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1 Introduction

This paper considers heavy-traffic limit theorems for polling models with periodic server routing
under renewal arrivals. As such, we generalize results in Olsen and Van der Mei [14], which were
proven for these systems under Poisson arrivals in steady-state. In such systems the order in which
the server visits the classes is prescribed by a so-called polling table of finite length. Once service
has begun at a class it continues until either all customers in the current class are served (referred
to as exhaustive service) or until all customers that were in the current class when the server com-
pleted switching over to that class are served (referred to as gated service). Such polling models
have been widely studied and are applicable to a wide range of computing, telecommunications,
and manufacturing environments. We refer to [10, 19] for overviews on the applicability of polling

models.

The approach taken in this paper is fundamentally different to that in [14]. In that paper, non-
heavy-traffic steady-state results were harnessed and significant simplifications shown to result as
utilization was taken to 100%. Limit theorems were rigorously proven for the case with Poisson
arrivals. However, such techniques rely on the existence of non-heavy-traffic results, which, in turn,
rely heavily on the assumption of Poisson arrivals. In this paper, instead, we follow the approach
of [6] (for the N queue case), [16], [9], [11], [17], and [15]. In this line of work, heavy traffic results
are not rigorously proven, instead they are conjectured to hold based on results from the rigorously
analyzed two-queue system in [6]. In particular, we extend the N queue conjecture of Coffman et
al. [6] (CPR) to the periodic gated and exhaustive service models of this paper. Like these authors,
we provide a strong conjecture for the system’s behavior under heavy-traffic. As such, we present
what we believe to be the first heavy-traffic performance approximation for polling models with

periodic server routing under non-Poisson arrivals.

Our results will be validated in a number of ways. First, by utilizing the techniques of the afore-
mentioned papers we are following a well accepted path. Second, our results will correspond exactly
to the rigorously proven cases of two queues under exhaustive service and the general steady-state

system under Poisson arrivals. Last, we perform numerical experiments to test the steady-state



approximations yielded by our limit theorems.

This paper is organized as follows. In Section 2 the model is described, notation introduced,
and prior results for systems with Poisson arrivals outlined. In Section 3 we present the main
results of the paper, extending the work of CPR to general polling systems. In Section 4 we present
the results of the numerical experiments with simulations performed to validate our results and to
test the accuracy of the approximations for waiting-time distributions in stable polling systems,

suggested by our results. Finally, in Section 5 we address a number of topics for further research.

2 Model and Prior Steady-State Analysis

This section outlines our model and the results obtained previously in [14]. We consider a sys-
tem consisting of N infinite-buffer queues, Q1,...,Qy. Customers arrive at @; according to
a general renewal process with rate Aj, j = 1,...,N. The total arrival rate is denoted by
A = ;\le Aj. The service time of a customer at queue j is a random variable Bj;, with k-th
moment bgk), j=1,...,N, k= 1,2,... All moments are assumed to be finite in [14]; for our
conjectures we only require finite first and second moments. The k-th moment of the service time
of an arbitrary customer is denoted by b*) = Zj-vzl )\jbg-k)/A, k=1,2,... The load offered to Q; is
pj = Ajb§-1) , and the total offered load is equal to p = Zévzl p;- All interarrival times, service times,
and switch-over times (defined below) are assumed to be mutually independent and independent
of the state of the system. A necessary and sufficient condition for the stability of the system is

p <1 (see, e.g., [7]). For the rest of this section, we assume that this condition is satisfied and that

the system may be considered in “steady-state”.

A single server inspects the queues periodically according to a general polling table of length
M, described by a mapping T'(-), which is used such that the server visits the queues periodically
in the order T'(1),7(2),...,T(M),T(1),T(2),.... Following the approach in [2] and [14], a unique
pseudo-queue is associated with each entry in the polling table. Denote by PQ; the pseudo-queue
associated with the i-th entry in the polling table; its corresponding queue has index T'(i). The

service at each pseudo-queue is either according to the gated policy or the exhaustive policy. For



ease of exposition, we assume that pseudo-queues corresponding to the same queue have the same
service strategy. Define E := {j : Q; is served exhaustively} and G := {j : Q; is served according

to the gated policy}. At each queue the customers are served on a First-In-First-Out (FIFO) basis.

After completing service at PQ; the server proceeds to PQ;t1, incurring a switch-over period
with distribution equal to that of a random variable R; with finite second moment and mean, r;,
i=1,...,M. Note that [14] assumes that all moments of R; are finite. Denote by r = > M, r;
the expected total switch-over time per cycle. Throughout it is assumed that » > 0. Let oj;
be the polling table entry corresponding to the last visit to @); prior to an arrival of the server
at PQ; (i =1,...,M, 5 =1,...,N). Ig stands for the indicator function on the event E. In-

dices i corresponding to queues and pseudo-queues should be read as [(¢ — 1) mod N| + 1 and

[(i — 1) mod M]+ 1, respectively.

The moments at which the server arrives at PQ); are referred to as the polling instants at PQ);.

Denote by V; the visit time at PQ);, i.e., the time between a polling instant at PQ; and the server’s
)

successive departure from P(Q;. Denote by Ii(PQ the intervisit time of P(Q;, i.e., the duration of

the time between a departure of the server from PQo,;,, and the successive polling instant of PQ;.
Define the sub-cycle time cF at PQ); to be the intervisit time for PQ); plus the previous service

(2

period at queue T'(¢) (thus CZ,(PQ) - ]Z.(PQ) + Voigw)s fori=1,..., M.

Denote by W; the delay incurred by an arbitrary customer at @;, j = 1,...,N. For a cus-
tomer served at PQ;, we define the delay at PQ;, Wi(PQ), to be the time between its arrival into
the system and the moment at which the customer starts service at PQ;. Throughout, W; and
Wi(PQ) will be considered as a function of p, where the arrival rates are variable, while the service-
time distributions and the ratios of the arrival rates are kept fixed. For each variable z that is
a function of p, & denotes its value evaluated at p = 1. It is known that when p 1 1, all queues
become unstable. Therefore, we focus on the random variable (1 — p)W; (referred to as the scaled
delay at Q;), and derive its limiting distribution when p tends to unity. A sequence of real-valued

random variables {X,,n = 1,2,...} is said to converge in distribution to a random variable X,

denoted by X, —4 X, if there exists a dense subset A of R (i.e., of real numbers) such that lim,_,



P(X, <a)=P(X <a), for all a € A.

Let m; > 0 be the fraction of customers at Qr(;) that is served at PQ;, ¢ = 1,..., M. Define

the heavy-traffic residues by, fori =1,..., M,

vi :=lim (1 —p)EV;], @& =lm =;.
i o ( p)E[Vi] <l

The v; (t =1,..., M), are uniquely determined by solving the following set of linear equations (see,

e.g., [14]): Fori=1,...,M,j=1,...,N,

i1
vi = Mr(s) D) > vkt Vo [rtect| > v =gy,
k=0p(;)+1 #T(i)=]
where
(1)
j = b§~1) (1 €@), and ¢;:= 11—'0] (j € E)

and fori=1,..., M,

A Vg

T = =< .
PT@H)T

The (scaled) delay distribution when the load tends to unity can be expressed explicitly in terms

of #; (i =1,...,M). In this context, it is convenient to define:
N M
§:=) 0i| D Fwbrw + Foubilgesy | -
j=1 k:0'1j+1

A random variable T' with a gamma-distribution with scale parameter o > 0 and rate parameter

> 0 has the following probability density function:

1 o0
fr(t) = e M uet>! >0, where T'(a):= / e 't dt.
I'a) 0

(

We will now formulate three properties of the heavy traffic behavior of the system that were shown
to hold for the case of Poisson arrivals (see Theorems 5 and 6, and Corollary 7.1 in [14], respectively).

In the next section these properties will be extended to the case of general renewal arrival processes.

Property 1

If T(i) € E and arrivals are Poisson, then

1=-pIF? = IPY (p11),



where [ (PQ)

p has a gamma-distribution with parameters

b 26 b

Property 2

If T(i) € G and arrivals are Poisson, then
(1=p)C"D 54 D (pt),

where C’i(PQ) has a gamma-distribution with parameters

1) 26 b1
o= 2r5b— and p; := A—5b—
#; b(2)

b(2)
If X is some random variable with probability density function (p.d.f.) fx(z) and finite expec-
tation EX then we define the length-biased (or time-averaged) random variable X (see, e.g., [1])
as a random variable with p.d.f. fx(z) = zfx(z)/EX. See [1] for a more general definition if

)

the random variable has no p.d.f. or infinite expectation. Therefore iECPQ and échQ) represent

7#(PQ) and éIEPQ)

the length-biased versions of I, , respectively, k = 1,..., M. It is straightforward

to show that if a gamma random variable has parameters o and p then its length biased version

(PQ) échQ)

has parameters a 4+ 1 and p. Therefore the parameters of ik and may be found directly

from Properties 1 and 2 for the exhaustive and gated cases, respectively. These properties yield

the following elegant form for the delay distribution.

Property 3

Assume arrivals follow a Poisson process. For T(i) € G,
(1= WD 4 (i) + (1= pi)D)ET?D (o1 1),
and for T(i) € E,
(1w =, Ui (p11),

where U is a uniform[0,1] random variable and is independent of CEPQ) and TZ(PQ).



3 Analysis

In this section we analyze the transient system, no longer assuming that the system is in steady-
state. Further arrivals are no longer assumed to be Poisson but instead follow a renewal process. In
fact, like other heavy-traffic work, it is not actually necessary that arrivals follow a renewal process,
rather that they obey a functional central limit theorem that satisfies some technical conditions
(see, e.g., CPR [6]). However, renewal processes appear to provide sufficient generality for most

applications.

The results of CPR differ from traditional heavy-traffic work (see, e.g., [8]) in two fundamental
ways. First, the drift term for the limiting diffusion contains an extra term due to the presence
of switch-overs. Second, in order to find an individual queue’s workload, the averaging principle is
substituted for state-space collapse. Below we discuss these differences and show how they carry

over to the models in this paper.

To obtain heavy-traffic limits, a sequence of systems n = 1,2, ... is considered with

lim /n(p" — 1) =aq,

n—oo
where p" is the utilization in the nth system. In traditional models, the heavy-traffic limit for
the workload process is a reflected Brownian motion with instantaneous drift a and instantaneous

variance
N A ~
o? = Z N(Var[B;] + p2Var[4;]),
i=1

where Var[B;] and Var[A;] are the variances of the service and interarrival times, respectively. In
the case of Poisson arrivals this simplifies to o2 = pb(?) / b = p2 / b(1). This limit holds regardless
of service order so long as the system is work conserving. Indeed, it holds in the case of the polling
model in [5] where switch-over times are zero. However, when switch-overs are introduced, the

system is no longer work-conserving and CPR show that the instantaneous drift is given by
d(z) =a+r(x) (1)

where () is the scaled limiting value of

E[time spent in switch-overs]

E[duration of a cycle]



when there is a scaled amount = of unfinished work in the system. The infinitesimal variance is the

same as that for any work conserving N queue system and does not depend on the switch-over times.

In traditional heavy-traffic models, state-space collapse implies that one may deterministically
predict how much work there is in each queue given the workload level. For example, in priority
queues all work is kept in the lowest priority queue. Under FIFO service, if z is the total work
in the system then each queue will have g;x work. However, in systems under polling the work in
each queue is emptied and refilled at a rate that is (1 — p)~! faster than the rate that workload
is changing. CPR provide the averaging principle which implies that during the course of a cycle
total scaled workload is effectively constant and the individual queues’ workloads are defined by a
deterministic trajectory. This trajectory may be thought of as a fluid model where work is flowing
in at constant rate g; to each queue 7, (1 < ¢ < N), and flows out at rate 1 (switch-overs become

negligible under this scaling).

We will conjecture that similar results should hold for periodic service models. In particular,
the averaging principle should hold (but with a different fluid trajectory) and scaled work in the
system should converge to a diffusion with instantaneous drift having a similar form to (1) and
instantaneous variance o2 (as variance remained unchanged going from zero switch-overs to switch-
overs it should still remain unchanged when service changes from cyclic to periodic). As mentioned
in the introduction, a similar conjecture was made for other general polling models in [16], [9], [11],

[17], and [15]. It therefore remains to derive the appropriate parameters for the model.

Conjecture 1
Define U™(t) as unfinished work in the n** system (see, e.g., CPR). Define X™(t) = n 1/2U"(nt).
Then

X" =54 X (n— ),

where X is a diffusion on [0,00) with drift d(z) = a + ré/z, variance o2, and with instantaneous

reflection at the origin.

Argument: By the averaging principle, total workload in the system may be regarded as un-



changed over the course of a cycle. Further, the distribution of that workload is in proportion to a
fluid model. Thus, when there is a total of  units in the system the scaled visit times at each queue
will be v;e(x)/c, where ¢(z) is the cycle time (as a function of z) and c is the long-run average
cycle time. Consider the scaled work at the start of service at pseudo-queue 1. As switch-over
times are negligible, this is precisely dc(z). Using this in equations (1) and (2) we conjecture that

d(z) =a+rd/x. O

Note that when service is cyclic and exhaustive Conjecture 1 corresponds to the limit found by
CPR (where § in our notation corresponds to ¢ in their’s). For a < 0 this process has a stationary

distribution corresponding to a gamma random variable with a = 2r§/o? + 1 and p = 2|a|/0?.

We can use the above analysis to find expressions for the cycle and intervisit times in this sys-

tem.

Conjecture 2

IfT(i) € E, then
(1- LD 5, 19D (p11),

where iz(PQ) has a gamma-distribution with parameters
o :=2r8/c? + 1 and p; := 26/((1 — p;)7i02).

If T (i) € G, then
(1=p)C"Y 54 EFY (p11),

where CEPQ) has a gamma-distribution with parameters

o :=2rd/o? + 1 and p; == p = 28/ (7;0?).

Argument: As before, when there is a scaled amount x work in the scaled system cycle time equals
z/§. Therefore, applying the averaging principle and the same reasoning as above, sub-cycle time

i has length 7;2/6 and intervisit time ¢ has length (1 — p;)#;z/5. We are observing these random



variables from a time-averaged or length-biased perspective and taking the system to steady-state

(an interchange of limits that would require justification in any rigorous proof). O

When arrivals are Poisson the limits in Conjecture 2 correspond ezactly to those in Properties

1 and 2. It therefore remains to find the delay for the individual queues.

Conjecture 3

Fori=1,...,M,

1= WD 5 WD (o1 ),
where for T(i) € G,

Wi(PQ) =4 (pre) + (1= pAT(i))U)éz(PQ)7 (3)
and for T(i) € E,

Wi(PQ) — UiEPQ), (4)

)

and where U is a uniform[0,1] random variable and is independent of éZ(PQ) and iEPQ .

Argument: By calling on the averaging principle, a fluid analysis suffices. To this end, consider

the sub-cycle time for pseudo-queue i (¢ = 1,..., M), of a fluid system under exhaustive service

with intervisit time of IZ(PQ) and visit time of V;. (This represents a slight abuse of notation as we

are considering the deterministic versions of these values where they previously represented steady-
state random variables.) Note that by definition of the fluid system V; = ﬁT(i)IEPQ)/ (1 = pr@))-

We wish to find the distribution of delay, Wi(PQ).

(PQ)

A particle of class ¢ work will arrive during I; with probability (1 — pr(;)) and during V;

with probability pr;). If ullz(.PQ) time units of IZ(»PQ) have passed when it arrives (0 < uy < 1) then

it will find pru L") work ahead of it and the delay will be I" V(1 — wy) + pppu I @ If,

IEPQ) of the time into the visit time (which has length

179

for 0 < up <1, it arrives uzpr(y/(1 — pr(i))

priiy/ (1= prey)IT9) then the delay will be pr) (I + uapray /(1 — pra)Ls D) — uspra /(1 -



ﬁT(,-))IEPQ) (the work that arrived ahead of it minus that which has already been processed). Now

arriving work is evenly distributed over each period so the delay can be written as

PwF?d <t) = PA-(1- pr@)U1 < t/179) (1 - A1)

A PQ)\ A
+P(pr(sy (1 = Us) < t/159) o
where Uy and Uz are uniform random variables on [0, 1]. Let z =t/ IEPQ) then

P <1P2) = P(1—(1- prp)Us < 2)(1 - prey)
+P(prey(1 — Uz) < x)pry)
(1= pra)) X 0+ prayx/bre) 0 <z < pry

~ 1— ~ ~
(1= br@) (1— %) +priy X1 pray <z <1
= gfor0<z<1.

Therefore Wi(PQ) 4 IZ(»PQ)U where U is a uniform random variable on [0, 1].

Now consider the corresponding gated case. A particle of ¢ work in such a system will arrive during

IEPQ) with probability IZ(PQ) / CZ(PQ) and during the preceding visit time V with probability

T3T(3)
Voiurw/ CEPQ). If ullz(PQ) time units of I"?) have passed when it arrives (0 < uj < 1) then it will

7

find prgy (wills @+ V) ) work ahead of it and the delay will be I” @ (1—u1) +ps (w11 D+ Vo, ).

If, for 0 < ug < 1, it arrives usV, of the time into the preceding visit time then the delay will

TiT ()
be pr(yu2 Vo, +(1—u2) Vo) +IZ(~PQ). Using an analysis similar to that in the exhaustive case,

WD L (prey + (1= pr)T)CFD. 0

We are now ready to present the main result.

10



Conjecture 4
Forj=1,...,N,
1=pW;=a > &W? (p11),
T (8)=3

where the distribution of V~Vi(PQ) is defined in (3) and (4).

Argument: The result follows directly from Conjecture 3, by conditioning on the pseudo-queue

at which a customer arriving at queue j is served. |

For Poisson arrivals Conjecture 3 gives limits for steady-state delay (at pseudo-queues) that are the
same as those given in Property 3. In summary, a strong conjecture for the heavy-traffic behavior
of a system with renewal arrivals is that Properties 1, 2, and 3 will continue to hold but with
o2 replacing b(?) /b(l)7 finally leading to Conjecture 4. Further, transient results should be as in
Conjecture 1. However, given the intensive effort involved in order for CPR to prove the two-queue
cyclic exhaustive case, we, like others before us, leave a rigorous proof of this result as an open

problem.

4 Numerical Results

In order to test the hypothesis for systems with renewal arrivals, we have performed a variety of sim-

ulation experiments, based on the simulation code described in [13]. The results are outlined below.

We first consider a system with the following parameters: N = 3; M = 4; T = (1,2,1,3);
G = {1,2,3}; the ratio between the arrival rates is 1 : 1 : 5; the service times are exponential
with means 3, 1, and 1 at queues 1, 2, and 3, respectively. The switch-over times are also expo-
nentially distributed with means 1, 0.5, 2, and 0.5, from PQ; to PQ2, from PQs to PQs, from
PQs to PQ4, and from PQ4 to PQ1, respectively. Using the distribution of delay derived in the
previous section as an approximation, we test the accuracy of this approximation versus the sim-
ulated value of the delay at queue 1. We define the pth percentile as the number z such that

Prob {W7 < z} = p. For the heavy-traffic approximation this value was found using a goal seeking

11



algorithm on a spreadsheet.

mean | 50th perc. | 60th perc. | 70th perc. | 80th perc. | 90th perc. | 95th perc.
p=0.85| 0.19 1.59 -1.19 -2.93 -3.89 -4.13 -4.16
Exp. | p=0.9 0.07 0.29 -1.38 -2.32 -2.69 -2.68 -2.82
p=0.95 | -0.17 -0.46 -1.26 -1.64 -1.58 -1.46 -1.57
p=0.85 | 5.46 8.54 5.00 2.29 0.49 -1.08 -2.14
Erl. 2 | p=0.9 3.57 4.70 2.56 0.98 0.06 -0.74 -1.34
p=0.95 | 1.59 1.73 0.81 0.10 -0.20 -0.47 -0.84
p=0.85 || 12.18 17.49 12.88 8.99 5.49 2.78 0.57
Det. | p=0.9 7.92 10.51 7.27 5.01 3.21 1.65 0.12
p=0.95 | 3.40 4.08 2.72 1.74 0.87 0.32 -0.49

Table 1: Relative error in mean and percentiles for different interarrival time distributions and load

values.

Table 1 shows the percentage error between the simulated values and the approximation, where

percentage error is defined as

E-S
100~
00 g

where E stands for the estimated value and S stands for the simulated value. Errors in approxi-
mating both the mean of delay and its percentiles are reported (only point estimates are presented
here, confidence intervals are omitted for compactness of the presentation). Exponential, Erlang
2, and deterministic interarrival times are tested. In all cases the approximations become more

accurate as p increases.

We next test a four queue system with the following parameters: N =4; M =6; T = (1,2,1,3,1,4);
E ={1,2,3,4}; the ratio between the arrival rates is 2 : 3 : 4 : 1. The service times at all queues
are exponential with means 2, 1, 3, and 1.5, respectively. All visits to queue 1 have the same

switch-over time distribution, which is exponential with mean 0.5. Visits to queues 2, 3, and 4 also

12



have exponentially distributed switch-over times with means 0.75, 1, and 0.75 respectively. Table 2
shows the relative error in approximating the 95th percentile of delay at queue 1 for varying values
of p, total switch-over r, and arrival distribution. Interarrival times are taken to have an m-Erlang
distribution with m =1, 2, and 4. Of course, for m = 1 arrivals are Poisson. This case is included
as a benchmark. The mean switch-over times are as given above (r = 4), divided by two (r = 2),

or multiplied by two (r = 8).

p=05|p=07|p=08|p=09 | p=0.95

r=2| -25.50 -7.86 -1.88 1.35 1.37

Erlang 1 | r=4 | -24.74 -8.30 -2.85 0.74 0.97

r=28| -22.52 -7.87 -2.98 0.57 0.94

r=21 -25.02 -7.69 -1.88 1.20 0.88
Erlang 2 | r =4 || -24.37 -8.31 -2.88 -0.06 -0.06
r=281| -20.75 -7.16 -2.19 0.58 0.89

r=2| -25.95 -8.53 -2.86 0.04 0.38

Erlang 4 | r =4 | -24.01 -8.26 -2.77 0.04 0.61

r=28| -20.81 -8.00 -3.40 -0.67 -0.11

Table 2: Relative error in 95th percentile for different interarrival time distributions and load values.

It can be seen that the approximation is very accurate for moderate to high loads. All approxi-
mations for p = 0.9 and higher lay within the confidence interval for the simulation but none of
those for p = 0.8 and below did. The difference in delay between 1-Erlang and 4-Erlang was on
average 39% so the small errors are not a function of small changes in the delay. Again, as would
be expected, the errors generally decrease as p increases. The exceptions are possibly more due
to simulation inaccuracies than real differences. There are few patterns in the errors across the

different arrival distributions and the different mean switch-overs.

The numerical examples described in Tables 1 and 2 provide empirical evidence for the validity
of our conjecture for renewal arrivals. Here, we have sought to give a flavor of the behavior of

the approximations; clearly, a more extensive numerical study is possible. It may also be possible

13



to refine the approximations in this paper using non-heavy-traffic results (e.g., using the approach
taken in [12]). In particular, evaluating the parameters at p < 1 rather than at p = 1 provided
significantly more accurate estimates for the mean delay in Table 1. However, the primary goal of
this paper has been a presentation of new limit theorems, and refinement of the approximations

presented in Table 1 and 2 is beyond the scope of the present paper.

5 Topics for Further Research

First, in this paper we have provided a strong hypothesis for the behavior of polling models with
periodic server routing and renewal arrivals under heavy-traffic. A rigorous proof is left as the
subject of future research.

Second, the exact and easy-to-evaluate expressions as presented here open possibilities for ob-
taining approximate solutions for solving system design problems under heavy-traffic assumptions.
A typical practically relevant problem is the following “Can we construct a polling table such that
Prob{W; > z;} < a; (j =1,...,N) 77, for given values of z; and ¢ (j = 1,...,N). The results
presented in this paper may be highly useful to address this type of feasibility problem.

Third, it is assumed that the first two moments of the service times and interarrival times,
and the first moment of the switch-over times are finite. A challenging area for further research is
to analyze the impact of heavy-tailed (say, with infinite variance) interarrival time and service-time
distributions on the distributions of the delay in heavy traffic. In this context, interesting and
promising results have been obtained in [4], which studies the tail behavior of the waiting times
in polling systems with so-called regularly varying service times and switch-over times, and in [3],
which derives the heavy-traffic limiting distribution for the waiting times in the single-server queue
with a class of heavy-tailed service-time distributions.

Finally, in the model considered here, it is assumed that the service disciplines at the queues are
exhaustive or gated. However, the results should be extendable to more general service disciplines
satisfying the “branching” structure studied in [18], as demonstrated for the case of cyclic polling

in [20]. Extending our work to such more general systems is left as the subject of future research.
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