
Dynamic Load Balancing Experiments in a Grid∗

Menno Dobbera, Ger Koolea, Rob van der Meia,b

aVrije Universiteit Amsterdam, The Netherlands
bCWI Amsterdam, The Netherlands

{amdobber,koole,mei}@few.vu.nl

Abstract

Connected world-widely distributed com-
puters and data systems establish a global
source of processing power and data, called
a grid. Key properties of a grid are the fact
that computers providing processing power
may connect and disconnect at any time, and
that demands for processing power may highly
fluctuate over time. This has raised the need
for the development of applications that are
robust against changing circumstances. In
[4] the impact of fluctuations in processing
speeds on running times has been investigated,
and it was found that dynamic load balancing
methods provide a promising means to deal
with the ever-changing environment in the
grid. In this paper we demonstrate with exten-
sive experiments in a real grid environment,
Planetlab, that dynamic load balancing based
on predictions via Exponential Smoothing in-
deed lead to significant reductions in running
times of parallel applications in a randomly
changing grid environment.

1. Introduction

Although grids are the successors of distri-
buted computing environments (DCEs), these
two environments are fundamentally different.
A property of a DCE environment is the pre-
dictability: resources are homogeneous and re-
servations have to be made to use the nodes,
which leads to a guaranteed amount of proces-
sing capacities. Unlike the DCEs, a grid envi-
ronment is extremely unpredictable: processor
capacities are different and usually unknown,
computers may connect and disconnect at any
time, and their speeds may change over time.

∗Accepted at CCGrid2005

For these reasons, it is a challenge to develop
parallel programs that are robust against chan-
ges in the environment and as such are suitable
for execution in a grid environment. Over the
years, much research has been done on grid
computing. Initially, in the absence of publicly
available grid environments, the research was
mainly theoretically oriented. Recently, a vari-
ety of grid test beds have been developed (e.g.,
Planetlab [1]). This enables us to perform ex-
tensive experiments with grid applications, to
investigate how well grid applications perform
in practice, and how they can be improved. In
this paper, we provide an experimental ana-
lysis of the performance of grid applications,
and assess the actual improvements that can
be obtained by implementing dynamic load ba-
lancing (DLB) schemes.

Variations in the available resources (e.g.,
computing power, bandwidth) may have a dra-
matic impact on the running times of paral-
lel applications. Over the past few decades,
performance of parallel applications has recei-
ved much attention in the research commu-
nity. Due to the difficulty of analyzing rea-
listic variations, most of the fluctuations we-
re imitated and therefore controllable (see for
example [3]), while performance experiments
were performed in a controllable DCE. Howe-
ver, the variations in grid environments are
not manageable, which limits the applicabili-
ty of these results in a real grid environment.
Alternatively, mathematicians typically build
stochastic models to describe the performance
of resources, the network and dependencies re-
lated to runs of parallel programs. They create
algorithms to decrease running times, and ana-
lyze these algorithms mathematically [2, 8, 9].
For some situations such a mathematical ap-
proach is useful. However, in practice a lar-

1

http://www.math.vu.nl/~amdobber


ge number of simplifying assumptions are nee-
ded to performance a mathematical analysis,
which limits its applicability. As another alter-
native, DCE experts produce strategies that
are valuable for computational grids, connec-
ted clusters of computational nodes. However,
as a result of the difference between fluctuati-
ons for grid environments and computational
grids, the effectiveness of these strategies in
a grid environment is questionable [7]. These
observations stress the importance for an inte-
grated analysis of grid applications, combining
the three above-mentioned approaches, to ana-
lyse properties, dependencies and distributions
within a grid environment, and to implement
the ideas in a real grid environment and verify
how the methods perform in practice.

The impact of fluctuations in processing
speeds on running times in a grid environment
has been investigated in [4]. In that paper,
Exponential Smoothing (ES) was shown to be
a good predictor for processing power. More-
over, DLB methods based on this ES-predictor
were found to be a promising means to improve
performance. In this paper, we present the re-
sults of extensive load balancing experiments
on a real grid test bed, called Planetlab [1].
The experiments were performed with the clas-
sical Successive Over Relaxation (SOR) appli-
cation, which is particularly suitable for run-
ning in a parallel computing environment. The
results demonstrate that DLB methods consis-
tently lead to a significant reduction in running
times.

This paper is organized as follows. In Sec-
tion 2 we describe the SOR application and the
grid test bed Planetlab on which we perform
our experiments, and in Section 3 the use of
ES is discussed. In Section 4 the experimental
results are discussed in detail. Finally, in Sec-
tion 5 we summarize the conclusions and ad-
dress a number of topics for further research.

2. Experimental Setup

To carry out experiments with parallel ap-
plications in a realistic setting, the test bed
must have the following key characteristics of
a grid environment: (1) processor capacities
often differ, (2) processor loads change over
time, (3) processors are geographically distri-
buted, and (4) network conditions are highly
unpredictable. We chose Planetlab [1], a com-

Figure 1. Nodes on Planetlab, used for
experiments

monly used grid test bed environment that ful-
fils those conditions. At the time of our expe-
riments, version 2.0 was installed on the nodes.
Planetlab is an open, processor-shared globally
distributed network for developing and testing
planetary-scale network services.

Ideally, experiments should be performed
both with a small number of nodes and with
a very large number of nodes. To obtain sta-
tistically significant results, the experimental
results need to be reproducible. In practice,
however, the most commonly used grid test
beds are not yet mature enough, and the avai-
lability of many nodes is limited. For this
reason, we have chosen to conduct our experi-
ments with four sites. On the one hand, the
number of four sites is large enough to demon-
strate a significant speedup factor by DLB. On
the other hand, this number is small enough
to reproduce experiments with the same set
of nodes within a reasonable time frame. We
used two sets of four nodes of Planetlab to con-
duct our experiments. Set 1 consists of the no-
des Pasadena (CA), Tucson (AR), Washington
(DC) and Boston (MA), and set 2 consists of
Vancouver (BC), San Diego (CA), Salt Lake
City (UT) and Chicago (IL). The nodes were
connected by the Internet via a linear structu-
re, as shown by Figure 1.

To demonstrate the improvements that
can be made by DLB, the parallel applicati-
on must have dependencies between its suc-
cessive iterations, which is common for paral-
lel applications. We have conducted our expe-
riments with the Successive Over Relaxation
(SOR) application. SOR is an iterative me-
thod that is valuable in solving Laplace equati-

2



ons [5]. Our implementation of SOR performs
calculations with a two-dimensional discrete
state space M × N , a grid of points. Logi-
cally, each point in the grid has at most four
neighbors. In each iteration each point takes a
weighted average of the values of the neighbors
and its own value. The parallel implementa-
tion of SOR is based on the Red/Black SOR
algorithm [6]. The point grid is treated as a
checkerboard and each iteration is split into
phases, Red and Black. During the Red phase
only the red points of the point grid are up-
dated. Red points only have black neighbors,
and no black points are changed during the
Red phase. During the Black phase, the black
points are updated in a similar way. Using
the Red/Black SOR algorithm, the grid can
be partitioned among the available processors.
All processors can update different points of
the same color in parallel. This update takes
time, referred to as the calculation time. Be-
fore a processor starts the update of a certain
color, it exchanges the border points of the op-
posite color with its neighbors. This amount of
time is referred to as the send time. The total
duration of an iteration is called the iteration
time.

We have conducted experiments in two
parts. In the first part, we used Red/Black
SOR with a grid size of 5000 × 1000. Inter-
rupted runs were omitted. One run consists of
2000 iterations. To increase the running times
such that parallelisation improves performan-
ce we repeated each iteration 50 times. This
corresponds to a grid size of 25 · 104 × 103.
The default load balancing scheme is referred
to as Equal Load Balancing (ELB). ELB assu-
mes no prior knowledge of processor speeds of
the nodes, and consequently balances the load
equally among the different nodes. To compa-
re the effectiveness of our DLB implementati-
on (see Section 3) to the ELB, we have per-
formed extensive experiments. Ideally, experi-
ments with and without DLB should be perfor-
med simultaneously. Unfortunately, in prac-
tice performing experiments simultaneously is
not possible because of interference. Therefo-
re, to make a fair comparison we alternatingly
ran the two implementations under compara-
ble circumstances: each day at 09:00 CET we
started one of the two implementations, and
the next day we started the other one. To
obtain statistically relevant results, we ran the
two versions of SOR on set 1 (see above) of Pla-

netlab sites both as many as 30 times. In the
second part, we performed experiments to in-
vestigate the dependence between the problem
sizes and the speedup gained by implementing
DLB. Therefore, we ran the two versions of the
Red/Black SOR for grid sizes of 2500 × 1000,
5000 × 1000, 7500 × 1000, and 10000 × 1000.
Those runs consisted of 1000, 500, 375, and
250 iterations, respectively. We repeated each
iteration 50 times. We ran each grid size for
both versions seven times on set 2 of Planetlab
sites.

3. Implementation of Dynamic

Load Balancing

In DLB schemes from time to time decisi-
ons are made to update the balancing of the lo-
ads on the basis of predictions of the processing
speeds. We used the Exponential Smoothing
(ES) technique to obtain these predictions, be-
cause in [4] the ES technique with parameter
α = 0.5 was found to be a good predictor of
processor performance. ES appears to be a
simple and usable method in load balancing
strategies. On the one hand ES filters outliers
in the data, and on the other hand adapts the
predictor quickly to long-term changes. Deno-
te by yn the realization of the n-th iteration
step, and let ŷn denote the forecast of yn. The
ES recursive formula we use to predict is:

ŷn = 0.5yn−1 + 0.5ŷn−1. (1)

To investigate whether DLB based on ES
is indeed an effective means to react on fluctu-
ations in load or performance of processors we
have implemented it in our SOR application.
Our implementation of the load balancing step
is as follows. At the end of each iteration the
processors predict their processing speed for
the next iteration. After every N iterations
the processors send their prediction to proces-
sor 0, the DLB scheduler. Subsequently, this
processor calculates the “optimal” load distri-
bution given those predictions and sends rele-
vant information to each processor. The load
distribution is optimal when all processors fi-
nish their calculation exactly at the same time.
Therefore, it is “optimal” when the number of
rows assigned to each processor is proportio-
nal to its predicted processor speed. Finally,
all processors redistribute the rows. The total
load balancing step takes around one third of

3



the total time of one iteration (i.e., calculation
and sending time).

Load balancing each single iteration is ra-
rely a good strategy. On the one hand, the
running time of a parallel application direct-
ly depends on the overhead of DLB, and the-
refore it is better to increase the number of
iterations between two load balancing steps.
On the other hand, less load balancing leads
to an imbalance of the load for the processors
for sustained periods of time, due to signifi-
cant changes in processing speeds. In [4] we
present the theoretical speedups in running ti-
mes when using load balancing compared to
equal load balancing (ELB), given that the ap-
plication load balances every N iterations, but
without taking into account the overhead. Ba-
sed on those speedups and the load balancing
overhead addressed above, a suitable value of
N was found to be 10.

4. Experimental results

To investigate the speedup that can be ob-
tained by implementing DLB compared to the
default ELB we have performed numerous ex-
periments. The results of these experiments
are outlined in this section. First, to assess
the potential benefits that can be obtained by
using DLB in Section 4.1 we analyze the sto-
chastic behavior of the calculation times at dif-
ferent time scales at the different nodes. Mo-
reover, we evaluate the effectiveness of the ES
technique to predict the calculation times over
these time scales. Second, in Section 4.2 we
discuss the experimental results for the DLB
and ELB.

4.1. Stochastic behavior of the cal-

culation times

Figures 2 to 5 show the calculation time
for the successive iterations for a selection of
two sites from both sets used during the expe-
riments. The results lead to a number of inte-
resting observations. First, for each of the no-
des we observe fluctuations at different times
scales. More precisely, we observe fluctuations
at a short time scale of a few iterations (ty-
pically in the range 1 to 10 iterations), which
roughly corresponds to several minutes. These
short-term fluctuations are bursty and rather
unpredictable. In addition, we observe fluctu-

Figure 2. Calculation times in Salt Lake
City (UT)

Figure 3. Calculation times in San Diego
(CA)

Figure 4. Calculation times in Washing-
ton (DC)

4



Figure 5. Long- and short-term
calculation-time fluctuations in Tucson
(AR)

ations on a longer time scale of several tens of
iterations, which is roughly on the order of tens
of minutes. Moreover, the results in Figure 5
suggest fluctuations at an even longer time sca-
le of several hundreds of iterations, which cor-
responds to several hours in the time domain.
Second, comparing the results depicted in Fi-
gures 2 to 5 we observe a strong heterogenei-
ty between the different patterns, with signifi-
cant differences in the burstiness on the short
time scale and the fluctuations on the longer
time scales. For example, the short-term be-
havior in Figures 2 and 3 is much more bur-
sty than the short-term behavior in Figure 4.
Moreover, for the longer-term fluctuations we
observe a heterogeneity of patterns, including
periodically changing behavior (see Figure 4)
and randomly changing behavior (see Figures
2, 3 and 5).

To cope with this strong heterogeneity and
randomness, efficient and robust DLB techni-
ques should be based on well-performing pre-
diction methods. In [4] we argued that the
prediction technique based on ES (see Section
3 for details) seems appropriate. To investi-
gate whether this is indeed the case, Figure 6
(which is based on the same set of data used in
Figure 4) shows (1) the measured calculation
times, (2) the forecasts based on ES, and (3)
the moving average over the last 20 iterations.
Figure 6 shows that the moving average pre-
dicts the fluctuations over the longer times sca-
les very well, but fails to provide accurate pre-
dictions of the fluctuations on the shorter time
scale. Moreover, we observe that the ES tech-
nique does capture the fluctuations on both the

Figure 6. ES predicting calculation ti-
mes in Washington (DC)

longer and the shorter time scale rather well.
Extensive ES-based test runs have shown that
ES consistently outperforms the moving aver-
age prediction technique, and as such seems to
be an excellent basis for the development of
robust DLB schemes in an ever-changing and
heterogeneous grid environment. For this rea-
son, we have implemented DLB on the basis
of ES as the prediction technique.

4.2. Experiments with DLB and

ELB

In this subsection we demonstrate the ef-
fectiveness of implementing DLB based on ES.
To this end, we have performed 30 runs with
the original ELB SOR implementation and 30
runs of the DLB implementation in Planetlab.
To make a fair comparison, the runs were alter-
natingly performed with ELB and DLB. The
odd run numbers correspond to DLB-based ex-
periments, and the even run numbers are ba-
sed on ELB. Figure 7 shows the running ti-
mes for these experiments. The results plotted
in Figure 7 show that the DLB-based experi-
ments are significantly faster than their ELB-
counterparts, consistently over all experiments
(except for a single outlier in run 20). Inte-
restingly, the DLB strongly outperforms ELB
independent of the actual running times. The
average speedup factor by using DLB instead
of ELB was found to be roughly a factor of 1.8.
This confirms the predictions on the basis of
a theoretical analysis addressed at the end of
Section 3.

To analyze the speedup between DLB and
ELB in more detail, Figure 8 shows the evolu-

5



Figure 7. Running times for SOR based
on DLB compared to ELB

Figure 8. Number of rows for each pro-
cessor in a DLB run

tion of the load distribution over the different
nodes for both the DLB and the ELB sche-
me. More precisely, a representative develop-
ment of the number of rows assigned to the
nodes is shown. For the DLB case we obser-
ve both short- and long-term changes in the
number of rows during a run, which are caused
by dynamic reactions on the short- and long-
term changes in calculation times. The results
also show the drawback of implementing Sta-
tic Load Balancing (SLB) schemes, where the
load is balanced statically on the basis of the
first M iterations. A key problem is to find a
suitable value for M , which is based on the
following trade-off. If M is too large, then
the benefit of SLB is marginal by definition.
If M is too small, then the estimates of the
processing speeds of the nodes, and hence of
the “optimal” load distribution, are unrelia-
ble. For example, the results in Figure 8 show
that the optimal load distribution on the ba-
sis of DLB is roughly 12%, 18%, 54% and 16%,

Figure 9. Number of rows for each pro-
cessor in a ELB run

Figure 10. Cumulative running time as
a function of the iteration number

for processor 0 to 3, respectively. However, if
SLB were used with M ≤ 250 then the SLB
weights would be roughly 20%, 16%, 34% and
30%, respectively.

The next question is how the speedup ba-
sed on DLB compared to ELB evolves over ti-
me. To this end, Figure 10 shows the cumulati-
ve running time as a function of the number of
iterations for DLB and ELB, respectively, for
the same experiment as in Figure 8. Figure 10
shows that at the beginning of the run DLB
is not faster than the original implementati-
on ELB. However, after about 120 iterations,
the ELB run tends to slow down significantly,
whereas the DLB slows down only marginal-
ly. This observation can be explained from Fi-
gure 8 as follows. During the first (say) 120
iterations, processors 0 and 1 were relatively
fast compared to processors 2 and 3. However,
around iteration 120 for some unknown reason
processors 0, 1 and 3 were slowing down pos-
sibly caused by background load, whereas the

6



Figure 11. Running times as a function
of the number of rows

processing speed of processor 2 did not change
significantly. Consequently, the DLB scheme
dynamically assigned additional rows to pro-
cessor 2, while the static ELB scheme (see Fi-
gure 9) did not. In this way, the DLB scheme
was found to properly react to changes in the
effective processor speeds, and as such outper-
formed ELB signifantly.

Another interesting question is how the
running times achieved by implementing DLB
depends on the problem size. To this end,
we have performed experiments with DLB and
ELB and with different problem sizes with
1000 columns and Nrow rows. The experi-
ments have been repeated seven times in or-
der to obtain reliable estimates. Figure 11
shows the average running time as a functi-
on of Nrow, for N = 2500, 5000, 7500 and
10000. Confidence intervals are not presen-
ted here for ease of the discussion. This figure
shows that the running time increases nearly
linearly in the number of rows, for both ELB
and DLB. More precisely, based on a simple
least-square estimation method we obtain the
following approximate expression for the run-
ning times RTELB and RTDLB (in seconds) as
a function of the number of rows:

RTELB = 20.8 ∗ Nrow + 21138, (2)

RTDLB = 11.1 ∗ Nrow + 14363. (3)

The offset for ELB consists of send and
wait times, which are independent of the num-
ber of rows. The offset for DLB also consists of
send times and wait times, but in the DLB case
the wait times are smaller than in the ELB ca-
se, because DLB is able to react to temporary

Nrow Problem size Average speedup
2500 2500 × 1000 1.71
5000 5000 × 1000 1.82
7500 7500 × 1000 1.82

10000 10000 × 1000 1.83

Table 1. Speedup factors for different
problem sizes

imbalance causing larger wait times. In addi-
tion, the DLB-offset contains the overhead in-
volved performing load balancing actions. Ta-
ble 1 shows the speedup factor for different
values of Nrow.

Table 1 demonstrates that, because of the
above-mentioned differences in the offsets for
ELB and DLB, the speedup depends on the
problem size. More precisely, it follows direct-
ly from (2) and (3) that in the current expe-
rimental setting the speedup factor converges
to the following constant when Nrow grows to
infinity:

limNrow→∞

RTELB

RTDLB

=

limNrow→∞

20.8Nrow+21138

11.1Nrow+14363
= 20.8

11.1
= 1.87.

Acknowledgments: The authors would like
to thank Henri Bal, Thilo Kielmann and Ma-
thijs den Burger for their useful comments.

5. Conclusions

We have investigated the impact of imple-
menting DLB schemes on the running times in
a grid environment. Extensive experimentati-
on in the testbed environment PlanetLab have
led to the following conclusions. (1) A sig-
nificant speedup factor of on average 1.8 can
be consistently achieved by implementing DLB
instead of the default ELB scheme. (2) Using
DLB based on ES-predictions of the running
times provides an effective means to react to
changes in the performance of the resources
used by a parallel application. (3) The effec-
tive calculation times for the different proces-
sors at grid nodes fluctuate over different time
scales. On the short time scale the calculation
time may be highly bursty. On the longer time
scales the calculation time may follow periodic
or random patterns. (4) The relation between
the running time and the problem size is ap-
proximately linear.

7



Finally, we address a number of challen-
ges for further research. First, an interesting
and important question in running parallel ap-
plications in a grid environment is “When do
we need to balance loads?”. In this paper the
DLB-actions were performed each N = 10 ite-
rations, partly based on the theoretical model
discussed in [4]. However, due to the random
nature of the grid environment, one may ex-
pect that more efficient load balancing sche-
mes can be achieved by allowing load balan-
cing actions to be performed at any moment,
according to some dynamic algorithm that op-
timally balances the “cost” of load balancing
actions and the benefits in quickly reacting to
load changes. Second, in this paper we have
performed experiments with the SOR applica-
tion. SOR has a specific linear structure (see
Figure 1). The question arises to what extend
the results presented in this paper are appli-
cable to other parallel applications, especially
with a non-linear structure. In depth-analysis
of parallel applications with a non-linear struc-
ture is a challenging topic for further research.
Third, to develop optimal load balancing sche-
mes advanced and accurate predictions of the
calculation times are needed. To this end, the
development of stochastic models (for the me-
asurements shown in Figures 2 to 5), emcom-
passing the effect of fluctuation over different
time scales (e.g., based on Fourier analysis, or
the theory of multi-fractals) may be extreme-
ly useful, and an interesting topic for further
research.

Referenties

[1] http://www.planet-lab.org.

[2] H. Attiya. Two phase algorithm for load ba-
lancing in heterogeneous distributed systems.
In Proceeding of the 12th Euromicro conference

on parallel, distributed and network-based pro-

cessing, page 434. IEEE, 2004.

[3] I. Banicescu and V. Velusamy. Load balancing
highly irregular computations with the adap-
tive factoring. In Proceedings of the 16th In-

ternational Parallel and Distributed Processing

Symposium, page 195. IEEE Computer Socie-
ty, 2002.

[4] A. M. Dobber, G. M. Koole, and R. D. van der
Mei. Dynamic load balancing for a grid appli-
cation. In Proceedings of HiPC 2004, pages
342–352. Vrije Universiteit, Springer-Verslag,
December 2004.

[5] D. J. Evans. Parallel SOR iterative methods.
Parallel Computing, 1:3–18, 1984.

[6] L. A. Hageman and D. M. Young. Applied Ite-

rative Methods. Academic Press, 1981.

[7] Z. Nemeth, G. Gombas, and Z. Balaton. Per-
formance evaluation on grids: Directions, is-
sues and open problems. In Proceedings of the

12th Euromicro Conference on Parallel, Dis-

tributed and Network-based Processing, 2004.

[8] B. A. Shirazi, A. R. Hurson, and K. M. Kavi.
Scheduling and Load Balancing in Parallel and

Distributed Systems. IEEE CS Press, 1995.

[9] M. J. Zaki, W. Li, and S. Parthasarathy. Cus-
tomized dynamic load balancing for a network
of workstations. Journal of Parallel and Dis-

tributed Computing, 43(2):156–162, 1997.

8


	. Introduction
	. Experimental Setup
	. Implementation of Dynamic Load Balancing
	. Experimental results
	. Stochastic behavior of the calculation times
	. Experiments with DLB and ELB

	. Conclusions

