrently. The thread-pool model is a good choice for 

applications that have multi-threaded clients. 

4.5 Guidelines for choosing threading 

strategy 
When designing and implementing an application, the choice of 

which threading strategy to use is an important issue. In many 

cases the requirements of an application already point to certain 

threading strategies. For instance, 
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Figure 8. Throughput for 5 ms servant CPU demand 



• Legacy applications would use the threaded model if they 

cannot handle concurrent requests. 

• Applications that want to restrict the number of 

simultaneous method invocations by a client can use 

thread-per-client, so that only one request at a time is 

handled for each client. 

• Thread-per-client or thread-pool would be used for 

applications with multi-threaded clients. 

• Applications that will likely suffer from uncontrolled 

thread growth, for instance, when bursts of requests are 

expected at times, can use thread-pool with a number of 

pre-allocated threads.     

• Applications with CPU intensive servants will likely want 

to limit the number of simultaneously active dispatching 

threads, for instance for QoS reasons. These applications 

would use the thread-pool threading strategy. The thread-

per-client threading strategy could also be used to this end, 

but the number of clients should be bounded. 

Applications whose client-side is not multi-threaded will not 

benefit from the thread-per-request and thread-pool threading 

strategies. The server-ORB should be deployed with the thread-

per-client threading strategy if only single-threaded clients 

connected, or clients that only invoke one (blocking) method at a 

time. Single-threaded clients that use non-blocking requests 

(oneway asynchronous or deferred synchronous), could still 

benefit from the concurrency of thread-per-request or thread-pool. 

 

5. Future work 
The results presented in this paper one the one hand provide new 

and fundamental insight in the impact of the different threading 

strategies on the performance, but on the other hand raise a 

number of challenges for further research in this area. First, it is 

necessary to investigate the performance under other 

implementations of middleware, such as Visibroker, Orbix, 

JacORB and OpenORB. As indicated in section 2.3, we expect 

that the impact of the implementation details are negligible 

compared to the impact of threading strategies. Nonetheless, 

investigation of other CORBA implementations is a challenging 

topic for further research. Second, the models presented in this 

paper may be refined in various directions (as indicated in the 

discussion of the numerical result), for example by adding the 

impact of context switching and the processing time involved in 

locking activity. Third, our experiments may be performed with 

open arrival processes instead of the closed-loop approach taken 

in the current measurement setup. Finally, since performing 

simulation experiments may be very time consuming, we plan to 

develop and validate simple, fast and fairly accurate 

approximations for the throughput for the different threading 

strategies. 
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Figure 9. Throughput for 50 ms servant delay 
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