
Optimal Server Assignment in a Two-layered Tandem of Multi-Server Queues

W. van der Weija, R.D. van der Meiab, B.M.M. Gijsenc, F. Phillipsonc

aCWI, Advanced Communication Networks, Amsterdam, The Netherlands
bVrije Universiteit, Faculty of Sciences, Amsterdam, The Netherlands
cTNO Information and Communication Technology, Delft, The Netherlands

We consider a tandem of two multi-server queues, both with an arbitrary number of servers
and general service-time distributions. At any moment in time the busy servers share a common
underlying resource in a processor-sharing fashion. We focus on the problem of assigning the
number of servers to both queues such that the expected sojourn time is minimized. To this end,
we first analyze the impact of the service time distributions on the expected sojourn time, and
then use these insights to propose approximations for the optimal server assignment. Extensive
numerical experimentation shows that the heuristics lead to highly accurate approximations for
the optimal server assignment problem.

1 Introduction

Next-generation communication infrastructures will need to support a growing diversity and
heterogeneity in applications that share parts of the infrastructure. Examples of such infras-
tructures are Web-based multi-tiered system architectures, with a client tier to provide an in-
terface to the end users, a business logic tier to coordinate information retrieval and processing,
and a data tier with legacy systems to store and access customer data. In such environments
different applications compete for access to shared infrastructure resources, both at the software
level (e.g., mutex and database locks, thread-pools) and at the hardware level (e.g., bandwidth,
processing power, disk access). Hence, the performance of these applications is an interplay
between software and hardware contention. This has raised the need to perform an in-depth
analysis of multi-layered performance models. Currently, in-depth understanding of the be-
havior of multi-layered performance models is lacking. Motivated by this, we study a simple
but non-trivial multi-layered queueing model, a two-layered tandem of two multi-server queues,
where each of the active servers share an underlying resource in a processor-sharing (PS) fashion.

Many of todays application servers (Web servers, file servers, database servers) need to properly
handle huge amounts of transaction within a reasonable time frame. Each transaction typically
consists of several sub-transactions that have to be processed in a fixed sequential order. To
this end, application servers usually implement a number of thread-pools; a thread is a software
entity that can perform a specific type of sub-transaction. Consider for example the Web server
performance model proposed in [5]. Each HTTP request that requires server-side scripting (e.g.,
CGI or ASP scripts, or Java servlets) consists of two subsequent phases: a document-retrieval
phase, and a script processing phase. To this end, the Web server implement two thread-pools,
a dedicated pool of threads performing phase-1 processing, and a pool of threads performing
phase-2 processing. The Web server model consists of a tandem of two multi-server queues,
where servers at queue 1 represent the phase-1 threads, and the servers at queue 2 represent

P51/1

phase-2 threads. A particular feature of this model is that at any moment in time the active
threads share a common Central processing Unit (CPU) hardware in a PS fashion. Other ex-
amples of performance models with software-hardware interaction are presented in [7, 10].

In the context of the application areas addressed above a well-known, yet unresolved, issue
is how to dimension thread-pools. In almost all application servers the thread-pool size (i.e.
the maximum number of threads that can simultaneously be executing transaction customers)
is a configurable system parameter. The thread-pool dimensioning problem is the question how
many threads should be dedicated to each thread-pool as to optimize performance. Assigning
too few threads to any of the servers functional steps may lead to relative starvation of pro-
cessing. This creates a bottleneck that may reduce the overall throughput of the server, when
the workload increases. Conversely, the total number of threads running on a single server is
too high, performance degradation due to context switching overhead and superfluous disk I/O
may occur. Despite the fact that thread-pool dimensioning may have a dramatic impact on
the performance perceived by the application end user, in practice thread-pool dimensioning is
performed by system engineers on a trial-and-error basis, if done at all. This observation has
raised the need for a simple and easy-to-implement ”Golden Rule” for dimensioning thread-pools.

The literature on single-layered queueing networks is widespread and has been successfully ap-
plied in many application areas (see [3] for an overview). However, only a limited number
of papers focus on the performance of multi-layered queuing networks. Rolia and Sevcik [12]
propose the so-called Method of Layers (MoL), i.e., a closed queuing-network based model for
the responsiveness of client-server applications, explicitly taking into account both software and
hardware contention. Another fundamental contribution is presented by Woodside et al. [17],
who propose to use the so-called Stochastic Rendez-Vous Network (SRVN) model to analyze the
performance of application software with client-server synchronization. The contributions pre-
sented in [12] and [17] are often referred to as Layered Queuing Models (LQMs). Another class of
layered queuing models are so-called polling models, i.e., multi-queue single-server models where
the available service capacity is alternatingly allocated to one of the queues in some round-robin
fashion (see [13, 14]). Another related class of models are so-called coupled-processor models,
i.e., multi-server models where speed of a server at a given queue depends on the number of
servers at the other queues (see [4, 6, 9] for results). A common drawback of the available results
on multi-layered queuing models is that exact analysis is primarily restricted to special cases,
and numerical algorithms are typically required to obtain performance measures of interest (see
for example [17]). Consequently, in-depth understanding in the behavior of multi-layered queu-
ing models is limited.

Motivated by the application areas addressed above, we study a two-node tandem of multi-
server queues with general service-time distributions, where all busy servers share a common
underlying resource in a processor-sharing (PS) fashion. In this context the thread-pool di-
mensioning problem for application servers is formulated as the problem of finding a static
server assignment that minimizes the expected sojourn time of a customer in the system, with
a constraint on the total number of threads. Numerical experiments show that the service-time
distributions have a major impact on the optimal server assignment. Therefore, we develop
simple and ready-to-implement heuristics for the optimal server assignment, explicitly taking
into account the service-time distributions at both queues. The accuracy of the heuristics are
evaluated by extensive numerical experiments. The results show that the heuristics lead to accu-

P51/2

rate approximations for the optimal server assignment. In this way, we obtain a simple ”Golden
Rule” for the thread-pool dimensioning problem.

The remainder of this paper is organized as follows. In Section 2 the model is described, and the
optimization problem is defined. In Section 3 we give fundamental insight in the effects of the
service time distribution on the sojourn time. In Section 4 we present heuristics for the optimal
server assignment problem and in Section 5 we validate these heuristics by numerical results.
Finally, in Section 6 we address a number of topics for further research.

2 Model and optimization problem

Consider a tandem of two multi-server queues, Qi, for i = 1, 2, with each an infinite buffer.
Customers arrive at Q1 according to a Poisson arrival process with rate λ. The service times
Bi at Qi have a cumulative distribution function B̃i(t) := Pr{Bi < t}, (t > 0) with finite mean
βi > 0 and squared coefficient of variation cv2

bi
. Let ci the number of servers at Qi, and ci ≥ 1.

Define c = (c1, c2), and let C be the set of possible combinations of the number of servers, i.e.,
C := {c : ci ∈ {1, 2, . . .} (i = 1, 2)}.

The number of servers in thread-pools are in principle finite numbers. This maximum num-
ber of servers in defined as Cmax where Cmax ≥ 2, at least one server is assigned to each
queue. Denote by Ni the random variable indicating the number of customers present (i.e.,
either waiting or being served) at Qi. Then at any time the number of busy servers at Qi is
Mi := min{Ni, ci}. The total service capacity, which is equal to 1, is shared among the active
servers in a processor-sharing (PS) fashion. That is, the service rate of each of the busy servers
is 1/

∑N
i=1 Mi; if the system is empty, then all servers are idle. The load at Qi (i.e. the amount of

arriving work at Qi) is defined as ρi := λβi, and the total load offered to the system is denoted
by ρ := λ(β1 + β2). The expected sojourn time of Qi is defined as ESi, and the total expected
sojourn time of the system is denoted by ES :=

∑N
i=1 ESi. Note that ES generally depends on

λ, c, B1 and B2, so ES = ES(λ, c∗, B1, B2). The model is illustrated in Figure 1.

Figure 1: Illustration of the model.

The ultimate goal of this study is to solve the problem of assigning the number of servers to
each of the queues in such a way that the expected sojourn time (end-to-end response time) is

P51/3

minimized.

Minimizing expected sojourn time by thread-pool dimensioning

For given B1, B2 and λ, find c∗ ∈ C such that for each c ∈ C,

ES(λ, c∗, B1, B2) ≤ ES(λ, c, B1, B2) (1)

3 Preliminaries

A closed form expression for the expected sojourn time of this queuing model does not exist
[16].

3.1 One queue

In [1] the expected sojourn time is considered for a layered queueing model with one queue, a
limited number of servers and a processor-sharing discipline. For this model an approximation
for the expected sojourn time is given, see equation (2), where ρ1 := λβ1.

ES1
∼=

(
β1 +

cv2
b1

+ 1
2

β1ρ1

(1− ρ1)

)
ρc1−1
1 +

(
β1

(1− ρ1)

)
(1− ρc1−1

1). (2)

Equation (2) results in the following optimization rules for minimizing the expected sojourn
time:

• if cv2
b1

< 1 then c∗1 = 1

• if cv2
b1

> 1 then c∗1 →∞
• if cv2

b1
= 1 then E[S] is independent of c∗1.

If the service time distribution is robust, cv2
b1

> 1, overtaking is stimulated by assigning more
servers, on the other hand, if the service time distribution is very smooth, cv2

b1
< 1 then over-

taking is not allowed. In fact if cv2
b1

< 1 the M |G|c-FCFS (first come first served) model gives
shorter sojourn times than the M |G|1-PS model and if cv2

b1
> 1 the M |G|c-FCFS model gives

longer sojourn times than the M |G|1-PS model, due to the fraction (cv2
b1

+ 1)/2. This fraction
results in a linear relation between the expected sojourn time and the squared coefficient of
variation of the service time distribution.

3.2 Two queues

For the queuing model with two queues simulations give fundamental insights in the role of the
parameters on the expected sojourn time. In Figure 2 several results are presented for queues
with equal distribution functions with equal mean and with the same number of servers assigned
to both queues (β1 = β2, cv2

b1
= cv2

b1
and c1 = c2). Figure 2 shows that an increase in cv2

bi
,

(cv2
b1

= cv2
b2

) results in an increase in the expected sojourn time. But if ci = 100 the expected
sojourn time does not increase by an increase in the cv2

bi
s. Furthermore the figure presents that

for cv2
bi

< 1, i = 1, 2, less servers give shorter expected sojourn times than many servers. If

P51/4

Figure 2: Illustration of the influence of the parameters on the expected sojourn time.

cv2
bi

> 1 for i = 1, 2 less servers gives longer expected sojourn times than many servers, which
is the same result as in the case with one queue.

Considering each queue in isolation the number of servers can be optimized using equation

Figure 3: The % deviation between the minimum expected sojourn time and the expected
sojourn time for other server assignments.

(2). However through the coupled PS discipline on the hardware layer it is expected that the
ratio of the load at each queue plays also an important role on the performance measures. From
thoroughly analyzing the numerical results for the case with two queues and from analyzing the
single queue it is expected that the optimal assignment of the servers will be one or infinite for
both queues, see Figure 3, on the x-axis the number of servers assigned to the first queue are
given and on the y-axis the number of servers assigned to the second queue are given. As given
in previous section the number of servers is limited by Cmax which results in an optimal strategy
on the bounds of the possible region of Cmax, so the assignment of the servers should be such

P51/5

that:

c∗1 + c∗2 := Cmax (3)

4 Heuristics for thread-pool dimensioning

In this section heuristics for thread-pool dimensioning are given. Each of these heuristics has
the objective to minimize the expected sojourn time of the network, (see equation (1)). We
define ĉ∗i (Hj) as the number of servers assigned to queue i as a result of Heuristic j. ES(Hj) is
the expected sojourn time calculated with the assignment ĉ∗i (Hj) and Heuristic j.

4.1 Heuristic 1: The ratio between β1 and β2

The first heuristic is based on the ratio between the expected service time for each queue. This
heuristic is motivated by the processor-sharing model with many servers. A customer is always
served immediately, so the buffers remain empty. For this model the ratio of the expected num-
ber of customers in each queue equals: EN1

EN2
= ρ1

ρ2
= β1

β2
. Note that dimensioning the thread-pools

on this ratio is optimal for optimization of the throughput (see [11]). The heuristic is as follows:

Heuristic 1:

ĉ∗i (H1) = max{1, round(βi

βi+βj
Cmax)}, for i = 1, 2

In words, the thread-pools are dimensioned proportional to the ratio of the mean of the service
time distributions.

In Figure 4 the optimal strategy is presented for the case with Cmax = 10 and exponen-

Figure 4: The % deviation between the minimum expected sojourn time and the expected
sojourn time for other servers assignments.

tial service time distributions. The optimal server assignment is c∗1 = 1 and c∗2 = 9. In Figure
3 also the optimal strategy is presented for hyper-exponential service time distributions, which
equals c∗1 = 5 and c∗2 = 5 if β1 = β2 = 1. These graphs illustrates that different assignments of

P51/6

the servers result in the optimal assignment, Heuristic 1 results in equal strategies, the heuristic
only considers the means of the service time distributions, which are equal in the presented
scenarios (β1 = β2 for both cases). These figures illustrate again that a heuristic needs to take
into account the squared coefficients of variation of the service time distributions.

4.2 Heuristic 2: Squared coefficient of variation of the service time distribu-
tions

Instead of a heuristic based on the ratio of the means of the service time distributions a heuris-
tic based on the coefficient of variation of the service time distributions is considered. This is
motivated by equation (1), by the shortest remaining processing time (SRPT) policy and by
extended numerical results.

The fundamental idea of the SRPT is to assign all the available processor capacity to the cus-
tomer with the shortest remaining processing time, such that strict priority is given to that
customer. This rule is optimal (see [8]). In our model the PS discipline serves all the customers
simultaneously and because service is non-preemptive it is impossible to give always strict pri-
ority to the customer with the shortest remaining processing time. Still the basic idea of the
SRPT idea can be adapted to this model. If the SRPT policy is applied to each queue separately
and consider the limitations of the model, then if Bi has an increasing failure rate, which implies
cv2

bi
< 1, only one server needs to be assigned to that queue. And if Bi has a decreasing failure

rate, which implies cv2
bi

> 1, many servers need to be assigned to that queue, such that customers
that require short services can pass customers that require long services, which corresponds to
the results of the preliminaries for one queue. By defined Cmax, if cv2

bi
> 1 for i = 1, 2, the ratio of

the means of the service distributions is used to distribute the number of servers over the queues.

Heuristic 2:

if cv2
bi
≤ 1 then ĉ∗i (H2) = 1 for i = 1, 2

if cv2
bi

> 1 and cv2
bj
≤ 1 then ĉ∗i (H2) = Cmax − 1 i 6= j for i, j = 1, 2

if cv2
bi

> 1 and cv2
bj

> 1 then ĉ∗i (H2) = max{1, round
(

βi
βi+βj

Cmax
)
} i 6= j, for i, j = 1, 2

In words, if the squared coefficient of variation is less than one, the number of threads assigned
to that queue equals one. If one of the queues has a squared coefficient of variation greater than
one, that queue gets the maximum number of threads minus one. If both queues have a squared
coefficient of variation greater than one, the servers are assigned by the ratio of the offered load.

4.3 Heuristic 3: Combination Heuristic 1 and Heuristic 2

The third heuristic is based on both, Heuristic 1 and Heuristic 2. Instead of just considering the
cv2

bi
for each queue or considering the proportion of the load at each queue we combine these

two effects so that both effects play a role. First the squared coefficient of variation of the sum
of the service time distributions is calculated by:

cv2
b12 =

β2
1cv2

b1
+ β2

2cv2
b2

(β1 + β2)2
. (4)

P51/7

Two cases are distinguished in Heuristic 3, the case cv2
b12
≤ 1 and cv2

b12
> 1. In the first case the

optimal strategy is to assign one server to the first queue and Cmax − 1 servers to the second
queue. In this case the SRPT policy is applied. In the case with cv2

b12
> 1 it is very complicated

to apply the SRPT to our model, because a trade off need to be made between overtaking jobs
with long required service times but not using to much capacity of the processor sharing disci-
pline, and between letting enough work arrive at the second queue. In these cases we decided
to use the ratio of the offered load, but rescaled by the square-root of the β ’s, from extensive
numerical results (see Section 5) it is known that taking the ratios of the offered load results in
an overestimation of the number of threads for one of the queues and in an underestimation for
the other queue. The square-root of the offered load is formally introduced by Borst, Mandel-
baum and Reiman [2] motivated by the staffing problem of large call centers. The square-root
staffing principle supports useful robust rules to optimize the number of service for a certain
cost function.

Heuristic 3:

if cv2
b12
≤ 1 then ĉ∗1(H3) = 1 and ĉ∗2(H3) = Cmax − 1

else ĉ∗1(H3) = max{1, round
(√

β1√
β1+

√
β2

)
} and ĉ∗2(H3) = Cmax − ĉ∗1(H3).

This heuristic gives if cv2
b12
≤ 1 priority to the second queue by assigning Cmax minus one server

to the second queue and if cv2
b12

> 1 the servers are assigned proportionally to the rescaled load.

5 Numerical analysis of the heuristics

To assess the accuracy of the heuristics described above, we have performance extensive numer-
ical calculations, comparing the heuristic results with the exact results obtained by numerically
solving the continuous-time Markov chain for the model. The parameter values have been var-
ied to cover a broad range of parameter settings. We have considered Cmax = 10 and ρ = 0.7.
For implementation reasons hyper-exponentially distributed service times and exponentially dis-
tributed service times are considered, cv2

bi
= {1, 4, 10}. The results are outlined below.

5.1 Exponentially distributed service times at both queues

In Table 1 numerical results are shown for exponentially distributed service times at both queues.
Five different cases for the (β1, β2) are considered. In the table the optimal solution for dimen-
sioning the thread-pools are given and the results of the heuristics. The error between the
optimal service assignment and the assignment by using the heuristic is defined by:

∆(Hi) :=
ES(Hi)− ES

ES
· 100%. (5)

Table 1 illustrates that the first heuristic, based on the loads does not give accurate policies.
Also the second heuristic, in which the coefficient of variation is taken into account is not very
accurate. Only the third heuristic is accurate (optimal in the scenarios presented here). This is
the results of distinguishing the cases with a joint squared coefficient of variation less than one.

P51/8

(β1, β2) c∗ ES ĉ∗(H1) ES(H1) ∆(H1) ĉ∗(H2) ES(H2) ∆(H2) ĉ∗(H3) ES(H3) ∆(H3)

(1,1) (1,9) 6.069 (5,5) 6.668 9.86% (1,1) 6.613 8.96% (1,9) 6.069 0.00%
(1,2) (1,9) 9.409 (3,7) 9.924 5.48% (1,1) 10.304 9.51% (1,9) 9.409 0.00%
(2,1) (1,9) 9.076 (7,3) 10.197 12.35% (1,1) 9.346 2.97% (1,9) 9.076 0.00%
(1,10) (1,9) 36.514 (1,9) 36.514 0.00% (1,1) 36.662 0.40% (1,9) 36.514 0.00%
(10,1) (1,9) 35.345 (9,1) 38.066 7.70% (1,1) 35.395 0.14% (1,9) 35.345 0.00%

Table 1: Exponentially distributed service times at both queues.

5.2 Hyper-exponentially distributed service times at both queues

Numerical results for hyper-exponentially distributed service times are shown in Table 2. In

(β1, β2) (cv2
b1

, cv2
b2

) c∗ ES ĉ∗(H1) ES(H1) ∆(H1) ĉ∗(H3) ES(H3) ∆(H3)
(1, 1) (4,4) (4, 6) 6.984 (5,5) 6.985 0.01% (5,5) 6.985 0.01%
(1, 1) (4,10) (4, 6) 7.177 (5,5) 7.205 0.38% (5,5) 7.205 0.38%
(1, 1) (10,4) (5, 5) 7.198 (5,5) 7.198 0.00% (5,5) 7.198 0.00%
(1, 1) (10,10) (5, 5) 7.142 (5,5) 7.142 0.00% (5,5) 7.142 0.00%
(1, 2) (4,4) (3, 7) 10.412 (3,7) 10.412 0.00% (4,6) 10.420 0.08%
(1, 2) (4,10) (4, 6) 10.713 (3,7) 10.716 0.03% (4,6) 10.713 0.00%
(1, 2) (10,4) (4, 6) 10.577 (3,7) 10.787 1.98% (4,6) 10.577 0.00%
(1, 2) (10,10) (4, 6) 10.878 (3,7) 11.157 2.56% (4,6) 10.878 0.00%
(2, 1) (4,4) (6, 4) 10.499 (7,3) 10.826 3.11% (6,4) 10.499 0.00%
(2, 1) (4,10) (6, 4) 10.706 (7,3) 11.294 5.49% (6,4) 10.706 0.00%
(2, 1) (10,4) (6, 4) 10.987 (7,3) 11.136 1.35% (6,4) 10.987 0.00%
(2, 1) (10,10) (6, 4) 11.182 (7,3) 11.599 3.73% (6,4) 11.182 0.00%
(1,10) (4,4) (2, 8) 37.432 (1,9) 38.115 1.82% (2,8) 37.432 0.00%
(1,10) (4,10) (2, 8) 37.837 (1,9) 38.948 2.94% (2,8) 37.837 0.00%
(1,10) (10,4) (2, 8) 37.534 (1,9) 39.062 4.07% (2,8) 37.534 0.00%
(1,10) (10,10) (2, 8) 37.975 (1,9) 40.646 7.03% (2,8) 37.975 0.00%
(10,1) (4,4) (8, 2) 38.883 (9,1) 41.233 6.04% (8,2) 38.883 0.00%
(10,1) (4,10) (8, 2) 39.122 (9,1) 43.900 12.21% (8,2) 39.122 0.00%
(10,1) (10,4) (8, 2) 40.775 (9,1) 42.423 4.04% (8,2) 40.775 0.00%
(10,1) (10,10) (8, 2) 41.007 (9,1) 45.228 10.29% (8,2) 41.007 0.00%

Table 2: Hyper-exponentially distributed service times at both queues.

Table 2 the Heuristic 1 and Heuristic 2 give the same results because in Heuristic 2 if both c2
bi

are greater than one the number of servers are assigned similar to Heuristic 1, the results of
Heuristic 2 are omitted from the table for that reason. In this Table the third heuristic gives
the smallest deviation from the optimum. The c2

b12
are all greater than one, so Heuristic 3 is for

these scenarios only based on the proportion of the loads, but rescaled. This scaling, by taking
the squared root of the βi

′s results in a better heuristic for these scenarios.

5.3 Hyper-exponentially distributed service times at the first queue, and
exponentially distributed service times at the second queue

Table 3 shows that none of the heuristics gives always the optimal solution for the thread-pool
dimension. The first heuristic is pretty good. The second is not accurate at all, it assigns too
many servers to the first queue. If this is the case, the jobs can easily overtake each other at the

P51/9

(β1, β2) c∗ ES ĉ∗(H1) ES(H1) ∆(H1) ĉ∗(H2) ES(H2) ∆(H2) ĉ∗(H3) ES(H3) ∆(H3)

(1,1) (5,5) 7.027 (5,5) 7.027 0.00% (9,1) 10.274 46.31% (5,5) 7.027 0.00%
(1,2) (4,6) 10.254 (3,7) 10.460 2.01% (9,1) 12.647 23.34% (4,6) 10.254 0.00%
(2,1) (7,3) 10.753 (7,3) 10.753 0.00% (9,1) 15.744 46.40% (6,4) 10.843 0.84%
(1,10) (3,7) 36.619 (1,9) 37.047 1.17% (9,1) 37.306 1.88% (1,9) 37.047 1.17%
(10,1) (9,1) 40.555 (9,1) 40.555 0.00% (9,1) 40.555 0.00% (8,2) 40.638 0.21%

Table 3: Hyper-exponentially distributed service times at the first queue, exponentially dis-
tributed service times at the second queue.

first queue, but there is not enough capacity left over for the second queue, this results in too
much queuing at the second queue. This is solved by not prioritizing the first queue completely,
which is forced by the first and third heuristic. Heuristic 3, in where the βi

′s are rescaled has
a smaller average error than Heuristic 1.

5.4 Exponentially distributed service times at the first queue, and hyper-
exponentially distributed service times at the second queue

(β1, β2) c∗ ES ĉ∗(H1) ES(H1) ∆(H1) ĉ∗(H2) ES(H2) ∆(H2) ĉ∗(H3) ES(H3) ∆(H3)

(1,1) (4,6) 6.903 (5,5) 7.069 2.41% (1,9) 18.482 22.87% (5,5) 7.069 2.41%
(1,2) (3,7) 10.444 (3,7) 10.444 0.00% (1,9) 13.159 26.00% (4,6) 10.617 1.65%
(2,1) (5,5) 10.158 (7,3) 11.025 8.54% (1,9) 11.158 9.85% (6,4) 10.348 1.87%
(1,10) (2,8) 37.764 (1,9) 37.958 0.51% (1,9) 37.958 0.51% (2,8) 37.764 0.00%
(10,1) (1,9) 36.029 (9,1) 42.147 16.98% (1,9) 36.029 0.00% (1,9) 36.029 0.001%

Table 4: Exponentially distributed service times at the first queue, hyper-exponentially dis-
tributed service times at the second queue.

Table 4 presents the case with exponentially distributed service times at the first queue and
hyper-exponentially distributed service times at the second queue. For these scenarios the third
heuristic is again the most accurate heuristic. In this heuristic the ratio of the βi

′s is rescaled,
compared with the first heuristic. This results in smaller error. In the case with β1 = 10 and
β2 = 1 the cv2

b12
< 1 results in the strategy (1,9). Distinguishing this scenario the third heuristic

results in a large improvement compared with the first heuristic.

5.5 Conclusion

In this paper fundamental insights into the expected sojourn time of the model (see Figure 1)
are gained. Heuristics are given for minimizing the expected sojourn time. Heuristic 3, based
on the joined coefficient of variation and on the rescaled ratio of the βi

′s is the most accurate
heuristic, this heuristic has an overall average error of only 0.24%, which is a very accurate
result. In Table 5 the results of the heuristics are summarized and compared. Heuristic 3 has
the smallest average error, the smallest maximum error and zero case with an error larger than
5%.

P51/10

Heuristic 1 Heuristic 2 Heuristic 3

Average error 4.05% 7.40% 0.24%
Maximum error 16.98% 46.40% 2.41%
Cases with ≥ 5% error 12 13 0

Table 5: Comparison of the three heuristics, considering 35 scenarios.

6 Research challenges

The results presented in this paper provide fundamental insights into the expected sojourn time
of layered queuing models and the dimensioning of the thread-pools such that the expected
sojourn time is minimized. Still there are several new challenges for further research.
First, an interesting feature is to extend the queuing network with more queues on the software
layer and more resources on the hardware layer. Secondly it will also be very interesting to inves-
tigate the thread-pool dimensioning problem dynamically and consider the gain by dimensioning
the thread-pool in that manner. An other challenge will be to find a closed form expression for
the expected sojourn time for this kind of queuing network.

Acknowledgments

The authors gratefully acknowledge Prof. dr. ir. J. van der Wal and Prof. dr. N.M. van Dijk
for having helped to initiate the research culminating in this paper.

References

[1] Avi-Itzhak, B. and Halfin, S. (1988). Expected response times in a non-symmetric time
sharing queue with a limited number of service positions. Proceedings of ITC-12, 5.4B.2.1-
7.

[2] Borst, S.C., Mandelbaum, A. and Reiman, M.I. (2004). Dimensioning large call centers.
Operation Research 52 no.1, 17-34.

[3] Boxma, O.J. and Daduna, H. (1990). Sojourn times in queueing networks. In: Stochastic
Analysis of Computer and Communication Systems. Elsevier Science Publishers.

[4] Cohen, J.W. and Boxma, O.J. (1983). Boundary value problems in queueing system anal-
ysis. North Holland, Amsterdam.

[5] Ehrlich, W.K., Hariharan, R., Reeser, P.K., and Van der Mei, R.D. (2001). Performance
of Web servers in a distributed computing environment. In: Teletraffic Engineering in the
Internet Era, proceedings ITC-17 (Salvador-de Balia, Brazil), 137-148.

[6] Fayolle, G. and Iasnogorodski, R. (1979). Two coupled processors: the reduction to a
Riemann-Hilbert problem. Zeitschrift für Warscheinlichkeitstheorie und Verwandte Gebiete
47, 325-351.

[7] Harkema, M., Gijsen, B.M.M., Van der Mei, R.D. and Hoekstra, Y. (2004). Middleware
performance modelling. Proceedings international Symposium on Performance Evaluation

P51/11

of Computer and Telecommunication Systems, SPECTS (San Jose, CA, July 2004), 733-
742.

[8] Harchol-Balter, M., Bansal, N. (2001). Analysis of SRPT scheduling: Investigating Unfair-
ness. ACM sigmetrics/performance 2001, 279-290.

[9] Konheim, A., Meilijson, I. and Melkman, A. (1981). Processor-sharing of two parallel lines.
Journal of Applied Probability 18, 952-956.

[10] Van der Mei, R.D., Hariharan, R. and Reeser, P.K. (2001). Web server performance mod-
eling. Telecommunication Systems 16, 361-378.

[11] Van der Mei, R.D., Gijsen, B.M.M. and Mohy el Dine, S. (2005). Stability and throughput
in a layered tandem of multi-server queues. Submitted.

[12] Rolia, J.A. and Sevcik, K.C. (1995). The method of layers. IEEE Transactions on Software
Engineering 21, 689-699.

[13] Takagi, H. (1990). Queueing analysis of polling models: an update. Stochastic Analysis
of Computer and Communication Systems, ed. H. Takagi (North-Holland, Amsterdam),
267-318.

[14] Takagi, H. (1997). Queueing analysis of polling models: progress in 1990-1994. Frontiers in
Queueing: Models, Methods and Problems, ed. J.H. Dshalalow (CRC Press, Boca Raton,
FL).

[15] Tijms, H.C., (2003). A first course in stochastic models. Wiley, England.

[16] Weij, W. van der (2004). Sojourn times in a two-layered tandem queue with limited service
positions and a shared processor, Master Thesis, University of Amsterdam.

[17] Woodside, C.M., Neilson, J.E., Petriu, D.C. and Majumdar, S. (1995). The Stochastic
Rendezvous Network model for the performance of synchronous client-server like distributed
software. IEEE Transactions on Computers 44, 20-34.

P51/12

