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ABSTRACT 

Middleware is software that manages interactions between 

applications distributed across a heterogeneous computing 

environment.  Middleware technology is often used to implement 

E-business applications on the Internet.  Performance problems in 

these distributed E-business applications can lead to customer 

churn, and thus loss of revenue.  This raises the critical need for 

service providers to be able to predict and control performance.  

Motivated by this, in this paper we develop a quantitative 

performance model of CORBA-based middleware.  CORBA is 

the de-facto standard for object middleware, providing RPC-like 

interactions between objects.  We have implemented the 

performance model in a simulation tool.  To validate the model 

we have compared performance predictions from simulation runs 

with results from lab experiments for a variety of parameter 

settings.  The results show that the model leads to accurate 

performance predictions, and moreover demonstrates that a 

quantitative modeling approach to assess and predict the 

performance of middleware-based applications is very promising. 
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1. INTRODUCTION 
The dramatic growth of the Internet, the ongoing developments in 

the hardware and software industry, and the recent advances in 

networking technology have boosted the emergence of 

Information and Communication Technology (ICT). ICT systems 

enable applications to be divided in components that can be 

executed on geographically distributed information systems. 

These applications are commonly referred to as distributed 

applications. Distributed computing provides the fundamental 

technology for the realization of enterprise-wide and even global 

information systems. This development has led to the emergence 

of a wide variety of E-business applications that have been 

brought to the market. In this competitive market of E-businesses 

a critical success factor for E-business applications is the Quality 

of Service (QoS). QoS problems can directly lead to customer 

churn, and thus loss of revenue. Typical examples of E-business 

applications are online airline ticket reservation, online banking 

and online purchasing of consumer products. For this type of 

applications, the most relevant QoS aspects are service 

availability, payment transaction security and performance. This 

paper is focused on performance, particularly in terms of response 

times. 

Distributed applications typically run in a heterogeneous 

environment of networks, hardware and software components. 

Middleware architectures have been developed to shield 

developers of distributed application from the problem 

interoperability problems. Middleware is software that resides 

between the application and the operating system. As such, 

middleware performance is an important part of the end-to-end 

performance of distributed applications. The performance of 

distributed middleware-based applications depends on many 

factors, including network performance, the performance of the 

application code and middleware, and the performance of the 

hardware on which the application and middleware is being 

executed. 

To assess the performance of their E-business applications, 

companies usually perform a variety of activities: (1) performance 

lab testing, (2) performance monitoring, and (3) performance 

tuning. Lab testing typically involves the performing load and 

stress testing in a lab environment. Although lab-testing efforts 

are undoubtedly useful, there are two major disadvantages. First, 

building a production-like lab environment may be very costly, 

and second, performing load and stress tests and interpreting the 

results are usually very time consuming, and hence highly 

expensive. Performance monitoring is usually performed to keep 

track of high-level performance metrics such as service 

availability and end-to-end response times, but also to keep track 

the consumption of low-level system resources, such as CPU 

utilization and network bandwidth consumption. Results from lab 

testing and performance monitoring provide input for tuning the 

performance of an application.  

A common drawback of the aforementioned performance 

assessment activities is that their ability to predict the 

performance under projected growth of the workload in order to 

timely anticipate on performance degradation (e.g., by planning 

system upgrades or architectural modifications) is limited. This 

raises the need to complement the activities with methods 

specifically developed for performance prediction [12]. To this 

end, various modeling and analysis techniques have been 

developed over the past few decades (e.g., see [10, 8, 14] and 

references therein). 

The de facto middleware standard is the Common Object Request 

Broker Architecture (CORBA) developed by the Object 

Management Group (OMG), an international consortium of 

companies and institutions. In this paper, we develop a 

quantitative model for the performance of a CORBA-based 

middleware implementation. The model encompasses the 

combined impact of a variety of factors, such as the processor 



speed, the rate at which requests arrive at the server, the 

processing times of the middleware (including for instance the 

overhead induced by de-multiplexing the request to the proper 

application object, and the (un-)marshaling costs) and the 

processing times of the application. We validate the model by 

comparing results from lab experiments with simulation results 

for a number of workload scenarios. The results demonstrate that 

the accuracy of the performance predictions based on the model 

match well with the results from the lab experiments. 

While we focus on one CORBA middleware implementation, the 

model is still a useful basis for modeling other CORBA 

implementations, since they are often similar in design and 

implementation.  To a lesser extent, the paper could be useful for 

insights on how to model other middleware architectures, such as 

DCOM [3] and Enterprise Java Beans (EJB) [11]. 

In the literature, the development of quantitative performance 

models for middleware servers has received little attention.  As an 

exception, Sheikh et. Al. [15] develop a layered queuing model 

and a simulation model for a large-scale distributed network 

management application based on CORBA middleware.  The 

layered queuing model was validated with respect to the 

simulation model.  In [1] three architectures for interaction 

between client and servers in a CORBA system are described and 

performance of them is compared under several workload 

conditions. 

We emphasize that the focus of this paper is on the development 

of a quantitative performance model that encompasses the main 

factors that impact the performance. The model proposed in this 

paper is not in the class of ‘simple’ (layered) queuing models, for 

which straightforward solution techniques exist. In particular, 

model features such as a finite thread pool and deterministic 

service times (as will be described in the next section) prohibit 

straightforward application of analytic techniques. Due to this 

observation and our focus on performance modeling instead of 

model analysis, we resort to analyzing the presented performance 

model by means of simulation in this paper. The ultimate goal of 

the work presented here, is to apply the developed performance 

model for predicting the performance of specific middleware 

based applications. As such, the work presented in this paper is a 

first step towards this ultimate goal. 

The remainder of this paper is organized as follows. Section 2 

describes the performance model. Section 3 describes our test lab 

setup and performance experiments. Section 4 briefly describes 

the implementation of the performance model in a simulation tool 

and the performance results we have obtained from simulation 

runs. Section 5 discusses the validation of the performance model 

by comparing the performance results from lab experiments with 

simulation results. Section 6 presents our conclusions and 

addresses several topics for further research. 

 

2. PERFORMANCE MODEL 

DESCRIPTION 
In this section we develop a quantitative performance model for 

remote method invocations based on CORBA, the de-facto 

object-middleware standard. To this end, in section 2.1 we 

describe the sequence of steps involved in invoking a method on a 

CORBA object. In 2.2 we focus on the server-side handling of 

CORBA method invocation requests on application objects, and 

discuss the threading models involved. Based on this, in 2.3 we 

propose a quantitative performance model for CORBA server-

side request handling. Section 2.4 contains a discussion of the 

pros and cons of the modeling assumptions. 

2.1 Anatomy of a CORBA method invocation 
To invoke a method on a remote CORBA object, the following 

sequence of steps is taken, as illustrated by Figure 1 (illustrating a 

two-way request-and-reply method invocation). 

1. Remote method invocation. The client obtains the object 

reference of the remote target object and performs a method 

invocation on it as if the object were a local (e.g. Java) 

object. 

2. Stub processing and marshaling. What really happens is 

that the client invokes the method on the stub, which is the 

local proxy of the remote target object.  A reference to the 

proper stub is obtained from the object reference of the target 

object. The stub constructs a CORBA request object and 

translates the method invocation parameters, which are 

expressed using programming language, operating system, 

and architecture specific data types, to a common data 

representation (CDR). This translation process is called 

marshaling.  The marshaled data is added to the request 

object.  Subsequently, the request object is forwarded to the 

client-side object request broker (ORB) library. 

3. Client-side ORB processing. The client-side ORB library 

uses a TCP/IP connection to communicate with the server-

side ORB library. The address of the server-side ORB is 

obtained from the target object's object reference.  The 

object reference was created by a portable object adapter 

(POA) in the server-side ORB.  Each object is managed by 

exactly one POA. A POA implements the adapter design 

pattern [2] to adapt the programming language specific 

object interfaces to CORBA interfaces, making the target 

object implementation accessible from the ORB. The POA 

has a map of active objects.  This map associates object 

identifiers with object implementations. Object 

implementations are called servants.  The object reference 

contains server information, such as hostname and port 
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Figure 1. Anatomy of a CORBA method invocation 



number, the name of the POA, and the object identifier of the 

target object. 

4. ORB communication. The client-side ORB sends the 

request object to the server-side ORB. 

5. Server-side ORB processing. The server-ORB obtains the 

target object's POA and object identifiers from the request 

object, and forwards the request to the POA managing the 

target object. 

6. Object adaptor processing. The POA looks up the servant 

in its active object map (a data-structure containing 

references to the active objects) using the object identifier 

and forwards the request to the skeleton of the target object. 

7. Un-marshaling. The skeleton un-marshals the method 

invocation parameters and looks up the method 

implementation. 

8. Method invocation in the object implementation.  The 

skeleton invokes the request on the proper method 

implementation inside the object implementation of the 

target object. 

9. The road back, creating a reply and sending it to the 

client. When the method invocation returns, the skeleton 

creates a CORBA reply object, marshals the return 

parameters, and inserts the return parameters in the reply 

object. The reply object is forwarded to the server-side ORB. 

Subsequently, the server-side ORB forwards the reply object 

to the client-side ORB. Then, the client-side ORB forwards 

the reply object to the stub, and finally, the stub un-marshals 

the return parameters and forwards those to the client. 

2.2 Functional description of the server-side 

request handling 
In this section we describe how the subsequent processing steps 

discussed in 2.1 are handled by the operating system and 

middleware layer. The focus is on the request handling at the 

server side, i.e. the handling of method invocation requests, which 

is essential for most CORBA applications. 

In the discussion below the middleware is configured to use the 

thread pool ORB threading model.  In this threading model there 

are two kinds of threads:  receiver threads that receive incoming 

requests from the network and dispatcher threads that dispatch 

these requests onto the target object implementation.  The ORB 

allocates a pool of dispatcher threads during startup.  This thread 

pool has a fixed size. 

Consider a server that receives and handles requests that come in 

over one of the Ncon connections. To discuss the functional 

behavior of the request handling mechanism, let us consider a 

tagged method invocation request T and follow its route along the 

successive processing steps, illustrated by Figure 2. 

To start, upon entering the system T is received by a receiver 

thread, which is used to perform several processing steps. 

Specifically, to read the header of the request, to read the body of 

the message, to search in the active object map for the object key, 

to locate the so-called Portable Object Adapter (POA) belonging 

to the invoked object and to send the request to the dispatcher 

thread pool. Newly incoming requests that arrive at a busy 
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Figure 2. Performance model for the server-side request handling.  The receiver threads and dispatcher threads share a CPU 
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receiver thread are queued and served in the order of arrival. After 

finishing the receiver-thread processing, the receiver thread is 

released and the method invocation request T is forwarded to a 

pool of dispatcher threads that handle access to the POAs and 

object implementations. The receiver thread en-queues request T 

in the request queue of the dispatcher thread pool, even if there 

are available dispatcher threads and the queue is empty.  After en-

queuing the request T, idle dispatcher threads are signaled that a 

new request is available in the queue. After these so-called 1st 

phase receiver thread processing steps the receiver thread is not 

ready to process a new request, until the 2nd phase has been 

completed. The 2nd phase consists of cleaning allocated data-

structures and preparing to process for the next request. Once a 

dispatcher thread is available (after the receiver thread signaled 

the new request T in the queue) request T is sent to the proper 

POA, which contains a reference to the object that will handle the 

request. The POA may be configured to use a single-threaded or 

multi-threaded policy. With the single-threaded policy only one 

request can be processed by that POA. Other dispatcher threads 

that also want to process request on that POA will block until the 

POA becomes available again.  Each ORB has a Root-POA with a 

standard collection of policies, for instance the Root-POA has the 

multi-threaded threading policy.  Subsequently, the POA sends 

the request to the skeleton, which un-marshals the request and 

sends the request to the server object implementation (also 

referred to as servants) that will handle the request. Finally, the 

reply of the object execution is marshaled and sent back to the 

client and the dispatcher thread is released. Similar to the 

operation of a receiver thread, the dispatcher thread processing is 

completed by a second phase part where data-structures are 

cleaned and preparations are made to process the next request. 

Note that both the POAs and the objects may be defined as either 

single or multi-threaded, depending on the number of requests 

that can be handled simultaneously.  The client may use 

synchronous (the client blocks until it receives a reply) and 

asynchronous requests (the client can continue its processing and 

poll for a reply at a later point in time).  Also, the requests can be 

two-way (the default), meaning a reply is sent back to the client, 

or one-way, where no reply is sent back to the client. 

2.3 Performance model of the server-side 

request handling 
In this section we use the observations discussed in 2.1 and 2.2 to 

propose a quantitative performance model for CORBA server-

side request handling. The request handling process is highly 

complex, and many factors are implementation specific. In this 

context, we emphasize that the goal is not to develop a 

complicated performance model that covers all relevant 

implementation-dependent features, but to develop a generic 

quantitative model that on the one hand covers the main factor 

that impact the performance of CORBA method invocation 

requests, but on the other hand is still simple enough to provide 

insight in the behavior of the CORBA request handling process, 

and the trade-offs involved. To this end, in some cases we have to 

make several simplifying assumptions. The model to be presented 

below should be judged from that perspective. 

 

Model parameters 

Ncon The number of connections to the server. 

Npoa The number of POAs. 

Nser_i The number of servants at POA i. 

Tdisp The number of threads available for request dispatching. 

Tpoa_i The number of threads available for POA i. 

Tser_i,j The number of threads available for object j at POA i. 

λi,j,k  Arrival rate for requests at connection k for object j  

at POA i. 

brec Mean CPU processing time needed by a receiver thread. 

bpoa  Mean CPU processing time needed by a POA. 

bser_i,j Mean CPU processing time needed by object j at POA i. 

bsern_i,j Mean non-CPU processing time needed by object j  

at POA i. 

bmar, ij Mean CPU processing time needed for marshaling  

the reply. 

 

For each of the indices i, j, k the following conditions hold if no 

other condition is mentioned: 1 ≤ i ≤ Npoa, 1 ≤ j ≤ Nser_i and 1 ≤ k 

≤ Ncon. 

 

Model description 

Method invocation requests arrive at the server over one of the 

Ncon connections. Method invocation requests for object j at POA 

i arrive at the server according to a Poisson process with rate λi,j,k 

requests per time unit. To describe the dynamics of the model, we 

consider a tagged customer T=Ti,j,k and follow its route along the 

different processing steps. Each receiver thread serves incoming 

requests in the order of arrival, and requests finding the receiver 

thread busy have to wait in an infinite-size buffer. Processing the 

request by the receiver thread takes a mean amount brec of CPU 

processing (same for all i); this processing time is assumed to be 

deterministic and includes both 1st and 2nd phase CPU time. After 

being processed the received thread, the receiver thread is 

released and T is forwarded to the dispatcher thread pool, 

consisting of Tdisp dispatcher threads. If T finds all Tdisp dispatcher 

threads occupied it is placed in a infinite-size buffer that is 

handled on a first-come-first-served basis. When a dispatcher 

thread is available, T is sent to the proper POA (namely, POA i, 

which is predetermined upon arrival). The amount of service time 

required at the POA is the deterministic CPU processing time bpoa 

(including 1st and 2nd phase CPU time). If i=1, then T is 

forwarded to the Root-POA and taken into service immediately; 

otherwise, T is forwarded to POA i and handled on a FIFO basis. 

Subsequently, POA i forwards T to servant j. In practice, POAs 

and servants may be single- or multi-threaded with any number of 

threads. In our performance model the threading level of POA i 

and servant j at POA i is represented by Tpoa_i and Tser_i,j, 

respectively. The amount of processing time needed by T consists 

of a mean amount of CPU processing time bser_i,j and a mean non-

CPU processing time of bsern_i,j for object j at POA i 

(deterministically distributed). Non-CPU processing time 

represents idle times, database access times, memory access 

times, disk I/O, etcetera. The reply of the method invocation will 

be marshaled after the object has processed the request. The 

processing time needed for the marshaling consists of a 



deterministic amount of CPU processing time bmar_i,j for the 

marshaling after object j belonging to POA i. The precise amount 

of deterministic CPU processing time for marshaling depends on 

the amount and type of data that is to be marshaled.  As soon as 

the reply is sent, the POA and dispatcher thread are released. In 

other words, the dispatcher thread is possessed by the request 

during the POA, servant and marshaling steps. 

The processing steps performed by the receiver threads, the POAs 

and the servants effectively share the hardware resources. To 

incorporate the effect of sharing processors, we assume that all 

active receiver threads, POAs and servants share the processor in 

a processor sharing (PS) fashion. That is, if at some point in time 

there are in total N receiver threads, POAs and servants active at 

that time, then each of them receives a fraction 1/N of the 

available processor capacity (on a single CPU machine). 

2.4 Discussion of the performance model 
In section 2.3 we have proposed a model for the performance of 

CORBA-based method invocations. To this end, we have made a 

variety of simplifying assumptions. The validity and motivation 

for these assumptions will be addressed below. We reemphasize 

that the performance of CORBA-based method invocation 

requests is a complex interplay between the operating systems, 

threading models, hardware and all kinds of implementation-

specific details, making our efforts to develop generic and simple-

but-accurate performance models highly challenging, and that the 

modeling assumptions should be judged from that perspective. 

2.4.1 Other threading models 
First, in most Java CORBA implementations each POA manager 

endpoint has an acceptor thread, which listens for new 

connections.  Each new connection gets a new receiver thread, 

which receives incoming requests.  In some threading models the 

thread that receives the requests from the network also dispatches 

the request onto the target object implementation.  In other 

threading models the thread that receives the request forwards the 

request to a separate dispatcher thread. The model discussed 

above assumes that the receiver threads handle incoming requests 

and forward them to a pool of dispatcher threads. This is 

commonly referred to as the thread pool policy. There are a 

variety of other threading policies available. For example, in the 

so-called threaded policy the receiver thread also dispatches the 

request. At most one thread may be active in user code. Other 

receiver threads that want to dispatch requests will have to wait. 

Alternatively, the thread-per-connection model is similar to the 

threaded model.  The only difference is that at most one thread 

per connection may be active in user code. In practice the 

threaded model has an additional mutex, which serializes all 

threads that want to dispatch to user code. As another alternative, 

in the thread-per-servant model the requests are received by 

receiver threads, but dispatched to a separate thread for each 

servant. This dispatcher thread per servant has a request code. At 

most one request is active for each servant. In the thread-per-

request model requests are received by receiver threads, but each 

request is dispatched to a newly created dispatcher thread, i.e. a 

new dispatcher thread is created for each request. Finally, the 

leader/follower thread pool model is an optimization of the basic 

thread pool model. Instead of adding the request to the request 

queue of the dispatcher thread pool, the receiver thread (the 

leader) becomes a dispatcher thread itself.  One of the idle threads 

(followers) in the leader/follower thread pool becomes the new 

receiver thread (thus the new leader). The optimization is that a 

context switch from receiver to dispatcher thread is saved. 

2.4.2 Modeling assumptions 
In the model described above, several assumptions have been 

made. In this context, it is important to realize that in practice, 

detailed information about actual system parameters is lacking, at 

best limited, so that first-order assumption are usually the best one 

can do. The assumptions addressed below should be viewed in 

this context. 

Arrival processes of method invocation requests.  The model 

assumes that requests for object j at POA i arrive at the server 

according to a Poisson process with rate λi,j,k requests per time 

unit. Experience has taught that this assumption is reasonable in 

most cases, and also has the benefit of being characterized by a 

single parameter per servant. In cases where requests over a given 

connection arrive according to a more bursty arrival patterns, the 

Poisson assumption may be directly relaxed and refined, 

depending on the amount of information available. 

Sharing of processor capacity.  In the model it is assumed that 

the processing steps performed by the receiver threads, the POAs 

and the servants effectively share the hardware resources in a 

processor sharing fashion, where each active thread receives a fair 

share of processor capacity. This assumption is clearly a first-

order approximation, but in most cases “the best we can do”, 

given the lack of available information about implementation-

specific details about the scheduling of threads and processes on 

the processors. Incorporating such implementation-specific details 

is certainly possible and is expected to improve the accuracy of 

the model, but will undoubtedly go to the expense of the 

transparency of the model. 

3. PERFORMANCE EXPERIMENT 

RESULTS 
Since performance models provide only predictions, and not 

observations, modeling results can become inaccurate if the 

model does not capture the performance behavior of the 

applications closely enough.  Building accurate performance 

models of a system requires insight in the internal behavior of the 

system and good quality performance measurements. To obtain 

the insight and measurements, we conduct performance 

experiments in a test lab. 

In this section we describe how we conduct performance 

experiments in a test lab and present results from a couple of 

scenarios. 

Client (P4 1.7GHz) Server (P3 550MHz)

Ethernet LAN

 

Figure 3. The setup of our test-bed.  The client host invokes 

CORBA methods on the server host with varying request payload. 



3.1 Test lab setup 
Our test lab consists of 2 machines interconnected using local 

network.  The server machine is a Pentium III 550 MHz with 256 

MB RAM.  The client machine is a Pentium IV 1.7 GHz with 512 

MB RAM.  Both machines run the Linux v2.4 operating system 

and the Java 2 standard edition v1.4.1.  For this experiment we 

disabled priority scheduling of processes on the Linux machines 

and used high-resolution timers to generate accurate arrival 

processes.  The CORBA implementation we use is ORBacus 4.1.1 

by IONA Technologies [7]. In the experimental setup one target 

object, managed by the Root-POA, is instantiated in each 

scenario. The client machine runs a synthetic workload generator 

that produces workload for the CORBA implementation running 

on the server machine.  The synthetic workload generator 

described in section 3.2.  We use our monitoring toolkit, 

described in section 3.3, to obtain performance measurements for 

the CORBA implementation running on the server machine. 

3.2 Generating workload 
We developed a workload generator so that we could automate 

performance experiments with different scenarios.  The workload 

generator consists of a client and server application. 

The server-side application offers the following scenario 

configuration options: 

• Specification of the POA hierarchy, including POA 

managers and POA policies (e.g. single-threaded POAs). 

• Deployment of objects on the specified POAs. 

• Service demands for methods in the object implementation.  

Both CPU time usage and waiting time can be described.  

The CPU time can be used to work that is done by the object 

implementation.  The waiting time can be used to simulate 

that the object implementation is waiting for an external 

entity, for instance a query to a remote SQL database.  

• Configuration options for the ORB, for instance which 

threading model to use or connection reuse policies. 

 

The client-side application executes a given workload on the 

server application.  The workload description consists of a 

collection of arrival processes.  An arrival process description 

consists of: 

• The total number of requests to generate. 

• The targets of the arrival process.  A description of a target 

consists of the name of the remote object, the name of the 

method to invoke, and (if applicable) requests parameters 

(payload).  If an arrival process has multiple targets, then by 

default the requests are equally distributed over the targets.  

It is possible, however, to specify routing probabilities for 

each target. 

• The request arrival process can either a Poisson process 

(exponentially distributed inter-arrival time) or deterministic 

(e.g. exactly 1 request every 2 seconds).  Requests are 

generated regardless of the completion of previous requests 

(i.e. a transaction-class workload, modeled as open arrivals 

in queuing models).  

 

We emphasize that support for non-synthetic workload 

distributions (e.g., trace-driven load generation) can easily be 

added to the experimental setup. However, the focus of the 

present paper is on modeling of the server-side dynamics, and 

therefore, detailed characterization of the request patterns 

generated by the client side is beyond the scope of the present 

paper.   

Performance experiments often iterate one or more parameters in 

the scenario. For instance, a series of experiments can be 

performed to study the effect of an increasing request rate on the 

mean response time of requests.  We use scripts that iterate these 

parameters and instantiate workload scenarios templates using the 

parameter values. 

3.3 Measuring performance 
In this section we shortly describe how we obtain performance 

measurements of the ORBacus CORBA implementation using the 

Java Performance Monitoring Toolkit (JPMT) [4]. 

JPMT is based on event-driven monitoring.  In general, two types 

of monitoring can be distinguished: time-driven monitoring and 

event-driven monitoring [8].  Time-driven monitoring observes 

the state of the monitored system at certain time intervals.  This 

approach, also known as sampling, is often used to determine 

performance bottlenecks in software.  For instance, by observing 

the call-stack every millisecond a list of methods using the most 

processing time can be obtained.  Time-driven monitoring does 

not provide complete behavioral information, only snapshots.  

Event-driven monitoring is a monitoring technique where events 

in the system are observed.  An event represents a unit of 

behavior, e.g., the creation of a new thread.  Our monitoring 

toolkit implements the event-driven monitoring approach, since 

we require complete behavioral information, not just snapshots. 

JPMT represents the execution behavior of applications by event 

traces, in which each event represents the occurrence of some 

activity, such as a method invocation or the creation of a new 

thread of execution.  JPMT’s event traces are similar to call-trees, 

but in addition to method invocations they also contain other 

event types. 

The following elements of Java’s execution behavior can be 

monitored: 

• Threading:  Java applications can have multiple threads of 

execution.  The creation and destruction of these threads is 

monitored.  Each thread has its own event trace. 

• Thread synchronization and cooperation:  Java uses 

monitors [5] to implement thread synchronization (Java’s 

synchronized primitive) and cooperation (Java’s wait(), 

notify(), notifyAll() methods in the Object 

class).  JPMT can report how long a thread has contended for 

a monitor, how long it held a monitor, how long it spend 

waiting for a signal from another thread (cooperation), etc. 

• Method invocation:  The sequence of method invocations is 

represented in a call-tree notation for each thread. 

• Dynamic object allocation:  Object allocation and release 

monitoring can be used to track down excessive object 

allocation and release, which can cause performance 

problems, not only because of the allocation and release cost, 

but also because it may trigger garbage collection cycles. 

 

Events are annotated with high-resolution timestamps, and 

depending on the event type other attributes such as used CPU 

time. 



The user can select the parts of the application that should be 

monitored, by using filter mechanisms and specifying the event 

types of interest.  There are filtering mechanisms to include or 

exclude threads and Java packages, classes, and methods. 

The toolkit is not bound to a particular GUI or binary event trace 

file format – the event traces are accessible via an event trace 

API, which makes it possible to develop custom tools and scripts 

to process the monitoring results.  Furthermore, the event traces 

can be represented in a human readable text file, which makes it 

possible to process the event traces without using the API.  The 

instrumentation is added at run-time transparently to the user, and 

does not require availability of the source code.  This allows the 

toolkit to be used for monitoring applications that come without 

source code. 

The event traces produced by JPMT provide a lot of performance 

information.  We developed post-processing scripts to make sense 

of this information.  The post-processing scripts traverse the event 

traces and summarize the measurements.  The CORBA 

experiment report produced by the post-processing scripts 

includes the following information: 

• For the monitored parts of the receiver thread, the dispatcher 

thread, and the object implementation (servant) the 

completion times of each request are calculated.  Also, the 

mean completion time, the variance, and a plot of the 

distribution of the completion time are reported.  The post-

processing script also reports how the completion times are 

made up from CPU time usage, garbage collection, and time 

spent waiting for locks. 

• The queuing times of the FIFO queue of the dispatcher 

thread pool. 

• Overall mean completion time and CPU time. 

• The description of the client and server scenarios, used by 

the workload generator. 

• Mean CPU usage on the server during the experiment. 

 

3.4 Performance results 
To assess the accuracy of the middleware performance model we 

have performed numerous experiments, both in the lab 

environment and with sumulation. For compactness of 

presentation a brief outline of the results is discussed below. In 

particular we present the results for two relevant scenarios. 

Scenario A represents a middleware system with a relatively large 

thread pool and relatively large object service time. Scenario B 

represents a system with a small thread pool and moderate object 

service time. 

3.4.1 Scenario A 
In scenario A we configure the CPU service demand of the target 

object to be 8 milliseconds, exponentially distributed.  The server 

ORB dispatcher thread pool has 10 threads.  The client ORB will 

generate a workload of 15000 requests using a Poisson process, 

via one connection.  The arrival-rate varies with each experiment 

we conduct using this scenario. 

Table 1 contains a summary of the performance measurement 

results, together with simulation results (discussed in section 4).  

The presented values are all averaged over the 15000 requests. 

The measured queuing time represents the time that requests are 

queued at the dispatcher thread pool. The measured completion 

time equals the (average) time between the arrival at the receiver 

thread and departure of a request from the dispatcher thread, after 

processing the request. The measured CPU time is the sum of all 

CPU times required for handling a request, including 1st and 2nd 

phase CPU times.  It includes the 8 millisecond CPU time (on 

average) taken by the target object.  The measured CPU 

utilization equals the fraction of time that the CPU was busy with 

executing requests. 



As a sanity-check for the measured results note that for each 

experiment the average measured CPU utilization approximately 

equals the request arrival rate times the average measured CPU 

time. 

The measured queuing and response times for this scenario are 

illustrated by Figure 4, together with simulated values. 

3.4.2 Scenario B 
In scenario B we configure the CPU service demand of the target 

object to be 5 milliseconds, exponentially distributed.  The server 

ORB dispatcher thread pool has 4 threads.  The client ORB will 

generate a workload of 15000 requests using a Poisson process.  

The arrival-rate varies with each experiment we conduct using 

this scenario. 

Table 2 contains a summary of the performance measurement 

results, together with simulation results (discussed in section 4).  

The measured queuing and response times for this scenario are 

illustrated by Figure 5, together with simulated values. 

 

4. SIMULATION AND VALIDATION 
In this section we shortly describe how our performance model 

has been implemented in a simulation tool.  After which we 

present simulation results for the scenarios outlined in the 

previous section.  Finally, we discuss the validation of the model. 

4.1 Model implementation 
We have implemented the performance model described in 

section 2 in the Extend [9] simulation tool.  The Extend tool can 

be used to implement models without using an advanced 

simulation programming language. 

Models are constructed by connecting pre-built model building 

Table 1. Scenario A experimental (measured) and simulation results 

Arrival rate 

(requests/ms) 
Measured 

queuing 

time (ms) 

Simulated 

queuing 

time (ms) 

Measured 

completion 

time (ms) 

Simulated 

completion 

time (ms) 

Measured 

CPU time 

(ms) 

Measured 

CPU 

utilization 

(percent) 

Calculated 

CPU 

utilization 

(percent) 

Simulated 

CPU 

utilization 

(percent) 

0.01 0.18 0 9.97 10.18 9.35 10.08 9.36 9.22 

0.02 0.34 0 10.54 11.19 9.20 19.41 18.40 18.26 

0.03 0.40 0 11.02 12.44 9.05 28.66 27.18 27.36 

0.04 0.64 0.0002 12.79 14.60 9.27 37.77 37.10 37.05 

0.05 0.83 0.01 14.77 17.24 9.24 46.48 46.24 45.79 

0.06 1.04 0.03 18.56 21.27 9.26 56.06 55.61 55.88 

0.07 1.47 0.28 22.71 26.36 9.30 63.66 65.11 64.86 

0.08 2.06 1.50 29.24 34.85 9.26 72.81 74.15 73.72 

0.09 4.74 4.76 38.87 49.36 9.25 80.61 83.29 82.56 

 

Table 2. Scenario B experimental (measured) and simulation results 

Arrival rate 

(requests/ms) 
Measured 

queuing 

time (ms) 

Simulated 

queuing 

time (ms) 

Measured 

completion 

time (ms) 

Simulated 

completion 

time (ms) 

Measured 

CPU time 

(ms) 

Measured 

CPU 

utilization 

(percent) 

Calculated 

CPU 

utilization 

(percent) 

Simulated 

CPU 

utilization 

(percent) 

0.01 0.13 0 8.08 6.64 6.03 6.86 6.03 6.24 

0.02 0.22 0.0006 8.68 7.02 6.00 13.41 12.01 12.32 

0.03 0.28 0.0048 9.20 7.55 5.96 19.76 17.90 18.57 

0.04 0.37 0.01 9.85 8.09 5.93 25.68 23.75 24.57 

0.05 0.52 0.07 10.74 9.00 5.93 31.85 29.70 31.06 

0.06 0.80 0.12 12.13 9.90 5.97 38.17 35.88 37.32 

0.07 1.00 0.33 13.21 10.90 5.96 44.55 41.74 42.98 

0.08 1.60 0.56 14.81 12.01 5.94 48.41 47.60 49.37 

0.09 2.42 1.35 17.21 14.63 5.99 54.92 53.94 56.84 

0.10 3.17 1.77 19.18 15.75 5.94 60.01 59.42 62.13 

0.11 5.10 3.92 22.87 19.72 5.93 65.05 65.32 69.27 

0.12 8.35 7.02 28.29 24.19 5.93 70.54 71.23 74.56 

0.13 14.77 10.26 36.27 28.80 5.90 74.01 76.77 80.55 

 



blocks together on a grid, using the Extend GUI.  The user is not 

restricted to the pre-built building blocks.  It is possible to add 

new building blocks, using the built-in simulation language 

ModL.  Extend has a large library with pre-built building blocks, 

for instance blocks that implement the FIFO (first-in first-out) and 

PS (processor sharing) service disciplines.  Extend models can be 

expressed in hierarchical manner, where blocks implement sub-

models.  Each block can have various parameters.  The model 

parameter values can be specified in the notebook, for instance 

the inter-arrival times between requests, and the number of 

threads in the dispatcher thread pool. 

For generating simulation results, Extend offers various building 

blocks to calculate results and report graphs.  Using these blocks 

the model implementer can retrieve the required performance 

measures from the model, such as response times, throughput, 

queuing times, and resource utilizations. 

4.2 Model simulation results 
For scenario A and B we used the following parameter instances 

for the simulation runs: 

Parameter Scenario A Scenario B 

Ncon 1 1 

Npoa 1 1 

Nser_1 1 1 

Tdisp 10 4 

Tpoa_1 ∞ ∞ 

Tser_i,j ∞ ∞ 

λ1,1,1 See remark 1 

brec 

bpoa 

See remark 2  

bser_i,j 8 msec  5 msec  

bsern_i,j 0 msec 0 msec 

bmar, ij See remark 2 

Remarks: 

1. For both scenarios the request arrival rate λ1,1,1 is varied over 

a range of values, as indicated in the results.  

2. In both scenarios we used the measured receiver thread, POA 

and marshaling CPU times from the experimental results as 

input for the model parameters. The aggregate measured 

CPU times are listed in Table 1 and Table 2. 

4.3 Model validation 
To assess the validity of the performance model, we compare the 

results from the performance experiments in section 3 with the 

simulation results.  

4.3.1 Comparison of experimental and simulation 

results 
Figure 4 and Figure 5 show that for both scenarios the completion 

and queueing time predictions from the simulation runs are 

accurate, compared to the measured completion and queueing 

times. This demonstrates the validity of the middleware 

performance model presented in section 2. Nonetheless, Figure 4 

and Figure 5 illustrate that the model can be further refined. First 

of all, the difference between 1st  phase and 2nd phase CPU time 

are ignored in the model. In the model a request is completed 

when both the 1st and the 2nd phase are processed by the CPU, 

while in practice the request is completed after the 1st  phase. 

Second, only CPU times are considered in the model, while in the 

experiments I/O times will also (slightly) increase the measured 

completion times. We expect that the impact of each of those (and 

possibly more) differences between experiments and simulations 
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Figure 4. Experimental and simulation results for scenario A. 



will be small, but nevertheless their aggregate impact will explain 

differences as seen in Figures 4 and 5. 

4.3.2 Comparison of experimental and simulation 

run-times 
One of the advantages of applying performance models, as 

compared to experimental performance analysis, is that model-

based analysis is less time consuming.  For the scenarios that we 

investigated we found that each simulation-run of 15000 requests 

took approximately between 2 and 3 minutes on a Pentium III 700 

MHz (including post-processing of data into statistics).  Using the 

lab set-up described in section 3, the experiment-runs took longer. 

Depending on the configured request arrival rate the simulations 

were up to 10 times faster than the experiments (excluding post-

processing).  The post-processing of experiment results typically 

takes around 9 minutes on the client machine in our lab setup, 

depending on the amount of raw monitoring data that has been 

generated. 

 

5. CONCLUSIONS 
In this paper we developed a basic quantitative performance 

model for CORBA-based middleware.  The model encompasses 

the combined impact of a variety of factors, such as the processor 

speed, the rate at which requests arrive at the server, the 

processing times of the middleware (including for instance the 

overhead induced by de-multiplexing the request to the proper 

application object, and the (un-)marshaling costs) and the 

processing times of the application. We have validated the model 

by comparing results from lab experiments with simulation results 

for a number of workload scenarios. The comparison of results 

from experiments and simulation looks promising. The results 

demonstrate that the performance predictions based on the model 

match accurately with the results from the lab experiments.  

The results presented in this paper are a significant first step and    

indicate that the model-based approach for predicting middleware    

performance is very promising.  Still, the results raise a number of 

challenges for further research. First, we plan to refine the 

performance model with aspects of CORBA that are currently not 

modeled.  These aspects include other threading models than 

‘thread pool’ and locking contention that may occur when the 

ORB is heavily loaded.  We also plan to adjust the model to 

include a distinction between the 1st and 2nd phase of request 

processing in the receiver and dispatcher threads.   

In addition to future work on model refinements, we will start 

using the performance model for optimizing the configuration of 

middleware implementations (e.g. optimal threading policy, 

optimal settings for dispatcher thread pool size, etcetera).  

Further, we will expand the focus of our research from server side 

middleware performance towards end-to-end application 

performance. 
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