
Middleware Performance:

A Quantitative Modeling Approach
M. Harkema1

1
Department of Computer Science

University of Twente
 The Netherlands

m.harkema@cs.utwente.nl

B.M.M. Gijsen2

2
Expertise Group QoS Control

TNO Telecom
 The Netherlands

b.m.m.gijsen@telecom.tno.nl

R.D. van der Mei2,3, Y.Hoekstra3

3
Faculty of Exact Sciences

Vrije Universiteit Amsterdam
The Netherlands

mei@cs.vu.nl

ABSTRACT

Middleware is software that manages interactions between

applications distributed across a heterogeneous computing

environment. Middleware technology is often used to implement

E-business applications on the Internet. Performance problems in

these distributed E-business applications can lead to customer

churn, and thus loss of revenue. This raises the critical need for

service providers to be able to predict and control performance.

Motivated by this, in this paper we develop a quantitative

performance model of CORBA-based middleware. CORBA is

the de-facto standard for object middleware, providing RPC-like

interactions between objects. We have implemented the

performance model in a simulation tool. To validate the model

we have compared performance predictions from simulation runs

with results from lab experiments for a variety of parameter

settings. The results show that the model leads to accurate

performance predictions, and moreover demonstrates that a

quantitative modeling approach to assess and predict the

performance of middleware-based applications is very promising.

Keywords

Middleware, Java, performance measurement, performance

modeling, simulation

1. INTRODUCTION
The dramatic growth of the Internet, the ongoing developments in

the hardware and software industry, and the recent advances in

networking technology have boosted the emergence of

Information and Communication Technology (ICT). ICT systems

enable applications to be divided in components that can be

executed on geographically distributed information systems.

These applications are commonly referred to as distributed

applications. Distributed computing provides the fundamental

technology for the realization of enterprise-wide and even global

information systems. This development has led to the emergence

of a wide variety of E-business applications that have been

brought to the market. In this competitive market of E-businesses

a critical success factor for E-business applications is the Quality

of Service (QoS). QoS problems can directly lead to customer

churn, and thus loss of revenue. Typical examples of E-business

applications are online airline ticket reservation, online banking

and online purchasing of consumer products. For this type of

applications, the most relevant QoS aspects are service

availability, payment transaction security and performance. This

paper is focused on performance, particularly in terms of response

times.

Distributed applications typically run in a heterogeneous

environment of networks, hardware and software components.

Middleware architectures have been developed to shield

developers of distributed application from the problem

interoperability problems. Middleware is software that resides

between the application and the operating system. As such,

middleware performance is an important part of the end-to-end

performance of distributed applications. The performance of

distributed middleware-based applications depends on many

factors, including network performance, the performance of the

application code and middleware, and the performance of the

hardware on which the application and middleware is being

executed.

To assess the performance of their E-business applications,

companies usually perform a variety of activities: (1) performance

lab testing, (2) performance monitoring, and (3) performance

tuning. Lab testing typically involves the performing load and

stress testing in a lab environment. Although lab-testing efforts

are undoubtedly useful, there are two major disadvantages. First,

building a production-like lab environment may be very costly,

and second, performing load and stress tests and interpreting the

results are usually very time consuming, and hence highly

expensive. Performance monitoring is usually performed to keep

track of high-level performance metrics such as service

availability and end-to-end response times, but also to keep track

the consumption of low-level system resources, such as CPU

utilization and network bandwidth consumption. Results from lab

testing and performance monitoring provide input for tuning the

performance of an application.

A common drawback of the aforementioned performance

assessment activities is that their ability to predict the

performance under projected growth of the workload in order to

timely anticipate on performance degradation (e.g., by planning

system upgrades or architectural modifications) is limited. This

raises the need to complement the activities with methods

specifically developed for performance prediction [12]. To this

end, various modeling and analysis techniques have been

developed over the past few decades (e.g., see [10, 8, 14] and

references therein).

The de facto middleware standard is the Common Object Request

Broker Architecture (CORBA) developed by the Object

Management Group (OMG), an international consortium of

companies and institutions. In this paper, we develop a

quantitative model for the performance of a CORBA-based

middleware implementation. The model encompasses the

combined impact of a variety of factors, such as the processor

speed, the rate at which requests arrive at the server, the

processing times of the middleware (including for instance the

overhead induced by de-multiplexing the request to the proper

application object, and the (un-)marshaling costs) and the

processing times of the application. We validate the model by

comparing results from lab experiments with simulation results

for a number of workload scenarios. The results demonstrate that

the accuracy of the performance predictions based on the model

match well with the results from the lab experiments.

While we focus on one CORBA middleware implementation, the

model is still a useful basis for modeling other CORBA

implementations, since they are often similar in design and

implementation. To a lesser extent, the paper could be useful for

insights on how to model other middleware architectures, such as

DCOM [3] and Enterprise Java Beans (EJB) [11].

In the literature, the development of quantitative performance

models for middleware servers has received little attention. As an

exception, Sheikh et. Al. [15] develop a layered queuing model

and a simulation model for a large-scale distributed network

management application based on CORBA middleware. The

layered queuing model was validated with respect to the

simulation model. In [1] three architectures for interaction

between client and servers in a CORBA system are described and

performance of them is compared under several workload

conditions.

We emphasize that the focus of this paper is on the development

of a quantitative performance model that encompasses the main

factors that impact the performance. The model proposed in this

paper is not in the class of ‘simple’ (layered) queuing models, for

which straightforward solution techniques exist. In particular,

model features such as a finite thread pool and deterministic

service times (as will be described in the next section) prohibit

straightforward application of analytic techniques. Due to this

observation and our focus on performance modeling instead of

model analysis, we resort to analyzing the presented performance

model by means of simulation in this paper. The ultimate goal of

the work presented here, is to apply the developed performance

model for predicting the performance of specific middleware

based applications. As such, the work presented in this paper is a

first step towards this ultimate goal.

The remainder of this paper is organized as follows. Section 2

describes the performance model. Section 3 describes our test lab

setup and performance experiments. Section 4 briefly describes

the implementation of the performance model in a simulation tool

and the performance results we have obtained from simulation

runs. Section 5 discusses the validation of the performance model

by comparing the performance results from lab experiments with

simulation results. Section 6 presents our conclusions and

addresses several topics for further research.

2. PERFORMANCE MODEL

DESCRIPTION
In this section we develop a quantitative performance model for

remote method invocations based on CORBA, the de-facto

object-middleware standard. To this end, in section 2.1 we

describe the sequence of steps involved in invoking a method on a

CORBA object. In 2.2 we focus on the server-side handling of

CORBA method invocation requests on application objects, and

discuss the threading models involved. Based on this, in 2.3 we

propose a quantitative performance model for CORBA server-

side request handling. Section 2.4 contains a discussion of the

pros and cons of the modeling assumptions.

2.1 Anatomy of a CORBA method invocation
To invoke a method on a remote CORBA object, the following

sequence of steps is taken, as illustrated by Figure 1 (illustrating a

two-way request-and-reply method invocation).

1. Remote method invocation. The client obtains the object

reference of the remote target object and performs a method

invocation on it as if the object were a local (e.g. Java)

object.

2. Stub processing and marshaling. What really happens is

that the client invokes the method on the stub, which is the

local proxy of the remote target object. A reference to the

proper stub is obtained from the object reference of the target

object. The stub constructs a CORBA request object and

translates the method invocation parameters, which are

expressed using programming language, operating system,

and architecture specific data types, to a common data

representation (CDR). This translation process is called

marshaling. The marshaled data is added to the request

object. Subsequently, the request object is forwarded to the

client-side object request broker (ORB) library.

3. Client-side ORB processing. The client-side ORB library

uses a TCP/IP connection to communicate with the server-

side ORB library. The address of the server-side ORB is

obtained from the target object's object reference. The

object reference was created by a portable object adapter

(POA) in the server-side ORB. Each object is managed by

exactly one POA. A POA implements the adapter design

pattern [2] to adapt the programming language specific

object interfaces to CORBA interfaces, making the target

object implementation accessible from the ORB. The POA

has a map of active objects. This map associates object

identifiers with object implementations. Object

implementations are called servants. The object reference

contains server information, such as hostname and port

3: ORB library

2: stub

1

1: method
invocation on

the object
reference

Client

5: ORB library

6: POA

8
8: object

implementation
(servant)

Server

7: skeleton

4: Client ORB sends request to server
(over TCP/IP), after request processing

the server ORB sends back a reply

Figure 1. Anatomy of a CORBA method invocation

number, the name of the POA, and the object identifier of the

target object.

4. ORB communication. The client-side ORB sends the

request object to the server-side ORB.

5. Server-side ORB processing. The server-ORB obtains the

target object's POA and object identifiers from the request

object, and forwards the request to the POA managing the

target object.

6. Object adaptor processing. The POA looks up the servant

in its active object map (a data-structure containing

references to the active objects) using the object identifier

and forwards the request to the skeleton of the target object.

7. Un-marshaling. The skeleton un-marshals the method

invocation parameters and looks up the method

implementation.

8. Method invocation in the object implementation. The

skeleton invokes the request on the proper method

implementation inside the object implementation of the

target object.

9. The road back, creating a reply and sending it to the

client. When the method invocation returns, the skeleton

creates a CORBA reply object, marshals the return

parameters, and inserts the return parameters in the reply

object. The reply object is forwarded to the server-side ORB.

Subsequently, the server-side ORB forwards the reply object

to the client-side ORB. Then, the client-side ORB forwards

the reply object to the stub, and finally, the stub un-marshals

the return parameters and forwards those to the client.

2.2 Functional description of the server-side

request handling
In this section we describe how the subsequent processing steps

discussed in 2.1 are handled by the operating system and

middleware layer. The focus is on the request handling at the

server side, i.e. the handling of method invocation requests, which

is essential for most CORBA applications.

In the discussion below the middleware is configured to use the

thread pool ORB threading model. In this threading model there

are two kinds of threads: receiver threads that receive incoming

requests from the network and dispatcher threads that dispatch

these requests onto the target object implementation. The ORB

allocates a pool of dispatcher threads during startup. This thread

pool has a fixed size.

Consider a server that receives and handles requests that come in

over one of the Ncon connections. To discuss the functional

behavior of the request handling mechanism, let us consider a

tagged method invocation request T and follow its route along the

successive processing steps, illustrated by Figure 2.

To start, upon entering the system T is received by a receiver

thread, which is used to perform several processing steps.

Specifically, to read the header of the request, to read the body of

the message, to search in the active object map for the object key,

to locate the so-called Portable Object Adapter (POA) belonging

to the invoked object and to send the request to the dispatcher

thread pool. Newly incoming requests that arrive at a busy

∞λ
i,j,1

Root POAb
rec

∞
b

ser

b
sern

b
ser

b
sern

b
disp

b
unm

b
mar

b
reply

POA 2

ST

POA N
POA

∞
b

ser

b
sern

b
ser

b
sern

b
disp

b
unm b

mar
b

reply

∞λ
i,j,2

b
rec

∞λ
i,j,k

b
rec

Receiver

threads
Servant 1

POA
1

Servant N
ser_1

POA
1

Servant 1

POA
NPOA

Servant N
ser_1

POA
NPOA

logical resource layer

physical resource layer∞

CPU
All threads share

N
cpu

 CPUs

N
con

Dispatcher

threads

∞

Pool of

N
disp

threads

∞

ST POA

mutex

Figure 2. Performance model for the server-side request handling. The receiver threads and dispatcher threads share a CPU

resource.

receiver thread are queued and served in the order of arrival. After

finishing the receiver-thread processing, the receiver thread is

released and the method invocation request T is forwarded to a

pool of dispatcher threads that handle access to the POAs and

object implementations. The receiver thread en-queues request T

in the request queue of the dispatcher thread pool, even if there

are available dispatcher threads and the queue is empty. After en-

queuing the request T, idle dispatcher threads are signaled that a

new request is available in the queue. After these so-called 1st

phase receiver thread processing steps the receiver thread is not

ready to process a new request, until the 2nd phase has been

completed. The 2nd phase consists of cleaning allocated data-

structures and preparing to process for the next request. Once a

dispatcher thread is available (after the receiver thread signaled

the new request T in the queue) request T is sent to the proper

POA, which contains a reference to the object that will handle the

request. The POA may be configured to use a single-threaded or

multi-threaded policy. With the single-threaded policy only one

request can be processed by that POA. Other dispatcher threads

that also want to process request on that POA will block until the

POA becomes available again. Each ORB has a Root-POA with a

standard collection of policies, for instance the Root-POA has the

multi-threaded threading policy. Subsequently, the POA sends

the request to the skeleton, which un-marshals the request and

sends the request to the server object implementation (also

referred to as servants) that will handle the request. Finally, the

reply of the object execution is marshaled and sent back to the

client and the dispatcher thread is released. Similar to the

operation of a receiver thread, the dispatcher thread processing is

completed by a second phase part where data-structures are

cleaned and preparations are made to process the next request.

Note that both the POAs and the objects may be defined as either

single or multi-threaded, depending on the number of requests

that can be handled simultaneously. The client may use

synchronous (the client blocks until it receives a reply) and

asynchronous requests (the client can continue its processing and

poll for a reply at a later point in time). Also, the requests can be

two-way (the default), meaning a reply is sent back to the client,

or one-way, where no reply is sent back to the client.

2.3 Performance model of the server-side

request handling
In this section we use the observations discussed in 2.1 and 2.2 to

propose a quantitative performance model for CORBA server-

side request handling. The request handling process is highly

complex, and many factors are implementation specific. In this

context, we emphasize that the goal is not to develop a

complicated performance model that covers all relevant

implementation-dependent features, but to develop a generic

quantitative model that on the one hand covers the main factor

that impact the performance of CORBA method invocation

requests, but on the other hand is still simple enough to provide

insight in the behavior of the CORBA request handling process,

and the trade-offs involved. To this end, in some cases we have to

make several simplifying assumptions. The model to be presented

below should be judged from that perspective.

Model parameters

Ncon The number of connections to the server.

Npoa The number of POAs.

Nser_i The number of servants at POA i.

Tdisp The number of threads available for request dispatching.

Tpoa_i The number of threads available for POA i.

Tser_i,j The number of threads available for object j at POA i.

λi,j,k Arrival rate for requests at connection k for object j

at POA i.

brec Mean CPU processing time needed by a receiver thread.

bpoa Mean CPU processing time needed by a POA.

bser_i,j Mean CPU processing time needed by object j at POA i.

bsern_i,j Mean non-CPU processing time needed by object j

at POA i.

bmar, ij Mean CPU processing time needed for marshaling

the reply.

For each of the indices i, j, k the following conditions hold if no

other condition is mentioned: 1 ≤ i ≤ Npoa, 1 ≤ j ≤ Nser_i and 1 ≤ k

≤ Ncon.

Model description

Method invocation requests arrive at the server over one of the

Ncon connections. Method invocation requests for object j at POA

i arrive at the server according to a Poisson process with rate λi,j,k

requests per time unit. To describe the dynamics of the model, we

consider a tagged customer T=Ti,j,k and follow its route along the

different processing steps. Each receiver thread serves incoming

requests in the order of arrival, and requests finding the receiver

thread busy have to wait in an infinite-size buffer. Processing the

request by the receiver thread takes a mean amount brec of CPU

processing (same for all i); this processing time is assumed to be

deterministic and includes both 1st and 2nd phase CPU time. After

being processed the received thread, the receiver thread is

released and T is forwarded to the dispatcher thread pool,

consisting of Tdisp dispatcher threads. If T finds all Tdisp dispatcher

threads occupied it is placed in a infinite-size buffer that is

handled on a first-come-first-served basis. When a dispatcher

thread is available, T is sent to the proper POA (namely, POA i,

which is predetermined upon arrival). The amount of service time

required at the POA is the deterministic CPU processing time bpoa

(including 1st and 2nd phase CPU time). If i=1, then T is

forwarded to the Root-POA and taken into service immediately;

otherwise, T is forwarded to POA i and handled on a FIFO basis.

Subsequently, POA i forwards T to servant j. In practice, POAs

and servants may be single- or multi-threaded with any number of

threads. In our performance model the threading level of POA i

and servant j at POA i is represented by Tpoa_i and Tser_i,j,

respectively. The amount of processing time needed by T consists

of a mean amount of CPU processing time bser_i,j and a mean non-

CPU processing time of bsern_i,j for object j at POA i

(deterministically distributed). Non-CPU processing time

represents idle times, database access times, memory access

times, disk I/O, etcetera. The reply of the method invocation will

be marshaled after the object has processed the request. The

processing time needed for the marshaling consists of a

deterministic amount of CPU processing time bmar_i,j for the

marshaling after object j belonging to POA i. The precise amount

of deterministic CPU processing time for marshaling depends on

the amount and type of data that is to be marshaled. As soon as

the reply is sent, the POA and dispatcher thread are released. In

other words, the dispatcher thread is possessed by the request

during the POA, servant and marshaling steps.

The processing steps performed by the receiver threads, the POAs

and the servants effectively share the hardware resources. To

incorporate the effect of sharing processors, we assume that all

active receiver threads, POAs and servants share the processor in

a processor sharing (PS) fashion. That is, if at some point in time

there are in total N receiver threads, POAs and servants active at

that time, then each of them receives a fraction 1/N of the

available processor capacity (on a single CPU machine).

2.4 Discussion of the performance model
In section 2.3 we have proposed a model for the performance of

CORBA-based method invocations. To this end, we have made a

variety of simplifying assumptions. The validity and motivation

for these assumptions will be addressed below. We reemphasize

that the performance of CORBA-based method invocation

requests is a complex interplay between the operating systems,

threading models, hardware and all kinds of implementation-

specific details, making our efforts to develop generic and simple-

but-accurate performance models highly challenging, and that the

modeling assumptions should be judged from that perspective.

2.4.1 Other threading models
First, in most Java CORBA implementations each POA manager

endpoint has an acceptor thread, which listens for new

connections. Each new connection gets a new receiver thread,

which receives incoming requests. In some threading models the

thread that receives the requests from the network also dispatches

the request onto the target object implementation. In other

threading models the thread that receives the request forwards the

request to a separate dispatcher thread. The model discussed

above assumes that the receiver threads handle incoming requests

and forward them to a pool of dispatcher threads. This is

commonly referred to as the thread pool policy. There are a

variety of other threading policies available. For example, in the

so-called threaded policy the receiver thread also dispatches the

request. At most one thread may be active in user code. Other

receiver threads that want to dispatch requests will have to wait.

Alternatively, the thread-per-connection model is similar to the

threaded model. The only difference is that at most one thread

per connection may be active in user code. In practice the

threaded model has an additional mutex, which serializes all

threads that want to dispatch to user code. As another alternative,

in the thread-per-servant model the requests are received by

receiver threads, but dispatched to a separate thread for each

servant. This dispatcher thread per servant has a request code. At

most one request is active for each servant. In the thread-per-

request model requests are received by receiver threads, but each

request is dispatched to a newly created dispatcher thread, i.e. a

new dispatcher thread is created for each request. Finally, the

leader/follower thread pool model is an optimization of the basic

thread pool model. Instead of adding the request to the request

queue of the dispatcher thread pool, the receiver thread (the

leader) becomes a dispatcher thread itself. One of the idle threads

(followers) in the leader/follower thread pool becomes the new

receiver thread (thus the new leader). The optimization is that a

context switch from receiver to dispatcher thread is saved.

2.4.2 Modeling assumptions
In the model described above, several assumptions have been

made. In this context, it is important to realize that in practice,

detailed information about actual system parameters is lacking, at

best limited, so that first-order assumption are usually the best one

can do. The assumptions addressed below should be viewed in

this context.

Arrival processes of method invocation requests. The model

assumes that requests for object j at POA i arrive at the server

according to a Poisson process with rate λi,j,k requests per time

unit. Experience has taught that this assumption is reasonable in

most cases, and also has the benefit of being characterized by a

single parameter per servant. In cases where requests over a given

connection arrive according to a more bursty arrival patterns, the

Poisson assumption may be directly relaxed and refined,

depending on the amount of information available.

Sharing of processor capacity. In the model it is assumed that

the processing steps performed by the receiver threads, the POAs

and the servants effectively share the hardware resources in a

processor sharing fashion, where each active thread receives a fair

share of processor capacity. This assumption is clearly a first-

order approximation, but in most cases “the best we can do”,

given the lack of available information about implementation-

specific details about the scheduling of threads and processes on

the processors. Incorporating such implementation-specific details

is certainly possible and is expected to improve the accuracy of

the model, but will undoubtedly go to the expense of the

transparency of the model.

3. PERFORMANCE EXPERIMENT

RESULTS
Since performance models provide only predictions, and not

observations, modeling results can become inaccurate if the

model does not capture the performance behavior of the

applications closely enough. Building accurate performance

models of a system requires insight in the internal behavior of the

system and good quality performance measurements. To obtain

the insight and measurements, we conduct performance

experiments in a test lab.

In this section we describe how we conduct performance

experiments in a test lab and present results from a couple of

scenarios.

Client (P4 1.7GHz) Server (P3 550MHz)

Ethernet LAN

Figure 3. The setup of our test-bed. The client host invokes

CORBA methods on the server host with varying request payload.

3.1 Test lab setup
Our test lab consists of 2 machines interconnected using local

network. The server machine is a Pentium III 550 MHz with 256

MB RAM. The client machine is a Pentium IV 1.7 GHz with 512

MB RAM. Both machines run the Linux v2.4 operating system

and the Java 2 standard edition v1.4.1. For this experiment we

disabled priority scheduling of processes on the Linux machines

and used high-resolution timers to generate accurate arrival

processes. The CORBA implementation we use is ORBacus 4.1.1

by IONA Technologies [7]. In the experimental setup one target

object, managed by the Root-POA, is instantiated in each

scenario. The client machine runs a synthetic workload generator

that produces workload for the CORBA implementation running

on the server machine. The synthetic workload generator

described in section 3.2. We use our monitoring toolkit,

described in section 3.3, to obtain performance measurements for

the CORBA implementation running on the server machine.

3.2 Generating workload
We developed a workload generator so that we could automate

performance experiments with different scenarios. The workload

generator consists of a client and server application.

The server-side application offers the following scenario

configuration options:

• Specification of the POA hierarchy, including POA

managers and POA policies (e.g. single-threaded POAs).

• Deployment of objects on the specified POAs.

• Service demands for methods in the object implementation.

Both CPU time usage and waiting time can be described.

The CPU time can be used to work that is done by the object

implementation. The waiting time can be used to simulate

that the object implementation is waiting for an external

entity, for instance a query to a remote SQL database.

• Configuration options for the ORB, for instance which

threading model to use or connection reuse policies.

The client-side application executes a given workload on the

server application. The workload description consists of a

collection of arrival processes. An arrival process description

consists of:

• The total number of requests to generate.

• The targets of the arrival process. A description of a target

consists of the name of the remote object, the name of the

method to invoke, and (if applicable) requests parameters

(payload). If an arrival process has multiple targets, then by

default the requests are equally distributed over the targets.

It is possible, however, to specify routing probabilities for

each target.

• The request arrival process can either a Poisson process

(exponentially distributed inter-arrival time) or deterministic

(e.g. exactly 1 request every 2 seconds). Requests are

generated regardless of the completion of previous requests

(i.e. a transaction-class workload, modeled as open arrivals

in queuing models).

We emphasize that support for non-synthetic workload

distributions (e.g., trace-driven load generation) can easily be

added to the experimental setup. However, the focus of the

present paper is on modeling of the server-side dynamics, and

therefore, detailed characterization of the request patterns

generated by the client side is beyond the scope of the present

paper.

Performance experiments often iterate one or more parameters in

the scenario. For instance, a series of experiments can be

performed to study the effect of an increasing request rate on the

mean response time of requests. We use scripts that iterate these

parameters and instantiate workload scenarios templates using the

parameter values.

3.3 Measuring performance
In this section we shortly describe how we obtain performance

measurements of the ORBacus CORBA implementation using the

Java Performance Monitoring Toolkit (JPMT) [4].

JPMT is based on event-driven monitoring. In general, two types

of monitoring can be distinguished: time-driven monitoring and

event-driven monitoring [8]. Time-driven monitoring observes

the state of the monitored system at certain time intervals. This

approach, also known as sampling, is often used to determine

performance bottlenecks in software. For instance, by observing

the call-stack every millisecond a list of methods using the most

processing time can be obtained. Time-driven monitoring does

not provide complete behavioral information, only snapshots.

Event-driven monitoring is a monitoring technique where events

in the system are observed. An event represents a unit of

behavior, e.g., the creation of a new thread. Our monitoring

toolkit implements the event-driven monitoring approach, since

we require complete behavioral information, not just snapshots.

JPMT represents the execution behavior of applications by event

traces, in which each event represents the occurrence of some

activity, such as a method invocation or the creation of a new

thread of execution. JPMT’s event traces are similar to call-trees,

but in addition to method invocations they also contain other

event types.

The following elements of Java’s execution behavior can be

monitored:

• Threading: Java applications can have multiple threads of

execution. The creation and destruction of these threads is

monitored. Each thread has its own event trace.

• Thread synchronization and cooperation: Java uses

monitors [5] to implement thread synchronization (Java’s

synchronized primitive) and cooperation (Java’s wait(),

notify(), notifyAll() methods in the Object

class). JPMT can report how long a thread has contended for

a monitor, how long it held a monitor, how long it spend

waiting for a signal from another thread (cooperation), etc.

• Method invocation: The sequence of method invocations is

represented in a call-tree notation for each thread.

• Dynamic object allocation: Object allocation and release

monitoring can be used to track down excessive object

allocation and release, which can cause performance

problems, not only because of the allocation and release cost,

but also because it may trigger garbage collection cycles.

Events are annotated with high-resolution timestamps, and

depending on the event type other attributes such as used CPU

time.

The user can select the parts of the application that should be

monitored, by using filter mechanisms and specifying the event

types of interest. There are filtering mechanisms to include or

exclude threads and Java packages, classes, and methods.

The toolkit is not bound to a particular GUI or binary event trace

file format – the event traces are accessible via an event trace

API, which makes it possible to develop custom tools and scripts

to process the monitoring results. Furthermore, the event traces

can be represented in a human readable text file, which makes it

possible to process the event traces without using the API. The

instrumentation is added at run-time transparently to the user, and

does not require availability of the source code. This allows the

toolkit to be used for monitoring applications that come without

source code.

The event traces produced by JPMT provide a lot of performance

information. We developed post-processing scripts to make sense

of this information. The post-processing scripts traverse the event

traces and summarize the measurements. The CORBA

experiment report produced by the post-processing scripts

includes the following information:

• For the monitored parts of the receiver thread, the dispatcher

thread, and the object implementation (servant) the

completion times of each request are calculated. Also, the

mean completion time, the variance, and a plot of the

distribution of the completion time are reported. The post-

processing script also reports how the completion times are

made up from CPU time usage, garbage collection, and time

spent waiting for locks.

• The queuing times of the FIFO queue of the dispatcher

thread pool.

• Overall mean completion time and CPU time.

• The description of the client and server scenarios, used by

the workload generator.

• Mean CPU usage on the server during the experiment.

3.4 Performance results
To assess the accuracy of the middleware performance model we

have performed numerous experiments, both in the lab

environment and with sumulation. For compactness of

presentation a brief outline of the results is discussed below. In

particular we present the results for two relevant scenarios.

Scenario A represents a middleware system with a relatively large

thread pool and relatively large object service time. Scenario B

represents a system with a small thread pool and moderate object

service time.

3.4.1 Scenario A
In scenario A we configure the CPU service demand of the target

object to be 8 milliseconds, exponentially distributed. The server

ORB dispatcher thread pool has 10 threads. The client ORB will

generate a workload of 15000 requests using a Poisson process,

via one connection. The arrival-rate varies with each experiment

we conduct using this scenario.

Table 1 contains a summary of the performance measurement

results, together with simulation results (discussed in section 4).

The presented values are all averaged over the 15000 requests.

The measured queuing time represents the time that requests are

queued at the dispatcher thread pool. The measured completion

time equals the (average) time between the arrival at the receiver

thread and departure of a request from the dispatcher thread, after

processing the request. The measured CPU time is the sum of all

CPU times required for handling a request, including 1st and 2nd

phase CPU times. It includes the 8 millisecond CPU time (on

average) taken by the target object. The measured CPU

utilization equals the fraction of time that the CPU was busy with

executing requests.

As a sanity-check for the measured results note that for each

experiment the average measured CPU utilization approximately

equals the request arrival rate times the average measured CPU

time.

The measured queuing and response times for this scenario are

illustrated by Figure 4, together with simulated values.

3.4.2 Scenario B
In scenario B we configure the CPU service demand of the target

object to be 5 milliseconds, exponentially distributed. The server

ORB dispatcher thread pool has 4 threads. The client ORB will

generate a workload of 15000 requests using a Poisson process.

The arrival-rate varies with each experiment we conduct using

this scenario.

Table 2 contains a summary of the performance measurement

results, together with simulation results (discussed in section 4).

The measured queuing and response times for this scenario are

illustrated by Figure 5, together with simulated values.

4. SIMULATION AND VALIDATION
In this section we shortly describe how our performance model

has been implemented in a simulation tool. After which we

present simulation results for the scenarios outlined in the

previous section. Finally, we discuss the validation of the model.

4.1 Model implementation
We have implemented the performance model described in

section 2 in the Extend [9] simulation tool. The Extend tool can

be used to implement models without using an advanced

simulation programming language.

Models are constructed by connecting pre-built model building

Table 1. Scenario A experimental (measured) and simulation results

Arrival rate

(requests/ms)
Measured

queuing

time (ms)

Simulated

queuing

time (ms)

Measured

completion

time (ms)

Simulated

completion

time (ms)

Measured

CPU time

(ms)

Measured

CPU

utilization

(percent)

Calculated

CPU

utilization

(percent)

Simulated

CPU

utilization

(percent)

0.01 0.18 0 9.97 10.18 9.35 10.08 9.36 9.22

0.02 0.34 0 10.54 11.19 9.20 19.41 18.40 18.26

0.03 0.40 0 11.02 12.44 9.05 28.66 27.18 27.36

0.04 0.64 0.0002 12.79 14.60 9.27 37.77 37.10 37.05

0.05 0.83 0.01 14.77 17.24 9.24 46.48 46.24 45.79

0.06 1.04 0.03 18.56 21.27 9.26 56.06 55.61 55.88

0.07 1.47 0.28 22.71 26.36 9.30 63.66 65.11 64.86

0.08 2.06 1.50 29.24 34.85 9.26 72.81 74.15 73.72

0.09 4.74 4.76 38.87 49.36 9.25 80.61 83.29 82.56

Table 2. Scenario B experimental (measured) and simulation results

Arrival rate

(requests/ms)
Measured

queuing

time (ms)

Simulated

queuing

time (ms)

Measured

completion

time (ms)

Simulated

completion

time (ms)

Measured

CPU time

(ms)

Measured

CPU

utilization

(percent)

Calculated

CPU

utilization

(percent)

Simulated

CPU

utilization

(percent)

0.01 0.13 0 8.08 6.64 6.03 6.86 6.03 6.24

0.02 0.22 0.0006 8.68 7.02 6.00 13.41 12.01 12.32

0.03 0.28 0.0048 9.20 7.55 5.96 19.76 17.90 18.57

0.04 0.37 0.01 9.85 8.09 5.93 25.68 23.75 24.57

0.05 0.52 0.07 10.74 9.00 5.93 31.85 29.70 31.06

0.06 0.80 0.12 12.13 9.90 5.97 38.17 35.88 37.32

0.07 1.00 0.33 13.21 10.90 5.96 44.55 41.74 42.98

0.08 1.60 0.56 14.81 12.01 5.94 48.41 47.60 49.37

0.09 2.42 1.35 17.21 14.63 5.99 54.92 53.94 56.84

0.10 3.17 1.77 19.18 15.75 5.94 60.01 59.42 62.13

0.11 5.10 3.92 22.87 19.72 5.93 65.05 65.32 69.27

0.12 8.35 7.02 28.29 24.19 5.93 70.54 71.23 74.56

0.13 14.77 10.26 36.27 28.80 5.90 74.01 76.77 80.55

blocks together on a grid, using the Extend GUI. The user is not

restricted to the pre-built building blocks. It is possible to add

new building blocks, using the built-in simulation language

ModL. Extend has a large library with pre-built building blocks,

for instance blocks that implement the FIFO (first-in first-out) and

PS (processor sharing) service disciplines. Extend models can be

expressed in hierarchical manner, where blocks implement sub-

models. Each block can have various parameters. The model

parameter values can be specified in the notebook, for instance

the inter-arrival times between requests, and the number of

threads in the dispatcher thread pool.

For generating simulation results, Extend offers various building

blocks to calculate results and report graphs. Using these blocks

the model implementer can retrieve the required performance

measures from the model, such as response times, throughput,

queuing times, and resource utilizations.

4.2 Model simulation results
For scenario A and B we used the following parameter instances

for the simulation runs:

Parameter Scenario A Scenario B

Ncon 1 1

Npoa 1 1

Nser_1 1 1

Tdisp 10 4

Tpoa_1 ∞ ∞

Tser_i,j ∞ ∞

λ1,1,1 See remark 1

brec

bpoa

See remark 2

bser_i,j 8 msec 5 msec

bsern_i,j 0 msec 0 msec

bmar, ij See remark 2

Remarks:

1. For both scenarios the request arrival rate λ1,1,1 is varied over

a range of values, as indicated in the results.

2. In both scenarios we used the measured receiver thread, POA

and marshaling CPU times from the experimental results as

input for the model parameters. The aggregate measured

CPU times are listed in Table 1 and Table 2.

4.3 Model validation
To assess the validity of the performance model, we compare the

results from the performance experiments in section 3 with the

simulation results.

4.3.1 Comparison of experimental and simulation

results
Figure 4 and Figure 5 show that for both scenarios the completion

and queueing time predictions from the simulation runs are

accurate, compared to the measured completion and queueing

times. This demonstrates the validity of the middleware

performance model presented in section 2. Nonetheless, Figure 4

and Figure 5 illustrate that the model can be further refined. First

of all, the difference between 1st phase and 2nd phase CPU time

are ignored in the model. In the model a request is completed

when both the 1st and the 2nd phase are processed by the CPU,

while in practice the request is completed after the 1st phase.

Second, only CPU times are considered in the model, while in the

experiments I/O times will also (slightly) increase the measured

completion times. We expect that the impact of each of those (and

possibly more) differences between experiments and simulations

Scenario A

0

10

20

30

40

50

60

0.01 0.03 0.05 0.07 0.09

Arrival rate (requests / msec)

Q
u

e
u

in
g

 a
n

d
 r

e
s
p

o
n

s
e
 t

im
e

(m
s
e
c
)

Measured queuing

time

Simulated queuing

time

Measured completion

time

Simulated

completion time

Figure 4. Experimental and simulation results for scenario A.

will be small, but nevertheless their aggregate impact will explain

differences as seen in Figures 4 and 5.

4.3.2 Comparison of experimental and simulation

run-times
One of the advantages of applying performance models, as

compared to experimental performance analysis, is that model-

based analysis is less time consuming. For the scenarios that we

investigated we found that each simulation-run of 15000 requests

took approximately between 2 and 3 minutes on a Pentium III 700

MHz (including post-processing of data into statistics). Using the

lab set-up described in section 3, the experiment-runs took longer.

Depending on the configured request arrival rate the simulations

were up to 10 times faster than the experiments (excluding post-

processing). The post-processing of experiment results typically

takes around 9 minutes on the client machine in our lab setup,

depending on the amount of raw monitoring data that has been

generated.

5. CONCLUSIONS
In this paper we developed a basic quantitative performance

model for CORBA-based middleware. The model encompasses

the combined impact of a variety of factors, such as the processor

speed, the rate at which requests arrive at the server, the

processing times of the middleware (including for instance the

overhead induced by de-multiplexing the request to the proper

application object, and the (un-)marshaling costs) and the

processing times of the application. We have validated the model

by comparing results from lab experiments with simulation results

for a number of workload scenarios. The comparison of results

from experiments and simulation looks promising. The results

demonstrate that the performance predictions based on the model

match accurately with the results from the lab experiments.

The results presented in this paper are a significant first step and

indicate that the model-based approach for predicting middleware

performance is very promising. Still, the results raise a number of

challenges for further research. First, we plan to refine the

performance model with aspects of CORBA that are currently not

modeled. These aspects include other threading models than

‘thread pool’ and locking contention that may occur when the

ORB is heavily loaded. We also plan to adjust the model to

include a distinction between the 1st and 2nd phase of request

processing in the receiver and dispatcher threads.

In addition to future work on model refinements, we will start

using the performance model for optimizing the configuration of

middleware implementations (e.g. optimal threading policy,

optimal settings for dispatcher thread pool size, etcetera).

Further, we will expand the focus of our research from server side

middleware performance towards end-to-end application

performance.

6. ACKNOWLEDGMENTS
This work was partly carried out within the EQUANET project,

an “ICT-doorbraakproject” which is supported by the Dutch

Ministry of Economic Affairs via its agency Senter. Information

on the EQUANET project is available from

http://equanet.cs.utwente.nl/.

7. REFERENCES
[1] I. Abdul-Fatah, S. Majumdar, Performance Comparison of

Architectures for Client-Server Interactions in CORBA, Proc.

of the 18th International Conference on Distributed

Computing Systems, May, 1998.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995.

[3] R. Hariharan, W.K. Ehrlich, P.K. Reeser and R.D. van

der Mei. Performance of Web servers in a distributed

computing environment. In: Teletraffic Engineering in

the Internet Era (eds. J. Moreira de Souza, N.L.S. da

Fonseca and E.D. de Souza e Silva), Proceedings

ITC17, 137-148, December 2001.

[4] M. Harkema, D. Quartel, B.M.M. Gijsen, R.D. van der

Mei, Performance Monitoring of Java Applications,

Proc. of the 3rd Workshop on Software and

Performance (WOSP), 2002.

Scenario B

0

10

20

30

40

50

60

0.01 0.06 0.11

Arrival rate (requests / msec)

Q
u

e
u

in
g

 a
n

d
 r

e
s
p

o
n

s
e
 t

im
e

(m
s
e
c
)

Measured queuing

time

Simulated queuing

time

Measured completion

time

Simulated

completion time

Figure 5. Experimental and simulation results for scenario B.

[5] C.A.R. Hoare, Monitors: An Operating System Structuring

Concept, Comm. ACM 17, 10:549-557 (October), 1974.

[6] M. Henning, S. Vinoski, Advanced CORBA Programming

with C++, ISBN 0201379279, Addison-Wesley, 1999.

[7] IONA Technologies, Object Oriented Concepts Inc.,

ORBacus 4 for Java, 2000.

[8] R, Jain, The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement,

Simulation, and Modeling, John Wiley & Sons, 1991.

[9] D. Krahl, Imagine That Inc., The Extend Simulation

Environment, Proceedings of the 2000 Winter

Simulation Conference, Orlando, FL, USA, 2000.

[10] E.D. Lazowska, J. Zahorjan, G.S. Graham, K. Sevcik,

Quantitative System Performance, Prentice-Hall Inc.,

1984.

[11] C.M. Llado, P.G. Harrison, Performance Evaluation of

an Enterprise JavaBean Server Implementation, Proc.

of WOSP 2000, Ontario, Canada, 2000.

[12] R.D. van der Mei, B.M.M. Gijsen and J.L. van den

Berg, End-to-end Quality of Service modeling of

distributed applications: the need for a

multidisciplinary approach, CMG Journal on

Computer Management 109, 51-55, 2003.

[13] Object Management Group, The Common Object Request

Broker: Architecture and Specification, revision 2.5, OMG

document formal/2001-09-01, 2001.

[14] R. Sahner, K.S. Trivedi, A. Puliafito, Performance and

Reliability Analysis of Computer Systems, Kluwer

Academic Publishers, 1996.

[15] F. Sheikh, J. Rolia, P. Garg, S. Frolund, A. Shepherd,

Layered Performance Modelling of a CORBA-based

Distributed Application Design, Proc. of the 4th

International Conference on Analytical and Numerical

Modeling Techniques with Application to Quality of

Service modeling, Singapore, September, 1997.

