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This paper is motivated by the response-time analysis of distributed information systems, where transactions are
handled by a sequence of front-end server and back-end server actions. We study sojourn times in an open queueing-
network with a single Processor Sharing (PS) node and an arbitrary number of M multi-server First-Come-First-
Served (FCFS) nodes. Customers arrive at the PS according to a Poisson process. After departing from the PS node
a customer jumps to FCFS node k with probability pg, and departs from the system with probability 1 — p, where
p = 22/1_1 pr (0 < p < 1). After receiving service at a FCFS node, a customer jumps back to the PS node. For
this model, we focus on the mean and the variability of the sojourn time of an arbitrary customer in the system.
The model is a product-form network, which immediately leads to a closed-form expression for the mean sojourn
times. The variance of the sojourn times, however, does not admit an exact expression; the complexity is caused by
the possibility of overtaking. To this end, we propose a new methodology for deriving closed-form approximations
for the variance of sojourn times in queueing networks with feedback. Numerical results from extensive experimen-
tation with simulations demonstrates that the approximations are highly accurate for a wide range of parameter values.
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1 Motivation and Background

The recent emergence of Web technology has boosted to the development of applications running in a distributed
computing environment where data is collected from diverse and remote information systems, and processed before
a response is returned to the end user. A typical feature of such applications is that a single transaction initiated
by the end user may initiate a cascade of sub-transactions to be performed on the different information system, each
of which can handle a number of sub-transactions in parallel. Examples of such distributed applications are on-line
ticketing, electronic banking, on-line shopping, location-based services and the like. A key factor for the success of
this type of distributed applications is the ability to predict and control the performance in terms of the end-to-end
response times, i.e. the response times experienced by the end user. For the user-perceived quality, both the mean
and the variability of the response times are of key metrics.

Motivated by this, we model the end-to-end response time as the sojourn time of a customer in an open queueing
network, where the customers represent transactions, the nodes represent the different application servers and infor-
mation systems. In this context, we focus on the mean and the variance of the sojourn times of customers in the
network. We give exact expressions for the mean sojourn times. In the absence of exact results for the variance of the
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sojourn times, we develop a new method for deriving simple and explicit and approximations for the variance of the

sojourn times.

Many distributed applications work as follows. The end user initiates a transaction request that is sent to a front-end
server that parses the request and kicks off a server-side script. The script iteratively sends information-retrieval
requests to different remote back-end systems and processes these pieces of information upon receipt before sending a
response to the end user. The front-end application server processing is usually highly CPU-intensive processing steps,
and therefore, is modeled as a Processor Sharing (PS) node; that is, when there are k parallel scripts running on the
front-end server, then each script received a fraction 1/k of the available processing speed. In contrast, the information
systems typically handle the queries in the order of arrival, and are multi-threaded, so that multiple transactions in
parallel. Therefore, we model the information system in the back-end First-Come-First Served (FCFS) nodes with
multiple servers.

Based on these assumptions, we study the following queueing network model with a single PS node (modeling a front-
end application server) and M > 1 multi-server FCFS nodes (modeling multi-threaded information back-end systems).
External customers arrive at the PS node according to a Poisson process. After departing from the PS node a customer
proceeds to the k-th FCFS node with probability pg, and with probability 1 — p, with p = Z;:I:I pr (0 < p < 1) the
customer departs from the system. After each visit to any FCFS node customers are fed back to the PS node. The
service time are the PS node are generally distributed, and the service times at the FCFS nodes are exponentially
distributed. This model is known to possess a product-form solution for the joint number of customers at the nodes.
Hence, the mean sojourn time follows directly from Little’s Law. The wvariance of the sojourn times are much more
complicated, and no exact expressions can be obtained in the general setting of the model. For this reason in this paper
we focus on the development and experimental validation of approximate closed-form expressions for the variance of

the sojourn times.

The analysis of the variance of the sojourn time in the present model is complicated due to the fact that over-
taking may occur, i.e., customers may bypass each other. Overtaking usually destroys any hope for an exact analysis
of the higher moments of the sojourn-time distributions (see [2] for a survey of the available results on sojourn times
in queueing networks). The main result in [2] is an expression for the Laplace-Stieltjes Transform (LST) of the joint
probability distribution of the sojourn times at the nodes of a customer that traverses a predefined path of nodes in a
product-form queueing network. Several results are known for single-node queueing systems with instantaneous feed-
back. For the M/G/1 queue with Bernoulli feedback, Doshi and Kaufmann [6] derive expressions for the LST of the
joint distribution of the sojourn times of a customer at its successive passes through the system. Disney and Koenig
[5] give an overview on Bernoulli feedback models. Van den Berg and Boxma [1] consider an M/G/1 system, with
either FCFS or PS service, where a customer after receiving service for the ¢-th time is looped back into the system
with probability ¢; and departs from the system with probability 1 — ¢;. For this model, Van den Berg and Boxma [1]
analyse the joint distribution of the first i successive sojourn times of a customer (who is fed back at least i — 1 times),
and derive expressions for both the moments of these sojourn times and for the correlations between the successive
sojourn times of an arbitrary customer in the system. Fewer results are known for sojourn time distributions for
networks with delayed feedback, which occurs in the present model. Foley and Disney [7] study queueing systems with
delayed feedback, but their focus is merely on queue length processes, busy period and several customer flow processes.

The results presented in this paper generalize those presented in [10], where we considered a network with a sin-
gle FCFS node with a single server, and with exponentially distributed service times at both the PS and the FCFS



node, and derived approximate expressions for the variance of the sojourn times. In this context, the contribution
of the present paper is two-fold. First, the model considered in this paper is much more generic in several respects
(general number of FCFS nodes, multiple servers, and general service-time distributions at the PS node), and hence
is much more interesting from an application point of view. Second, the analysis of a queueing network with multiple
FCFS nodes introduces several interesting complications due to the impact of cross-correlations in the number of visits
to each of the information systems. The queueing-theoretical contribution lies in the fact that this paper provides an
effective means to deal with these cross-correlations. These observations make the added value of the current paper

compared to [10] evident.

The remainder of this paper is organized as follows. In section 2 the model is described. In section 3 we present
exact expressions for the mean sojourn times. In section 4 we develop an approximation for the variance of the
sojourn times. In section 5 the accuracy of the approximations is tested by comparing the performance predictions
based on the approximations with simulation results. Finally, in section 6 we address a number of challenging topics

for further research.

2 Model

Consider an open queueing model with a single customer class, a PS node and M > 1 multi-server FCFS-nodes with
¢k > 1 servers at FCFS node k (k=1,...,M). Customers arrive from outside at the PS node according to a Poisson
process with rate A\. After service completion at the PS node, the customer proceeds to the k-th FCFS node with
probability px, and with probability 1 — p, with p := Eﬁil Pk, the customer departs from the system. After receiving
service at a FCFS node a customer is always fed back to the PS node. The service time at the PS node is a generally
distributed random variable B, with finite first two moments 3,s; and ﬂ},?, respectively, and the service times at
the FCFS node k are exponentially distributed with mean B¢cfsx, K = 1,..., M. The service times at all nodes are
assumed to be mutually independent and independent of the state of the system. For an arbitrary customer denote
by N, the random variables indicating the number of returns to the PS node, and by N the number of visits to
k-th FCFS node, before departing from the system. Then clearly N is geometrically distributed with parameter p,
i.e., Prob{N = n} = (1 —p)p", for n = 0,1,.... Similarly, it is easily seen that Prob{Ny = i} = (1 — gx)gq}, for
i=0,1,..., with ¢ := pi/(1 — p+ px). Notice that by definition N := 22421 Ny, so that the random variables N
and Ni (k=1,..., M) are not mutually independent. Moreover, note that the total number of visits to the PS node
before departing from the system is NV + 1. For notational convenience, define the joint probability distribution of
(N1,...,Nur) as follows: for ng, =0,1,...,and k=1,..., M,

f(ni,...,np) :=Prob{Ny =ny,...,Nyy =npy}. (1)
The load at the PS node and the FCFS nodes is given by
A Bps A Brefsk Ik A Byefs,k Pk
Pps ‘= ——, and prers = : = : k=1,...,M). 2
P 1—p’ fef ce(1— qr) ce(1—p) ( soeey M) (2)

To ensure stability of the system it is assumed that pps, pfefs e <1 (k=1,...,M). Fori=1,2,...,N +1, let Sgps)
denote the sojourn time of the i-th visit to the PS node, and for j = 1,..., Ny, denote by S](-f /%) the duration of
the j-th visit to the k-th FCFS node. The total sojourn time is then given by

N+1 (pa) M Ny X
SEDILEED PP DL (3)
i=1 k=1j=1



3 Mean Sojourn Times

The queueing network model described in Section 2 is a product-form network. Defining Lys, Lf.fs % to be the
stationary number of customers at the PS node and at the k-th FCFS node, respectively, we have: For [ > 0, >
0(k=1,...,M),

M
PI‘O‘b{LPS = l;Lfcfs,l = ll, .. -nycfs,M = lM} = PI‘Ob{LpS = l} H PI‘Ob{Lfcfs,k = lk} (4)
k=1
M
pps pp H pfcfsk pfcfsk (5)

The successive sojourn times of a customer are generally not independent. Nonetheless, the successive sojourn times
of a tagged customer at the same node are identically distributed:

Lemma 1

(a) The successive sojourn times Si(p ) (t=1,...,N+1) are identically distributed.

b) The successive sojourn times gifefsk) 7 =1,...,Ng), are identically distributed for each k =1,..., M.
J

Proof: We observe that the model under consideration is a multi-class product-form network, where the customer
classes are defined as follows. Each customer enters the system (at the PS node) as a class-0 customer, and its class
number is incremented from ¢ to ¢ + 1 any time the customer jumps from one node to the next (¢ =0,1,...). (In this
way, for each customer its class indicates the number of node visits since the arrival of the customer in the system.)
Then according to the Arrival Theorem for multi-class product-form networks (cf., e.g., Walrand [11] (Theorem 4.4.1))
a jumping customer sees the system in steady state, regardless of its class number, which immediately implies the
validity of Lemma 1. m|

Using Lemma 1, it follows directly from equation (5) and Little’s law that

Pps
E[Lps] = 1 _pp ) (6)
ps

and

E|SPI| = Pps _ _PBos , i=1,...,N+1. (7)
[ } oy (L= pps) 1= pps

Recall that the total arrival intensity at the PS node equals A/(1 — p). Moreover, it is readily verified that for the
FCFS nodes we have, for k=1,..., M,

Pfcfs,kTk
ElLjepspl = 77— — + CkPrefsk (8)
— Pfcfs,k
and
S(fosk):| M + Biefsk, j=1,...,Ny. 9
[ (1 — Pfcfs, k)Ck fefs, ( )

Here, 7, stands for the probability that an customer arriving at FCFS node k£ can not be served immediately, and
hence has to wait. From standard theory for the M/M/c queue, we have, for k=1,..., M,
c p cp—1 n cnpn -1
k fcfsk kFfcfs,k
skl s ( _) T] . (10)




Note that for the special case ¢, = 1 we have 7, = pfcfs,k. Now, combining (3), (7) and (9) and applying Wald’s
equation we obtain the following expression for the mean total sojourn time of an arbitrary customer:

N+1 M N M
pis1— 2|3 5 4 3535560 | (sin 4 18 [507] 4 35 B 501 -
i=1 k=1 j=1 k=1
M
1 Dk [ Bfecfs kTk ]
= + ’ + cfs . 12
(1-p)(1 _pps Zl 1- 1— prefs,k)Ch Prersi (12)

4 Variance of the sojourn times: approximations

Analysis of the variance of the total sojourn time, Var[S], is fundamentally more complex than the analysis of the
mean. The complexity is caused by the fact that overtaking may occur. Overtaking introduces correlation between
sojourn times of job visits at the nodes in the queueing network. A formal definition of overtaking is presented by
definition 2.2 in [2]. According to this definition the queueing network considered in this paper is not overtake-free.
In the absence of exact expressions for the variance of the sojourn times we develop new, closed-form approximations
for the variance of the sojourn times. To this end, in 4.2.1 Var[S] is expressed in a convient form. In 4.2.2 we use this
expression to derive an approximation for Var[S] for the case of exponential service times at the PS node. Then, in
4.2.3 we extend these expressions for the case of non-exponential service times at the PS node. The accuracy of the
results will be extensively studied in Section 5.

4.1 Preliminaries

First, we rewrite the sojourn time variance Var[S] in the following convenient form:

N+1 M Ny
Vars] = Var |3 s+ 5SS s s
i=1 k1 =1
N+1
~ i [var| S+ 35S,
k=1j=1
N+1
+Var Z 87 + Z ZS TeFB|Ny, . (14)
k=1 j=1
n+1
S IR ST SEEES 9 SETE! I
n1=0 na=0 k=1 =1
N+1
+ Var Z [S(pS)]+ZZE[ fcfsk):| -
i=1 k=1j=1
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n+1
Zs(ps)] p +Z Z Var ZS fefsk) 1 —qk)qknk

i=1 k=1 N, =0

n+1

+QZZ Z Cov ZS(pS ZS(foSk) f(ni,...,nun)

k=1n1=0 ny=0



+Z i i Cov Z (foSk . S(fcfsm) f(ni,...,nn)
j=1 j=

k;ém 'n1:0 'nM:0 1

N+1 M Ny
+Var |3 E[sP] + 3 B [siN] (16)
i=1 k=1j=1
0o M o
= Z n+1)Var [S(ps)} (1-p)p™ + Z Z nyVar [Sifcfs’k)] (1 - qr)qx™
n=0 k=1ng=0
+ i > Cov 57,5 (1 p)p"
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v
+3° 30 Y Cov[sUTR, sUCFB] (1 - gy
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n+1

+ZZZ Z Cov ZS(ps ZS(foSk) f(ni,...,nn)

k=1n1=0 ny=0
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N+1 M Ng
+Var |3 B[P+ 33 B [sUP] ] (17)
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Equation (13) follows from definition (3), and (14) follows directly from the classical Var[U] = E[Var[U|V]] +
Var[E[U|V]] by taking U := YN t! g ~ps) +30, ZN’“ S(fcfs *) and V = {N1 =n1,..., Ny = npr}. Equation (15)
is then obtained by conditioning with respect to the event V. Subsequently, (16) follows from Lemma 1 and classical
rules for the variance of random variables, and (17) is obtained from Lemma 1.

The quantities E [5’1@ S)] and FE [SJ(.f of s’k)] in (17), which are independent of i and j, respectively, are given by
equations (7) and (9). Since we are considering a product form network, the distribution function of the number of
customers in each of the queues is known. Hence, the sojourn time distribution for each of the FCFS nodes is also
known. Specifically, sojourn times at FCFS queue k behaves as an M /M /c,-FCFS queue. Thus, for the sojourn time
variance at the FCFS nodes we have (cf. [4]):

(2 — ﬂ-k)IB?‘cfs,k
(1= prefs,k)?
Further, given Lemma 1 and the fact that the number of visits to the PS node always equals the number of visits

cfs,k
Var [S%f / )} = ,chcfs,k +

(18)

to the FCFS nodes plus one (see also section 2) we have after some standard variance calculus:

N+1 o M N, Gefor) M - epo
Var ; E [Sips ] +;;E [sj cfs, } = Var ;Nk (E [Slps} n [51 efs, ])]
ZVar Ni) ( [S ps)] +E [S(fos k)D
+ k;ﬂCov [Nk, N (E [S;ps)} +E [Sffos,k)]) (E |:S§ps)] +E |:S§fcfs,m)i|> . (19)



Since Ny, is geometrically distributed with parameter g, we know that Var [Ng] = (1:1#)2. Further, we can express
the sum of covariances between Nj and N, in terms of Var [N] and Y pr, Var [Ni]: Var[N] = Sor, Var [Ni] +
> ktm C0V [Nk, Nim|. Then, with some calculus we find that >, ., Cov [Nk, Nm| = 32 ., %. Substituting these
expressions in equation (19), we obtain:

™ (ps) M (fefsk) o l dk (ps) (fefs,k) 2
Var ZIE[S ]+I;ZIE[S]- ] _;17(1_%)2(15[51 | +EB[s{M])
= =1j= =
+ 2 aopr (B[] +B[s0]) ([s17] + B [s70]). (20
k#m

g(fefsik) S(fcfs,k)]
7 1~y

Hence, it remains to develop approximations for Var [S? s)}, Cov [Sz-(p s),S](-p 2 }, Cov [ , for any

i#j k=1,...,M and Cov [S§f°fs’k),s§fcfs’m)], Cov [S§PS),s§fcfs’k)], for any i,j =1,2,..., k % m.

4.2 The case of exponential service times at the PS node

To start, we use the following approximation assumption.

Approximation Assumption 1 (AA1)

The total arrival process at PS node is a Poisson process with rate /(1 — p).

In general it is known that Approximation Assumption 1 is not true for non-acyclic queueing networks, not even
under the assumption that the service times are exponentially distributed. The violation of the Poisson assumption is
caused by the feedback loop, implying dependent interarrival times at the nodes. Based on Approximation Assumption
1, we obtain the following approximate expression for the variance of the sojourn times at the PS node (cf. [9]):

9 2
Var [S?s)} =~ + Pos Bps . (21)
2 - Pps 1- Pps

Van den Berg and Boxma [1] derive exact expressions for the covariance of the successive sojourn times for single-
server FCFS and for PS queues with direct feedback, where customers upon receiving service are immediately fed back
into the system (with some probability). We emphasize that the model discussed in section 2 implements a delayed
feedback mechanism: upon departing from the PS node, a customer is first processed by a FCFS-node (if not leaving
the system immediately) before returning to the PS node. Similarly, after leaving any FCFS node, a customer is first
processed at least once by the PS node before returning to the FCFS node.

Approximation Assumption 2 (AA2)

(a) The covariance of the successive sojourn times of a customer at the PS node in the network with delayed feedback
may be approzimated by those in a single M/M/1 PS node with direct feedback.

(b) The covariance of the successive sojourn times of a customer FCFS node k in the network with delayed feedback
may be approzimated by those in a single M /M /c, FCFS node with direct feedback (k=1,...,M).

Now, based on Approximation Assumption 2 we approximate the covariances between the successive sojourn times at
the same node (i.e., Cov [Szgps), S](-ps)} and Cov [Szgfcfs’k), S](.fcfs’k)] , for i # j and any k). It is easily verified that by
using the exact results for single-server FCFS systems with direct feedback, derived from equations (9.13) and (3.17)



in [1], and conditioning on the event that a customer arriving at FCFS node k has to wait, we obtain the following
approximations: for 1 <i<n,1<j<n—-tand 1<k <M,

2
Cov [ngcfs,k),si(_{_;f&k)} ~ Wk(Pfcfs,k(l _ Qk) + qk)]flﬂ_k (ﬂ?cfs,k + 7Tk(2 _ ﬂ.k)2'3—kz> , (22)
k(1= prefsk)

and similarly, for 1 <i<n+1,1<j<n+1-1i,

pPSﬂ2s
Cov [, 59| ~ P _— 23
+ (1 - pps)2(2 —pPps — P+ PpsP)JH ( )
Approximation Assumption 3 (AA3)
The sojourn times Sfps) and S](-fcfs’k) are uncorrelated; fori=1,...,.N+1,5=1,...,Nandk=1,...,M:
Cov [, 51N 0 (24)
k3 1~y *

In general, Approximation Assumption 3 is known to be not true. However, the product-form solution for the present
model, see (5), implies that the number of customers at both nodes are independent in equilibrium. Also, the sojourn
time at the FCFS queues is closely related to the number of customers at that node: if a customer finds nycfs.
customers at the k-th FCFS node upon arrival, then the sojourn time simply consists of n¢.fs,x + 1 independent
successive exponential phases each with rate 1/8fcfs x, which results in an Erlang distribution with shape parameter
Nfcfs,k + 1 and rate parameter 1 /B fefs,k- For the PS node, the correlation between the sojourn times and number of
customers present upon arrival is less clear, and intuitively seems to be weaker than for FCFS nodes. These obser-
vations suggest that the cross-correlation terms are rather small. In our previous work for a queueing network with
only one FCFS node we performed a variety of simulation experiments to validate this conjecture, and we found that
the cross-correlation coefficients (between PS and FCFS nodes) were about a factor two smaller than the correlation
coefficient for successive sojourn times at the PS node. Also we found that the correlation coefficient for sojourn
times at the FCFS node were about three times larger than the PS node correlation coefficient. These results confirm
the conjecture that the cross-correlation terms for the sojourn times of visits to different nodes are indeed negligible
compared to the correlation terms of successive visits to the same node. For queueing networks with multiple FCFS
nodes the impact of ignoring cross-correlations on the approximation accuracy is even less, as the numerical results in

section 5 will demonstrate.

Finally, substituting the exact formula for the variance of the sojourn time in the FCFS nodes and approximations
(20)-(24) in the expression for Var[S] in (17) we obtain the following approximation for the variance of the sojourn
time for the case of exponential service times at the PS node:

2
1 2+ Pps ,Bps
. ~ 2
Varegp[S] =7 2= pys (1_pps (25)
200,532
N PPpsBps

(2 = pps — P+ ppps)(1 = P)2(2 — pps) (1 — pps)?
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s kP fcfs,k
+ D P 4 Biepsk + —)
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DPkDPm ﬂps ﬂ-kﬂfcfs k ) ( ﬂps 71'mlgfcfs m )
+ + ﬂ cfs,k + ’ + ;8 cfs,m +—-
k:;ézm (1 — Pps fef Ck(]- - Pfcfs,k) 1- Pps fef Cm(]- - pfcfs,m)

In the next subsection we will extend the approximations to the case of general service times at the PS node.

4.3 The case of general service times at the PS node

For the case of general service times at the PS node we adopt the assumptions AA1, AA2 and AA3. Based on AA1, we
can approximate Var [Sip s)] by the variance of the sojourn time in an M/G/1-PS system with arrival rate A/(1 — p)
and service-time distribution B,,. Van den Berg and Boxma [1] propose the following simple approximation for the
second moment of the sojourn time Sps/g/1 in an M/G/1-PS with mean service time £y7/G/1, load p and squared
coefficient of variation cﬁ,j /G /1> which is a linear interpolation between the cases of exponential and deterministic
service times, respectively:

2 5 2+p ﬂiJ/Gﬂ 12 2ﬁ12v1/a/1 2IBM/G/1 1 2%
Eapp [Smycy1] =CMm/an 1+2 P m‘i‘( = Cuyc/) 1= p) _p(l—p)( -1-p)). (26)

Using this expression, we approximate the second moment of S%p *) for an arbitrary visit of a customer to the PS by

B[sp) ~ (l+z+pps><lﬂps > cale )<( 262, 262, )(epps_l_pps)» )

2 — pps — Pps 1 — pps)? pzs(l — Pps

and hence,

Var [Si”s)} ~E [si"s)r - (%)2, (28)
s

where c < is the squared coefficient of variation of the service times at the PS node.

In general, the variance of the sojourn times in an M/G/1-PS system depends on the third moment of the service-time
distribution at that node, whereas the simple approximation in (26) only depends on the first two moments of the
service-time distribution at the PS node. For sake of simplicity, we adopt (26) in our approximations. We refer to [1]
for a discussion on the refined approximations that do take into account third moments of the service times.

In the adoptation of AA2(a) we assume that the covariance of the successive sojourn times at the PS node with delayed
feedback is still approximated by a single M/M/1-PS node, rather than a M/G/1-PS node. The reason for this is
that although an exact analysis of the covariances of the sucessive sojourn times for the M/G/1-PS feedback system
is possible, the expressions are not explicit (see [1] for details) and require the solution of a non-linear set of equations.
Since our goal is to develop closed-form approximations for the variance of the sojourn times we adopt approximation
(23).

Finally, these observations lead to the following expression for Var[S] for the case of general service times at the
PS node:

1 2+ pps Bos 232, 2632,
VargenS] =~ ——{c2, (1 + - > - + (1 - ¢, PE _ — z e’rs —1—p
genlS] 1-p { v 2= ppe) W= pp? T T2 ppa(1— por) pe)




L (B Y
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M 2 2 2.2
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In the next section we assess the accuracy of the approximations.

5 Numerical Results

To validate the accuracy of the approximations for the variance of the sojourn times proposed in Section 4, we have
performed extensive numerical experiments, comparing the approximations with simulations. To this end, we have
checked the accuracy of approximations for many parameter combinations, by varying the arrival rate, the service-
times distributions, the asymmetry in the loads of the nodes, the numbers of servers at the FCFS nodes, and the
values of the routing probabilities py. From the simulations, we have calculated the point estimates for the variance
of the sojourn times, and 95% confidence intervals (C.I.’s). We calculated the confidence intervals for the sojourn
time variance using the Jackknife method (see [8]). For each parameter case we ran 10 simulation runs. The runs
lengths were taken long enough to ensure that all the confidence intervals were at most 15% of the point estimator
value. In the tables below we present results for a subset of the parameter cases that we validated. Denoting the point
estimations based on simulations by “simulation”, and the approximated values by “approx”, the relative error of the
approximations is defined as

A% — approz — simulation « 100%. (30)

simulation

The results of the validation experiments will be discussed below. In section 5.1 we give the results for the case of
exponential service times at the PS node. In section 5.2 we discuss the results for non-exponential service times at
the PS node.

5.1 Exponential service times at PS node

To assess the accuracy of the approximations developed in Section 4, one might question whether including covariance
terms in the approximation (i.e., the last summation in (25)), which make the approximation slightly more complex,
indeed lead to a higher level of accuracy. To illustrate the ’added value’ of including covariance terms in the approxi-
mation we also compare it to a simple, straightforward approximation, which completely ignores dependencies between
successive sojourn times of a tagged customer in the PS or FCFS nodes. In particular, the simple approximation is

the same as approximation (25) without the covariance terms, resulting in the expression:
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Throughout we will denote the results of this simple approximation by ”simple”.

5.1.1 Single server at FCFS nodes

Let us first consider the accuracy of the approximations for models with single-server FCFS nodes, i.e., ¢c; = --- =
cu = 1. To start, consider the model with M = 2 identical FCFS nodes (i.e. Bfcfs,1 = Bfefs,2 =: Bfefs)s A =1 and
where the routing probabilities to the FCFS nodes are p; = p» = §. Table 1 shows the simulated and approximated
value of the Var[S] for various combinations of ,s and fBf.fs. Note that in these symmetric models the load values of

the FCFS nodes are the same, i.e. pgcfs,1 = Pfefs,2 =: Pfcfs- Lhe results in Table 1 show that the approximations in

P | Bps | Bfefs | Pps | Pefs | simulation 95% C.L approx | A% | simple | A%

0.2 | 0.4 1.6 | 05| 0.2 4.86 | (4.84, 4.89) 4.92 | 1.2 4.54 | -6.7
02| 0.4 4 05| 0.5 43.50 | (42.89, 44.10) 43.52 | 0.1 | 39.11 | -10
02| 0.4 64 | 05| 08 642.5 | (631.7, 653.4) 643.7 | 0.2 | 559.9 | -13
05| 0.1 04 | 02| 02 1.11 (1.10, 1.12) 1.11 | 0.2 0.87 | -21
0.5 | 0.25 1 05| 0.5 19.19 | (18.94, 19.44) 19.31 | 0.7 | 14.21 | -26
05| 0.4 04 |08 | 0.2 40.45 | (38.91, 42.00) 41.15 | 1.7 | 28.29 | -30
0.5 0.1 1.6 |02 ] 08 247.3 | (234.3, 260.2) 2441 | -1.3 | 163.1 | -34
05| 0.4 1.6 | 08| 0.8 338.3 | (326.8, 349.9) 3404 | 0.6 | 232.7 | -31
08 0.1 0.1 | 05| 0.2 3.01 (2.99, 3.03) 3.03 | 0.5 1.66 | -45
08| 01 | 025 | 05| 0.5 13.1 (13.1, 13.2) 13.12 | -0.1 7.21 | -45
0.8 0.1 04 | 05| 0.8 159.0 | (153.3, 164.7) 158.8 | -0.1 | 74.41 | -53

Table 1: Sojourn time variance with two identical FCFS nodes: approximations versus simulations.

(25) are extremely accurate. The relative error of the approximation does not exceed 2%. As expected the ”simple”
approximation consistently and strongly underestimates the variance of the total sojourn time; it appears to be an
inaccurate lower bound. The relative error of the ”simple” approximation becomes higher for higher p when load is
fixed. When p is increased, the expected number of times a job will be fed back grows. When p is increased, the
correlation between the successive sojourn times of a job tends to increase. Since this rough approximation omits the
covariance of successive sojourn times of a job, the accuracy of the ”simple” approximation degrades as p increases.
Also, the relative error of the ”simple” approximation becomes higher for higher load when p is fixed. When the load
increases, the covariance of successive sojourn times of a job grows faster than the variance. As a result, the covariance
part in the total variance will increase more than proportionally in comparison with the variance for increasing load.
Because the covariance is not taken into account in the ”simple” approximation, the relative error grows. These
observations also hold for the other cases. Therefore, we conclude that the ”simple” approximation is too inaccurate
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and the additional complexity of the approximation presented in section 3 (due to inclusion of the covariance terms)
is justified, for increasing the approximation accuracy.

To summarize, Table 1 shows that the approximation works very well in these symmetric cases. Also the errors are
positive for some cases and negative for other cases, and all lie in the 95% confidence interval.

To investigate the impact of asymmetry in the number of visits per FCFS node on the accuracy of the approxi-
mations, we have also considered a variety of parameter combinations with unequal visits per node. In this second
case the loads of both FCFS nodes are still equal, but the probabilities of a visit to each FCFS nodes are not equal
(and thus the service times are unequal too). This represents, for example, a database system that authenticates a
request (visit to FCFS node 2) and then retrieves information from a database (visit to FCFS node 1) once or several
times. We have chosen the relative distribution of visits to each of the FCFS nodes as: p; = %p,pQ = %p. Table 2
presents the results for case 2. In the third case we consider an even more asymmetric network scenario, where the

P | Bps | Bfefsa | Brefs,2 | Pps | Pfefs | simulation 95% C.I. approx | A% | Asimpie%
0.2 ] 04 1.05 3.15 0.5 | 0.20 5.46 (5.40, 5.51) 5.46 | 0.0 -8.2
0.2 ] 04 2.7 8.1 0.5 | 0.51 56.85 | (55.08, 58.62) 56.81 | -0.1 -14.1
0.2 ] 04 4.3 12.9 0.5 | 0.81 899.53 | (860.92, 938.14) | 881.07 | -2.1 -12.2
05| 0.1 0.3 0.9 0.2 | 0.23 1.66 (1.65, 1.67) 1.66 | 0.0 -23.3
0.5 | 0.25 0.6 1.8 0.5 | 0.45 15.87 | (15.71, 16.02) 15.72 | -0.9 -30.4
0.5 ] 04 0.3 0.9 0.8 | 0.23 42.72 (41.34, 44.09) 42.31 | -1.0 -29.1
0.5 | 0.1 1.05 3.15 0.2 | 0.79 249.29 | (238.68, 259.91) | 245.78 | -1.4 -27.8
0.5 | 0.4 1.05 3.15 0.8 | 0.79 337.35 | (320.88, 353.82) | 337.66 | 0.1 -18.8
0.8 | 0.1 0.07 0.21 0.5 | 0.21 3.16 (3.12, 3.19) 3.19 | 1.2 -42.2
0.8 0.1 0.17 0.51 0.5 | 0.51 14.61 (14.49, 14.74) 14.7 | 0.6 -48.7
0.8 | 0.1 0.27 0.81 0.5 | 0.81 186.98 | (181.18,192.79) | 192.49 | 2.9 41.0

Table 2: Sojourn time variance with two identically loaded FCFS nodes, but with different service times: approxima-

tions versus simulations.

number of visits to the FCFS nodes and the loads of the FCFS nodes are taken asymmetric. The results for this case
are presented in Table 3. The relative distribution of visits to each of the FCFS nodes remains: p; = %p, P2 = }Ip. The
results in Tables 2 and 3 demonstrate that for asymmetric cases the relative error is still very low, smaller than 3% and
all approximation results are within the confidence intervals. Again, the estimation is sometimes higher and sometimes
lower than the centre of the confidence interval. It does not seem to make any difference whether the loads of the
nodes are very different, e.g. 0.20 — 0.80, or close to each other. Observing that the relative errors are very low, we
impute the difference in sign to the randomness of the simulation. Asymmetric loads do not cause the approximation
to perform significantly worse. This could be expected, as the approximation contains separate covariance terms for
the PS-node and the FCFS-nodes. Consequently the formulas can adapt to asymmetric loads. Again, the accuracy is
at least an order of magnitude better than in the case of the “simple” approximation.

To validate the approximation for a network with more than two FCFS nodes, we also include the results for
a case with five FCFS nodes in Table 4. For notational convenience, define gfcfs = (Bfcfs,1s---+Bfefs,n), and
Pofe = (Pfefs1y--+»Pfefs,N-)- As expected, the ”simple” approximation still underestimates the variance of the total
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P | Bps | Bregs | Brefs,2 | Pps | Prefs | Prefs,2 | simulation | approx | A% | Agimpie%o
0.2 | 04 2.65 8 0.5 0.5 0.5 53.48 53.83 0.6 -7.5
0.2 04 1.1 12.8 0.5 0.21 0.8 579.563 | 566.34 | -2.3 -7.2
02 04 4.3 3.2 0.5 0.81 0.2 250.43 | 243.74 | -2.7 -14.6
0.5 | 0.25 0.67 2 0.5 0.5 0.5 21.88 22.14 1.2 -22.3
0.5 | 0.25 0.27 3.2 0.5 0.2 0.8 186.15 | 181.01 | -2.8 -18.9
0.5 | 0.25 1.07 0.8 0.5 0.8 0.2 97.99 97.81 | -0.2 -28.8
0.8 | 0.04 0.17 0.51 0.2 0.51 0.51 10.00 10.03 0.3 -42.7
0.8 | 0.04 0.07 0.8 0.2 0.21 0.8 74.27 75.74 | 2.0 -33.9
0.8 | 0.04 0.27 0.2 0.2 0.81 0.2 59.3 60.73 2.4 -45.6

Table 3: Sojourn time variance with two asymmetrically loaded FCFS nodes: approximations versus simulations.

PL | P2 | P3 | Pa | Ps | Pps Prosa sim | approx | A% | Agimple%
01[01| 01 [01[01 040202 02]02]02] 709 711 | 0.4 -30.8
01/01] 01 [01] 01 [04]08]| 08 | 08| 08 | 0.8 |1344.2 | 1352.8 | 0.6 -33.3
01 01|01 (01|01 [04]08]0.64]|048|0.32]0.16| 2978 | 297.3 | -0.2 -23.0
01[01|01 (01|01 [04[09] 0202|0202 |108.5 | 1070.9 | -1.0 -16.6
04 (01|01 [01[01]05|08|02]02]02]02]| 746 77.4 | 3.7 -47.3
04 01|01 (01|01 |[05|08]|08 ]| 08|08/ 08 | 835 | 837.7| 1.7 -55.4
0302|015 |0.1]005|05]|08]|053| 04 |027 013 | 98.3 100.8 | 2.5 -51.6
0.3/02[015[0.1[005[05|06| 06 | 0.6 | 0.6 | 0.6 | 1246 | 1261 | 1.2 -53.6

Table 4: Sojourn time variance with five FCFS nodes: approximations versus simulations.
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sojourn time in this case with five FCFS nodes. As can be seen the more advanced approximation behaves very well in
systems with five FCFS nodes. The relative error is not larger than 4%. We expect that the approximation will also
behave well in systems with another number of FCFS nodes, because a larger number of FCFS nodes will reduce the
cross-correlations and the correlations between subsequent visits to each FCFS node. This conjecture is supported by
our efforts to find a worst-case scenario for the approximation. In fact, we did not find any parameter scenario where
the approximation was less accurate than the worst-case scenario that we found in our previous work, with a feedback
network with only one FCFS node. The worst-case scenario presented in our previous work was a pathological scenario
in which the arrival processes at the PS node and FCFS node are highly non-Poisson by taking the external arrival
rate A close to 0 and p close to 1. We demonstrated that the approximation tends to become less accurate when rate
A very low and p very high, but in several cases still acceptable. However, the cases for which the approximation

becomes poor are quite pathological and less relevant from a practical point of view.

5.1.2 Multiple servers at FCFS nodes

To check the accuracy of the approximations for models with multiple servers at the FCFS nodes, we first consider
the following symmetric model with multiple servers at the FCFS nodes: A = 1, M = 3, ¢; = ¢c3 = ¢3 =: ¢,
p1 =Dp2 = p3 = 0.3, Brcrs1 = Brefs,2 = Brefs,3 = Byeps- Note that prers1 = prefs2 = Pfefs,3 =: Pfefs- Table b
shows the results for a variety of combinations of 8pg, Bfcfss ¢, pps and pyscys. The parameters have been varied
in such a way that the approximations are tested for a broad range of load combinations of the PS node and the

FCFS nodes. The results in Table 5 show that our approximation also works very well for models with multi-server

Bps | Bfefs | ¢ | pps | Pfefs sim approx | A% | simple | Agimpie%
0.02 | 0.33 2 10.20 | 0.50 22.90 23.67 3.35 9.50 -58.4
0.02 | 0.53 2 10.20 | 0.50 271.43 269.03 | -0.88 | 93.56 -65.5
0.05 | 0.13 2 10.50 | 0.20 5.88 6.08 3.53 2.39 -59.3
0.05 | 0.53 2 | 0.50 | 0.80 306.54 306.97 0.14 | 107.43 -64.9
0.08 | 0.13 2 1 0.80 | 0.20 47.85 48.90 2.20 14.3 -70.0
0.08 | 0.33 2 1 0.80 | 0.50 87.11 90.55 3.95 30.96 -64.5
0.01 | 0.33 4 | 010 | 0.25 11.85 11.90 0.46 5.33 -55.0
0.01 | 1.20 4 | 0.10 | 0.90 | 1680.76 | 1637.24 | -2.59 | 550.25 -67.3
0.03 | 0.13 4 | 0.25 | 0.90 2.67 2.70 1.18 1.17 -56.0
0.08 | 1.20 4 | 0.75 | 090 | 1829.87 | 1842.08 | 0.67 | 629.58 -65.6
0.09 | 0.13 4 1090 | 0.75 230.90 235.73 2.09 59.96 -74.0
0.09 | 1.00 4 1090 | 0.75 592.27 718.54 3.79 | 246.18 -64.4
0.02 | 1.67 | 10 | 0.20 | 0.50 286.38 290.27 1.36 | 129.57 -54.8
0.05 | 0.67 | 10 | 0.50 | 0.20 56.97 57.64 1.17 | 25.33 -55.5
0.08 | 0.67 | 10 | 0.80 | 0.20 123.59 128.96 4.34 | 48.69 -60.6
0.08 | 1.67 | 10 | 0.80 | 0.50 430.20 440.47 2.39 | 184.36 -57.2

Table 5: Sojourn time variance with three symmetric multi-server FCFS nodes: approximations versus simulations.

FCFS nodes, and show that the simple approximation is strongly outperformed, reducing the error by two orders of

magnitude.
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Next, we consider the accuracy of the approximations for asymmetric models with multi-server FCFS nodes. The
results are shown in Tables 6 and 7. Table 6 shows the results for the model with A = 1 and ¢; = cg = ¢c3 = ¢. Table
7 shows the results for a variety of parameter settings in which the numbers of servers are also asymmetric.

p1 | p2 | p3 | Bps gfcfs pPS Press sim | approx | A% | simple | A%

0.20 | 0.20 | 0.20 | 0.20 | 1.97 1.99 0.87 | 1.38 | -29.8
0.50 | 0.50 | 0.50 | 0.50 | 51.39 52.73 | 2.61 | 35.62 | -30.7
0.80 | 0.80 | 0.80 | 0.80 | 675.26 | 685.68 | 1.54 | 390.88 | -42.1
0.20 | 0.20 | 0.20 | 0.20 | 13.85 13.85 | 0.01 | 9.37 | -32.3
0.50 | 0.50 | 0.50 | 0.50 | 122.15 | 126.17 | 3.29 | 71.35 | -41.9
0.80 | 0.80 | 0.80 | 0.80 | 949.43 | 987.05 | 3.96 | 494.13 | -48.0
0.20 | 0.20 | 0.20 | 0.20 | 25.66 25.84 | 0.69 | 12.77 | -50.2
0.50 | 0.50 | 0.50 | 0.50 | 208.88 | 213.75 | 2.33 | 95.02 | -54.5

0.1]0.2]03|0.08 | 0.80 | 0.40 | 0.27
0.1 0.2]03]0.20 | 400 | 2.00 | 1.33
0.102|04] 024|720 | 3.60 | 1.80
0.1]02)04|0.06 | 240 | 1.20 | 0.60
0.1 03| 04| 0.10 | 5.00 | 1.67 | 1.25
0.1 03]|04]0.16 | 9.60 | 3.20 | 2.40
0.1 03|05 ]0.02|1.40 | 0.47 | 0.28
0.2 03|05 0.056| 200 1.33 | 1.00

0O J O U i W N H|O

Table 6: Sojourn time variance with three symmetric multi-server FCFS nodes: approximations versus simulations.

p1 | P2 | D3 Biets c1|c2 | c3| pps Pregs sim | approx | A%
0.1]0.2]03|3.00| 200 | 1.00 0.50 | 0.75 | 0.50 | 0.25 | 135.49 | 131.78 | -2.8
0.1]02)|04 | 225|270 | 1.69 0.75 | 0.75 | 0.60 | 0.45 | 211.61 | 216.96 | -2.5
0.1 03|04 | 180 | 0.40 | 0.15 0.75 | 0.90 | 0.08 | 0.03 | 638.54 | 642.47 | 0.6
0170304180 3.20 | 1.35 0.75 | 0.90 | 0.60 | 0.30 | 904.46 | 909.08 | 0.5
0310303040 | 0.67 | 0.53 0.80 | 0.20 | 0.50 | 0.80 | 194.92 | 199.34 | 2.3
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Table 7: Sojourn time variance with three asymmetric multi-server FCFS nodes: approximations versus simulations.

Tables 6 and 7 demonstrate that the approximations work very well for multi-server nodes at the FCFS nodes.

5.2 General service times at PS node

In this subsection we assess the accuracy of the approximations for non-exponential service-time distributions at the
PS node. To this end, we first consider a model with M = 2 FCFS nodes, with ¢; = ¢; = 1 and routing probabilities
p1 = p/4 and py = 3p/4. Table 8 shows the results the simulated and approximated values of Var[S] for a variety
of parameter, where the squared coefficient of variation of the service-time distribution at the PS node (i.e., c%g) is
varied as 0, 1, 4 and 16. The service times are deterministic for the case ¢3¢ = 0 and exponential for ¢3¢ = 1. For the
other cases the service times at the PS node are Ha(pps, Bps,1, Ops,2)-distributed; here the notation Ha(pps, Bps,1, Ops,2)
means that samples from the hyper-exponential distribution are drawn from an exponential distribution with param-
eter B,5,1 with probability p,s and with probability 1 —p,, the sample is drawn from an exponential distribution with
parameter B, 2. The parameters pys, Bps,1 and Bps,2 are chosen such that the squared coefficient of variation of the
service times equals approximately c¢%¢ = 4 and 16. The precise parameter values of the H distribution are as follows.
The parameters for the cases with c%g = 4 are (Pps, Bps,1,Bps,2) = (0.75,0.1,1.3), (Pps, Bps,1,Bps,2) = (0.75,0.06,0.82),
(Pps, Bps, 1, Bps,2) = (0.75,0.01,0.13), for the cases p = 0.2, p = 0.5, respectively. These H, parameters result in an
actual squared coeficient of variation of chg = 4.38, chg = 4.47 and c%hg = 4.38, respectively. Similarly, for cases
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denoted by c%g = 16 the parameters are (pps, Bps,1,Bps,2) = (0.95,0.15,5.15), (Pps, Bps,15Bps,2) = (0.95,0.09, 3.29),
(Ppss Bps,15 Bps,2) = (0.95,0.015,0.515), for the cases p = 0.2, p = 0.5 and p = 0.8, respectively. Hence, the precise Ho
parameters result in an actual squared coeficient of variation of ¢%g = 15.84, ¢ ¢ = 16.56, respectively c%¢ = 15.84.

P | Bps c?; s | Brefsa | Bfefs,2 | simulation | approx | A%
0.2 | 0.40 0 2.65 8.00 52.60 52.82 | 0.4
0.2 | 0.40 1 2.65 8.00 53.76 53.83 | 0.1
0.2 | 0.40 4 2.65 8.00 56.98 57.23 | 04
0.2 | 0.40 16 2.65 8.00 68.18 68.81 | 0.9
0.5 | 0.25 0 0.67 2.00 21.43 21.50 | 0.3
0.5 | 0.25 1 0.67 2.00 22.08 22.14 | 0.2
0.5 | 0.25 4 0.67 2.00 24.45 24.32 | -0.5
0.5 | 0.25 16 0.67 2.00 31.88 31.95 | 0.2
0.8 | 0.25 0 0.17 0.51 9.91 10.02 | 1.1
0.8 | 0.25 1 0.17 0.51 9.93 10.03 | 0.8
0.8 | 0.25 4 0.17 0.51 9.95 10.08 | 1.1
0.8 | 0.25 16 0.17 0.51 10.12 10.23 | 1.1

Table 8: Sojourn time variance for general service times at the PS node: approximations versus simulations.

Finally, Table 9 shows the results for the same model as in Table 8, but with multiple servers: ¢; = 2 and
c2 = 3. For the results shown in Table 9 the Hs-distribution for c¢bs = 4 and p = 0.2 the parameters were
(Pps» Bps,1>Bps,2) = (0.6,0.01,1.6), which results in an actual squared coeficient of variation of ¢%g = 3.91. For
cases denoted by chg = 4 and p = 0.8 the parameters were (pps, Bps,1; Ops,2) = (0.6,0.001,0.4), which results in an
actual squared coeficient of variation of ¢%¢ = 3.96. For cases denoted by c¢%g = 16 and p = 0.2 the parameters were
(Pps» Bps,1>Bps,2) = (0.9,0.05,6), which results in an actual squared coeficient of variation of ¢%¢ = 16.32. Finally, for
cases denoted by chg = 16 and p = 0.8 the parameters were (Pps, Bps,1, Ops,2) = (0.9,0.01,1.51), which results in an
actual squared coeficient of variation of c%4 = 16.82.

The results presented in Table 8 and 9 demonstrate that our approximation (29) is also highly accurate for non-
exponential service-time distributions at the PS node, with errors of at most a few percent.

Remark 1:

The numerical results presented in Tables 1 to 9 show that the approximation for the variance of the sojourn times
in (29) are highly accurate for a remarkably broad range of parameter combinations. Apparently, our closed-form
approximation covers the main factors that determine the variance of the total sojourn times of customers in the
system.

Remark 2:
Despite the remarkable accuracy of the approximation in (29), almost by definition there are parameter combinations
for which the accuracy of the approximation degrades. For the approximation in (29) there are several sources of

inaccuracy, which open possibilities for further reducing the inaccuracy of the approximations, at the expense of the
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P | Bps | ¢bs | Bfegsi | Brefs,2 | simulation | approx | A%
0.2 | 0.64 0 5.34 24.00 159.3 161.3 1.2
0.2 | 0.64 1 5.34 24.00 179.9 181.8 1.1
0.2 | 0.64 4 5.34 24.00 254.2 253.0 | -0.5
0.2 | 0.64 16 5.34 24.00 532.9 527.5 | -1.0
0.2 | 0.64 0 2.13 38.40 837.4 830.4 | -0.8
0.2 | 0.64 1 2.13 38.40 863.9 850.8 | -1.5
0.2 | 0.64 4 2.13 38.40 923.5 | 922.92 | -0.1
0.2 | 0.64 16 2.13 38.40 1205.6 | 1197.3 | -0.7
0.2 | 0.64 0 8.53 9.60 314.3 313.9 | -0.7
0.2 | 0.64 1 8.53 9.60 336.6 334.4 | -1.5
0.2 | 0.64 4 8.53 9.60 399.5 406.3 1.7
0.2 | 0.64 16 8.53 9.60 697.3 680.8 | -2.4
0.8 | 0.16 0 0.33 1.50 71.3 73.7 | 3.4
0.8 | 0.16 1 0.33 1.50 76.7 78.8 | 2.8
0.8 | 0.16 4 0.33 1.50 96.3 96.7 | 04
0.8 | 0.16 16 0.33 1.50 162.4 159.8 | -1.6
0.8 | 0.16 0 0.13 2.40 169.6 171.9 1.3
0.8 | 0.16 1 0.13 2.40 173.1 177.0 2.3
0.8 | 0.16 4 0.13 2.40 190.9 195.1 2.2
0.8 | 0.16 16 0.13 2.40 260.1 2579 | -0.8
0.8 | 0.16 0 0.53 0.60 124.9 1275 | 2.0
0.8 | 0.16 1 0.53 0.60 130.9 132.6 1.3
0.8 | 0.16 4 0.53 0.60 149.8 150.7 | 0.6
0.8 | 0.16 16 0.53 0.60 218.6 213.6 | -2.3

Table 9: Sojourn time variance for general service times at the PS node: approximations versus simulations.
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simplicity of the approximation. The first source of inaccuracy stems from the Poisson assumption in AA1, which
is generally not the case in networks with feedback loops. Similarly, approximating the results for delayed feedback
by known results for non-delayed feedback (AA2), and neglecting the covariance of the successive sojourn times at
the different nodes (AA3) are not generally true and hence additional sources of inaccuracy. In the context of the
approximations for non-exponential service times at the PS node there are additional sources of inaccuracy. First, the
covariance terms in equation (23) are only valid for the case of exponential service times at the PS node (considered
in isolation) [1], but not for general non-exponential service times. Second, in general the approximations for Var[S]
also depend on the third moments of the service-time distribution at the PS node, whereas approximation (29) only
depends on the first two moments of the service-time distributions at the PS node. We refer to [1] for refinements on
the approximation for Var[S] in an isolated PS node.

6 Topics for Further Research

The results presented above lead to a number of topics for further research. First, in this paper customers traverse
routes through the queueing network according to a Bernoulli feedback scheme, where customers after departing from
the PS either leave the system or jump to FCFS node k with probability px. An extension of this model, which is very
interesting from an application point of view, is to assume deterministic routing, where customers visit the queues in a
fixed predetermined order. In this context, notice that product-form solutions, and hence closed-form expressions for
the mean sojourn times E[S], also exist for deterministic routing schemes, and moreover, that the covariance results
from [1] are applicable to non-Markovian routing schemes. Extension of the results towards deterministic routing
schemes is a challenging topic for further research. Second, another model extension that is very interesting from
an application point of view is the inclusion of multiple customer types that may each be gouverned by different
routing schemes and / or service times. In this context, notice that product-form solutions and hence exact results
for E[S], still exist for multiple customer classes under several additional assumptions. Third, in many applications
the maximum number of requests that a server will handle simultaneously is limited to some fixed maximum in order
to protect the server-side system from getting overloaded. This type of limitations may be included in the model by
a token-based mechanism, where customers may need to wait to get access to a token before entering the system.
Extension of the model and the results to include the impact of limitations in the number of customers in the system
is an interesting topic for further research. Fourth, it is assumed here that the service times at the FCFS nodes are
exponentially distributed, whereas in practice the processing times may be non-exponential. Notice that the case of
non-exponential service times at the FCFS nodes is fundamentally more complex, and does not admit a product-form
solution, so that exact expressions for E[S] can not even be obtained. Extension of the results to incorporate non-
exponential service-time distributions for FCFS nodes is an open research topic. Finally, the methodology developed
in this paper is new and the results are remarkably accurate. Therefore, it is a challenging topic for further research to
investigate to what extent the methodolgy can be applied in a more general context, e.g. application to non-product
form queueing networks.
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