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Abstract

We develop a method for approximating sojourn time distributions in open queueing net-
works. The work is motivated by the performance analysis of distributed information systems,
where transactions are handled by iterative server and database actions. In this paper we
restrict ourselves to a system with one server and a single database, modelled as an open
two-node queueing network with a processor sharing node and a first-come first-served node.
Extensive numerical results are presented for approximations of the mean sojourn time. The
accuracy of the approximations is validated with simulations.
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1 Introduction

The dramatic growth of the Internet and the popularity of PCs have boosted the emergence
of so-called Web services technology to compose new and advanced services on top of existing
basic services. A typical example of such services that are built on top of existing services is
holiday package reservation where the consumer can make a reservation for a hotel, a car and
an airline ticket at once. Other examples are PC banking, and on-line services offered by a
telephone company that enable the customers to check the status of telephone bills at their
home PC with Internet access. A typical feature of this type of distributed applications is that
a single transaction initiated by the end user may induce a sequence of server and database
transactions. A key factor for the success of this type of services is that the response times
observed by the end user are not overly long. This has motivated us to study response times
in distributed systems in a queueing-theoretical framework, where the customers represent
end-user initiated transactions, the network nodes represent the existing basic services and
the response times are modeled as the sojourn times of a customer in the system.

In this paper, we consider a two-node open queueing network with a processor sharing (PS)
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in [2].



node and a first-come first-served (FCFS) node. External customers arrive at the PS node
according to a Poisson process with rate A. A departing customer subsequently enters the
FCFS node with probability p, and leaves the system with probability 1 — p. Upon departure
from the FCFS node, a customer always returns to the PS node (see Figure 1). All service
times at all visits to both nodes are independent random variables, with distribution Bpg(-)
and Br(-) at the PS- and FCFS node, with mean 8ps and Br, respectively. The total load
at the PS- and FCFS node is pps := A\Bps/(1 —p) and pr := pA\Br /(1 — p), respectively, and
we assume that both loads are less than one. The PS node may represent a web server, and
the FCFS node a database server. Successive visits of a customer represent a sequence of web
server and database transactions.

Figure 1: The two-node open queueing network

It is notoriously hard to obtain exact results for sojourn times, especially if some form of
overtaking of customers occurs (see [1] for an overview of results on sojourn times in queueing
networks). Both processor sharing and feedback induce such overtaking. If the service times
at the FCFS node are exponentially distributed, then the joint queue length distribution has
a product form, and the mean queue lengths are easily obtained, yielding the mean sojourn
times via Little’s formula; but otherwise, even the mean sojourn times are not known. The
complexity of the problem of obtaining sojourn time results in queues with non-instantaneous
feedback was discussed in [5]. Hence in this paper we are looking for approximation methods
for the sojourn time distribution in the network. Our study is related to [7]. We consider
the same model, extending [7] in three ways: (i) we allow general service time distributions
in both nodes, (ii) we present a more general approximation method that allows the approxi-
mation of sojourn time distributions while requiring somewhat less restrictive approximation
assumptions, and (iii) we suggest several approximation refinements.

The rest of the paper is organized as follows. In Section 2, we describe several approximation
methods, with increasing complexity and accuracy. Section 3 contains an extensive numerical
evaluation of the different methods, concentrating on mean sojourn times — discussion of the
accuracy of the approximation methods for sojourn time variances and distributions is the
topic of another paper. Finally, in Section 4 we indicate some model extensions which can
also be handled by our methods.

2 Description of the approximation methods

We want to approximate the Laplace-Stieltjes transform (LST) of the joint distribution of the
total sojourn time Sps in the PS node and Sr in the FCFS node. Denote by Sg; (Sﬁrj)) the
total sojourn time at the first j visits to the PS (FCFS) node (S;?) = 0). We can write, for
Re wi,w2 > 0:

e (k+1) (k)
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k=0



Of course, taking w; = ws yields an expression for the total sojourn time, S, of a customer in
the system. We shall present four different approximation methods.

Method I: Independence Assumption (IA)
This approximation method is based on the following assumptions.

o Assumption 1. S(k+1) and Sgc) are independent, £k = 0,1,....
o Assumption 2°. Sgc; D is distributed as the sum of k + 1 independent, identically
distributed terms. The individual terms are distributed as ops, the stationary sojourn
time in an M/G/1 PS node with arrival rate A/(1 — p) and service time distribution
Bps(+). Similarly, s;’“) is distributed as the sum of k£ independent, identically distributed
terms, where each individual term is distributed as or, the stationary sojourn time in
an M/G/1 FCFS node with arrival rate Ap/(1 — p) and service time distribution Bp(-).

It should be noticed that the IA, also called Independent Flow Time Approzimation, is a
classic approximation method, that was proposed for a large class of queueing networks in
[6, 10]. From (2.1) and Assumptions 1 and 2% we obtain:

E[67W1SPS*W2SF] ~ Z(l _ p)pk(E[efwurps])k-kl(E[efwwrp])k. (2.2)
k=0

In particular, we find from (2.2) for the mean sojourn times
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with ,3;3) the second moment of the service time distribution in the FCFS node.

Successive sojourn times at the PS (FCFS) node are nearly independent if the times
between successive visits are relatively large; in the latter case, Assumption 2 is justified.
Method II takes the opposite extreme view; there it will be assumed that the times between
such successive visits are zero. We call this the short-circuit assumption.

Method II: Short-Circuit Assumption (SC)
This approximation method is based on the following assumptions.

o Assumption 1. S(kﬂ) and S%k) are independent, £k = 0,1,.

e Assumption 2°. S(k) has the same distribution as O'P the total sojourn time after k
visits in the PS node short-c1rcu1ted (i.e., with the FCFS node removed). Similarly, Sj (k)

has the same distribution as O'F , the total sojourn time after k visits in the FCFS node
short-circuited (i.e., with the PS node removed).

From (2.1) and Assumptions 1 and 2° we obtain:
s s > % (k1) (k)
Ele™157s725F] x 3 (1= p)p*E[e™1775 JE[e™27F . (2:5)
k=0

The LST E[e_“’i"’g'“)c )] for an M/G/1 FCFS queue with instantaneous feedback follows from

(k+
Doshi and Kaufman [4]. The LST E[e —oropy ] for an M/G/1 PS queue with instantaneous
feedback is the same as the LST of the sojourn time of a tagged customer with as service time
the sum of the k+1 service times Bi, ..., Bgy1 in an M/G/1 PS queue without feedback, with



as service time for an arbitrary customer the sum of a geom(p) distributed number of service
times B; (note that the tagged customer has exactly k+ 1 passes through the feedback queue,
but that an arbitrary customer has a geom(p) distributed number of passes). Theorem 2.2 of

Ott [8] gives the LST of the sojourn time distribution of a customer with service requirement
(k+1)
z in an M/G/1 PS queue; integration w.r.t. the density of By +- - -+ Byy1 gives E[e7*17Ps ']

These LST expressions in [4, 8] are quite complicated. If one is satisfied by just obtaining an
approximation for the mean and variance of Sl(gj; and Sg) (and hence of Sps and SF), then
relatively easy expressions for the means and variances of the former random variables can
be taken from [8] and from either [4] or [11].

In particular, we find from (2.5) for the mean sojourn times
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The latter expression equals p times the mean sojourn time in the M/G/1 queue with (in-
stantaneous) Bernoulli feedback (see Formula (35) of Takéacs [11]); the multiplication by p
reflects that the FCFS queue is not visited at all with probability 1 — p.

Method III: Weighted Average Approximation (WA)

Especially when the mean sojourn times at both queues are roughly equal, then the approx-
imations in (2.2) and (2.5) can be improved in the following way. Replace the LST’s in the
righthand side of (2.1) by weighted sums of LST’s that correspond to the two extremes of
short-circuiting (i.e., immediate feedback to the same queue) and independence of successive
sojourn times of a customer at the same queue (i.e., feedback after an infinite amount of
time):
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We choose the weight w as w = Ea'g; [Ea'gg. + Ea'g)] (alternatively, we could have chosen,

eg.,w= EO’ps/[Ea’Ps + EO’F]).
For the mean sojourn times we find in this case
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Method IV: Weighted Average with Correction (WAC)

In the approximation based on the Independence Assumption (and hence also partly in the
Weighted Average Approximation), we approximated individual sojourn times at the PS and
FCFS node by stationary sojourn times in M/G/1 queues. However, flows in the network
are clearly not Poisson flows [3] and hence the approximations probably can be improved by
approximating individual sojourn times at the PS and FCFS node by stationary sojourn times
in suitably chosen GI/G/1 queues.

Clearly the arrival rates Aps and Ar at the PS and the FCFS node are given by Aps =
A/(1—p) and Ar = Ap/(1 — p), respectively. In order to approximate the squared coefficients
of variation ¢ ps» 2 pg? A > and B  of the interarrival and interdeparture times at the PS
and the FCFS node, we used the following four approximate equations:



¢hps = Prs+ (1= pps)chps, (2.11)
criF = pCZDPs +1—p, (2.12)
2 2 2 2 2
¢pp = PrCBp + (1= pF)Cap, (2.13)
0124135 =1 —vp—}—vpc%F, (2.14)

where

Here, (2.11) is based on [14], where it is backed by extensive simulation results. Noticably,
this approximate relation was found to be remarkably accurate regardless of the service time
distribution. Furthermore, (2.12),(2.13) and (2.14) are based on Whitt’s QNA paper [12].
Remark that the approximate formulas for c3, pg and cZDF are similar, except for one major
difference: The service time variability does not appear in the formula for ¢% pg» reflecting
near-insensitivity.

From (2.11-2.14) we get the following expressions for c% ,, s and Cap:

B pvpr(1l - c,)

1—p*(1 = ppg)(1 - p%)’
1—p*v(1 - pps)(1 — prch,)

1—p*v(l - pps)(1 — pF)
Once we have approximated these squared coefficients of variation of the interarrival times at
the two nodes, we can approximate the sojourn times of the individual visits at the nodes by
using results of Sengupta [9] for the GI/G/1 PS node and by using results of Whitt [12] for
the GI/G/1 FCFS node.

The approximation for the mean sojourn time in the GI/G/1 PS queue in [9] is given by
Eops ~ Bps/(1—n), where 7 is the smallest positive root of the equation n = a((1—17)/Bps)
with «(-) the Laplace-Stieltjes transform of the interarrival times. For the interarrival time
distribution we choose a hyperexponential distribution of order two with balanced means, with
mean 1/Apg and squared coefficient of variation A ps- Note that Sengupta’s approximation
for the mean sojourn time is only based on the mean service time and not on the coefficient
of variation c% g

The approximation in [12] for the mean sojourn time in a G/G/1 FCFS queue with mean
service time 8, load p and squared coefficients of variation c¢%, c% reads:

Bp(ch+ck)g

2
Caps = 1

2
CAp

Eo~ B+ s
2(1-p)
where
2(1—p) (1—-c%)? p 2
g= exrp [_Tpﬁ]’ lfCA<].,
1, if 4 > 1.

This formula for the GI/G/1 queue does not take into account feedback. Following an
idea of Whitt [13], we use the above GI/G/1 formula, eliminating feedback by taking instead
load pr = ABrp/(1 — p) (as before) and replacing ¢% by p+ (1 — p)c2BF. As a consequence,
the total mean sojourn time in the PS node and the FCFS node in the WAC method can be
approximated by the following expressions:

1 Bes Bps
ESps ~ —— (w25 (1 — w) 225 2.1
Sps l—p(wl—pps+( w)l—n)’ (215)
and
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3 Numerical results

To assess the accuracy of the approximations discussed in Section 2, we have performed nu-
merical experiments, comparing the approximations with simulations. We have checked the
accuracy of the approximations for many parameter combinations, by varying the arrival rate
()), the loads per queue (pps, pr), the variability in the service-time distributions (cbg,c%)
and the feedback probability (p). From the simulations we have calculated point estimations
for the mean sojourn times, and 95% confidence intervals. Denoting the point estimations
from the simulations by zsm and the approximations by zapp, the relative error of the ap-
proximations is defined as

A% = Zepp ~ Esim o 100%. (3.1)

Zsim

The results of the experiments are outlined below.

Table 1 below shows the results for highly asymmetrical systems in which one node is heavily
loaded (i.e., 90%) while the other one is lightly loaded (i.e., 10%). The service times are
H,-distributed (with balanced means), and p = 0.8. For any model instance, the mean ser-
vice times (Bps and Br) were chosen such that the listed load-values were realized. Table 1
shows the point estimations and approximations for the total mean sojourn times, and the
corresponding relative errors. Confidence intervals are not shown for compactness of the pre-
sentation. The results presented in Table 1 show that the simple “naive” approximation, IA,

A | pps | pr | chg | & | sim IA | A% | SC | A%
0.36 | 0.9 | 0.1 | 1.67 | 1.67 | 25.2 25.3 0.6 | 256.3 | 0.6
0.09 | 09 | 01| 167 |4.56 | 100.8 | 101.5 | 0.6 | 101.3 | 0.5
0.36 | 0.9 | 0.1 | 4.56 | 4.56 | 25.6 25.4 -0.9 | 253 | -1.1
0.09 | 09 | 0.1 | 4.56 | 1.67 | 103.2 | 101.3 | -1.9 | 101.2 | -1.9
0.01 | 0.1 | 0.9 | 1.67 | 1.67 | 958.5 | 1181.1 | 23.2 | 965.1 | 0.7
0.04 | 0.1 | 0.9 | 1.67 | 4.56 | 302.0 | 587.8 | 94.6 | 299.8 | -0.7
0.04 | 0.1 | 0.9 |4.56 | 4.56 | 299.4 | 587.8 | 96.3 | 299.8 | 0.1
0.01 | 0.1 | 0.9 | 4.56 | 1.67 | 951.2 | 1181.1 | 24.2 | 965.1 | 1.5

Table 1: E[S] for highly asymmetically loaded systems with varying variability of the service-time
distributions: approximations versus simulations.

that completely ignores any correlations between successive sojourn times may lead to large
relative errors, particularly in the cases where the FCFS node is dominant. Note that in case
the PS node is dominant the correlation between successive sojourn times does not play a key
role for the mean sojourn times, which explains why IA performs quite well in the first four
models. Moreover, the results show that the SC approximation, which does take into account
correlations between successive sojourn times, here leads to highly accurate results.

When the loads of the queues are roughly the same, the SC approximation becomes inaccurate
(see also Tables 3 to 5 below), which has motivated us to develop the refined approximations
WA and WAC. To assess their accuracy, we consider the set of model instances listed in Table
2 below. The parameter sets have been constructed such that the loads at both queues are
the same (pps = pr =: p) and significant (p = 0.5 or 0.8) while the squared coefficient of
variation of the service time distributions is varied (only results for values larger than 1 are
presented). Table 3 shows the results for the total mean sojourn times E[S] for each of the
twelve models specified in Table 2. The results in Table 3 show that indeed the IA and SC
approximations tend to become less accurate when the loads of the two servers are roughly
equal. Moreover, we observe that the WA and WAC approximations, which do take into
account the impact of ”delayed feedback”, indeed lead to much more accurate performance
predictions.



Number | p A p | cbs | &

0.5 (020 | 0.8 | 1.67 | 1.67
0.5 080 | 0.8 | 1.67 | 1.67
0.8 | 0.08 | 0.8 | 1.00 | 4.56
0.8 ] 0.10 | 0.5 | 1.00 | 4.56
0.8 | 0.10 | 0.5 | 4.56 | 4.56
0.8 ] 0.10 | 0.5 | 1.67 | 4.56
0.8 ] 0.08 | 0.8 | 1.67 | 1.67
0.8 032 | 0.8 | 1.67 | 1.67
0.8 | 0.08 | 0.8 | 1.67 | 4.56
0.8 | 0.08 | 0.8 | 4.56 | 4.56
0.8 0.32 | 0.8 | 4.56 | 1.67
0.8 | 0.08 | 0.8 | 4.56 | 1.67

=
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Table 2: Parameters for the model instances to be tested when the loads at both nodes are equal.

Number | sim IA A% SC A% | WA | A% | WAC | A%
44.1 45.3 2.8 42.7 -3.2 43.5 -1.4 43.8 | -0.7
11.1 11.3 2.5 10.7 -3.5 10.9 -1.7 11.0 | -0.9
154.1 | 171.1 | 11.0 | 114.2 | -25.9 | 133.9 | -13.1 | 141.3 | -8.4
24.6 28.9 17.7 | 21.8 | -11.3 | 24.2 -1.4 23.1 | -6.0
23.5 28.9 23.0 | 21.8 -7.3 24.2 3.1 23.1 | -1.7
24.2 28.9. 19.3 | 21.8 | -10.0 | 24.2 0.0 23.1 | -4.6
109.6 | 113.3 3.5 | 102.7 | -6.3 | 107.2 | -2.2 | 107.5 | -1.9
27.4 28.33 3.3 25.7 -6.5 26.8 -2.4 26.9 | -2.1
145.2 | 171.1 | 17.9 | 114.2 | -21.3 | 133.9 | -7.8 | 141.3 | -2.7
133.1 | 171.11 | 28.6 | 114.2 | -14.2 | 133.9 0.6 141.3 | 6.2
26.8 28.33 5.7 25.7 -4.3 | 26.89 | -0.1 26.9 0.2
107.9 | 113.3 5.0 | 102.7 | -4.9 | 107.2 | -0.6 | 107.5 | -0.5

oy
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Table 3: E[S] for symmetrically loaded systems with varying variability of the service-time distri-
butions: approximations versus simulations.



To analyze the accuracy of the approximations in more detail, Tables 4 and 5 show the
results for the PS node and the FCFS node, respectively. The results in Table 4 show that

Number | sim | IA/SC/WA | A% | WAC | A%
1 21.12 20.00 -5.3 | 21.05 | -0.3
2 5.27 5.00 -5.2 5.26 | -0.2
3 76.22 50.00 -34.4 | 73.45 | -3.6
4 11.97 10.00 -16.4 | 10.98 | -8.3
5 11.10 10.00 -9.9 | 1098 | -1.1
6 11.71 10.00 -14.6 | 10.98 | -6.2
7 54.25 50.00 -7.8 | 53.95 | -0.6
8 13.59 12.50 -8.0 | 13.49 | -0.7
9 70.46 50.00 -29.0 | 73.45 | 4.2
10 61.68 50.00 -18.9 | 73.45 | 19.1
11 13.12 12.50 -4.75 | 13.49 | 2.8
12 52.53 50.00 -4.81 | 53.95 | 2.7

Table 4: E[Spg] for symmetrically loaded systems with varying variability of the service-time
distributions: approximations versus simulations.

Number | sim IA A% | SC A% | WA | A% | WAC | A%
22.97 25.3 10.3 | 22.67 | -1.3 | 23.47 | 2.2 | 22.75 | -1.0
5.78 6.3 9.6 5.67 -2.0 5.87 1.5 5.69 -1.6
77.86 | 121.11 | 55.5 | 64.22 | -17.5 | 83.91 | 7.8 | 67.88 | -12.8
12.58 18.9 50.2 | 11.78 | -6.4 | 14.22 | 13.0 | 12.11 | -3.7
12.38 18.9 52.6 | 11.78 | -4.8 | 14.22 | 14.9 | 12.11 | -2.2
12.50 18.9 51.1 | 11.78 | -5.8 | 14.22 | 13.7 | 12.11 | -3.2
55.30 63.3 14.5 | 50.00 | -4.8 | 57.17 | 3.4 | 53.50 | -3.3
13.86 15.8 14.3 | 13.17 | -5.0 | 14.29 | 3.1 13.38 | -3.5
7472 | 121.1 | 62.1 | 64.22 | -14.1 | 83.91 | 12.3 | 67.88 | -9.2
71.42 | 121.1 | 69.6 | 64.22 | -10.1 | 83.91 | 17.5 | 67.88 | -5.0
13.69 15.8 15.7 | 13.17 | -3.8 | 14.29 | 44 | 13.38 | -2.3
55.43 63.3 14.3 | 52.67 | -5.0 | 57.17 | 3.1 | 53.50 | -3.5

==
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Table 5: E[Sp] for symmetrically loaded systems with varying variability of the service-time
distributions: approximations versus simulations.

the total mean sojourn time at the PS node may deviate quite strongly from the real (i.e.,
simulated) value for the IA, SC and WA approximation. Note that these approximations are
the same (see also the respective relations in Section 2), and do not take into account the
second moment of the service time distributions at the PS node. Moreover, we observe that
these approximations consistently underestimate the mean sojourn time at the PS node. This
can be explained by the fact that the approximations assume Poisson arrivals at the PS node,
while the simulation results show that the arrival process at the PS node is ”burstier than
Poisson” (in terms of the squared coefficient of variation of the interarrival times, exceeding
one) for all the model instances listed in Table 2. Note that this observation is not generally
true for service-time distributions with squared coefficient of variation smaller than one. We
also observe that the WAC-approximation for the mean sojourn time at the PS node, that
explicitly takes into account the fact that the arrival process at the PS node is not Poisson
(although correlations between the interarrival times are not taken into account), performs
significantly better with relative errors of only a few percent (except for an outlier in model
10).

The results in Table 5 for the FCFS queue show similar results. The IA approximation per-
forms badly in all cases, and the SC and WA approximation perform better, but still with
errors that sometimes exceed 10%. Again, the WAC approximation improves the accuracy



by an order of magnitude (except for an outlier in model 3). We emphasize that the models
listed in Table 2 are worst-case models, and the approximations should be judged from that
perspective.

In summary, the WAC approximation outperforms the other approximations. Apparently,
the inclusion of (1) a weighing between the extreme cases of immediate feedback and feed-
back after an infinite amount of time to the same queue and (2) non-Poisson arrival processes
in the approximation captures the dominant factors that determine the sojourn times.

4 Extensions

The results from this paper can be extended in various ways. First, although the focus in
this paper has been on the mean sojourn times, the methods are also applicable for approxi-
mating higher moments and even distributions of the sojourn times. Working out the details
and validating the quality of the resulting approximations is an interesting topic for further
research. Second, the relatively good accuracy of the WAC approximation that captures non-
Poisson arrivals suggests that further refinements can be obtained if the correlations in the
arrival processes at the nodes are captured. This requires in-depth characterization of the
correlation structures within the arrival processes, and the development of approximations
for the sojourn times that take into account these correlation structures. Finally, from an
application point of view extension of the results to queueing networks with more than two
nodes and to queueing networks with deterministic routing is of key interest.
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