
Heuristics for the Design and Optimization of
Streaming Content Distribution Networks
Sandjai Bhulai a

a Vrije Universiteit Amsterdam
Faculty of Sciences
De Boelelaan 1081a

1081 HV Amsterdam
The Netherlands

Email: S.Bhulai@few.vu.nl

Rob van der Mei a,b

b CWI
Advanced Communication Networks

P.O. Box 94079
1090 GB Amsterdam

The Netherlands
Email: R.D.van.der.Mei@cwi.nl

Mengxiao Wu c

c CWI
Computational Intelligence

P.O. Box 94079
1090 GB Amsterdam

The Netherlands
Email: Mengxiao.Wu@cwi.nl

Abstract— The design of efficient and scalable streaming Con-
tent Distribution Networks (CDNs) is an open problem of great
economic interest. A key decision is the number of replica
servers to use and their location to balance network bandwidth
and server costs. This problem is highly complex, since it is
interrelated to the streaming media delivery protocols, client
redirecting decisions, and the content delivery routing problem.

To address this design problem, we develop heuristics for
the server placement, the server selection, and the routing
problem. In contrast to previous work, we study both periodic
broadcast and hierarchical merging protocols using multiple
media files with different request rates. The heuristics lead to
highly accurate and fast approximations. We also analyze the
relationship between the start-up delay caused by some delivery
protocols, the bandwidth consumption, and the number of replica
servers, providing complete and fully implementable solutions to
the design of streaming CDNs.

I. INTRODUCTION

Streaming Content Distribution Networks (CDNs) address
the problem of efficient streaming media delivery through
replicating media files on replica servers distributed in the
network. The aim is to balance the costs of using network
resources and the server costs while meeting a desired media
playback quality. Although streaming CDNs are based on
the traditional CDN technology, the specific characteristics of
streaming media files make them different from traditional web
CDNs, which have been developed for many years already
(by, e.g., Akamai and AOL). In spite of the advances in
research and development of streaming techniques, such as
high-performance video servers and various streaming media
delivery protocols, the design of efficient and scalable stream-
ing CDNs is an open problem of great economic interest.

The support of streaming media services through streaming
CDNs increases scale and reach of streaming media. However,
handling streaming media files also brings additional complex-
ities with CDN mechanisms due to their bandwidth-intensive
nature of high quality and the long-life nature (tens of minutes
to a couple of hours). The key questions that can be identified
in the design of efficient streaming CDN design are: a) the
server content problem: which content should be replicated
at the proxy servers, b) the server placement problem: how
many replicas are needed and where should each replica server
be placed in the network, c) the server selection problem: to
which server should a client’s request be directed to, and d)
the request routing problem: how to route the content from

the selected server to the client. These questions are the focus
of this paper.

A. Related literature

There is a lot of literature presenting optimal solutions
or approximate algorithms for the server placement problem
in traditional web CDNs [1], [2], [3], [4], [5], [6], [7], [8].
However, these models and algorithms are unfit for the design
of streaming CDNs, because they do not account for the
special characteristics mentioned earlier of streaming media
files and multicast delivery. Generally, a greedy algorithm can
provide solutions to the server placement problem in web
CDNs with a performance that is close to optimal [5]. The
server placement problem for streaming CDNs has only been
partially addressed in a few studies [9], [10], [11], [12].

The server selection problem is addressed in [10] for a
periodic broadcast or live broadcast system in which the
network bandwidth is independent of client loads. Both [9]
and [10] address the case in which the system has only one
server. In [11], a logarithmic approximate algorithm and a
heuristic solution are presented to construct application-layer
multicast trees with the target of minimizing the delay.

B. Contribution

The server placement, selection and routing for streaming
CDNs that use scalable streaming media delivery approaches is
further explored in this paper. Our work partially builds on the
results from [12], and proposes a set of optimization models
and heuristic algorithms for both placement and routing. The
following are the distinguishing points.

We address the problem for streaming CDNs using not only
hierarchical streaming merging protocols, but also periodic
broadcast protocols. In contrast to [9], [10], we also discuss
algorithms for the case of multiple servers, as Almeida [12]
does. However, Almeida only considers the case of a single
media file. In this paper, we also deal with the case of
multiple media files with different request frequencies, and
develop algorithms that determine the placement and routing
for multiple media files concurrently in streaming CDNs with
total delivery costs that are closer to optimality.

Our cost function is different from the cost function used
in [12], in the sense that it explicitly takes into account
the trade-off between deploying more replica servers to save

network bandwidth and having less replica servers to reduce
server costs. Based on this cost function, we provide heuristics
and study the relationship between the start-up delay caused
by some delivery protocols, the bandwidth consumption, and
the number of replica servers. The heuristics are shown to be
fast, yet highly accurate, and easily implementable, and well-
suited to be used in the design and optimization of commercial
CDN infrastructures.

II. PROBLEM FORMULATION

The goal of streaming CDNs is to provide the best available
performance to its clients while placing as few replicas as
possible. In this section, we develop models to determine the
optimal replica placement and delivery trees such that network
costs are minimized. To this end, consider a given network
topology (V,E) with V = {1, 2, . . . , n} a set of nodes and
E ⊆ {(i, j) | i, j ∈ V } a set of undirected edges. We assume
that each edge (i, j) ∈ E has a weight wij , representing the
number of router hops on each edge having equal costs per
unit of bandwidth. Furthermore, let Cf ⊆ V denote the set of
client nodes for various multimedia files f ∈ F , and S ⊆ V
the set of server nodes with S∩Cf 6= ∅. We assume that each
file f has a start-up delay of d, a duration of T (in minutes),
and that the set of client loads that arrives during the playback
is Lf

i for i ∈ Cf and f ∈ F .
We first deal with the placement of a replica on a single

server node. A server node with requests acts as a client
node when no replica is placed on it. All router nodes and
other server nodes without requests are linked optionally as
determined by the optimization requirement. The flow Xf

ij

over an edge (i, j) ∈ E for file f ∈ F is defined as the
sum of all client loads for the same file Uf that share that
edge in the delivery tree. The usage Y f

ij of an edge indicates
whether the edge belongs to the delivery tree or not.

The objective is to determine where to place a replica
such that the network costs are minimized. The network
costs are defined as the proportional value of the network
bandwidth consumption. Note that these costs depend on the
media delivery protocol that is used in the network. Periodic
Broadcast (PD) protocols aim to achieve short start-up delays
by frequent broadcasts of the initial segments of the media file.
Low bandwidth consumption is obtained by making broadcasts
of later segments less frequent. Hu [13] shows that the required
bandwidth of PD protocols only increases logarithmically as
ln(T/d + 1). Hence, the networks costs are given by

Bnetwork = ln
(
T/d + 1

) ∑
f∈F

∑
(i,j)∈E

wijY
f
ij .

Periodic broadcast protocols have the drawback that they
have a start-up delay. This lead to the development of the
Hierarchical Multicast Stream Merging (HMSM) protocol.
This protocol aggregates clients that request the same media
file into successive groups. Upon receiving a client request for
a media file, the server initiates a multicast stream delivering
content from the beginning of the file, so that the client can
start playback immediately. Simultaneously, the client snoops
on the closest earlier stream which is delivering the same file.
The client’s own stream is terminated when the client has

received all file data prior to that obtained by snooping. Under
this protocol, the network costs are given by (see [14])

Bnetwork =
∑
f∈F

∑
(i,j)∈E

wij ln(Xf
ij + 1).

When the broadcast protocol has been fixed, the replica
placement problem can be cast as a mixed integer program-
ming problem given by

min Bnetwork subject to∑
i | (i,k)∈E

Xf
ik −

∑
j | (k,j)∈E

Xf
kj = Lf

k , k ∈ V, f ∈ F,

Xf
ij ≤ UfY f

ij , i, j ∈ E, f ∈ F,

Uf =
∑
i∈V

Lf
i , f ∈ F,

Xf
ij ≥ 0, i, j ∈ E, f ∈ F,

Y f
ij ∈ {0, 1}, i, j ∈ E, f ∈ F.

In our opinion, this model is more realistic than the mod-
els proposed in [12], since our model computes that total
bandwidth consumption during the complete playback period.
Also note that the problem for a reasonable instance is quite
large and has long computation times. In practice, only small
instances can be calculated to optimality using this problem
formulation. Therefore, one needs to take refuge to heuristics
for obtaining solutions for realistic problem instances.

III. HEURISTICS FOR THE SERVER PLACEMENT

In this section we present heuristics to solve the server
placement problem for streaming CDNs. We first start with
the single server placement problem. The solution to this
problem consists of choosing the optimal server node to place
the replica on, and of building the delivery tree connecting
all client nodes. Thus, the solution can be seen as a routing
and placement pair. We present accurate algorithms to these
separate problems that require significantly less execution time
than solving the combined problem presented in the previous
section. Therefore, they can be applied to large and scalable
systems with nearly optimal delivery costs.

We first focus on routing heuristics for the server placement.
In the sequel we shall distinguish between the network costs
for the PD and the HMSM protocol. We shall refer to the
costs of the former as the network distance, and to the latter
as network costs. The heuristic starts by building a tree of
shortest paths. This can in principle be used for the routing
(the shortest path routing SP). However, the heuristic uses
incremental costs/distance to create better schemes GC/GD
for routing. The algorithm is as follows.

Prime routing heuristic
1) For a given topology with |V | nodes, use each node ni ∈ V

as the root to build a tree of shortest paths spi to connect all
other |V | − 1 nodes.

2) For a given server node sj ∈ S, which has placed or is
supposed to place a replica on it, add it to the delivery tree dt
as the first and root node.

3) Choose a client node ck ∈ C, which is yet unconnected by
dt, and is supposed to be connected to the closest node ni

that is already in dt via the tree spk. Then, calculate and store

the incremental network costs/distance (for GC/GD) of this
(temporary) delivery tree.

4) Repeat step 3 until all unconnected client nodes are ex-
hausted. Add client node ck, with the least incremental network
costs/distance, and the shortest path from it to ni on the spk

into dt. If there is a router node on this selected shortest path,
add it into dt as part of the selected shortest part.

5) Repeat step 3 and 4 until all client nodes have been included
in dt. The delivery tree dt presents the routing decision tree.

The three algorithms build a delivery tree given the decision
of the replica. We base our placement heuristic on these three
algorithms and combine them with network costs/distance
to finally derive four placement heuristics GCC (GC with
network costs), GDD (GD with network distance), SPC (SP
+ network costs), and SPD (SP + network distance). The
algorithm works as follows.

Prime placement heuristic
1) For each server node sj ∈ S build a delivery tree dtj , which is

rooted in sj and connects other nodes by using the GC/GD/SP
heuristic. Calculate and store the network costs of dtj .

2) Select the server node that has the minimum network costs/
distance for the replica placement.

The two previous algorithms solve the problem posed in
Section II resulting in four algorithms SGCC (GC + GCC),
SGDD (GD + GDD), SSPD (SP + SPD), and SSPC (SP
+ SPC). Experiments show that the SGCC/SGDD heuristics
perform very well and are close to optimal. Since the SP
routing algorithm is much faster, the SSPC/SSPD algorithms
are much faster as well.

Let us now focus attention on the placement of multiple
replicas. In this case, one needs to solve the client assignment
problem as well as the routing and placement problem. How-
ever, these problems are related to each other, and increase
the complexity of the problem significantly. The following
heuristic deals with this interaction as follows.

Heuristics based on the greedy algorithm
1) For a given topology tp with |V | nodes and N replicas, use

each server node sj ∈ S as the root for a shortest path tree
spj .

2) Choose an unselected server node sj and place a (temporary)
new replica rj on it. Connect each client node ck ∈ C to the
nearest replica rl (among existing replicas and rj) via spl. This
determines the sub-topology tpl.

3) Use the replica rl as the root to implement the GCC/GDD/
SPC/SPD heuristic on tpl to get the network costs/distance of
tpl. Compute the total network costs/distance by adding up the
costs of each sub-topology, and store this.

4) Repeat step 3 and 4 until all unselected server nodes are
exhausted. Place a new replica on the server node with the
least incremental network costs/distance.

5) Repeat step 3 and 4 until all N replicas are placed.
6) Assign each client node to the nearest replica via the shortest

path computed previously, and use GC/GD/SP to build the
delivery tree.

The heuristic results in four algorithms MG-GCC, MG-GDD,
MG-SPC, and MG-SPD. Although the accuracy of the above
algorithm might be high, its computation time is also quite
large. To reduce the computation time, we can partition or
cluster the system based on the K-means algorithm [15] and
solve the problem in each subsystem. This results in four new
heuristics MC-GCC, MC-GDD, MC-SPC, and MC-SPD as
follows.

Heuristics based on the clustering algorithm
1) For a given topology tp with |V | nodes and N replicas, use

each server node sj ∈ S as the root for a shortest path spj .
2) Select N nodes randomly among the server nodes to place the

replicas.
3) Connect each client/router node ni to the nearest (temporary)

replica rj via the shortest path spj . This determines the sub-
topology tpj .

4) For each sub-topology tpj , iteratively use a replica rj as the
root to implement the GC/GD/SP routing heuristic to construct
a tree connecting all client nodes in thus sub-topology. Cal-
culate the network costs/distance, and select the node with
minimum network costs to place the replica on.

5) Repeat step 3 and 4 until the maximum number of iterations
has been reached, or when the N selected replica servers do
not change. After the loop, place the replicas on the last set of
selected nodes.

6) Use the GC/GD/SP routing heuristic to construct the delivery
trees with the N determined sub-topologies and their own
replicas.

IV. NUMERICAL EXPERIMENTS

We have implemented the heuristic algorithms on a 50-
node example network. In this study, we used the Georgia
Tech Internetwork Topology Models software GT-ITM [16],
[17] to generate underlying network topologies. This software
contains routines that generate networks based on a variety of
network models. In particular, we use two flat random network
models, the Pure Random (PR) model and the Waxman
model [18], and one hierarchical Transit-Stub (TS) model [16].

In our examples, we assume that the network topology is
fixed. Consequently, the management of a multicast group
does not involve client nodes that join or leave the multicast
group. The multicast functionality at the network layer is
still not widely deployed in IP networks. Additionally, it is
widely accepted that the shortest path tree, which is adopted by
various multicast routing protocols, is not a good solution for
constructing optimal delivery trees in streaming CDNs [19].
Therefore, we assume that (nearly) optimal constructions of
delivery trees are implemented by the application layer mul-
ticast (see [20]).

We use three multimedia files with different character-
istics. The client requests for each file are homogeneous
with L1

C1 = 10, L2
C2 = 1, and L3

C3 = 0.1. Furthermore
(S, C) = (25, 20, 10, 5) for the PR and Waxman topology,
and (S, C) = (12, 30, 20, 10) for the TS topology.

We focus on a two-level hierarchical architecture in which
clients send requests to the original server or the replica
servers. The client is only served only by replica servers, thus
the original server does not transmit media contents directly
to the client. This shifts the problem to the optimal placement
of replica servers. Moreover, we do not assume a peer-to-peer
architecture in which transmission between replica servers or
between client nodes is possible. Thus, each client node is
limited to get service from only one replica server, which get
its media contents from the original server.

In general, the replica server can choose to either fully or
partially replicate the multimedia file. However, we assume
that the file is fully replicated, since [12] shows that full
file replication outperforms prefix or partial replication in a
very large region of the design space. We suppose that the
replica server can only run one type of delivery protocol (PB

Fig. 1. Network costs/distance for the PR network

or HMSM). However, in the case with multiple replica servers,
we will consider the case where part of the servers run the PB
protocol, and the others run the HMSM protocol.

The results for the PR network are shown in Figure 1. The
results for the other networks are similar. The experiments
show that the heuristics have comparable performance with
the greedy algorithm being slightly better. The biggest gap
between the two heuristics occur under the PR network. The
heuristic based on the clustering, however, has a very high
efficiency as the computation times become shorter when the
number of replicas increases. Hence, in large scale environ-
ments preference is given to this algorithm.

V. ISSUES IN THE DESIGN OF STREAMING CDNS

In the previous section, the heuristic algorithm ignored the
protocol costs, the server costs, and the incremental network
bandwidth (under the PB protocol) for the sake of accurate
and efficient solutions to the server placement problem. In this
section we discuss the trade-offs between the start-up delay,
the number of replicas, and the network bandwidth based on
the whole cost function.

A. Trade-off between the server and network costs

In this subsection, we study the relationship between the
network costs and the number of replicas in the network. The
client loads in the experiments of the 50-node network of
the previous section were scaled down by a factor of 100.
This gave simpler and clearer results, and did not affect the
performance of the different heuristics for the same delivery
protocols. However, the network costs of the HMSM scheme
are affected by this scaling. Hence, to study the differences
between the protocols, we implement the MG-GCC and MG-
GDD heuristics, which are regarded as nearly optimal solu-
tions with original client loads on the PR, Waxman, and TS
networks. The client loads are set to L1

C1 = 1000, L2
C2 = 100,

and L3
C3 = 10. Furthermore, we assume that the start-up

delay of the PB scheme is 5 minutes to make the bandwidth
consumption closer to that of the HMSM scheme.

Define the cost function as

C = α ·Dstart-up + β ·Bnetwork + γ ·Nserver.

The term Bnetwork is calculated based on the weights of links,
which are used to represent the number of hops in each link.
It assumes that all hops have equal costs per unit of network
bandwidth. The quantity Nserver is the number of replicas, and
Dstart-up is the start-up delay ratio. These three factors have

Fig. 2. Delivery costs vs. number of replicas for different values of γ in PR
and Waxman networks with α = 0 and β = 1.

different units, so the cost function uses three weights α, β,
and γ, to unify them as the delivery costs. The resulting terms
α ·Dstart-up, β ·Bnetwork, and γ ·Nserver are called the protocol
costs, the network costs, and the server costs, respectively.

Figure 2 shows the changes in delivery costs with different
numbers of replicas based on different values of γ in the
PR and Waxman network. Figure 2(a) illustrates the situation
in which the delivery costs are just the network costs. For
both the HMSM and the PB protocol, the changes for random
topologies (i.e., the PR and the Waxman network) are almost
linear. Figure 2(b) and (c) indicate that γ = 50 is the value
around which the delivery costs change from a monotone
decreasing function to a monotone increasing one. When
γ ≥ 100, the delivery costs increases in the number of replicas,
which is depicted in Figure 2(d). A similar behaviour also
holds for TS networks. However, because the network costs
incurred in an TS network are a lot higher, the corresponding
values that make the curves change significantly are also larger.

B. Trade-off between the protocol and network costs

In the previous section, the experimental results for the
PB scheme did not include additional costs caused by the
start-up delays. However, since the client satisfaction of a
service clearly depends on these start-up delays, it is natural to
introduce additional protocol costs because of the differences
generated by the delivery protocols. In practice, measurements
will decide whether the networks costs saved by the PB
scheme balances the added protocol costs due this delivery
protocol. Based on the results in last subsection, we try to get
derive some rules to deal with this trade-off in this subsection.

Figure 3 illustrates the changes in delivery costs for different
start-up delays. We choose the PR, the Waxman, and the TS
network with the corresponding number of replicas of 1, 5,
and 10, respectively. The optimal start-up delay depends on
both the concrete network topology and on the value of α.
Figure 3(a) illustrates the changes in delivery costs for various
start-up delays based on values of α = 2000, 3000, and 4000.
The figure shows that when α = 3000, the PB scheme with a
start-up delay of 30 minutes can achieve lower delivery costs
than the HMSM scheme. For the values α = 2000 and 3000,
the break-even points for the start-up delays are at 20 and 40
minutes, respectively. A similar analysis can also be applied

Fig. 3. Delivery costs vs. start up delays for the PR (1 replica), the Waxman
(5 replicas), and the TS (10 replicas) network with β = 1 and γ = 0.

to Figures 3(b) and (c).

C. Hybrid strategies for multiple files

In streaming CDNs with multiple files, one needs to make
a decision on whether one shares the replica placement, the
delivery routing, and the related protocols. In the previous
sections, multiple files shared the replica placement with
potentially different routing (based on the same protocol).
However, one could also use different replica placements and
delivery routing. The benefit of this hybrid strategy becomes
clear when one realizes that requests of different multimedia
files are highly unbalanced. The top 10 files are requested in
almost 90% of the cases, which can be modeled by Zipfian
distributions [21].

In order to compare the two strategies, we use three different
magnitudes of the client loads for the three files in our
experiments. The load on file 1 is so large that it almost
dominates the server placement and the routing. Under the first
strategy, this would mean that the best placement and routing
solution for the three files system is the same as that for the
system with only file 1. But under the latter strategy this may
not be the best solution for file 2 and file 3 separately. The
PB protocols save network bandwidth but are associated with
a start-up delay, whereas the HMSM protocols can support
immediate services but consume more network bandwidth.
Therefore, for the hybrid strategy, one could use a mixture
of PB protocols to serve the multimedia files with high client
loads, and HMSM protocols for files with low client loads.

Figure 4 show the results for α = 400. The legend shows
the protocols used for file 1, 2, and 3 in sequence. The start-
up delay of the PB protocol is set to 20 minutes. Figure 4(a)
shows that the hybrid strategy that uses the PB protocol for
files with high loads only outperforms the single PB strategy.
Recall the client loads are set to L1

C1 = 1000, L2
C2 = 100,

and L3
C3 = 10, so that it is obvious that the costs of using the

PB scheme to deliver files 1 is more costly than that of the
HMSM scheme. Figure 4(b) illustrates that the PB scheme is
more expensive than using the HMSM scheme for files with
low client loads.

VI. CONCLUSIONS

We have explored the design of streaming CDNs to attain
(close to) minimum delivery costs. This is achieved by devel-
oping an optimization model to determine the optimal replica
placement and the delivery trees for multiple media files. Our
model can deal with different scalable streaming protocols, in-
cluding periodic broadcast protocols and hierarchical multicast

Fig. 4. Comparison between simple strategies and hybrid strategies.

streaming merging protocols. We introduced fast and accurate
heuristic algorithms for solving the optimization model so
that it can be applied to large streaming CDNs. Moreover,
we discussed the trade-off between the start-up delay and the
network bandwidth, and the trade-off between the number of
replica servers and the network bandwidth. The results show
that the heuristics are well-suited to be used in the design and
optimization of commercial streaming CDN infrastructures.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman & Co., 1979.

[2] B. Li, M. J. Golin, G. F. Italiano, X. Deng, , and K. Sohraby, “On the
optimal placement of Web proxies in the Internet,” in Proceedings of
IEEE INFOCOM ’99, New York, NY, USA, 1999, pp. 1282–1290.

[3] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. on Networking, vol. 8, no. 5, pp. 568–582, 2000.

[4] S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror
placement on the Internet,” in INFOCOM, 2001, pp. 31–40.

[5] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of
Web server replicas,” in INFOCOM, 2001, pp. 1587–1596.

[6] M. Karlsson, C. Karamanolis, and M. Mahalingam, “A framework for
evaluating replica placement algorithms,” HP Labs, Tech. Rep. HPL-
2002-219, 2002.

[7] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-informed Internet
replica placement,” Computer Communications, vol. 25, no. 4, pp. 394–
402, 2002.

[8] P. Crescenzi and V. Kann, “A compendium of NP optimization prob-
lems,” 2005.

[9] Y. Zhao, D. Eager, and M. Vernon, “Network bandwidth requirements
for scalable on-demand streaming,” 2002.

[10] Z. Fei, E. Zegura, and M. Ammar, “Multicast server selection: prob-
lems, complexity and solutions,” IEEE Journal on Selected Areas in
Communications, vol. 20, 2002.

[11] E. Brosh and Y. Shavitt, “Approximation and heuristic algorithms for
minimum delay application-layer multicast trees,” in Proc. of the 23th
Conference of the IEEE Computer and Communications Societies, 2004.

[12] J. Almeida, “Streaming content distribution networks with minimum
delivery cost,” Ph.D. dissertation, University of Wisconsin, 2003.

[13] A. Hu, “Video-on-demand broadcasting protocols: a comprehensive
study,” in INFOCOM, 2001, pp. 508–517.

[14] D. Eager, M. Vernon, and J. Zahorjan, “Minimizing bandwidth require-
ments for on-demand data delivery,” IEEE Transactions on Knowledge
and Data Engineering, vol. 13, no. 5, pp. 742–757, 2001.

[15] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions of
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[16] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in IEEE INFOCOM, vol. 2, 1996, pp. 594–602.

[17] GT-ITM, “GT internetwork topology models,” 2004. [Online]. Available:
http://www.cc.gatech.edu/fac/Ellen Zegura/gt-itm

[18] B. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622, 1988.

[19] H. W. Holbrook and D. R. Cheriton, “IP multicast channels: Express
support for large-scale single-source applications,” in ACM SIGCOMM
’99, New York, NY, USA, 1999, pp. 65–78.

[20] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in ACM SIGMETRICS ’00, New York, NY, USA, 2000, pp. 1–12.

[21] G. Zipf, Human Behavior and the Principal of Least-Effort. Cambridge,
MA: Addison-Wesley, 1949.

