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Abstract

For years, grid environments expand globally in number
and in size. Globally collaborating processors, that share
their available capacities, construct a tremendous source
of processing power. This source has proven its necessity
for performing extensive computations, because these cal-
culations require unacceptable amounts of time on a small
number of processors. Key properties of grid environments
are that the wallclock times of the jobs are highly bursty,
mainly because of the changing load, and that the set of
resources dynamicly changes over time. Those properties
show the importancy of developing techniques that make
grid applications robust against the dynamics of the grid en-
vironments. In particular, grid applications that use a con-
siderable number of processors for their computations need
effective predictions of the expected computation times on
the different nodes. Currently, there are no effective predic-
tion methods available that cope with those ever-changing
dynamics of computation times in a grid environment. Mo-
tivated by this, in this paper we develop the Dynamic Expo-
nential Smoothing (DES) method to predict job times in a
grid environment. In order to compare predictions of DES
to that of the existing prediction methods, extensive exper-
iments in a real grid enviroment, Planetlab [1], have been
performed. The results illustrate a strong and consistent
improvement of DES in comparison with the existing pre-
diction methods.

1. Introduction

For decades, grid environments have shown to be a very
useful and inexpensive alternative to dedicated clusters of
processors. The processors of grids are connected at a
global scale via the Internet, and grid applications effec-
tively share the processing resources, because reservation
systems are not implemented in grids. Grid environments

are highly unpredictable due to the following main proper-
ties: the job times of jobs on the shared processors change
all the time, the processor capacities and link rates are of-
ten unknown, and the set of available processors changes
continuously over time. Those properties may substan-
tially increase the job times of grid applications. This raises
the need for methods that make applications robust against
those fluctuations of the grids. The quality of those tech-
niques strongly depends on the effectiveness of the predic-
tion methods: as demonstrated in an experimental setting
by [2, 3, 6, 11], scheduling methods based on effective pre-
diction methods can realize considerable speedups.
In this paper, we focus on the development of a prediction
method for running times of jobs on shared processors. To
this end, we analyze several existing methods that are po-
tentially capable of predicting job times, and investigate
their advantages and disadvantages. The results of previ-
ous work on the characteristics of job running times on grid
nodes [8] provide a strong basis for those analyses. Next,
we develop a new prediction method, called Dynamic Ex-
ponential Smoothing (DES), that takes into account all the
observations of the analyses. Extensive experimental results
demonstrate that predictions from the DES strongly outper-
forms the existing methods.

In [8] an extensive set of statistical properties of job
times has been investigated. The results of the statistical
data analysis demonstrate that: (1) the characteristics of the
datasets very often differ completely, (2) the datasets show
on average more long- as short-term fluctuations and the
proportion differs per dataset, (3) the average job-time fluc-
tuate continuously during the run, with differences in the
amount of fluctuations between the different nodes, (4) the
standard deviations fluctuate considerably during the run,
with differences in the amount of fluctuations between the
different nodes, and (5) the datasets contain a small amount
of peaks that have a substantial influence on the standard de-
viation, the total amount of fluctuations, and the variance.
This has raised the need for the development of effective



prediction methods of job times that are able to deal with
those characteristics. To this end, these observations form
the basis for both an investigation of the applicability of ex-
isting predictors for predicting job times, and, the develop-
ment of a new prediction method.

In the literature, much research focusses on the develop-
ment of prediction methods. Those methods can be broadly
classified into two main types: linear and non-linear predic-
tors. For the grids, various linear models have been proven
effective in predicting grid properties: Autoregressive mod-
els (AR) for load [5] and network traffic [14], Exponential
Smoothing (ES) for job times [7], a tendency-based predic-
tor also for load [20], and Linear Regression (LR) for total
running times of parallel applications [10]. Furthermore,
the Network Weather Service (NWS) prediction algorithm
that selects between different linear predictors (e.g. [19])
showed good performance for different grid predictions.
Further, ES-based predictors (e.g. [15]) give very accurate
predictions in other areas (e.g. economical, and weather-
forecasting areas) and are potentially applicable in grids.
Moreover, the applicability in grids of non-linear prediction
models (e.g. Neural Networks) has not yet been investi-
gated.

The main requirement of grid applications is the neces-
sity of robustness against the dynamically changing circum-
stances. An example of creating robustness is developing
dynamic load balancing schemes to control the fluctuations
of the job times on the several nodes [6]. A compulsory
requirement of efficient dynamic load balancing is that the
predictor is fast and simple. Moreover, due to the restricted
monitoring possibilities in a real grid, the required num-
ber of types of grid-property measurements (e.g. load, job
times, latencies) for the prediction methods has to be small.
In order to predict the job times on the basis of the measured
load, Dinda et al. [4, 5] investigate the relation between pro-
cessor load and job times. The results of Dinda show that
the job times and the load show a significant negative cor-
relation, but that, however, predicting job times by the load
is infeasible due to the impact of many other factors (e.g.
memory space) on the job times, and those are hard, or even
technically impossible, to gather in practice. The prediction
of job times is even further complicated by the fact that in
a real grid environment even the load (i.e., CPU utilization)
can often not be measured at all. In order to avoid this diffi-
culty, we focus on methods to predict future job times only
on the basis of the past job times, not requiring any addi-
tional - and possibly unavailable - measurement data.

In this paper, we develop a new prediction method for
the running times of successive jobs on nodes in a grid en-
vironment. To this end, in Section 2 we combine the re-
sults of [8] (outlined above), and a theoretical analysis, to
identify the strong and weak points for an extensive set of
predictors (e.g., NWS, Autoregression, Adaptive Exponen-

tial Smoothing, STES predictors). The results show that the
main reasons for inaccuracy of these existing methods are
(1) delayed reaction to “level switches”, and (2) overreac-
tion to sudden peaks in the job times. In Section 3, these
findings form the basis for the development of the predic-
tion method Dynamic Exponential Smoothing (DES). The
main idea behind DES is that it uses ES with a interpolating
factor α that switches between multiple dynamically adapt-
ing values. Subsequently, in Section 4 the accuracy of the
predictions based on DES are compared to that of the other
prediction methods. For the comparison we use 45 datasets
of 18 different nodes of Planetlab [1], a global-scale grid
testbed environment. The results show that DES strongly
outperforms the existing methods in the vast majority of the
datasets. Finally, in Section 5 we address a number of topics
for further research.

2. Analysis of Existing Prediction Methods

In this section, we analyze a variety of existing meth-
ods that can be used to predict the running times of jobs on
shared processors. We analyze the methods in a theoreti-
cal and practical way, which is based on the 40 generated
datasets and results from [8]. The data-collection details
of those datasets are described in 4.2. In this section, the
names of the datasets all start with ’pre ’, followed by the
abbreviation of the node location (e.g. ’au’ indicates the
node in Australia, and ’warsch’ the node in Warsaw), and
end with the number of the dataset.

The most commonly used predictors in grid studies are
ES, NWS and AR (these predictors will be described be-
low). Nevertheless, for predicting job times there are many
other useful predictors applicable from other areas (e.g. the
economics area). We selected the Adaptive Exponential
Smoothing Predictors (AESP) and Smooth Transition Ex-
ponential Smoothing (STES) predictors as potential meth-
ods that can give accurate predictions in grids. From the
AESP we discuss Trigg and Leach, Whybark, Mantzer, Pan-
tazopoulos and Pappis, and from the STES predictors we
discuss STES |e| with γ < 0, STES |e|, STES e2, and STES
Whybark, which we selected from [15]. Below, we describe
the different prediction methods and assess their strong and
weak points for making forecasts based on the characteris-
tics of our datasets discussed in the previous section.

2.1. Common grid predictors

In this subsection, we consider the most commonly used
predictors in grid environments: Exponential Smoothing
(ES), Network Weather Service (NWS) and Autoregression
(AR).



2.1.1 Exponential Smoothing

ES is a simple prediction method that suprisingly often
works very good in practice. We define yt as the measured
value at time t, ŷt as the prediction for yt, α as a chosen
parameter between 0 and 1. Next, the prediction for yt is
defined as:

ŷt = αyt−1 + (1 − α)ŷt−1, where 0 ≤ α ≤ 1. (1)

A strong point of ES is that on the one hand, it does not
react completely on peaks and on the other hand it reacts
fast enough to level switches, which are observed frequently
in the datasets. The most suitable value of the interpolation
parameter α depending on the characteristics of the dataset.
A weak point is that once a parameter is chosen, it always
reacts in the same way to peaks and level switches, even
when the structure is are changed completely, which were
found to occur frequently in [8]. For example, Figure 1
shows that ES with parameter 0.5 does not react properly
to a peak, even when there were many peaks in the history
data. In this paper we use the ES parameter 0.5, because
in [6] is stated that 0.5 is the value that leads to the most
accurate predictions for job times.

Figure 1. ES reacting on a peak on
pre arizona02

2.1.2 The Network Wheather Service

The Network Wheather Service (NWS) prediction method
conducts postcasts using different windows of previous data
(always starting with the most recent data and working
backwards in time) and records the ”winning” forecaster for
each window size. Each window size of previous history
is subsequently treated as a separate forecaster and a final
accuracy tournament determines which forecaster will be
used. The predictor selects from a set of the following types
of predictors: median-based, mean-based, and exponential-
smoothing based predictors. For brevity, further details can
be viewed in [19].

A strong point of this method is that it contains a wide set
of predictors. The broad set of predictors represents many

(a) Peak on pre arizona02

(b) Level switch on pre telaviv01

Figure 2. NWS-predictor reacting on a peak
and a level swith in the job times

different charateristics of the datasets, and, therefore, the
NWS prediction method is able to deliver accurate predic-
tions in many situations. Further investigations with the 40
analysis-phase datasets show that some parts of the datasets
contain more than 20% peaks, or show an alternating char-
acteristic. For those cases a predictor based on the aver-
age is the most accurate. Some parts of the datasets show
a homeostatic character, for which a median-based predic-
tor gives the best predictions. Both types of predictors are
represented in the NWS set. Another good point of this se-
lection method is the case of changing charateristics, this
predictor rapidly chooses another predictor that predicts the
new situation more accurately. A weak point is that it does
not always react properly to peaks. Figure 2(a) shows that
when there were small level switches in history, the NWS
method often chooses a predictor that overreacts to peaks.
That is even the case when peaks in history never intro-
duced big changes. Moreover, Figure 2(b) shows that the
NWS prediction method reacts too slow on the new level,
despite many peaks introduced a new level for previous val-
ues. Clearly, peaks in datasets have to be interpreted dif-
ferently than regular values. However, the NWS does not
make distinction between those types of values.



2.1.3 Autoregression

Autoregressive (AR) predictors multiply previous data-
points with some parameter between 0 and 1 to compute
the next prediction. AR models have a parameter p which
indicates the number of datapoints it uses from the history.
Generally, AR predictions (denoted as AR(p)) are calcu-
lated in the following way:

ŷt = α1yt−1 + α2yt−2 + .. + αpyt−p, (2)

with

p
∑

i=1

αi = 1 and 0 ≤ αi ≤ 1. (3)

When the expectation of the yt’s does not equal 0, the mean
of the fitted values is substracted from the yt’s and finally
added to the ŷt. Dinda [5] has also analyzed a set of other
prediction models, related to AR models, and showed that
AR(16) performs the best in forecasting processor loads
and job times. However, as stated in [5], they only work
well in case of periodicity. As can be seen in [8], the
datasets do not show periodicity. Dinda used k-steps-ahead
prediction methods and implemented the Yule-Walker tech-
nique. However, we only use the software part of Dinda
that implements the one-step ahead prediction methods to
be able to compare the predictions with the other one-step-
ahead predictions and because analyses showed that those
predictions are significantly more accurate.

A strong point is that AR methods adapt the parameters
in a way that it efficiently reacts to periodicity. In case of
many peaks, this method will adapt the parameters in a more
’averaging’ way, such that the peaks do not influence the
predictions too much. When more level switches occur, this
method chooses for higher values for the first α parameters,
such that it reacts fast on those switches. However, from
[8] we know that the datasets do not clearly show periodic-
ity. Therefore, the aspect of adapting to periodicity of AR
methods is not an advantage for our datasets. Another weak
point is that the choice of parameters is not optimal. For
example, when the AR method takes a high first parame-
ter because the set shows some small level switches, it will
give a highly inaccurate prediction when a higher peak oc-
curs (see Figure 3(a)). Another drawback of this method is
that when the structure of datapoints is changed it takes a
long time before the method is adapted due to the fact that
this method uses more than 100 datapoints to fit the parame-
ters. Also in case of a trend upwards or downwards (see fro
example Figure 3(b)) this method adapts the predictions too
slowly, because a significant part of the prediction is based
on the average of the whole dataset.

(a) Peak on pre arizona02

(b) Trend down on pre arizona01

Figure 3. AR16-predictor reacting on a peak
and a trend down in the job times

2.2. Adaptive Exponential Smoothing Pre-
dictors

Adaptive Exponential Smoothing Predictors (AESP)
[15] use the following formula:

ŷt = αt−1yt−1 + (1 − αt−1)ŷt−1. (4)

and focus on adapting αt such that the αt will always get a
good value that is independent of the start value, and adapts
when the structure of the values changes. We consider the
following variants of AESPs: Trigg and Leach [16], Why-
bark [17], Mentzer [12], Pantazopoulos and Pappis [13],
and the STES predictors [15].

2.2.1 Trigg and Leach

The method of Trigg and Leach [16] defines the smoothing
parameter, αt of (4), as the absolute value of the ratio of the
smoothed forecast error to the smoothed absolute error:

αt := |
At

Mt

|, (5)

At := φet + (1 − φ)At−1, (6)
Mt := φ|et| + (1 − φ)Mt−1, (7)



Figure 4. A trend up and down on
pre arizona02

where et is the forecast error at period t (et = yt − ŷt) and
φ is set arbitrarily, with 0.2 being a common choice [16].
Trigg and Leach explain that this formulation enables αt to
vary according to the degree to which biased forecasts are
obtained.

A main advantage of this prediction method is that it
chooses a low α parameter when there is a lot of noise in
the dataset and a high α when there is less noise and there
are some level-switches. These properties improve the ac-
curacy of the predictor. A disadvantage is that the proposed
method is that it is difficult to find a suitable choice of the
parameter φ and that the approach sometimes delivers un-
stable forecasts [9]. Another weak point is that when a few
successive datapoints show a trend up (in Figure 4 from
value 710 to 711) and then a trend down (see Figure 4 from
value 711 to 717) in the α value will first increase to close
to 1, which increases the accuracy, and then decreases to 0
and finally increases back to 1. Consequently, as is shown
by the Trigg and Leach prediction values 713 to 718 in Fig-
ure 4, the predictor does not give very accurate predictions.
In this case, it would be better when the α-value was kept
fixed to 1. Similar problems occur when there are many
level switches up- and downwards.

2.2.2 Whybark

AESP Whybark [17] defines the control limits in terms of
multiples of the forecast error standard deviation, σ. An
indicator variable, δt, is defined as:

δt :=















1 when |et| > 4σ,
1 when |et| > 1.2σ, |et−1| > 1.2σ,

and etet−1 > 0,
0 otherwise.

(8)

The value of δt determines whether αt takes a base value,
B, a medium value, M, or a high value, H. Whybark sug-
gests B = 0.2, M = 0.4 and H = 0.8. Altogether, the αt

in (4) of Whybark is computed in the following way:

αt :=







H when δt = 1,
M when δt = 0 and δt−1 = 1,
B otherwise.

(9)

A strong point of Whybark is that it distinguishes be-
tween normal situations and those where there was a huge
difference between the prediction and the measured value;
characteristics of predictions are always different when big
differences occur. However, further analysis with the 40
datasets shows that the Whybark predictor gets a higher
accuracy when it would distinguish between (1) ’normal’
fluctuations, (2) fluctuations that are higher than 2 times
the measured standard deviation, and (3) fluctuations that
are higher than 10 times the measured standard deviation.
A second strong point is that Whybarks’ predictor contains
a correction part; that is, when two successive measure-
ments both deviate in the same direction with more than
1.2 times the standard deviation from the predictions, an-
other ES parameter has to be applied. Further analysis with
our analysis-phase datasets shows that this correction part
increases the accuracy of the predictor, but that a value of
1.0 makes better distinctions. A weak point is that does not
distinguish between up- and downward fluctuations; it is
not likely that those situations can be interpreted the same.
Moreover, Whybark reacts in the same way to huge peaks as
on two successive small differences between the prediction
and the measured value. Subsequently, Whybark always
uses the same parameters for the same kind of peaks; 0.8
for high peaks, 0.4 for the value after a high peak and also
for two successive differences, and 0.2 as a base value. In
practice, however, characteristics for each dataset are dif-
ferent. Figure 5 shows that the Whybark predictor does
not react properly to peaks. Whybark will only work well
when peaks introduce a new ’level’ of values. It would
be smarter when Whybarks predictor learns from histori-
cal data whether a huge difference introduces a new level or
is a peak. Finally, we conclude that the Whybark predictor
contains a useful fluctuations classification, but that follow-
ing improvements can be made: (1) distinction between the
above described 3 classes of fluctuations, (2) a correction
part parameter of 1.0, (3) different treatment of down- and
up-wards fluctuations, (4) different treatment of a datapoint
after a huge peak and two successive significant, but not
enormous, differences, and (5) adaptive parameters.

2.2.3 Mentzer

AESP Mentzer [12] uses the absolute forecast error fraction
from the most recent period as αt. In order to restrict αt to
the interval [0, 1], if the absolute error fraction exceeds 1.0,
then αt is set to 1:

αt := min

(
∣

∣

∣

∣

yt − ŷt

yt

∣

∣

∣

∣

, 1

)

. (10)



Figure 5. Whybark and Mentzer predictors re-
acting on a peak in pre au01

A strong point of this method is that when the forecast-
ing error increases (decreases), the α value also increases
(decreases) to improve the forecast. A weak point of this
method is the reaction on peaks: when a peak occurs, the
predictor will have a large forecasting error, which leads to
a high next prediction, which in turn causes another large
prediction error. This is illustrated in Figure 5. Another
weak point is that it is not clear why there should be a 1- 1
relation between the α-value and the last forecasting error.
For example, a forecasting error of 50% is a worse predic-
tion and probably needs an α value that is higher than 0.5.
The height of the α value also depends on the height of the
standard deviation of the value.

2.2.4 Pantazopoulos and Pappis

Pantazopoulos and Pappis [13] argue that, since the ideal
value for αt would lead to ŷt+1 = yt+1, this ideal value can
be derived by substituting yt+1 for ŷt+1 in (4) and solving
for αt to give

αt :=

(

yt+1 − ŷt

yt − ŷt

)

. (11)

Since yt+1 is unknown at time t, the ideal value of at for
period t − 1 is used for period t to give

αt :=

(

yt − ŷt−1

yt−1 − ŷt−1

)

, (12)

which can be substituted into the standard ES-Formula (4).
In order to restrict αt to the interval [0, 1], Pantazopoulos
and Pappis propose that if αt /∈ (0, 1) then αt is set to either
0 or 1, whichever one is closer.

A strong point of this predictor is that it calculates the
optimal value of the αt’s for the last predictor-value combi-
nation. With high probability, that optimal choice of αt is
also a very good choice for the next value. Unfortunately,
brief consideration of (12) suggests that the approach is un-
likely to be of use. Since the one-step-ahead forecast is
also the multi-step-ahead forecast for simple exponential

Figure 6. P&P-predictor in pre warsch01

smoothing, the numerator is a two-step-ahead forecast er-
ror, while the denominator is a one-step-ahead forecast er-
ror. This suggests that the expression in (12) will very often
lead to values larger than 1. Following the rule of Panta-
zopoulos and Pappis (P&P), αt would then take a value of
1. The result is that αt very often takes a value of 1, which
is shown by Figure 6. Moreover, this figure shows that the
interpolation parameter α of the P&P predictor is quite un-
stable, and in many cases results in inaccurate predictions,
see for example datapoints 171, 172, 185 and 186.

2.3. STES predictors

A smooth transition adaptive exponential smoothing
(STES) method [15] has a smoothing parameter αt defined
as a logistic function of a user-specified transition variable,
Vt, and is written as:

ŷt = αt−1yt−1 + (1 − αt−1)ŷt−1, (13)

where

αt :=
1

1 + eβ+γVt

. (14)

If γ < 0, then αt is a monotonically increasing function
of Vt. Hence, as Vt increases, the weight on yt increases,
and consequently, the weight on ŷt decreases. The logis-
tic function restricts αt to lie between in the interval (0,1).
Historical data is used to calibrate the adaptive smoothing
parameter, αt, through the estimation of β and γ in (14).
The derived values for β and γ in (14), govern the degree to
which the variation in the transition variable influences the
STES smoothing parameter. The choice of the transition
variable, Vt, is of crucial importance to the success of the
method. Consideration of the adaptive methods described
in the previous section leads to a number of different pos-
sible transition variables. The value of the smoothing pa-
rameter in all of the existing adaptive methods depends to
varying degrees on the magnitude of the most recent periods
forecast error. At the end of this subsection we describe the
different methods we used: STES |e|, STES e2, and STES
Whybark.



In [15], 80 data points are used to fit the parameters, and
those parameters are used to make one-step-ahead predic-
tions of the next 20 values. To make a fair comparison be-
tween the STES- and the other predictors, we fitted the β
and the γ after every new measured value. Moreover, for
the STES predictors, we compared 10, 80, and “all values”
as the number of data points used for the fit.

Next, we describe the three specific STES prediction
methods we used in the predictor analysis.

STES |e|

An obvious choice for the transition variable is the absolute
value of the forecast error from the most recent period:

Vt := |yt − ŷt|. (15)

In our analyses in Section 4 we make distinction between
the situation in which we let the predictor fit β and γ freely,
and in which we restrict the γ to be lower than 0. The pur-
pose of restricting the γ to negative values is to get a high α
value when the absolute error is high.

STES e2

Another obvious choice for the transition variable is the
square of the forecast error from the most recent period:

Vt := (yt − ŷt)
2. (16)

STES Whybark

It is possible to use the αt outcome values of all the AESPs.
We choose to use the Whybark parameter as the transition
variable, because short analysis showed that the Whybark
parameter was the best transition variable to choose:

Vt :=







H when δt = 1,
M when δt = 0 and δt−1 = 1,
B otherwise,

(17)

where

δt :=















1 when |et| > 4σ,
1 when |et| > 1.2σ, |et−1| > 1.2σ,

and etet−1 > 0,
0 otherwise.

(18)

A strong point of a STES predictors discussed above is
that it does not assume a linear relation between the tran-
sition variable and the value αt. With the logistic function
and the freedom of the parameters β and γ many different
relations can be created. Another strong point is that the re-
lation between the transition variable and the αt’s is fitted
with two parameters, based on the history. Therefore, the
αt is adapted in a way that it is optimal according to the

Figure 7. STES predictors reacting on a peak
in pre au01

history. Moreover, when the transition variable has no cor-
relation with the right αt, the method automatically adapts
the γ to 0 and the smoothing parameter will be constant.
The STES method, therefore, enables recalibration of the
existing adaptive methods.

A weak point, however, is that it is not clear why a lo-
gistic function would work better than other functions. Al-
though previous experimental results have shown that logis-
tic functions work quite well, it is the question whether it is
an optimal function for the values of job times. Further on,
this method uses the same formula for peaks as for stable
situations. Figure 7 shows the predictions around a peak
of three different STES predictors, which are described be-
low. The figure illustrates that using the same parameters
for peaks as for stable situations leads to bad predictions.
Besides, the peaks have a high impact on the optimal pa-
rameters β and γ. Consequently, the α will behave in a
stable situation highly influenced by previous peaks.

2.4. Other predictors

As stated in [20] a homeostatic or a tendency-based pre-
dictor can be very effective in predicting CPU load. A
homeostatic predictor uses the assumption that if the cur-
rent value is greater (less) than the mean of the history val-
ues, then the next value is likely to decrease (increase). A
tendency-based predictor uses the assumption that when a
current value is greater (less) than the mean of the history
values, then the next value is likely to increase (decrease),
because of a trend up- or downwards. A disadvantage is that
before the prediction process is started, a choice between
homeostatic or tendency has to be made. We know from
the data analysis that it is possible that the characteristics in
the dataset change, and that during the run the other type
of predictor seemed to be more accurate. During our data
analysis we noticed that trends do not appear very often in
the datasets, there are many level switches, and sometimes
homeostatic situations appear. For that reason we think that
tendency-based predictors are not very accurate in predict-



ing the job times. A homeostatic predictor will probably
work fine for some datasets, but for the nodes with many
level switches this method is very unlikely to be effective
in the grid context. For these reasons, we have not imple-
mented this prediction method.

Another well-known method is Linear Regression (LR).
This method is quite similar to AR, when only historical
data is used: the predictor is computed by multiplying his-
torical data with parameters, which are fitted by using a
least-squares method and the history. When not only data
from the previous history is used, but also other informa-
tion, like load, this method differs from AR. The parameter
used to multiply with other data will also be fitted by its his-
torical data. Since we focus on prediction methods based on
the use historical data of job times only (see Section 1), LR
is beyond the scope of this study.

Besides the linear prediction methods, experiments with
a Neural Network, which is an example of a non-linear pre-
dictor, have been performed. The results show that the pre-
dictor is not accurate enough in predicting grid properties,
and that is it computationally infeasible.

2.5. Conclusions of analyses

We conclude that although each prediction method has
its strong points, none of the predictors properly reacts to
peaks and level switches, which are two of the most impor-
tant characteristics of the evolution of job times in a grid
environment. This raises the need for the development of a
new prediction method particularly suited for the specifics
of a grid environment. For this reason, in the next section
we use the insights in the pros and cons of the existing pre-
diction methods to develop a new prediction method that
effectively reacts to the peaks and level switches observed
in a real grid environment.

3. New prediction method

3.1. DES prediction method

In this section we propose the method that effectively re-
acts to the peaks and level switches. Taking into account the
benefits and drawbacks of the existing prediction methods,
we propose the following predictor for t = 2, 3, . . .:

ŷt =







ŷDES,t when κDES = κmin,
ŷµ,t when κµ = κmin 6= κDES ,
ŷmedian,t else,

(19)

with

ŷDES,t := α∗
t−1yDES,t−1 + (1 − α∗

t−1)ŷDES,t−1, (20)

ŷµ,t := µ((y1, ..., yt−1)), (21)

ŷmedian,t := median((yt−l, ..., yt−1)), (22)

κi :=

t−1
∑

s=1

(ys − ŷi,s)
2, i ε {DES, µ, median}, (23)

κmin := minjε{DES,µ,median}(κj), (24)

where

α∗
t :=

∑t
s=2

αs−1,opt(ys−1 − ŷs−1)
21{δs=δt}

∑t
s=2

(ys−1 − ŷs−1)21{δs=δt}

, (25)

with

αs−1,opt :=
ys − ŷs−1

ys−1 − ŷs−1

, (26)

δs:=







































H1 when |ys − ŷs| >10σ((ys−k , .., ys−1)),
H2 when (ys − ŷs)> 2σ((ys−k , .., ys−1)),
H3 when (ys − ŷs)<−2σ((ys−k , .., ys−1)),
M when |ys − ŷs| > σ((ys−k , .., ys−1)),

|ys−1 − ŷs−1| > σ((ys−k , .., ys−1)),
and (ys − ŷs)(ys−1 − ŷs−1) > 0,

B otherwise.

(27)

Note that µ((y1, ..., yt−1)) is the average of values
y1, . . . , yt−1, the median((yt−l, ..., yt−1)) is the median
of values yt−l, . . . , yt−1, and that σ((yt−k, .., yt−1)) is the
standard deviation of values yt−k, . . . , yt−1.

The basic idea of the DES predictor is that it (1) treats
different classes of fluctuations differently, (2) always com-
putes the optimal parameter for those classes, and (3) has
the possibility to select another predictor from a set, because
of performance reasons. As can be seen in (19), the DES
prediction method selects the best prediction method from
a set of 3 predictors, by comparing the sum of the squared
errors of the previous measurements. The set contains the
running average, the l-sliding window median, and the DES
predictor. The l-sliding window median takes the median of
the last l measurements. The DES-predictor part classifies
different types of fluctuations: 3 huge fluctuations classes
(H1, H2, and H3), 1 medium fluctuations class (M ), and 1
base class (B). When the deviation between the measured
value and its prediction is more than 10 times the standard
deviation of the last k values, the measurement is of class
H1. Furthermore, when the deviation between the measure-
ment and the prediction is higher than two times (smaller
than minus two times) the standard deviation, the measure-
ment is of class H2 (H3). Two consecutive measurements
that both deviate in the same direction with more than stan-
dard deviation from the predictions are of class M . B is
the base class and is defined for the rest of the cases. This
classification is defined in l (27). Subsequently, the DES



predictor computes the prediction by using the exponential-
smoothing equation with an α parameter that equals the
weigthed average of the optimal α’s (see (25)) of the previ-
ous measurements that are from the same class as the most
recent measurement. The derivation of (25) is a straight-
forward computation of the α’s with the lowest MSE of the
predictions for historical data. Further details are omitted
for brevity.

We implemented the predictor with k = 20, and l = 31,
and fixed the maximal number of data points to estimate
each of the optimal α values for classes H1, H2, H3, M
and B at 500. On the one hand, when k is higher than 20,
the predictor reacts slower on changes in standard devia-
tions. On the other hand, when less values are taken, the
estimated standard deviations get less accurate. While 20
is a good value for k, a higher or lower value does not af-
fect the results significantly. The value 31 as the value for
l corresponds to one of the set of medians in [18]. Accu-
racy comparisons showed that this sliding-window median
performs better than the other medians. The number 500
ensures that on the one hand the α∗

t is reliable and stable,
because it is computed by enough measurements, and that
on the other hand the α∗

t is still able to adapt to new chara-
teristics in the dataset.

3.2. Discussion

Formula (19) shows the selection algorithm of the DES
prediction method. As we have seen for the NWS method
in subsection 2.1.2, the datasets sometimes show character-
istics for which the average or the sliding median with win-
dow size 31 gives the most accurate predictions. Around 10
% of the measurements show these kinds of characteristics.
Analysis show that measuring the κi’s (see (24)) is an ef-
fective way of comparing the different predictors: in all the
10 % of the cases the average or the sliding-window median
is chosen. We note that comparing the κi’s is the same as
comparing the Root of the Mean Squared Errors (as will be
described in Section 4).

We chose to adapt the αt’s to the situation of the char-
acteristics (see (25)). First, in [8] we concluded that the
datasets may have completely different and continuously
changing characteristics. We concluded from the analysis
of the AESPs, the STES predictors and the AR method in
Section 2 that adapting the αt to the characteristics is an
effective way to make the predictor robust against all the
completely different and ever-changing characteristics of
the datasets. However, we showed that improvements were
possible on the following aspects: the choice of the αt was
not always clear and the αt’s are unstable in many predic-
tors. The choice of taking the optimal α of the measured
data is very clear and leads to stable αt’s within the classes
of fluctuations.

Next, as shown in (27) we classified different types of
fluctuations. We concluded in subsection 2.2.2 that Why-
bark consists of useful classification elements, but that im-
provements are necessary to be made to develop a useful
classification of job times. We incorporated those improve-
ments in our prediction method, as can be seen in (27).

4. Experimental Results

In this section we compare the performance of the DES
prediction method with those of the predictors described in
Section 2.

4.1. Quality metrics for prediction methods

To make a fair comparison we first have to select a metric
for the prediction error. There are two commonly used er-
ror evaluators: the Root of the Mean Squared Error (RMSE)
and the Mean Absolute Errors (MAE). Sometimes the MSE
is taken instead of the RMSE. We selected the RMSE be-
cause in the kind of applications we used it is very important
to minimize the number of high forecasting errors. Since
the RMSE is more sensitive to high forecasting errors, we
prefer to use this metric. The RMSE of a given predictor X
is defined as

RMSEX =

√

√

√

√

1

N − 1

N
∑

t=2

(yt − ŷt)2. (28)

We also need to define a metric that quantifies the improve-
ment of a predictor in comparison to another predictor. As
can be seen in [8], peaks have a strong impact on the stan-
dard deviation or the RMSE of the dataset, which is highly
correlated with the standard deviation. When the peaks do
not show up periodically, it hard to predict when peaks oc-
cur. Consequently, peaks always have a strong effect on the
RMSE of a predictor. For that reason, we are interested in
a measure that is able to compare the performance of dif-
ferent predictors and is independent of the influence of the
peaks on the standard deviation. Therefore, to compare dif-
ferent predictors we define ∆%(A, B) to be the percentage
improvement of predictor A versus B:

∆%(A, B) :=
RMSEA − RMSEB

RMSEB − RMSE∗
∗ 100%, (29)

where the value RMSE∗ is the optimal postcast selected
from the set of the NWS predictors. It indicates the theoret-
ically maximal forecasting performance (minimum error)
that the method could have achieved if the best predictor
at each step were known (see for more details about the
RMSE∗ the definition of the Optimum in [18]). When a
peak occurs, even the optimal forecasting method has the
property that it was not able to predict that peak. But for the



successive measurement, the optimal forecast mostly has a
low RMSE. Consequently, the RMSE∗ is the RMSE that
a prediction method would have when it would predict the
behavior after peaks perfectly.

4.2. Experimental setup

The next necessary step of the comparison analysis is to
collect a significant amount of data from a real grid envi-
ronment. In [8] 40 experiments have been performed on 18
shared processors in Planetlab [1], to generate datasets for
the statistical properties analyses. Planetlab [1] is a com-
monly used grid test bed environment shared by many users.
For the comparison in this paper between the existing pre-
diction methods and the DES, 45 additional datasets from
18 different Planetlab nodes were generated for the com-
parison phase. Version 2.0 of Planetlab was installed on the
nodes, which is the same version as is used for the experi-
ments in [8]. Each dataset is generated by a single run and
consists of the running times (i.e. wallclock times) of 2000
consecutive and identical jobs. The average duration of a
run is about two hours. We observed significant differences
in the durations; some run durations even exceeded the 10
hours, especially the runs on the Arizona node. In order
to correlate the statistical properties of the job times at the
different nodes, at each day all runs were kicked off simul-
taneously at 9:00 CET. The experiments were done during
six additional consecutive days. We used nodes in Ams-
terdam, The Netherlands (ams); Arizona, USA (ar); Aus-
tralia (au); California, USA (cal); British Columbia, Canada
(ca); China (china); Denmark (dk); Inria, France (inria);
Madrid, Spain (mad); Moscow, Russia (mos); San Diego,
USA (sandiego); Santa Barbara, USA (santab); Singapore
(sing); Taiwan (tw); Telaviv, Israel (telaviv); Utah, USA
(utah); Warsaw, Poland (warsch); and Washington, USA
(wash). The selection of which nodes were used at which
days is based on both the availability, and the global distri-
bution of the nodes. Moreover, we never started a new run
on a node on which a previous run was interupted. Table 1
shows which nodes were used during these six days.

Day
Run nr 1 2 3 4 5 6
Run 1 ams01 ams02 ams03 ams04 ams05 inria01
Run 2 ar01 ar02 ar03 ar04 ar05 ar06
Run 3 warsch01 cal01 cal02 cal03 cal04 cal05
Run 4 china01 china02 wash01 wash02 wash03 wash04
Run 5 au01 au02 au03 sandiego01 sandiego02 sandiego03
Run 6 utah01 utah02 utah03 ca01 ca02 mad01
Run 7 mos01 mos02 telaviv01 telaviv02 tw01 tw02
Run 8 santab01 dk01 sing01

Table 1. Run-schedule

Figure 8. DES-predictor improvements com-
pared to the Trigg & Leach and the Whybark
predictor

Figure 9. DES-predictor improvements com-
pared to the Mentzer and Pantazopoulos &
Pappis predictor

4.3. Comparison results

In this subsection, we compare the predictions of the
DES (see Section 3) with those of the existing predictors
(see Section 2). To this end, we compute the percentage
improvements (see 4.1) of DES compared to the existing
predictors for the 45 datasets, described in 4.2. The results
are outlined below.

Figure 8 shows the performance improvements of the
DES prediction method compared to the Trigg and Leach
predictor and the Whybark predictor. Similarly, Figure 9
shows the results for DES compared to the Mentzer and
Pantazopoulos & Pappis predictor.

The results presented in Figures 8 and 9 show that the
DES prediction method strongly and consistently outper-
forms the other predictors. The improvements are remark-
ably high: for many datasets the DES prediction method
shows improvements of more than 30%. From the four
AESP predictors considered here, the Whybark predictor
gives the most accurate predictions, but is still strongly out-
performed by our DES predictor.

Figure 10 shows the prediction performance of in total
12 STES predictor-parameter combinations for the three
randomly-chosen datasets ar07, tw01, and wash01. We
tested the STES |e| predictor with parameter γ < 0, the
STES |e| predictor with no restrictions on γ, the STES e2

predictor and the STES Whybark predictor. For all the four
predictors we used 10, 80 and 2000 data points used for the



Figure 10. DES-predictor improvements com-
pared to the STES predictors

Figure 11. DES-predictor improvements com-
pared to the STES e2 and STES Whybark pre-
dictors

fit. We tested those predictors only with three datasets due
to the fact that the STES predictors take too much time (a
whole day per dataset). The results in Figure 10 show that
it is always better to use all the data (at least 2000 values)
for the parameter fit, and that the STES e2 and the STES
Whybark are the best STES predictors and need further
comparison analysis with more datasets to conclude more
about the quality of their predictions. We used the following
randomly-chosen datasets for the further analysis: ams03,
ar04, ar05, ar07, ar08, au02, ca01, cal03, china02, dk01, in-
ria01, mos01, sandiego02, sing01, telaviv01, tw01, utah03,
warsch01, and wash01.

In Figure 11 we compare the improvements of the DES
prediction method in comparison with the STES e2 and the
STES Whybark predictor for all those datasets. We clearly
observe that the DES prediction method outperforms the
other two predictors. For two of the datasets the DES shows
even more than 50% improvements for both of the other
predictors.

Figure 12 below shows the improvements of the DES
prediction method compared to the ES predictor with α =
0.5, denoted as the ES(0.5) predictor. Despite the fact that
DES is based on ES, the method shows a completely dif-
ferent accuracy: the difference between the RMSE’s of the
ES(0.5) predictions and the DES predictions ranges from

Figure 12. DES-predictor improvements com-
pared to the ES(0.5) predictor

Figure 13. DES-predictor improvements com-
pared to the NWS prediction method

-17% to +70% and differs for each dataset. Only for sin-
gle dataset the ES(0.5) predicts significantly better than the
DES. On average the DES shows 11% improvement.

Figure 13 illustrates the improvement of the DES pre-
diction method in comparison with the NWS prediction
method. The figure shows that DES mostly outperforms the
NWS prediction method. For 6 of the 45 datasets the NWS
prediction method is only 1 to 5 percentages more accurate
as the DES prediction method. However, on average 8%
improvements can be performed by implementing the DES
prediction method instead of the NWS prediction method.

Figure 14 illustrates the performance improvement of the
DES prediction method in comparison with the AR(16) pre-
dictor. Figure 14 shows a more bursty characteristic than
Figure 13, because the DES and the NWS prediction meth-
ods have more similarities. For five datasets the AR(16) pre-
dictor shows more than 5% accuracy improvements com-
pared to the DES prediction method. In fourteen cases the
DES prediction method shows more than 10% improve-
ment. For three datasets the DES prediction method is even
more than 40% more accurate than the AR(16) predictor.
On average, the DES prediction method is 9% more accu-
rate as the AR(16).

As we see in Figures 12 to 14 DES strongly outperforms
all other predictors for datasets au02 and telaviv02. Further
analysis show that the peaks in those datasets have a huge
influence on the standard deviation. We investigate that the
main reason for the enormous outperformance is that the



Figure 14. DES-predictor improvements com-
pared to the AR16 predictor

DES prediction method is the only method that reacts prop-
erly on the high peaks. Nevertheless, when we filter out the
peaks with a deviation above 10 times the standard devia-
tion we still clearly outperform the others predictors.

Next, we investigate the reason for the performance im-
provement of the DES prediction method in comparison
with the best of the other predictors, the NWS predic-
tion method. To this end, we analyze the situations in the
datasets where DES clearly outperforms NWS. We observe
two main reasons why DES outperforms the NWS predic-
tion method: (1) DES reacts more properly on peaks, and
(2) DES reacts more properly on level switches. To investi-
gate this more carefully, we add the predictions of the DES
prediction method in Figure 2. The results are graphically
represented in Figure 15.

We notice the following from Figure 15(a). Due to the
values before the peak, the NWS chooses a predictor that
gives a high weight to the last value. When the peak ap-
pears, the NWS prediction for the next job time also gets
very high, unless that there is a high probability that the
peak appears once, because almost all the peaks in history
appeared only once. The DES prediction method also gives
a prediction that is slightly too high due to the fact that one
peak in history did introduce a new level. But, nevertheless,
the DES prediction method is far more accurate as the NWS
prediction method.

In Figure 15(b), we have a different situation: peaks in-
troduce a new level of job times. In this example we see that
the NWS also shows a bad performance. Due to the fact that
the values before the peaks need a predictor that has a more
averaging property, the NWS also uses the average to pre-
dict the value after the peak despite the fact that the peaks in
history very often introduced a new level. It takes three val-
ues (i.e., jobs durations) before the NWS prediction method
realizes that the predictions are not accurate. The DES pre-
diction method clearly shows a better pattern of predictions
in the level switch.

Despite the two previous mentioned situations where the
NWS prediction method does not react very properly on
peaks, there are a lot of situations where the NWS predic-

(a) Peak on pre arizona02

(b) Level switch on pre telaviv01

Figure 15. DES- and NWS prediction method
reacting on a peak and a level swith in the job
times

tion method does react appropriately. There are two situa-
tions where the NWS does react very accurately: (1) when
a more averaging predictor is chosen because of the values
before a peak, and the peak does not introduce a new level,
(2) when a last value predictor is chosen before a peak and
the peak introduces a new level, and (3) when there are less
number of values between the peaks, the NWS still remem-
bers what the best predictor was during the last peak, be-
cause peaks have a high impact on the RMSE, and therefore
on the choice of the predictor.

To summarize, the comparison results show that in gen-
eral the DES prediction method by far outperforms the
existing predictions methods. Another well performing
predictor for predicting job times is the NWS prediction
method.

5. Conclusions and challenges

Extensive theoretical and practical analysis, based on the
results of [8] (outlined in the Introduction), of a variety of
prediction methods have been performed. The results show
that none of these methods is well-suited for dealing with



the specifics of job times in a grid environment, including
the presence of level switches and sudden peaks. Due to
the absence of an effective prediction method for running
times of jobs, we have developed a new prediction method,
called DES, that overcomes the shortcomings of the existing
methods by properly reacting to level switches and peaks.
The power of DES lays in the fact that it is able to deal with
on the one hand with peaks and on the other hand with level
switches.

Extensive comparisons with a large number of datasets
show that DES is a highly effective method for predicting
running times of jobs on shared processors. DES consis-
tently outperforms the common grid prediction methods,
such as the NWS predictor, AR(16), and ES, and moreover,
gives much more accurate predictions than the Adaptive
Exponential Smoothing Predictors Trigg and Leach, Why-
bark, Mentzer, Pantazopoulos and Pappis, and four kinds of
promising Smooth Transition Exponential Smoothing pre-
dictors.

The results presented in this paper lead to a number of
challenges for further research. First, there is room for re-
finement of the DES predictor. For the job times, the current
choice of parameters for the heights of peaks (i.e. a differ-
ence between two consecutive values of more than 2 times
the standard deviation is a peak, and more than 10 times the
standard deviation is a high peak) leads to significant im-
provements in the predictions. We expect that those param-
eters partly depend on the properties of the dataset. We plan
to investigate whether it is possible to adapt these parame-
ters to the statistical properties of the datasets. Second, we
aim to apply the DES prediction method for predicting other
types of grid property measurements (e.g., latency, CPU uti-
lizations). Finally, the ultimate goal of the development of
effective prediction methods in the context of the computa-
tional grid is to decrease the effective running times of dis-
tributed applications by triggering effective load rebalanc-
ing actions. Therefore, the next step is to quantify the actual
improvements that can be obtained in the running times of
distributed applications, which addresses a challenging area
for further study.
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