
Stability and Throughput in a Two-Layered Network of Multi-Server Queues

W. van der Weija and R.D. van der Meia,b

aCWI, Advanced Communication Networks, Amsterdam, The Netherlands
bVrije Universiteit, Faculty of Sciences, Amsterdam, The Netherlands

We study stability and throughput in a two-layered queueing network consisting of two multi-
server nodes, where at any time the busy servers share a common underlying resource in a
processor-sharing fashion. We assume general arrival processes, general service-time distribu-
tions, arbitrary numbers of servers at both queues, and multiple customer classes, each with a
class-specific arrival rate and visit order. For this model we derive a full characterization of the
per-queue stability and the per-class throughput, considered as a function of the arrival rates, in
a general paramenter setting. The results provide intuition and new fundamental insights into
the behavior of queueing networks with this multi-layered structure.

Key words: Multi-server queues; layered queuing models; stability; fair-shared processor; mul-
tiple classes of arrival streams.

1 Introduction

In today’s information and communication infrastructures we observe a growing diversity and
heterogeneity in applications that share parts of the infrastructure. Examples of such infrastruc-
tures are Web-based multi-tiered system architectures, with a client tier to provide an interface
to the end users, a business logic tier to coordinate information retrieval and processing, and
a data tier with legacy systems to store and access customer data. In such environments dif-
ferent applications compete for access to shared infrastructure resources, both on the software
level (e.g., mutex and database locks, thread pools) and on the hardware level (e.g., bandwidth,
processing power, disk access). Hence, the performance of these applications is a complex in-
terplay between software and hardware contention. These observations have raised the need to
perform a fundamental analysis of multi-layered performance models, where servers at one layer
are customers at a lower layer. To this end, in this paper we study perhaps one of the simplest
non-trivial multi-layered queueing models: a two-layered two-node of multi-server queues, where
at any moment the non-idling servers share an underlying resource in a processor-sharing (PS)
fashion. The results provide a variety of new and fundamental insights, and as such may be
seen as a significant step forward in obtaining an in-depth understanding in the behavior of
multi-layered queueing models.

Many of today’s application servers need to properly handle huge amounts of transactions within
a reasonable time frame. Each transaction typically consists of several sub-transactions that
have to be processed some fixed or probabilistic order. To this end, application servers usually
implement a number of thread pools, each of which is dedicated to performing a specific sub-
transaction. Consider for example the Web server performance model proposed in [3]. Each
HTTP transaction consists of one or two sub-transactions: a document-retrieval (DT) step and
a script processing (SP) step. To this end, the Web server implements two thread pools, a

P02/1



dedicated pool of threads performing DT processing, and a pool of threads performing SP pro-
cessing. The Web server model consists of two multi-server queues, where servers at one queue
represent the DT threads, and the servers at the other queue represent SP threads. A particular
feature of this model is that at any moment in time the active threads share a common Central
Processing Unit (CPU) hardware in a PS fashion. Other examples of performance models with
software-hardware interaction are presented in [5, 7].

The literature on single-layered queueing networks is widespread and has been successfully ap-
plied in many application areas (see [1] for an overview of the available results). However, only
a limited number of papers focus on the performance of multi-layered queuing networks. Rolia
and Sevcik [9] propose the so-called Method of Layers (MoL), i.e., a closed queueing-network
based model for the responsiveness of client-server applications, explicitly taking into account
both software and hardware contention. Another fundamental contribution is presented by
Woodside et al. [12], who propose to use the so-called Stochastic Rendez-Vous Network (SRVN)
model to analyze the performance of application software with client-server synchronization.
The contributions presented in [9] and [12] are often referred to as Layered Queuing Models
(LQMs). Another class of layered queuing models are so-called polling models, i.e., multi-queue
single-server models where the available service capacity is alternatingly allocated to one of the
queues in some round-robin fashion (see [10, 11]). Another related class of models are so-called
coupled-processor models, i.e., multi-server models where the service speed of a server at a given
queue depends on the number of servers at the other queues (see [2, 4, 6] for results). A com-
mon drawback of the available results on multi-layered queuing models is that exact analysis is
primarily restricted to special cases, and numerical algorithms are typically required to obtain
performance measures of interest (see for example [12]). Consequently, in-depth understanding
in the behavior of multi-layered queueing models is limited.

In this paper we consider a two-node network of multi-server queues with a general arrival
processes, general service-time distributions, multiple customers classes each with a their own
routing scheme and arrival rate, and arbitrary numbers of servers at both queues, where all
busy servers share a common underlying resource in a processor-sharing (PS) fashion. For this
model, we provide a full characterization of the per-queue stability and the per-class through-
put, in a general parameter setting. To this end, we first show that the per-class throughput
values satisfy a uniquely solvable set of linear equations, for a given stability subset. Second,
we show that there exists a unique stability subset for which this solution is feasible. These
two results together provide a full and unique characterization of the throughput and stability
figures. Then, for a number of modeling examples we developed closed-form expressions for
the stability subsets and the corresponding throughput values. Moreover, we obtain a number
of seemingly counter-intuitive results, and provide explanations for them. We believe that the
results presented in this paper give new and fundamental insights into the stability and through-
put figures in hierarchical queueing networks.

This paper partly extends the results obtained by Van der Mei et al. [8], where expressions
are derived for the per-queue stability and throughput in a tandem of N > 1 multi-server
queues, where queue i has ci parallel servers and mean service time βi. A specific feature of the
tandem model studied in [8] is that each customer visits all queue in the fixed order 1, 2, . . . , N .
An interesting feature of [8] is the following bottleneck property: if for queue i there exists j < i
such that βj/cj > βi/ci, then queue i will never become unstable, not even when the arrival

P02/2



rate grows to infinity; in other words, queues that are “behind” a bottleneck queue will never
become unstable. In this context, the paper in [8] differs fundamentally from the model consid-
ered in the current paper where we consider a network - rather than a tandem - of queues, where
customers may follow different routes, so that in general the bottleneck property does not exist.
Consequently, the analysis of a network of queues is essentially different from the tandem-queue
analysis described in [8].

The remainder of this paper is organized as follows. In Section 2 the model is described and the
relevant notation is introduced. In Section 3 we provide a full characterization of the per-queue
stability and per-class throughput. In Section 4 we consider a number of specific model in-
stances, and provide expressions for the stability regions and corresponding throughput values,
giving new insights into the stability and throughput behavior of the model. Finally, in Section
5 we address a number of challenging topics for further research.

2 Model

Consider a network of two multi-server queues, Q1 and Q2, both an infinite buffer space. Let
the service times at Qi are generally distributed with finite mean βi. Let β := (β1, . . . , βN ),
and define B := {β : βi > 0 (i = 1, . . . , N)}. Let ci the number of servers at Qi, define
c = (c1, . . . , cN ), and let C be the set of possible combinations of the number of servers, i.e.,
C := {c : ci ∈ {1, 2, . . .} (i = 1, . . . , N)}. Denote by Ni the random variable indicating the
number of customers present (i.e., either waiting or being served) at Qi. Then at any time
the number of busy servers at Qi is Mi := min{Ni, ci}. The total service capacity (which by
defintion equals 1) is shared by the active servers in a Processor Sharing (PS) fashion. That
is, the service rate of each of the busy servers is 1/

∑N
i=1 Mi; if the system is empty, then all

servers are idle. We consider four different customers classes, numbered 1, 2, 12 and 21, with the
following interpretations. Class-1 customers arrive at Q1 according to a general arrival process
with rate λ1 ≥ 0, and after receiving service at Q1 immediately depart from the system; thus,
class-1 customers never visit Q2. Class-2 customers arrive at Q2 at rate λ2 ≥ 0, and after
receiving service at Q2 immediately depart from the system. Class-12 customers arrive at Q1 at
rate rate λ12 ≥ 0, and after receiving service at Q1 immediately proceed to Q2. After receiving
service at Q2 the customers depart from the system. Finally, class-21 customers arrive at Q2

at rate λ21 ≥ 0, and then subsequently visit Q2 and Q1 before departing from the system (see
Figure 1).

Denote λ = (λ1, λ2, λ12, λ21) and let Λ := {λ : λ1, λ2, λ12, λ21 ≥ 0}. Denote by λ′i the departure
rate of class-i customers (i = 1, 2). Moreover, for class-12 customers we denote by λ′12 ≥ 0 the
departure rate from Q1, and by λ′′12 the departure rate from Q2. Similarly, for class-21 customers
we denote by λ′21 ≥ 0 the departure rate from Q2, and by λ′′21 the departure rate from Q1. The
load at Q1 (i.e., the amount of arriving work at Q1) is defined as ρ1 := β1(λ1 + λ12 + λ′21), and
similarly, the load offered to Q2 is defined as ρ2 := β2(λ2 + λ21 + λ′12). The total load offered
to the system is denoted by ρ := ρ1 + ρ2. We will refer to Qi as stable if and only if the arrival
rate of customers at the queue equals the departure rate. Thus, Q1 is stable if and only if
λ1 = λ′1, λ12 = λ′12 and λ′21 = λ′′21. Similarly, Q2 is called stable if and only if λ2 = λ′2, λ

′
12 = λ′′12

and λ21 = λ′21. A queue is called unstable if and only if it is not stable. Finally, we define
the notion of a bottleneck: Q1 is called a bottleneck if and only if β1/c1 ≥ β2/c2, and Q2 is

P02/3



Figure 1: Illustration of the model (c1 = 3, c2 = 5,M1 = M2 = 3).

called a bottleneck if and only if β1/c1 ≤ β2/c2. If β1/c1 = β2/c2, then both queues are called
bottlenecks. Finally, define the set of bottleneck queues by B := {i : Qi is a bottleneck}. Notice
that by definition B = {1}, {2} or {1, 2}.

3 Analysis

In this section we give an exact characterization of the per-queue stability and the per-class
throughput considered as a function of λ ∈ Λ, for given β ∈ B and c ∈ C. For compactness of
the presentation the proofs of the various results are omitted.

To analyze the stability of the individual queues, the following notation is useful. For given
β ∈ B, c ∈ C, we denote by (S, S) the set of values of λ ∈ Λ for which both queues are stable.
Similarly, (I, S) is the set of values of λ for which Q1 is unstable and Q2 is stable. (S, I) is
the set of values of λ for which Q1 is stable and Q2 is unstable, and finally, (I, I) is the set of
λ-values for which both queues are unstable. Note that in this way, the set Λ is partitioned into
the following four stability subsets:

Λ = (S, S) ∪ (I, S) ∪ (S, I) ∪ (I, I). (1)

We will now derive an exact characterization of the four stability subsets (S, S), (I, S), (S, I)
and (I, I) and give expressions for the corresponding per-class throughput values. To start, we
will show that, for given stability subset, the per-queue throughput values can be obtained from
a set of linear equations (Lemmas 1 to 4). Subsequently, we show that the stability subsets are
uniquely identified (Lemma 5).

Lemma 1 (Per-queue stability and throughput for stable systems)
λ ∈ (S, S) if and only if

(λ1 + λ12 + λ21)β1 + (λ2 + λ12 + λ21)β2 ≤ 1, (2)

P02/4



and in that case the departure rates are:

λ′1 = λ1, λ′2 = λ2, λ′12 = λ′′12 = λ12, λ′21 = λ′′21 = λ21. (3)

In words, both queues are stable if and only if equation (2) is satisfied, and in that case for each
(class, queue)-combination the rate into a queue equals the rate out of that queue.

Lemma 1 characterizes for which parameter settings both queues are stable. Lemmas 2 to
4 below deal with the case in which at least one queue is unstable.

Lemma 2 (Work conserving property)

(λ1 + λ12 + λ21)β1 + (λ2 + λ12 + λ21)β2 ≥ 1, (4)

if and only if

(λ′1 + λ′12 + λ′′21)β1 + (λ′2 + λ′21 + λ′′12)β2 = 1. (5)

In words, the system as a whole is unstable (i.e., ρ ≥ 1) if and only if the PS-server runs at full
speed, i.e., the total amount of work handled per time unit equals 1.

Lemma 3 (Preservation of throughput ratios)
For any λ ∈ Λ, for both queues the ratios between the per-class rate into a queue and the
corresponding output rate is preserved: For Q1,

λ1

λ′1
=

λ12

λ′12

=
λ′21

λ′′21

=: Γ1, (6)

and for Q2,

λ2

λ′2
=

λ21

λ′21

=
λ′12

λ′′12

=: Γ2. (7)

In words, for each queue the ratios between the output rates of the different classes are equal to
the ratios between the input rates. This property is an immediate consequence of the fact that
no priority scheme is used. Note also that in general Γi ≥ 1, and that Γi = 1 if and only if Qi

is stable.

Lemma 4 (Fairness for unstable queues)
If λ ∈ (I, I), then

(λ′1 + λ′12 + λ′′21)β1 =
c1

c1 + c2
, (λ′2 + λ′21 + λ′′12)β2 =

c2

c1 + c2
. (8)

In words, if both queues are unstable, then the rates at which both queues are served are pro-
portional to the numbers of servers at both queues. This property follows directly from the fact
that if both queues are unstable, then Q1 and Q2 occupy all c1, c2 servers.

For given λ ∈ Λ, β ∈ B and c ∈ C, and stability subset S ⊂ Λ, relations (2) to (8) consti-
tute a set of linear equations for the six output variables λout := (λ′1, λ

′
2, λ

′
12, λ

′′
12, λ

′
21, λ

′′
21) it

is readily verified that for any choice of the stability subsets the set of equations has a unique

P02/5



solution. In other words, for given stability subsets, λout is uniquely determined by equations
(2) to (8).

Definition
For given λ ∈ Λ, β ∈ B and c ∈ C and stability subset S ⊂ Λ, the couple (λ,S) is called feasible
if the unique solution λout of the set of equations (2)-(8) satisfies the following relations:

λ1 ≥ λ′1 ≥ 0, λ2 ≥ λ′2 ≥ 0, λ12 ≥ λ′12 ≥ λ′′12 ≥ 0, λ21 ≥ λ′21 ≥ λ′′21 ≥ 0, (9)

and, if λ ∈ (I, S) then

(λ′1 + λ′12 + λ′′21)β1

c1
>

(λ′2 + λ′21 + λ′′12)β2

c2
, (10)

while the reverse it true for λ ∈ (S, I).

In words, the inequalities in (9) state that for each class crossing a certain queue the out-
put rate cannot exceed the input rate, and (10) states that the load-per-server of an unstable
queue is stricktly greater than the load-per-server of a stable queue.

Lemma 5 (Uniqueness of the feasible solution)
For each λ ∈ Λ, β ∈ B and c ∈ C there exists a unique stability set S ⊂ Λ such that the couple
(λ,S) is feasible.

In Section 4 we give illustrative examples for determining the stability subsets.

4 Examples

In this section we use the results obtained in Section 3 to obtain explicit expressions for the
stability subsets and the corresponding throughput values for a number of model examples.

4.1 Case I: λ1, λ12 > 0, λ2 = λ21 = 0

Let us consider a tandem of two multi-server queues with only two customer classes, 1 and 12.
Lemma 1 implies that λ ∈ (S, S) if and only if (λ1 + λ12)β1 + λ12β2 ≤ 1, and hence,

(S, S) = {λ ∈ Λ : λ1β1 + λ12(β1 + β2) ≤ 1}. (11)

Moreover, if λ ∈ (S, S) then the output parameters λ′1, λ′12 and λ′′12 can be expressed in terms
of the input parameters λ1 and λ12 as follows:

λ′1 = λ1 and λ′12 = λ′′12 = λ12. (12)

From Lemma 1 it follows that if λ ∈ (I, S) then (λ1 + λ12)β1 + λ′′12β2 ≥ 1, or equivalently
(λ′1 + λ′12)β1 + λ′′12β2 = 1 (Lemma 2). Moreover, Lemma 3 implies that λ1/λ′1 = λ12/λ′12, and
because of the stability of Q2, λ′′12 = λ′12. Equation (10) implies that for λ ∈ (I, S) we have
(λ′1 + λ′12)β1/c1 ≥ λ′′12β2/c2. Combining these relations, it is readily verified that if {1} ⊂ B,
then

(I, S) = {λ ∈ Λ : λ1β1 + λ12(β1 + β2) > 1} , (13)

P02/6



and if {2} ⊂ B, then

(I, S) =
{

λ ∈ Λ : λ1β1 + λ12(β1 + β2) > 1 and
(

β2

c2
− β1

c1

)
λ1 − β1

c1
λ12 > 0

}
, (14)

and that the throughput values are given by the following expressions:

λ′1 =
λ1

(λ1 + λ12)β1 + λ12β2
, λ′12 = λ′′12 =

λ12

(λ1 + λ12)β1 + λ12β2
. (15)

From Lemma 1 it follows that if λ ∈ (S, I) then (λ1 + λ12)β1 + λ′′12β2 ≥ 1, or equivalently
(λ′1 + λ′12)β1 + λ′′12β2 = 1 (Lemma 2). The stability of Q2 implies λ′1 = λ1 and λ′12 = λ12.
Moreover, equation (10) implies that for λ ∈ (S, I) we also have (λ′1 + λ′12)β1/c1 < λ′′12β2/c2.
Then it is readily verified that if {1} ⊂ B, then (S, I) = ∅, and if {2} ⊂ B, then

(S, I) =
{

λ ∈ Λ : λ1β1 + λ12(β1 + β2) > 1 and λ1 + λ12 <
c2

(c1 + c2)β1

}
, (16)

and that the throughput values are given by the following expressions:

λ′1 = λ1, λ′12 = λ12, λ′′12 =
1− (λ1 + λ12)β1

β2
. (17)

Using similar arguments, including the use of Lemma 4, it is readily verified that if {1} ⊂ B
then (I, I) = ∅, and otherwise,

(I, I) =
{

λ ∈ Λ : λ1β1 + λ12(β1 + β2) > 1, λ1 + λ12 ≥ c2

(c1 + c2)β1
,

(
β2

c2
− β1

c1

)
λ1 − β1

c1
λ12 ≤ 0

}
,

(18)

and that the throughput values are given by the following expressions:

λ′1 =
λ1c1

(λ1 + λ12)β1(c1 + c2)
, λ′12 =

λ12c1

(λ1 + λ12)β1(c1 + c2)
, and λ′′12 =

c2

β2(c1 + c2)
. (19)

Figure 2 below illustrates the partitioning into stability subsets. On the left-hand side, we have
β1 = 2, β2 = 4, c1 = c2 = 1, so that B = {2}. On the right-hand side β1 = 4, β2 = 2, c1 = c2 = 1,
so that B = {1}.

Remark 1:
The results also lead to the following seemingly counter-intuitive observation that when Qi is
unstable for given value of λ it may well occur an increase of one of the arrival rates can make
Qi stable. To see this, consider for example the model with β1 = 2, β2 = 4 and c1 = c2 = 1, see
the left-hand side of Figure 2. Now, let us consider the per-queue stability as a function of λ1

for fixed λ12 := 6/40. Then it is readily verified that if λ1 ≤ 1/40 then both queues are stable.
Moreover, if we increase λ1 such that 1/40 < λ1 ≤ 4/40, then Q2 become unstable, while Q1

is still stable. Subsequently, if λ1 is further increased to 4/40 < λ1 < 6/40, then both queues
become unstable. Finally, it is interesting to see that if λ1 ≥ 6/40 then Q2 becomes stable again,
while Q1 remains unstable. Quite remarkable.
To provide an intuitive explanation for this, note that the load offered to the system by class-12
customers is λ12(β1 + β2) = 6

40(2 + 4) = 0.9, so that the system (as a whole) becomes unstable

P02/7



Figure 2: Partitioning into stability subsets for Case I.

when λ1β1 = 4λ1 > 1 − 0.9 = 0.1, or equivalently, λ1 > 1/40. Then, as λ1 increases beyond
1/40 the load on Q1 is increased, which goes as the expense of the processing power of Q2, so
that Q2 becomes unstable. Subsequently, if λ1 is further increased beyond 4/40, the load on Q1

is further increased while the unstable Q2 keeps all c2 servers busy all time and cannot consume
more processing power, and consequently, Q1 also becomes unstable. Finally, if λ1 grows large,
then the vast majority of customers passing through Q1 are class-1 customers, so that the rate
at which class-12 customers enter Q2 (i.e., λ′12) tends to become small, while Q2 still has its fair
share c1/(c1 + c2) of the processing capacity, and consequently, Q2 becomes stable (again) as λ1

is large enough.

Remark 2:
Note that if Q2 is the only bottleneck (i.e., β1/c1 < β2/c2) then the three lines in Figure 2
intersect at a single point λ∗ := (λ∗1, λ

∗
12), with

λ∗1 :=
1

c1 + c2

(
c1

β1
− c2

β2

)
and λ∗12 :=

1
β2

c2

c1 + c2
. (20)

According to the definition of stability, we have (λ∗1, λ
∗
12) ∈ (S, S). At this point, which lies

“on the edge” of the stability region, a minor change in λ∗ may lead to instability of one of the
queues, or both.

Remark 3:
Comparing the two graphs plotted in Figure 2, it is interesting to see that the partitioning of Λ
into stability subsets strongly depends on which queue is a bottleneck. For example, we observe
that in the case where Q1 is the bottleneck (i.e., β1/c1 > β2/c2), Q2 never becomes unstable,
not even when both arrival rates λ1 and λ12 grow to infinity. To give an intuitive explanation for
this, note that all customers that eventually pass through Q2 (i.e., class-12 customers) first pass
through Q1 before entering Q2. Then if both Q1 and Q2 are running at full speed, the numbers
of customers they can handle per time unit is α1 := c1/β1(c1 + c2) and α2 := c2/β2(c1 + c2),

P02/8



respectively. Consequently, if β1/c1 > β2/c2 then α1 < α2, so that the output of Q1 can never
saturate Q2. Alternatively, if Q2 is a bottleneck, then both Q1 and Q2 may become unstable as
the arrival rates λ1 and λ12 become large.

4.2 Case II: λ12, λ21 > 0, λ1 = λ2 = 0

Let us now consider a network of two multi-server queues with only two customer classes, 12
and 21. Interestingly, this will lead to fundamentally different properties of the stability subsets,
which will be discussed below.

From Lemma 1, λ ∈ (S, S) if and only if (λ12 + λ21)(β1 + β2) ≤ 1, and hence,

(S, S) =
{

λ ∈ Λ : λ12 + λ21 ≤ 1
β1 + β2

}
. (21)

Moreover, the corresponding throughput values are: λ′12 = λ′′12 = λ12 and λ′21 = λ′′21 = λ21.
Using similar arguments, it is easy to verify that if {2} ⊂ B then (I, S) = ∅, and otherwise

(I, S) =
{

λ ∈ Λ : λ12 + λ21 >
1

β1 + β2
and λ12 + λ21 <

c2

β2(c1 + c2)

}
, (22)

and that the corresponding throughput values are

λ′12 = λ′′12 =
λ12

(λ12 + λ21)(β1 + β2)
, λ′′21 =

λ21

(λ12 + λ21)(β1 + β2)
. (23)

(S, I): Using symmetry, it is easy to seen that if {1} ⊂ B, then (S, I) = ∅, and otherwise

(S, I) =
{

λ ∈ Λ : λ12 + λ21 >
1

β1 + β2
and λ12 + λ12 <

c1

β1(c1 + c2)

}
, (24)

and that the corresponding throughput values are

λ′′12 =
λ12

(λ12 + λ21)(β1 + β2)
, λ′21 = λ′′21 =

λ21

(λ12 + λ21)(β1 + β2)
. (25)

Finally, it is easy to verify that if {2} ⊂ B, then

(I, I) =
{

λ ∈ Λ : λ12 + λ21 >
1

β1 + β2
, and λ12 + λ21 ≥ c1

β1(c1 + c2)

}
, (26)

and otherwise,

(I, I) =
{

λ ∈ Λ : λ12 + λ21 >
1

β1 + β2
, and λ12 + λ21 ≥ c2

β2(c1 + c2)

}
, (27)

and the throughput values are given by the following expressions:

λ′12 =
λ12c2

(λ12 + λ21)β2(c1 + c2)
, λ′′12 =

λ12c1

(λ12 + λ21)β1(c1 + c2)
, (28)

and

λ′21 =
λ21c2

(λ12 + λ21)β2(c1 + c2)
, λ′′21 =

λ21c1

(λ12 + λ21)β1(c1 + c2)
. (29)

P02/9



Figure 3: Partitioning into stability subsets for Case II.

Figure 3 below illustrates the partitioning into stability subsets. On the left-hand side, we
have β1 = 2, β2 = 4, c1 = c2 = 1, so that Q2 is the bottleneck. On the right-hand side
β1 = 4, β2 = 2, c1 = c2 = 1, so that Q1 is the bottleneck.

Remark 4:
Figure 3 illustrates the fact that in the model considered in Section 4.2 the borderlines are par-
allel. Consider for example the case λ ∈ (I, S), assuming β1/c1 > β2/c2. Then if λ12 is increased
with a certain value ε while λ21 is decreased with the same value ε, then the stability of both
queues does not change. To see this, we first observe that the load offered to Q1 remains equal:
β1(λ12+ε+λ′21−ε) = β1(λ12+λ′21). Moreover, the load offered to Q2 will become β2(λ21−ε+λ′12)
≤ β2(λ21−ε+λ12+ε) = β2(λ21+λ12). Hence, Q1 will remain unstable and Q2 will remain stable.

Remark 5:
We observe that if B = {2} then (I, S) = ∅. To see this, suppose B = {2} and λ ∈ (I, S). Then
by definition we have the following inequalities: (1) c1/β1 < c2/β2, (2) λ12 > λ′12 = λ′′12, and (3)
λ21 = λ′21 > λ′′21. Combining these inequalities it is readily seen that this is in contradiction with
(10). Hence, (I, S) = ∅. On the contrary, it is easy to verify that if {1} ⊂ B then (S, I) = ∅.

5 Research challenges

The results presented in this paper raise a number of challenging topics for further research.
First, the results presented here may be generalized to a more general network with an arbitrary
number of nodes and customers classes. To this end, the insights presented in this paper are
highly useful. Second, the results may be used for optimization purposes, where the total
throughput is optimized with respect to the number of servers at the different queues. Third, it
is interesting to consider how to evaluate and optimize other performance metrics, such as the
expected sojourn times.

P02/10



References

[1] Boxma, O.J. and Daduna, H. (1990). Sojourn times in queueing networks. In: Stochastic
Analysis of Computer and Communication Systems. Elsevier Science Publishers.

[2] Cohen, J.W. and Boxma, O.J. (1983). Boundary value problems in queueing system anal-
ysis. North Holland, Amsterdam.

[3] Ehrlich, W.K., Hariharan, R., Reeser, P.K., and Van der Mei, R.D. (2001). Performance
of Web servers in a distribuetd computing environment. In: Teletraffic Engineering in the
Internet Era, proceedings ITC-17 (Salvador-de Balia, Brazil), 137-148.

[4] Fayolle, G. and Iasnogorodski, R. (1979). Two coupled processors: the reduction to a
Riemann-Hilbert problem. Zeitschrift für Warscheinlichkeitstheorie und Verwandte Gebiete
47, 325-351.

[5] Harkema, M., Gijsen, B.M.M., Van der Mei, R.D. and Hoekstra, Y. (2004). Middleware
performance modelling. Proceedings international Symposium on Performance Evaluation
of Computer and Telecommunication Systems, SPECTS (San Jose, CA, July 2004), 733-
742.

[6] Konheim, A., Meilijson, I. and Melkman, A. (1981). Processor-sharing of two parallel lines.
Journal of Applied Probability 18, 952-956.

[7] Van der Mei, R.D., Hariharan, R. and Reeser, P.K. (2001). Web server performance mod-
eling. Telecommunication Systems 16, 361-378.

[8] Van der Mei, R.D., Gijsen, B.M.M. and Mohy el Dine, S. (2005). Stability and throughput
in a layered tandem of multi-server queues. Submitted.

[9] Rolia, J.A. and Sevcik, K.C. (1995). The method of layers. IEEE Transactions on Software
Engineering 21, 689-699.

[10] Takagi, H. (1990). Queueing analysis of polling models: an update. In: Stochastic Analysis
of Computer and Communication Systems, ed. H. Takagi (North-Holland, Amsterdam),
267-318.

[11] Takagi, H. (1997). Queueing analysis of polling models: progress in 1990-1994. In: Frontiers
in Queueing: Models, Methods and Problems, ed. J.H. Dshalalow (CRC Press, Boca Raton,
FL).

[12] Woodside, C.M., Neilson, J.E., Petriu, D.C. and Majumdar, S. (1995). The Stochastic
Rendezvous Network model for the performance of synchronous client-server like distributed
software. IEEE Transactions on Computers 44, 20-34.

P02/11


