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Abstract

In this paper we present a new approach to derive heavy-traffic asymptotics for polling models.
We consider the classical cyclic polling model with exhaustive service at each queue, and with
general service-time and switch-over time distributions, and study its behavior when the load
tends to one. For this model, we explore the recently proposed mean value analysis (MVA),
which takes a new view on the dynamics of the system, and use this view to provide an alterna-
tive way to derive closed-from expressions for the expected asymptotic delay; the expressions
were derived earlier in [32], but in a different way. Moreover, the MVA-based approach enables
us to derive closed-form expressions for the heavy-traffic limits of the covariances between the
successive visit periods, which are key performance metrics in many application areas. These
results, which have not been obtained before, reveal a number of insensitivity properties of
the covariances with respect to the system parameters under heavy-traffic assumptions, and
moreover, lead to simple approximations for the covariances between the successive visit times
for stable systems. Numerical examples demonstrate that the approximations are accurate
when the load is close enough to one.
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1 Introduction

A polling system is a multi-queue single-server system in which the server visits the queues in
some order to process requests pending at the queues. Polling systems occur naturally in the
modeling of systems in which service capacity (e.g., CPU, bandwidth, processing power, labor) is
shared by different types of users, each type having specific traffic characteristics and performance
requirements. Polling systems find many applications in the areas of computer-communication
networks, production, manufacturing and maintenance, see [16] for an overview. Since the late
1960s polling systems have received much attention in the literature, see [28, 29, 30] for overviews
of the available results. Exact analysis of the delay in polling systems is only possible in some
cases, and even in those cases numerical techniques are usually required to obtain the expected
delay at each of the queues. However, the use of numerical techniques for the analysis of polling
systems has several drawbacks. Firstly, numerical techniques do not reveal explicitly how the
system performance depends on the system parameters and can therefore contribute to the under-
standing of the system behavior only to a limited extent. Exact closed-form expressions provide
much more insight into the dependence of the performance measures on the system parameters,
which leads to significant insights in the behavior of the system (e.g., insensitivity and monotonic-
ity properties). Secondly, the efficiency of the numerical algorithms tends to degrade significantly
for heavily loaded, highly asymmetric systems with a large number of queues, while the proper op-
eration of the system is particularly critical when the system is heavily loaded. These observations
raise the importance of an exact asymptotic analysis of the delay in polling systems in heavy traffic.

The literature reveals a remarkable difference in the complexity of different polling systems. Resing
[23] shows that for a class of polling systems the joint queue-length process embedded at polling
instants at a fixed queue constitutes a multi-type branching process (MTBP) with immigration.
The theory of MTBPs leads to expressions for the generating function of the joint queue-length
distribution at polling instants. For polling systems with an MTBP-structure several numerical
algorithms have been proposed to determine the (first few) moments of the delay at the queues by
solving sets of linear equations (cf., e.g., [9, 24, 26]). Alternatively, Konheim et al. [12] propose the
so-called descendant set approach (DSA), an iterative technique that exploits the MTBP-structure
of the model by making use of the concept of descendant sets, to obtain the moments of the delay.
Choudhury and Whitt [4] use numerical transform-inversion to calculate tail probabilities and
transient performance measures of the delay. A common aspect of each of these approaches is
that the derivation of delay distributions (or moments) is basically decomposed into two phases:
(1) derivation of distribution of the number of customers at a polling instant of the server at a
fixed queue, and (2) derivation of the relation between this distribution and the distribution of
the delay. As an interesting alternative to these classical approaches, Winands et al. [40] suggest
a completely different view at the system, and propose the so-called mean value analysis (MVA)
approach for obtaining the mean delay at each of the queues via direct mean value arguments,
avoiding the need to determine the queue-length distributions at polling instants. The basic idea
of the MVA approach is to identify a set of linear equations for the variables E[Li,j ], where Li,j is
the length of queue i at an arbitrary epoch within a visit time at queue j (see Section 4 for details).
Polling systems that do not have an MTBP-structure generally require much more computational
effort (cf., e.g., [2, 15]).

There are several approaches for deriving heavy traffic asymptotics in polling systems. Coffman
et al. [5, 6] use a heavy-traffic averaging principle to study a two-queue model with exhaustive
service at both queues and show that, under heavy-traffic assumptions and scalings, the total
amount of unfinished work converges to a known process. These observations lead to explicit
expressions for the moments of the delay at both queues. They also suggest that, based on a
partial conjecture, the analysis can be extended to systems with more than two queues. Exploring
the averaging principle, Reiman and Wein [22] and Markowitz et al. [17, 18] study the problem
of determining optimal dynamic schedules by approximating the dynamic scheduling problems by
diffusion control problems. Kudoh et al. [14] use the classical buffer-occupancy technique, which
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is based on an expression for the the probability generating function of the joint queue-length
distribution at successive polling instants, to derive explicit expressions for the second moment of
the delay in fully symmetric systems with gated or exhaustive service at each queue for models
with two, three and four queues. They also give conjectures about the heavy-traffic limits of the
first two moments of the delay for systems with an arbitrary number of queues. Kroese [13] uses
the theory of age-dependent branching processes to study the heavy-traffic behavior of continuous
polling systems and shows that the steady-state number of waiting customers has approximately
a gamma-distribution. Van der Mei and co-authors [20, 21, 32, 33, 34, 35] explore the recursive
relations of the DSA to derive closed-form expressions for the asymptotic delay distribution in
heavy traffic for polling systems with an MTBP-structure in a general parameter setting, both for
cyclic and periodic server routing. As a by-product, the asymptotic results presented in these pa-
pers also suggest simple approximations for the delay distributions for stable systems. Numerical
results demonstrate that the accuracy of the approximations is remarkably good, particularly for
the mean delay figures.

In the present paper we consider the classical asymmetric cyclic polling system with generally
distributed service times and switch-over times (with finite first two moments), and with exhaus-
tive service at each of the queues (see also Remark 4.11). For this model, we propose a new
technique to derive heavy-traffic limits, both for the expected delay at each of the queues and
for the covariances between successive visits of the server to the queues. To this end, we use
the recently proposed MVA-technique [40] as the starting point, which leads to a set of linear
equations for the unknowns E[Li,j ] (i, j = 1, . . . , N); recall that Li,j is the length of queue i at an
arbitrary epoch within a visit time at queue j. Taking the proper heavy-traffic limits of this set, we
obtain a highly simplified but dependent set of linear equations that determines the heavy-traffic
limits of E[Li,j ] up to a scaling constant. Finally, the scaling constant is obtained by adding a
linear equation that follows from the pseudo-conservation law of the system [3]. These results
not only provide a new means to obtain heavy-traffic asymptotics for the expected delay (which
were shown earlier in [32] based on the use of the DSA), but also lead to the observation that the
correlations between successive visit times converge to one as the load tends to one. The latter
observation gives rise to asymptotic expressions for the covariance between successive visit times.
The expressions naturally lead to approximate closed-form expressions for the covariances between
the visit times for stable systems (i.e., with load less than one), allowing for back-of-the-envelope
calculations. Numerical results show that the approximations are accurate when the total system
load is close to one.

We believe that the importance of the mean delay as a performance metric requires no further ex-
planation, the importance of the correlation terms possibly does. The motivation for the analysis
of these terms stems from the fact that polling systems can be employed to study widely used,
cyclic base-stock policies in multi-product production-inventory systems (details are given in Sec-
tion 6). These systems are frequently encountered in process industries, where very high levels
of utilization are prevalent as the production installations are typically very expensive (see, e.g.,
Fransoo [10]). The asymptotic results derived for the correlations of successive visit times indicate
that base-stock policies display undesirable behavior if the utilization rate is high, which reveals
itself, for example, in difficulties in the coordination between stages within the production process.

The contribution of the present paper is three-fold. First, we present a new approach to de-
rive heavy-traffic asymptotics for a class of polling models, based on the recently introduced MVA
technique [40]. Second, we derive heavy-traffic asymptotics for the correlation and covariances
between successive visit times, leading to new insights in the impact of system parameters on
the correlations between the visits times in heavy traffic. Third, we use these results to propose
simple closed-form approximations of these covariances for stable systems, and show that these
approximations, which allow for back-of-the-envelope calculations, are accurate when the load is
high enough. These observations make the contribution of the present paper evident, both from
a queueing-theoretical and application point-of-view.
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The remainder of this paper is organized as follows. Section 2 presents the model, while Sec-
tion 3 discusses the performance measures of interest. Sections 4 analyzes the MVA equations in
heavy traffic and obtains closed-form expressions for the mean asymptotic delay and the covari-
ances between successive visit times. Building upon these results, Section 5 proposes closed-form
approximations for these performance measures in stable systems. Next, in Section 6, we specif-
ically consider the multi-item production-inventory system, which motivated our research. Some
topics for further research are addressed in Section 7.

2 Model description and notation

We consider a system with a single server for N ≥ 1 queues, in which there is infinite buffer
capacity for each queue. The server visits and serves the queues in a fixed cyclic order. We index
the queues by i, i = 1, 2, . . . , N , in the order of the server movement. All references to queue
indices greater than N or less than 1 are implicitly assumed to be modulo N , e.g., queue N + 1
actually refers to queue 1. Service at each queue is according to the exhaustive policy, which means
that a queue must be empty before the server moves on. Customers arrive at all queues according
to independent Poisson processes with rates λi, i = 1, 2, . . . , N , where the total arrival rate is
denoted by Λ =

∑N
i=1 λi. The service times at queue i are independent, identically distributed

random variables with mean E[Bi] and finite second moment E[B2
i ], i = 1, 2, . . . , N . The first two

moments of the service time of an arbitrary customer are given by, respectively,

E[B] =
N

∑

i=1

λiE[Bi]

Λ
, E[B2] =

N
∑

i=1

λiE[B2
i ]

Λ
.

When the server starts service at queue i, a setup time is incurred of which the first and second
moment are denoted by E[Si] and E[S2

i ], i = 1, 2, . . . , N , respectively. The mean and the variance
of the total setup time in a cycle are given by, respectively,

E[S] =

N
∑

i=1

E[Si], Var[S] =

N
∑

i=1

(E[S2
i ] − E[Si]

2).

For further reference, we introduce the mean residual service time and the mean residual setup
time for queue i, which can be expressed as follows, respectively,

E[RBi
] =

E[B2
i ]

2E[Bi]
, E[RSi

] =
E[S2

i ]

2E[Si]
, i = 1, 2, . . . , N.

The occupation rate ρi (excluding setups) at queue i is defined by ρi = λiE[Bi] and the total

occupation rate ρ is given by ρ =
∑N

i=1 ρi. A necessary and sufficient condition for the stability of
this polling system is obviously ρ < 1 (see, e.g., [11] for a rigorous proof)). In the remainder of the
present paper, this stability condition is assumed to hold as we restrict ourselves to steady-state
behavior.

The cycle length of queue i, i = 1, 2, . . . , N , is defined as the time between two successive ar-
rivals of the server at this queue. It is well-known that the mean cycle length is independent of

the queue involved and is given by E[C] = E[S]
1−ρ

(see, e.g., [28]). The present paper focusses mainly

on the case E[S] > 0, but our analysis fully applies in case the total setup time is equal to zero,
mutatis mutandis (see, also, [40]). The visit time θi of queue i, i = 1, 2, . . . , N , is composed of
the service period of queue i, the time the server spends servicing customers at queue i, plus the
preceding setup time. Since the server is working a fraction ρi of the time on queue i, the mean
of a visit period of queue i reads,

E[θi] = ρiE[C] + E[Si], i = 1, 2, . . . , N.
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We define an (i, j)-period θi,j as the sum of j consecutive visit times starting in queue i, j =
1, 2, . . . , N . The corresponding mean is given by

E[θi,j ] =

i+j−1
∑

n=i

E[θn], i = 1, 2, . . . , N, j = 1, 2, . . . , N. (1)

Notice that in case j = 1 and j = N , E[θi,j ] is equal to the mean visit period E[θi] of queue i
and the mean cycle length E[C], respectively. The fraction of the time qi,j the system is in an

(i, j)-period equals qi,j =
E[θi,j ]
E[C] . Moreover, the mean of a residual (i, j)-period is given by

E[Rθi,j
] =

E[θ2
i,j ]

2E[θi,j ]
, i = 1, 2, . . . , N, j = 1, 2, . . . , N,

with the remark that the second moments E[θ2
i,j ] are still unknown at this stage.

3 Performance measures

Delay: Let us consider the mean delay E[Wi] of a type-i customer, i = 1, 2, . . . , N , which is
defined as the time in steady state from a customer’s arrival at queue i until the start of his
service. By Little’s Law, these mean delays are obviously related to the mean queue lengths
(excluding the customer possibly in service) E[Li], i = 1, 2, . . . , N . To derive these quantities,
we use the MVA approach [40], which renders a set of equations for the E[Li,n], the mean queue
length at queue i at an arbitrary epoch within a visit time of queue n, i, n = 1, 2, . . . , N . The
corresponding mean delay E[Wi] can be expressed in terms of E[Li,n] as follows

E[Wi] =
1

λi

E[Li] =
1

λi

N
∑

n=1

qn,1E[Li,n], i = 1, 2, . . . , N. (2)

For further reference, we state the pseudo-conservation law for systems with exhaustive service at
each of the queue (see, e.g., [3])

N
∑

i=1

ρiE[Wi] = ρ
N

∑

i=1

λiE[B2
i ]

2(1 − ρ)
+

ρ

2E[S]

N
∑

i=1

(E[S2
i ] − E[Si]

2) +
E[S]

2(1 − ρ)

N
∑

i=1

ρi(1 − ρi). (3)

Throughout the present paper E[Wi] is considered as function of ρ, where the arrival rates are
variable, while the service time distributions and the ratios of the arrival rates are fixed. In case
ρ ↑ 1, all queues become unstable and, thus, E[Wi] tends to infinity for all i. To be precise, E[Wi]
has a first-order pole at ρ = 1 (cf. [32]),

E[Wi] =
E[W ∗

i ]

1 − ρ
+ o((1 − ρ)−1), ρ ↑ 1, i = 1, 2, . . . , N,

where g(x) = o(f(x)) means that g(x)/f(x) → 0 as x ↑ 1. The analysis of the present paper is
oriented towards the determination of a closed-form expression for

E[W ∗
i ] = lim

ρ↑1
(1 − ρ)E[Wi], i = 1, 2, . . . , N,

which is referred to as the mean asymptotic scaled delay at queue i. Finally, the fact that E[Wi],
i = 1, 2, . . . , N , has a first-order pole at ρ = 1 implies that E[L∗

i,n], i, n = 1, 2, . . . , N , has a
first-order pole at ρ = 1 as well. Therefore, the following limits are well-defined,

E[L∗
i,n] = lim

ρ↑1
(1 − ρ)E[Li,n], i = 1, 2, . . . , N, n = 1, 2, . . . , N.

For the validity of the statement that E[Wi] has a first-order pole at ρ = 1, we refer to [33, 35].
In fact, the results of these papers show that the kth moment of the delay has a kth order pole at
ρ = 1 for k = 1, 2, . . ..
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Correlations: The set of MVA equations can also applied for the computation of the mean of
residual (i, j)-periods E[Rθi,j

]. Thereupon, the variance of an (i, j)-period can be obtained via

Var[θi,j ] = 2E[Rθi,j
]E[θi,j ] − E[θi,j ]

2, i = 1, 2, . . . , N, j = 1, 2, . . . , N, (4)

where E[θi,j ] is given by (1). From these variances it also possible to compute the covariance
Cov[θi, θi+n] and correlation Cor[θi, θi+n] of the visit periods θi and θi+n via the following lemma.

Lemma 3.1. Given random variables X, Y and Z, the covariance of X and Z can be obtained

as follows

Cov[X,Z] =
1

2
(Var[X + Y + Z] − Var[X + Y ] − Var[Y + Z] + Var[Y ]).

Proof By definition,

Var[X + Y + Z] = Var[X] + Var[Y ] + Var[Z] + 2(Cov[X,Y ] + Cov[Y,Z] + Cov[X,Z]),

and

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ],

Var[Y + Z] = Var[Y ] + Var[Z] + 2Cov[Y,Z].

which, after some rewriting, completes the proof. ¤

Using the result of Lemma 3.1, one may verify that for i = 1, 2, . . . , N and n = 1, 2, . . . , N − 1,

Cov[θi, θi+n] =
1

2
(Var[θi,n+1] − Var[θi,n] − Var[θi+1,n] + Var[θi+1,n−1]), (5)

where Var[θi+1,0] = 0. Thus, we have for the correlation

Cor[θi, θi+n] =
Cov[θi, θi+n]

√

Var[θi]Var[θi+n]
, i = 1, 2, . . . , N, n = 1, 2, . . . , N − 1. (6)

Similar to the mean delay E[Wi], the above performance metrics are considered as a function of
ρ, where the arrival rates are variable. Finally, throughout the present paper, for each variable x
that is a function of ρ, its value evaluated at ρ = 1 is denoted by x̂.

4 Heavy traffic analysis

In this section we explore the use of the MVA to derive heavy-asymptotics for the model under
consideration.

4.1 Mean value analysis

Starting proof of our analysis is the following set of MVA equations obtained in [40] for the
unknown mean queue lengths E[Li,n], i = 1, 2, . . . , N , j = 1, . . . , N − 1,

N
∑

n=1

qn,1E[Li,n] =
λi

1 − ρi

(

ρiE[RBi
] +

E[Si]

E[C]
E[RSi

] + (1 − qi,1)(E[Rθi+1,N−1
] + E[Si])

)

,(7)

i+j
∑

n=i+1

qn,1

qi+1,j

E[Li,n] = λiE[Rθi+1,j
], (8)
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where the unknown E[Rθi,j
] are expressed recursively in terms of E[Li,n] as follows, i = 1, 2, . . . , N ,

j = 2, 3, . . . , N − 1,

E[Rθi,1
] =

1

1 − ρi

(

E[Li,i]E[Bi] +
ρiE[C]

E[θi,1]
E[RBi

] +
E[Si]

E[θi,1]
E[RSi

]

)

, (9)

E[Rθi,j
] =

qi,1

qi,j

(

E[Rθi,1
]

∏j−1
n=1(1 − ρi+n)

+

j−1
∑

n=1

E[Si+n] + E[Li+n,i]E[Bi+n]
∏j−1

m=n(1 − ρi+m)

)

+ (1 −
qi,1

qi,j

)E[Rθi+1,j−1
]. (10)

In [40] it is remarked that the residual cycle lengths E[Rθi,N
], i = 1, 2, . . . , N , which are not

required for the computation of the mean delays, satisfy (10) as well. The set (7) - (10) can in
general not be solved explicitly, but in the remainder of the present section an explicit solution is
derived in the limit of ρ ↑ 1. Multiplying both sides of (7) - (10) by (1−ρ) and letting ρ ↑ 1 renders
the corresponding set of equations in heavy traffic for i = 1, 2, . . . , N and j = 1, 2, . . . , N − 1,

N
∑

n=1

ρ̂nE[L∗
i,n] = λ̂iE[Rθ∗

i+1,N−1
], (11)

∑i+j
n=i+1 ρ̂nE[L∗

i,n]
∑i+j

m=i+1 ρ̂m

= λ̂iE[Rθ∗

i+1,j
], (12)

with for i = 1, 2, . . . , N and j = 2, 3, . . . , N ,

E[Rθ∗

i,1
] =

1

1 − ρ̂i

E[L∗
i,i]E[Bi], (13)

E[Rθ∗

i,j
] =

ρ̂i
∑i+j−1

n=i ρ̂n

(

E[Rθ∗

i,1
]

∏j−1
n=1(1 − ρ̂i+n)

+

j−1
∑

n=1

E[L∗
i+n,i]E[Bi+n]

∏j−1
m=n(1 − ρ̂i+m)

)

+

∑i+j−1
n=i+1 ρ̂n

∑i+j−1
n=i ρ̂n

E[Rθ∗

i+1,j−1
]. (14)

The variables E[Rθ∗

i,j
] are defined by

E[Rθ∗

i,j
] = lim

ρ↑1
(1 − ρ)E[Rθi,j

], i = 1, 2, . . . , N, j = 1, 2, . . . , N. (15)

The fact that E[Wi], i = 1, 2, . . . , N , has a first-order pole at ρ = 1 implies that E[Rθi,j
],

j = 1, 2, . . . , N , also has a first-order pole at ρ = 1 and thus the limits in (15) are well-defined.

The recursion represented by (13) - (14) has a closed-form solution in terms of E[L∗
i,n], which

reads for i = 1, 2, . . . , N and j = 1, 2, . . . , N ,

E[Rθ∗

i,j
] =

1
∑i+j−1

n=i ρ̂n

(

j−1
∑

n=0

E[Bi+n]

∑n
m=0 ρ̂i+mE[L∗

i+n,i+m]
∏j−1

m=n(1 − ρ̂i+m)

)

. (16)

By substitution of (16) into (11) - (12), the following set of N2 equations for equally many
unknowns E[L∗

i,n] is obtained: For i = 1, 2, . . . , N ,

N
∑

n=1

ρ̂nE[L∗
i,n] = E[L∗

i,i], (17)

and for i = 1, 2, . . . , N, j = 1, 2, . . . , N − 1,

i+j
∑

n=i+1

ρ̂nE[L∗
i,n] = λ̂i

(

j−1
∑

n=0

E[Bi+1+n]

∑n
m=0 ρ̂i+1+mE[L∗

i+1+n,i+1+m]
∏j−1

m=n(1 − ρ̂i+1+m)

)

. (18)

The set (17) - (18) can be solved up to some unknown scaling factor c ∈ R as shown in the
following theorem.
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Theorem 4.1. The solution of the set (17) - (18) is given by

E[L∗
i,i] = cλ̂i(1 − ρ̂i), i = 1, 2, . . . , N, (19)

E[L∗
i,i+n] = cλ̂i(2

n−1
∑

m=1

ρ̂i+m + ρ̂i+n), i = 1, 2, . . . , N, j = 1, 2, . . . , N − 1, (20)

with c ∈ R.

Proof: By Cramer’s rule we know that the homogeneous set (17) - (18) has (an infinite number
of) non-degenerate solutions if and only if the determinant of the coefficient matrix vanishes. This
can be ascertained by elementary, but tedious, row and column operations, which we leave to the
reader. Finally, the final row reduced form of the coefficient matrix shows that the rank of the
matrix equals N2 − 1, which completes the proof. ¤

Since the dimension of the null space of the coefficient matrix of (17) - (18) equals one, adding
a single non-homogeneous equation would render a unique solution the unknown scaling factor c.
This additional equation can be readily obtained from a scaled version of the pseudo-conservation
law (3) as done in the theorem below.

Theorem 4.2. The quantity c is given by

c =
1 + βδE[S]

2βδ
,

where β = E[B]
E[B2] and δ = 1 −

∑N
i=1 ρ̂2

i .

Proof: Via Theorem 4.1 and (2), one obtains the unconditional mean asymptotic scaled delays,

E[W ∗
i ] = c(1 − ρ̂i), i = 1, 2, . . . , N, (21)

which should satisfy a scaled version of pseudo-conservation law (3). That is, multiplying both
sides of (3) by (1 − ρ) and letting ρ ↑ 1 yields

N
∑

i=1

ρ̂iE[W ∗
i ] =

1 + βδE[S]

2β
, (22)

where β = E[B]
E[B2] and δ = 1 −

∑N
i=1 ρ̂2

i . Combining (21) and (22) completes the proof. ¤

4.2 Performance measures

Delay: The results of the previous subsection bring us in the position to obtain a closed-form
expression for the mean asymptotic scaled delay E[W ∗

i ] at each of the queues as exposed in the
following corollary.

Corollary 4.3. For i = 1, 2, . . . , N ,

E[W ∗
i ] = (1 − ρ̂i)

1 + βδE[S]

2βδ
.

Corollary 4.3 is in agreement with results of [6] and [31] and explicitly reveals the impact of the
system parameters on the mean asymptotic scaled delay as stated in the following property (see
also [32]).

Property 4.4. For i = 1, 2, . . . , N ,

1. E[W ∗
i ] is independent of the visit order;
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2. E[W ∗
i ] depends on the service time distributions only through the first two moments of the

service time of an arbitrary customer;

3. E[W ∗
i ] depends on the setup time distributions only through the first moment of the total

setup time in a cycle.

It is important to note that the properties discussed above are in general not valid for stable
systems (i.e. with ρ < 1).

Correlations: Observe that (16) yields the following expression for the mean asymptotic scaled
residual (i, j)-period E[Rθ∗

i,j
],

E[Rθ∗

i,j
] =

1 + βδE[S]

2βδ

i+j−1
∑

m=i

ρ̂m, i = 1, 2, . . . , N, j = 1, 2, . . . , N. (23)

Combining (4) and (23) together with the following obvious observation for the mean of a scaled
asymptotic (i, j)-period E[θ∗i,j ],

E[θ∗i,j ] = lim
ρ↑1

(1 − ρ)E[θi,j ] = E[S]

(

i+j−1
∑

m=i

ρ̂m

)

, i = 1, 2, . . . , N, j = 1, 2, . . . , N,

yields for the corresponding scaled asymptotic variance Var[θ∗i,j ],

Var[θ∗i,j ] = lim
ρ↑1

(1 − ρ)2Var[θi,j ] =
E[S]

βδ

(

i+j−1
∑

m=i

ρ̂m

)2

, i = 1, 2, . . . , N, j = 1, 2, . . . , N.

The above expression in conjunction with (5) and (6) gives rise to the following result for the
scaled asymptotic covariance Cov[θ∗i , θ∗i+n] and the asymptotic correlation Cor[θ∗i , θ∗i+n] of the
visit periods θi and θi+n under heavy traffic defined by, respectively,

Cov[θ∗i , θ∗i+n] = lim
ρ↑1

(1 − ρ)2Cov[θi, θi+n], i = 1, 2, . . . , N, n = 1, 2, . . . , N − 1,

Cor[θ∗i , θ∗i+n] = lim
ρ↑1

Cor[θi, θi+n], i = 1, 2, . . . , N, n = 1, 2, . . . , N − 1,

with the remark that these limits are again well-defined due to the fact that E[Wi], i = 1, 2, . . . , N ,
has a first-order pole at ρ = 1.

Corollary 4.5. For i = 1, 2, . . . , N and n = 1, 2, . . . , N − 1, we have

Cov[θ∗i , θ∗i+n] =
ρiρi+n

βδ
E[S],

Cor[θ∗i , θ∗i+n] = 1.

From Corollary 4.5 the following properties about the dependence of the scaled asymptotic covari-
ance and the asymptotic correlation with respect to the system parameters can be perceived.

Property 4.6. For i = 1, 2, . . . , N and n = 1, 2, . . . , N − 1,

1. Cov[θ∗i , θ∗i+n] and Cor[θ∗i , θ∗i+n] are independent of the visit order;

2. the visit time of θi of queue i is perfectly correlated with the visit time θi+n of queue i + n;

3. Cov[θ∗i , θ∗i+n] depends on the service time distributions only through the first two moments

of the service time of an arbitrary customer;

4. Cov[θ∗i , θ∗i+n] depends on the setup time distributions only through the first moment of the

total setup time in a cycle.
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Remark 4.7. Corollary 4.5 shows that the scaled asymptotic covariance of successive visit times
equals zero in systems with zero setup times. This observation actually holds for the covariances
of visit times in stable systems as well. That is, in systems without setup times the number of
visits with zero length tends to infinity and, consequently, the mean and variance of (i, j)-periods
both tend to zero implying that the covariance of successive visit periods converges to zero.

Remark 4.8. Corollary 4.5 can be intuitively explained from the results of Coffman et al. [5,
6]. They prove a heavy traffic averaging principle (HTAP) for a two-queue polling system with
exhaustive service at both queues, from which they conjecture that the same result applies for
systems with more than two queues. This HTAP says that, in heavy traffic, the total workload in
the system converges to a reflected brownian motion (RBM), while on the time scale of this RBM,
the individual workloads change at an infinite rate. This means that the work is shifting between
the queues in a rather deterministic way for a period of time, in which the total workload stays
relatively constant. This deterministic behavior in the shifting of the workload manifests itself in
the perfect correlations between the successive visit times as proved in the present paper. As such,
the results rigorously proven in the present paper support the validity of the partially-conjectured
results in [5, 6].

Remark 4.9. Corollary 4.5 comprehends the correlation of successive visit times within one single
cycle. This result can, however, be extended to correlations of successive times not belonging to
the same cycle by modifying (10) in an obvious way. Hence, we obtain that the visit time θi of
queue i is perfectly correlated with the visit time θi+n of queue i + n, i.e.,

Cor[θ∗i , θ∗i+n] = 1, i = 1, 2, . . . , N, n = 1, 2, . . . .

Remark 4.10. Although the main motivation of our interest in correlation of visit times is ap-
plication oriented (see Section 6 for an extensive discussion), these correlations are of theoretical
interest as well. For example, they give an indication of the lengths of simulation runs needed
to obtain sufficient narrow confidence intervals of performance measures. The higher the corre-
lations, the longer the simulation should be. As such, the results of the present paper provide
a theoretical basis for the inefficiency of simulation techniques for (K-limited) polling systems as
observed by, e.g., Blanc [1]. Further, Van Vuuren and Winands [36] recently developed an efficient
decomposition method to approximate K-limited polling systems with general arrival processes, in
which the covariances between successive visit times play a crucial role. The results in the present
paper open possibilities for the derivation of similar algorithms for exhaustive polling systems.

Remark 4.11. The assumption in Section 2 that all queues are served exhaustively is not essential
in the analysis, and was only made for compactness of the presentation. In fact, the analysis can be
extended without further complication to models with mixtures of gated and exhaustive service,
i.e., where some of the queues are served according to the exhaustive policy and some by the
gated strategy. Other straightforward extensions are for example models with simultaneous batch
arrivals, non-cyclic periodic server routing, and discrete-time models.

5 Approximations

Delay: Corollary 4.3 suggests that the mean delays in stable systems can be approximated as
follows: For i = 1, 2, . . . , N , ρ < 1,

E[Wi] ≈
1 − ρi

1 − ρ

1 + βδE[S]

2β
. (24)

We refer to [32] for an extensive discussion of the accuracy of the approximation.

Correlations: Based on Corollary 4.5 we propose the following approximation for the covariance
of successive visit periods for stable systems: For i = 1, 2, . . . , N and n = 1, 2, . . . , N − 1, ρ < 1,

Cov[θi, θi+n] ≈
1

(1 − ρ)2
ρiρi+n

βδ
E[S]. (25)
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Figure 2: Quality of approximation as function
of load (Example 5.2).

Note that Corollary 4.5 implies that (25) is asymptotically exact in the limiting case ρ ↑ 1. To
assess the accuracy of the approximation (25) for stable systems, we have performed numerical
experiments, comparing the exact results obtained via the MVA with the approximations according
to (25). We define the relative error ∆ of the approximation (25) as follows:

∆ =

∣

∣

∣

∣

∣

Cov[θi, θi+n] − 1
(1−ρ)2

ρiρi+n

βδ
E[S]

Cov[θi, θi+n]

∣

∣

∣

∣

∣

× 100%,

where we use the MVA results of [40] to numerically compute the exact covariances Cov[θi, θi+n].
In this numerical evaluation, (25) is considered to be accurate as ∆ is less than 10%.

Example 5.1. Consider a fully symmetric two-queue exhaustive polling system, where the service
times follow exponential distributions with means equal to 1 for both customer types. Moreover,
the switch-over times have mean and squared coefficient of variation equal to 0.25 and 0.5, re-
spectively. Figure 1 depicts the relative error ∆ for Cov[θ1, θ2], which - due to symmetry - equals
Cov[θ2, θ1], as function of the total load ρ, in which we see that (25) is accurate when the total
load exceeds 87%.

Example 5.2. Consider an asymmetric three-queue exhaustive polling system, where the ratios
between the arrival rates are 4 : 16 : 1 and where the service times follow exponential distributions
with mean equal to 1 for all queues. The average switch-over time from queue 1 to queue 2 is
equal to 10, while all other switch-over times have means equal to 1. Further, for all switch-over
times the squared coefficient of variation equals 0.5. In Figure 2 the relative errors for Cov[θ1, θ2]
and Cov[θ1, θ3] are shown, from which we can conclude that (25) is accurate when the total load
is 92% or more.

6 Specific application area for correlations between visit

times

Our motivation to study the correlations between the successive visit times is based on the specific
application area of base-stock policies in inventory control. In this section this area of application
is discussed in some detail, and can be viewed as an interesting extension to the survey in [16],
which is merely focused on applications in computer-communications systems.

Consider a production-inventory system with one single production capacity for multiple products,
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in which there is an infinite stock space for each product and raw material is always available. De-
mands for the various products arrive according to stationary and mutually independent stochastic
processes. Demand that cannot be satisfied directly from stock is backlogged until the product
becomes available after production. The individual products are produced in a make-to-stock
fashion with possibly stochastic production times. A possibly stochastic set-up time occurs before
the start of the production of a product. Finally, only one product can be produced at a time. This
setting is referred to as the stochastic economic lot scheduling problem (SELSP) (see Winands et

al. [39], for a survey).

In many firms encountering the SELSP, cyclic base-stock policies are used for the control of
the inventory of each product, which work as follows (see, e.g., Federgruen and Katalan [7, 8]):

1. the products are produced according to a fixed production sequence;

2. when the machine starts production of a product, it will continue production until a pre-
defined base-stock level has been reached.

Now, the production facility, where the production orders queue up, can be represented as a polling
model by identifying each product with a queue and the demand process of a product with the
arrival process at the corresponding queue (cf. [7, 8]). Notice that the visit times in the polling
system resemble the length of production runs in the production facility.

The SELSP is a common problem in process industries, where the utilization of capacity is typ-
ically extremely high. Thus, the heavy-traffic results of the present paper can be used to get
fundamental new insights into the behavior and performance of base-stock policies in process in-
dustries. In particular, our heavy-traffic results show that the correlations among production runs
for base-stock policies are relatively high even in moderate traffic load. This not only implies that
the cycle lengths are highly variable, but also that the system may drift from average behavior
for a significant period of time. Both effects may lead to higher inventory levels and costs at the
production facility itself, are undesirable from an organizational point of view and hamper short-
term decision making. Below, we elaborate further on these idiosyncrasies of base-stock policies
revealed by our heavy-traffic results.

Firstly, the high correlations between production runs result in very long cycles from time to
time, which increases the amount of safety stocks needed at the production facility and rises the
concomitant holding costs. Therefore, one may conjecture that exhaustive base-stock policies are
not the most effective strategies in production situations where capacity utilizations are high as
well as that it may be desirable that production runs, and thus the cycle lengths, are bounded in
these environments. Winands et al. [38] show that, in a highly idealized mathematical setting of
the SELSP, that bounding production runs of (low-priority) products may indeed lead to consid-
erable cost reductions.
Secondly, the high variance in cycle lengths caused by the correlations provides breeding ground
for the conjecture that base-stock policies do not lead to stability, regularity and discipline on
the work floor. These properties are desirable from an organizational point of view, since they
facilitate maintenance scheduling, workforce planning, purchasing of raw material, scheduling of
subsequent processes and shipment of finished products (see, e.g., Chapter 1 of Van Nyen [19]).
Schmidt et al. [25] report on a real-life case, where they actually observe the organizational flaws
of exhaustive lot sizing policies in a make-to-order production environment. By replacing the
exhaustive policy in the plant by a strategy, which stabilizes the cycle lengths, many direct and
indirect improvements could be observed. Our heavy-traffic results can be seen as theoretical
justification of the lack of stability and discipline of base-stock policies as observed in practice.
Thirdly, the strong correlations among the length of production runs in heavy traffic prove that
the performance of base-stock policies in terms of, e.g., delivery times or work-in-progress (WIP)
fluctuates strongly over time which may hinder short-term decision making. That is, the actual
performance of the system is better than average for some periods of time, but for other periods
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the performance is below average. As Stoop [27] mentions, in the latter periods managers tend to
make nervous myopic decisions in an attempt to reach average performance as quickly as possible,
which may result in additional costs and lower long-term performance.

7 Model extensions

Although the results discussed in this paper can be generalized directly to models with mixed
gated/exhaustive service policies, simultaneous batch arrivals and periodic server routing without
significantly complicating the analysis (see Remark 4.11), application of the MVA-based approach
to obtain heavy-traffic results for a variety of interesting models extensions require further analysis.
First, it is not yet fully clear if - and how - the MVA-based analysis can be extended to general
branching-type service policies (such as binomial-gated, fraction-exhaustive and the like), even
though the asymptotics for the mean waiting times are known [31]. Second, a interesting type
of extension is to include random or Markovian server routing. Interestingly, for this type of
models the buffer-occupancy technique to determine the moments of the joint queue length at
polling instants at a queue still works [37], whereas the MTBP-structure of the model is violated,
because the immigration of customers becomes dependent on the realization of the visit order (cf.
[12, 23] for more details). Although simple expressions for the mean delay seem to be hard to
obtain, there is still hope for deriving heavy-traffic asymptotics for the correlations between the
successive visit times. This opens up a challenging area for further research. Finally, the results
on correlation between the visit times discussed in this paper raise challenging questions about
extension of the results to limited-type service policies. Although polling models with K-limited
service policies, where the server may only serve up to Ki customers during a visit to queue i, are
notoriously difficult and not leave any hope for exact waiting-time asymptotics, it may be possible
to derive useful approximations for the mean waiting times and the correlations between the visit
times under heavy-traffic assumptions. Intuitively, one would expect that the duration of the visit
times becomes degenerate under heavy-traffic assumptions, which gives some hope for asymptotic
analysis of the duration and correlations of the visit times, addressing a very challenging area for
further research.

Acknowledgements

The authors wish to thank Will Bertrand for fruitful discussions, which led to Section 6 of the
present paper.

References

[1] J.P.C. Blanc (1992). An algorithmic solution of polling models with limited service disciplines. IEEE
Trans. Commun. 40, 1152-1155.

[2] J.P.C. Blanc (1993). Performance analysis and optimization with the power-series algorithm. In:
Performance Evaluation of Computer and Communication Systems, eds. L. Donatiello and R. Nelson
(Springer-Verlag, Berlin), 53-80.

[3] O.J. Boxma and W.P. Groenendijk (1987). Pseudo conservation laws in cyclic-service systems. J.
Appl. Prob. 24, 949-964.

[4] G. Choudhury and W. Whitt (1996). Computing transient and steady state distributions in polling
models by numerical transform inversion. Perf. Eval. 25, 267-292.

[5] E.G. Coffman, A.A. Puhalskii and M.I. Reiman (1995). Polling systems with zero switch-over times:
a heavy-traffic principle. Ann. Appl. Prob. 5, 681-719.

[6] E.G. Coffman, A.A. Puhalskii and M.I. Reiman (1998). Polling systems in heavy-traffic: a Bessel
process limit. Math. Oper. Res. 23, 257-304.

13



[7] A. Federgruen and Z. Katalan (1996). The stochastic economic lot scheduling problem: cyclical
base-stock policies with idle times. Mgmt. Sc. 42, 783-796.

[8] A. Federgruen and Z. Katalan (1998). Determining production schedules under base-stock policies in
single facility multi-item production systems. Oper. Res. 46, 883-898.

[9] M.J. Ferguson (1986). Computation of the variance of the waiting times for Token Rings. IEEE J.
Sel. Areas Commun. 4, 775-782.

[10] J.C. Fransoo (1992). Demand management and production control in process industries. Inter. J. of
Oper. and Prod. Mgmt 12, 187-196.
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