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Abstract— Over the years, the use of global grid environments
have become widespread. In order to make applications robust
against the dynamics of those grid environments it is essential
to develop powerful techniques. For these techniques to be
effective, it is important to have an understanding of the statistical
properties of the dynamics of a grid environment. Today, however,
the statistical properties of the dynamic behavior of real global-
scale grid environments are not well understood. Therefore, we
present a framework of statistical analysis tools by which we
are able to obtain a characterization for different properties
of different types of grid environments. Our main focus is on
highly CPU-intensive grid applications that require huge amounts
of processor power for running tasks. In order to derive a
characterization of the statistical properties of the running times
of tasks on processors, we have performed extensive measure-
ments in a real, global-scale grid environment and analyzed the
results of the framework of analyses. We observe (1) a strong
burstiness of the running times over different time scales, (2) a
strong heterogeneity of the running-time characteristics among
the different hosts, (3) a strong heterogeneity of the running-time
characteristics for the same host over different time intervals, and
(4) the occurrence of sudden level-switches in the running times,
amongst others. These observations are used to develop effective
techniques for the prediction of running times. They can be used
to develop effective control schemes for robust grid applications.

ACKNOWLEDGMENT

The authors would like to thank Mathijs den Burger, Thilo
Kielmann, and Henri Bal, for their useful comments.

I. INTRODUCTION

Over the years, clusters of processor units have evolved
into grids that globally connect processors via the Internet.
Generally, the processors of grids are shared by the different
grid applications that run on them. Grid environments are
fundamentally different from clusters and are highly unpre-
dictable for several reasons: the processor load on fluctuates
all the time, the processor capacities and link rates are often
unknown, users can connect and disconnect processors at
any time. As a consequence, applications that perform well
in a cluster environment may perform badly when executed
in a grid environment. This raises the need for techniques
that make applications robust against the dynamics of grid
environments. For example, an effective means to do so is to
implement dynamic load balancing (DLB) schemes that can

dynamically update the load offered to different nodes in a
grid in response to changing circumstances. The efficiency of
such control schemes strongly depends on the effectiveness of
prediction schemes, which in turn require an understanding of
the statistical properties of the dynamics of a grid environment.
In addition, understanding the characteristics of a grid is also
extremely useful for performing simulations or computations
to assess the effectiveness of control strategies prior to their
creation. This enables us to select the most promising control
schemes to be subjected to extensive experimentation, thereby
saving a tremendous amount of time and cost involved in
redundant and time-consuming experimentation with ineffec-
tive control strategies. Our main focus is on CPU-intensive
applications that require large amounts of processing power
for running tasks. Therefore, in this paper, we focus on the
characteristics and statistical properties of the running times
of tasks.

In the literature, a significant number of papers have been
devoted to data analysis of different properties of grids or
networks. Three types of grid-property investigations can be
distinguished: (1) a complete focus on the investigation of
one grid property: for example, the statistical characteristics
of network arrivals [1], of availability [2], and of load [3]; (2)
an exploration on the statistical properties of a grid property
and followed by simulation studies to address different types
of questions, varying from grid design questions (e.g., is a
global grid feasible?) to basic questions (e.g., what scheduling
strategies are needed?). Examples are the investigations on
the statistical properties of life times of unix processes to
develop load balancing strategies [4], [5], and investigations
on a characterization of the availability of desktop grids to
explore the affection on its utility [6], and (3) research on
the statistical characteristics of a grid property to develop a
prediction method: those research steps have been done for
load to predict total run times of applications [7], for load
to predict the load [8], and for the throughput to predict the
throughput [9], [10]. Consequently, the final step is to use these
predictions to develop a dynamic load-balancing or scheduling
algorithm (see [11] with its previous papers [3], [8] and [12],
and [13] in combination with its previous paper [14]). Despite
the fact that many papers focus on the statistical charateristics



of grid properties, no papers concentrate on the running times
of consecutive tasks on shared processors of a grid.

Extensive research has been done on the relation between
processor load and the running times by Dinda et al. [12],
[15]. Although these two factors in theory are closely related,
they find that in practice it is hard to relate the running times
and the load, because many other factors (e.g., memory space)
also have an influence on the running times. For that reason,
load and running times of tasks may have strongly different
characteristics, and it is necessary to investigate the running
time characteristics.

In this paper, we extensively investigate the statistical prop-
erties of consecutive tasks on nodes in a grid environment. To
this end, we gather real datasets of running times of tasks on
distributed processors in a global-scale testbed environment.
How we collected the data is described in Section II. In
Section III we perform extensive data analysis of the observed
task running times, generated from different globally dispersed
nodes. Statistical representations as the Boxplots, histograms,
Auto-Correlation Functions, and other statistical properties
will be investigated. The results show that the characteristics
of the running times vary strongly among the different nodes,
and moreover, that the characteristics (e.g., mean, burstiness)
for each given node may differ strongly over different time
periods. In Section IV we address a number of topics for
further research.

II. DATA COLLECTION

In this section we describe the data collection procedure.
To perform experiments on shared processors in a real grid

environment, we used Planetlab [16], a commonly used grid
test bed environment shared by many users. At the time of our
experiments, Planetlab version 2.0 was installed on the nodes.
We ran in total 40 runs on 18 different Planetlab nodes. Each
single run generated a dataset and consists of the running times
(i.e., wallclock times) of 2000 consecutive and identical tasks.
In order to correlate the statistical properties of the running
times at the different nodes, at each day all runs were kicked
off simultaneously at 9:00 CET.

III. FRAMEWORK OF STATISTICAL ANALYSES

In this section we present the different statistical analysis
elements of the framework and analyze the 40 real datasets of
running times of tasks on shared processors. We successively
discuss the Box-and-Whisker plots, histograms, Auto Corre-
lation Functions (ACFs), and other statistical properties of the
datasets.

A. Box-and-Whisker plots

Constucting Box-and-Whiskerplots, commonly known as
Boxplots [17], is a common way to highlight the differences
between the medians, the quartiles, the minimum, the max-
imum and the outliers of different datasets. Figure 1 shows
the Boxplots of the running times (in milliseconds) of 6
representative datasets. Datasets 9 and 10, and also 31 and
32 are generated on the same node on consecutive days. The
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Fig. 1. Boxplot of 6 datasets of running times

plot gives a macroscopic view of the data. More precisely,
we consider the three quartiles: the 25%-percentile (denoted
as Q1), the median (denoted as Q2) and the 75%-percentile,
Q3. These quartiles are plotted as a long horizontal line.
In addition, we consider the statistical measures Adown :=
Q1− 1.5(Q3−Q1), Aup := Q3 + 1.5(Q3− Q1), which are
indications of the data points that should not be considered as
outliers, and indicated by short horizontal lines. Finally, the
outliers are plotted by small circles.

Figure 1 leads to the following observations: (1) the char-
acteristics of the running times at a given node on different
days in some cases differ strongly (see for example the results
for datasets 9 and 10), but can be quite similar in other cases
(see for example datasets 31 and 32), (2) the running-time
characteristics of different nodes are strongly different, even
when experiments are done at the same time, (3) the running
times at a given node within a given run are highly bursty, and
have a large number of strong outliers, and (4) in most cases
the outliers correspond to very large values of the running
times, but we have also seen that in some cases outliers
correspond to very small running times.

We reemphasize that the observed heterogeneity of charac-
teristics of the running times in the grid environment differs
fundamentally from the running-time characteristics in dedi-
cated clusters of processors, which are homogeneous and well
predictable.

B. Histogram

Many grid properties can be fitted in standard distributions
[1], [2], [4]–[6], and therefore, it is easy to make simulations or
computations with those properties. To analyze the frequency
distribution of the running times in more detail, Figure 2(a)
shows the histogram of the marginal runnning-time distribu-
tion of a representative dataset.

Figure 2(a) shows that the running-time distribution is multi-
modal. This is caused by a level switch in the running times
over sustained time periods (ranging from minutes to hours).
To illustrate this, Figure 2(b) gives a graphical representation
of parts of the dataset. Figure 2(b) shows that from datapoints
235 to 260 a level switch occurs. From task number 180 to
230, the running times are between 3500 and 6000, which



(a) Histogram of dataset 1 (b) Level switch in dataset 1 (c) ACF plots of 2 different datasets

Fig. 2. Histogram, level switch, and ACF plots

explains the first peak in Figure 2(a). From task number 260
to 310 the measured running times are between 15000 and
30000, which explains the second peak in the histogram. Level
switches are presumably caused by changes in the processor
load due to the launching or termination of other tasks on the
same node.

C. Auto Correlation Function

The Auto Correlation Function (ACF) is an effective way
to investigate whether the datapoints show correlations over
different time scales (for more details, see [18]). The ACFs of
datasets 1, 5, and the exponential trend of dataset 1 are shown
in Figure 2(c). The results show that the ACFs do not follow
predictable patterns, and show strong differences over the
small (ranging from 1 up to 20) and the large (higher than 20)
lag values. For example, the ACF of dataset 1 has significant
autocorrelations over the small lag values. However, the ACF
of dataset 5 decreases very quickly to 0, even for small lag
numbers. For the datasets with significant autocorrelations for
the large lag values, we consistently observe exponentially
decaying autocorrelations which suggests that the successive
running times are short-range dependent.

D. Other statistical properties

In this subsection we provide an datasets analysis by another
set of statistical properties. We analyze the 40 datasets by 5
different statistics. The formulas of the statistics are omitted
for brevity. Figure 3 gives a graphical representation of the
results for a representative selection of datasets. Next we
discuss the results in detail.

The first statistic is the Coefficient of Variation (CoV). The
CoV equals the standard deviation divided by the average,
and is a scale-invariant indicator for the variability of the
datapoints. We conclude that the average and the standard
deviations of the running times of the tasks may differ strongly
between the dataset. Figure 3(a) shows that the CoV of the
running times are fairly low, ranging between 0.22 and 1.81.

The next statistic, which is represented in Figure 3(b), is
the standard deviation over the Root of the Mean Squared
Deviation (RMSD) of two successive datapoints. This statistic
indicates to what extent the standard deviation is caused by
short- or long-term fluctuations. This statistic theoretically
varies between 0.5 and infinity. When the statistic has the

theoretical minimum value of 0.5 (see line M in Figure 3(b)),
it indicates that the values alternatingly switch between two
values: any two successive values show a correlation of -1.
A value of 0.7(= 1

2

√

2) (see line I in Figure 3(b)) indicates
that the values are independent and identically distributed. The
higher the value the more long-term fluctuations influence the
standard deviation. The average of 1.12 for this statistic, which
is significantly higher than 0.7, indicates a significant amount
of long-term fluctuations. Moreover, we conclude from the
high variety of the height of this statistic, which is shown
by Figure 3, that the proportion of long- and short-term
fluctuations differs per dataset.

The third statistic is the CoV of the averages and indicates to
what extent the average of the running times of tasks changes
during the run. A value of 1.0 for this statistic indicates that
the average stays constant during the run. Figure 3(c) shows
that for all datasets the averages fluctuate significantly: the
statistic shows values that are signifcantly higher than 1.0.
Nevertheless, the datasets show a high diversity in to what
extent the averages fluctuate. We conclude from the results of
this statistic that all the datasets have many level switches.

The fourth statistic is the standard deviation of standard
deviations of, in this paper, 20 successive values divided
by the average of those standard deviations. This statistic
indicates how much the standard deviation (stdev) of the
running times changes during the run. The closer this statistic
is to 0, the more constant the standard deviation is during the
run. Figure 3(d) shows that all the datasets have substantial
fluctuations in the standard deviations. Nevertheless, there is
diversity in the fluctuations of the standard deviations between
the different sets.

The next statistic is the fraction of peaks in each dataset. A
peak is defined as a value that differs (up- or downwards)
from its previous value more than 2 times the standard
deviation. The results show that the fraction of the peaks show
some difference between the datasets, ranging between 1%
and 22%. The average fraction of peaks (6%) is relatively
low compared to the normal distribution (16%) and to the
exponential distribution (13%). Figure 3(e) shows significant
variation among the datasets in the fraction of peaks.

The last statistic indicates the fraction of the total amount of
fluctuations (i.e., RMSD of two successive datapoints) that is
caused by the peaks. Figure 3(f), the graphical representation
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Fig. 3. Statistical properties of the datasets

of this statistic shows that on average 76% of the total amount
of fluctuations is caused by the peaks. This value does not
differ significantly from the fraction of the normal distribution
(76%) and the exponential distribution (81%).

To summarize, the statistical data analysis of the datasets
shows that: (1) the characteristics of the datasets are mostly
completely different, (2) the datasets show on average more
long-term than short-term fluctuations and the proportion dif-
fers per dataset, (3) the averages fluctuate significantly during
the run, with differences in the amount of fluctuations between
the different nodes, (4) the standard deviations fluctuate sig-
nificantly during the run, with differences in the amount of
fluctuations between the different nodes, and (5) the datasets
contain a small amount of peaks that have a huge influence
on the standard deviation, the total amount of fluctuations, and
the variance.

IV. CONCLUSIONS AND CHALLENGES

In this paper, we first presented an extensive framework of
statistical analysis tools, which is easily appliable to different
properties of different types of grid environments. The results
of the analyses framework represent a detailed characterization
of the investigated grid property. By utilization of this frame-
work for all the key properties of a specific grid environment a
complete grid-environment characterization will be obtained.

Second, we have presented the results of the analyses in
this framework for the running times on nodes in a global-
scale grid environment. The results show a characterization of
the running times that has not been observed before in the
context of global-scale grids. The results of these analyses are
very useful for a number of purposes, and address a number
of challenging topics for further research. First, the observa-
tions provide valuable input for the development of effective
techniques for the prediction of running times, which can be
explored to develop efficient control schemes for robust grid
applications; example of such techniques are dynamic load
balancing techniques. Second, the results presented here are
also very useful for performing simulations or computations
to assess the effectiveness of control strategies prior to their
creation. In this way we can do an initial assessment of the
effectiveness of control strategies in a simulation environment,
and selecting the most promising ones for further exploration.
In this way, tremendous time and cost savings can be realized,
performing extensive and time-consuming experimentation
only for a limited number selected control strategies.
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