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Abstract

We consider asymmetric cyclic polling systems with an arbitrary number of queues, general
service-time distributions, zero switch-over times, gated service at each queue, and with gen-
eral renewal arrival processes at each of the queues. For this classical model, we propose a
new method to derive closed-form expressions for the expected delay at each of the queues
when the load tends to 1, under proper heavy-traffic (HT) scalings. In the literature on
polling models, rigorous proofs of HT limits have only been obtained for polling models with
Poisson-type arrival processes, whereas for renewal arrivals HT limits are based on conjec-
tures [6, 7, 15]. Therefore, the main contribution of this paper lies in the fact that we propose
a new method to rigorously prove HT limits for a class of non-Poisson-type arrivals. The
results are remarkably simple and provide new fundamental insight and reveal explicitly how
the expected delay at each of the queues depends on the system parameters, and in particular
on the interarrival-time distributions at each of the queues. The results also suggest simple
approximations for the expected delay in stable polling systems. Numerical results show that
the approximations are highly accurate when the system load is roughly 90% or more.
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1 Introduction

A polling system is a multi-queue single-server system in which the server visits the queues in some

order to process requests pending at the queues. Polling systems occur naturally in the modeling

of systems in which service capacity (e.g., CPU, bandwidth, processing power) is shared by differ-

ent types of users, each type having specific traffic characteristics and performance requirements.

Polling systems find many applications in the areas of computer-communication networks, produc-

tion, manufacturing and maintenance, see [13] for an overview. Since the late 1960s polling systems

have received much attention in the literature, see [27, 18, 19, 20] for overviews of the available re-

sults. The vast majority of the papers assume that the arrival processes at the queues are Poisson.

In many applications, however, the interarrival times are not exponentially distributed. Therefore,

in this paper we study polling models in which the arrival process at each of the queues is a renewal

process, i.e., in which the interarrival times are not necessarily exponentially distributed. Since

the existing analysis techniques rely on the assumption of Poisson-type arrivals, hardly any exact

results on the waiting-time and queue-length distributions are available for renewal arrivals.

In particular, this paper focuses on the heavy-traffic (HT) behavior of polling models with re-

newal arrivals, i.e., when the load tends to one. The motivation for studying HT asymptotics is

that in many cases they lead to strikingly simple expressions for queue-length and waiting-time

distributions, often even in closed form [6, 7, 15], whereas their counterparts for arbitrary values

of the load can at best be obtained via numerical techniques that become highly computationally-

intensive as the load increases (e.g., [2, 12]). In this way, HT asymptotics not only explicitly show

how the waiting-time performance of the system depends on the system parameters leading to

significant insights in the behavior of the system, but also form an excellent basis for developing

simple approximations for the waiting times (distributions, moment, tail probabilities) for stable

systems. In fact, such approximations based on HT limits have been found to be remarkably

accurate in many cases, even for moderate load (e.g., [15]).

Motivated by the attractiveness of HT asymptotics, several approaches have been proposed to

obtain HT limits for polling systems. For models with Poisson arrivals, rigorous proofs for HT

limits can be obtained for models that possess a multi-type branching process (MTBP) structure

(cf. [16] for details). By exploring the branching structure of the model, Van der Mei and co-

authors [14, 21, 22, 23, 24, 25] explore the recursive relations of the Descendant Set Approach
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(DSA) [9] to derive closed-form expressions for the asymptotic delay distribution in HT for polling

systems with an MTBP-structure in a general parameter setting, both for cyclic and periodic

server routing. Kudoh et al. [11] use the classical buffer-occupancy technique, which is based on

an expression for the probability generating function of the joint queue-length distribution at suc-

cessive polling instants, to derive explicit expressions for the second moment of the delay in fully

symmetric systems with gated or exhaustive service at each queue for models with two, three and

four queues. They also give conjectures about the HT limits of the first two moments of the delay

for systems with an arbitrary number of queues. Kroese [10] uses the theory of age-dependent

branching processes to study the HT behavior of continuous polling systems and shows that the

steady-state number of waiting customers has approximately a gamma-distribution. Recently,

Van der Mei and Winands [26] have proposed a different technique based on the so-called Mean

Value Analysis (MVA) introduced in [29] to derive asymptotic expressions for the expected delay

in the classical model with gated and exhaustive service at each of the queues. A fundamentally

different approach to obtain HT limits is taken by Coffman et al. [6, 7], who use a HT averaging

principle to study a two-queue model with exhaustive service at both queues and show that, under

HT assumptions and scalings, the total amount of unfinished work converges to a known process.

These observations lead to explicit expressions for the moments of the delay at both queues. They

also conjecture that the analysis can be extended to systems with more than two queues. Olsen

and Van der Mei [15] adopt the approach in [6, 7] to formulate conjectures about the asymptotic

waiting-time distribution in polling models with exhaustive and gated services, and with renewal

arrivals; numerical results support the validity of the results.

A remarkable observation is that HT limits for models with more than two queues have only

been rigorously proven for models driven by Poisson - or compound-Poisson [25] - processes, mod-

els that do satisfy the MTBP-structure (see references above), whereas HT limits for models with

renewal arrivals, which generally violate the MTBP structure, have only been obtained on the ba-

sis of conjectures [6, 7, 15]. For this reason, in this paper we consider perhaps one of the simplest

polling models that does violate the MTBP structure, and propose a new method to derive rigor-

ous proofs for HT asymptotics. More specifically, we consider a gated polling model with a general

number of queues, general service-time distributions, zero switch-over times (see also Remark 3.2)

under the assumption of general renewal arrivals. For this model, we use a result by Bertsimas

and Mourtzinou [1], who derive a set of linear equations for the variance of the cycle times for
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gated polling models with renewal arrivals in HT. Taking the proper HT limits of this set, in com-

bination with the conservation law for the GI/G/1 queue in HT, we derive explicit closed-form

expressions for the expected delay in HT for the model under consideration. As a by-product,

the results reveal several interesting insensitivity properties, and suggest simple approximations

for the expected delay in stable polling systems with renewal arrivals. Numerical results with

simulations show that the approximations are highly accurate when the load is roughly 90% or

more.

The contribution of the present paper is three-fold. First, the main contribution is that we present

a new approach to derive rigorous proofs for HT asymptotics for a class of polling models with

non-Poisson-type arrivals on hence violate the MTBP-structure, which is an important method-

ological contribution that opens up a range of challenges for further generalizations. Second, the

results provide new insight in the impact of the burstiness of the arrival process on the delay

incurred at each of the queues. Third, we use these results to propose simple closed-form approx-

imations for the mean delay in stable systems, and show that these approximations, which allow

for back-of-the-envelope calculations, are highly accurate when the load is 90% or more. These

observations make the contribution of the present paper evident, both from a methodological and

application point-of-view.

The remainder of this paper is organized as follows. In Section 2 the model is described and

an expression is given for the scaled expected delay in HT, which is the main result of this paper.

In Section 3 a rigorous proof of the result is given, and several asymptotic insensitity properties of

the expected delay with respect to the system parameters are formulated. The results also suggest

simple and fast approximations for the mean delay for stable systems. In Section 4 the accuracy

of the approximations are discussed. Finally, in Section 5 we address a number of challenges for

further research.

2 Model description and notation

Consider a system consisting of N ≥ 2 stations Q1, . . . , QN , each with an infinite-sized buffer. A

single server visits the queues in cyclic order, where he applies the gated service policy, i.e., when

the server polls a queue, he serves all, and only, customers found at the polling instant. Type-i

customers arrive at Qi according to a renewal arrival process, defined by the distribution of the
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interarrival times Ai; the arrival rate at Qi is denote by λi := 1/E[Ai]. The total arrival rate is

denoted by Λ =
∑N

i=1 λi. The service time of a type-i customer is a random variable Bi, with

finite k-th moment b
(k)
i , k = 1, 2. The k-th moment of the service time of an arbitrary customer

is denoted by b(k) =
∑N

i=1 λib
(k)
i /Λ, k = 1, 2. The load offered to Qi is ρi = λib

(1)
i , and the total

offered load is equal to ρ =
∑N

i=1 ρi. The switch-over times are assumed to be negligible. All

interarrival times and service times are assumed to be mutually independent and independent of

the state of the system. A necessary and sufficient condition for the stability of the system is

ρ < 1 (cf. [8]). Throughout, for each variable x that is a function of ρ, we denote its values

evaluated at ρ = 1 by x̂. Furthermore, we use the notation that h(x) ∽ g(x) as x ↑ a means

that limρ↑a h(x)/g(x) = 1. Finally, for compactness of presentation, all references to queue indices

greater than N or less than 1 are implicitly assumed to be modulo N , e.g., queue N + 1 actually

refers to queue 1.

Let Wi be the delay incurred by an arbitrary customer at Qi, defined as the time between the

arrival of a customer at a station and the moment at which he starts to receive service. Our main

interest is in the behavior of the mean delay E[Wi] in HT, i.e., as ρ tends to 1. It goes without

saying that, in HT, all queues become unstable and, thus, E[Wi] tends to infinity for all i. To be

precise, E[Wi] has a first-order pole at ρ = 1, for i = 1, 2, . . . , N ,

E[Wi] =
E[W ∗

i ]

1 − ρ
+ o((1 − ρ)−1), ρ ↑ 1, (1)

where g(x) = o(f(x)) means that g(x)/f(x) → 0 as x ↑ 1. More colloquially, we can say that

E[W ∗
i ], which is referred to as the mean asymptotic scaled delay at queue i, indicates the rate at

which E[Wi] tends to infinity as ρ ↑ 1. For the validity of the statement that E[Wi] has a first-order

pole at ρ = 1, we refer to Remark 3.3.

The main result of the paper is the following.

Theorem 1 (Main result)

For i = 1, 2, . . . , N ,

E[W ∗
i ] = lim

ρ↑1
(1 − ρ)E [Wi] =

(1 + ρ̂i)σ
2

2
∑N

j=1 ρ̂j(1 + ρ̂j)
, (2)
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with

σ2 :=
N

∑

i=1

λ̂i

(

V ar[Bi] + ρ̂2
i V ar[Âi]

)

. (3)

Here, the limit is taken such that the arrival rates are increased, while keeping both the ratios

between the arrival rates and the service-time distributions fixed. Notice that in the case of Poisson

arrivals we have σ2 = b(2)/b(1).

3 Analysis

This section, which provides a rigorous proof of the main result of the paper (Theorem 1), consists

of three parts. In Subsection 3.1, we present a HT analysis for systems with Poisson arrivals.

Although the primary goal of this subsection is to lay the foundation of Subsection 3.2 - where

we analyse HT asymptotics for systems with renewal arrivals - it provides, as by-product, an

alternative derivation for the expected asymptotic delay in the case of Poisson arrivals. The last

subsection discusses some properties in terms of the dependence of the mean asymptotic scaled

delay with respect to the system parameters.

3.1 Poisson arrivals

Throughout the present subsection, the assumption is made that the arrivals follow Poisson pro-

cesses. We start our investigation in this case with defining an i-cycle Ci to be the time between

two successive polling instants at Qi. Using simple balance arguments the mean delay at Qi can

be expressed in terms of the first two moments of Ci as follows, for i = 1, 2, . . . , N ,

E[Wi] =
1 + ρi

2

(

V ar[Ci]

E[Ci]
+ E[Ci]

)

. (4)

Before we start the analysis, we have to spend some words on the behavior of the cycles in systems

without setup times. That is, in such systems each time the system becomes empty, the server will

execute, in the limit, an infinite number of cycles and, thus, the number of cycles with zero lengths

tends to zero. In order not to be diverted by such effects, we assume, for the time being, that the

system possesses at least one strictly positive (deterministic) setup time with mean r. Borst and

Boxma [3] proved the continuity of the delay distribution between models with and without setup
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times implying that we are allowed, at the end of the analysis, to take the limit r ↓ 0 in order to

find the mean delay in the zero setup time model under consideration.

It is well-known that the mean cycle lengths E[Ci] are independent of the queue involved and

are given by, for i = 1, 2, . . . , N ,

E[Ci] =
r

1 − ρ
. (5)

This identity can be proved by observing that the amount of work arriving during a cycle should

on average equal the amount of work departing during a cycle, i.e., for i = 1, 2, . . . , N ,

ρE[Ci] = E[Ci] − r. (6)

Unfortunately, the variance of the cycle lengths V ar[Ci] (i = 1, . . . , N) are, in general, analytically

intractable and do depend on the queue involved. Sarkar and Zangwill [17] present the following

set of N linear equations, from which the N unknowns V ar[Ci] can be computed numerically

under any traffic intensity ρ < 1, for i = 1, 2, . . . , N ,

(

1 + 2ρi − ρ3
i

2(1 + ρi)
−

i−1
∑

l=1

F
(i)
i,l −

N
∑

l=i+1

E
(i)
l,i

)

V ar[Ci]

−

(

1

2(1 + ρi)
+

i−1
∑

l=1

F
(i+1)
i,l +

N
∑

l=i+1

E
(i+1)
l,i

)

V ar[Ci+1] (7)

−
∑

k 6=i,i+1

(

i−1
∑

l=1

F
(k)
i,l +

N
∑

l=i+1

E
(k)
l,i

)

V ar[Ck] =
Hiρi

1 + ρi

+

i−1
∑

l=1

F
(0)
i,l +

N
∑

l=i+1

E
(0)
l,i ,

where the coefficients E
(k)
i,j and F

(k)
i,j are defined in Appendix A. In the above set, the constant Hi

is defined as, for i = 1, 2, . . . , N ,

Hi = λiE[Ci]b
(2)
i . (8)

For further reference, it is convenient to have an explicit expression for the row sums of the

corresponding coefficient matrix at our disposal as well, for i = 1, 2, . . . , N ,

2ρi − ρ3
i

2(1 + ρi)
−

N
∑

k=1

(

i−1
∑

l=1

F
(k)
i,l +

N
∑

l=i+1

E
(k)
l,i

)

= ρi(1 − ρ). (9)
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The complexity of the above set of equations prevents from solving it explicitly for general traffic

settings. In HT, however, we can find asymptotically exact closed-form expressions.

To start this HT analysis, we introduce V ar[C∗
i ], the variance of the asymptotic scaled i-cycle, as

follows, for i = 1, 2, . . . , N ,

V ar[C∗
i ] = lim

ρ↑1
(1 − ρ)2V ar[Ci]. (10)

The fact that E [Wi] has a first-order pole at ρ = 1 in conjunction with Equations (4) and (5) has

the immediate implication that V ar[C∗
i ] has a second-order pole at ρ = 1 and, thus, the above

limit is well-defined. In order to find the asymptotic quantities V ar[C∗
i ], we multiply both sides of

(7) by (1 − ρ) and let ρ tend to 1. Either by elementary, but tedious, row and column operations

or by quoting from Van der Mei and Winands [26] we, subsequently, observe that V ar[C∗
i ] is

independent of i (in contrast to V ar[Ci] which in general does depend on the queue involved).

Finally, it is easily seen that the righthand side of (7) vanishes in the limit.

Thereupon, the following scaled set in HT consisting of one single equation can be obtained,

for i = 1, 2, . . . , N ,

(

2ρ̂1 − ρ̂3
1

2(1 + ρ̂1)
−

N
∑

k=1

N
∑

l=2

E
(k)
l,1

)

V ar[C∗
i ] = 0. (11)

Calling upon (9) for i = 1 shows that (11) forms a homogenous set with an infinite number of

non-degenerate solutions, i.e., for i = 1, 2, . . . , N ,

V ar[C∗
i ] = c, (12)

with c ∈ R some unknown scaling factor. Using the fact that both E[C∗
i ] and V ar[C∗

i ] are

independent of i yields, with the help of (a scaled version of) Identity (4), for i, j = 1, 2, . . . , N ,

E[W ∗
i ]

E[W ∗
j ]

=
1 + ρ̂i

1 + ρ̂j

. (13)

In the limit of r ↓ 0, a unique solution of these mean asymptotic scaled delays can be obtained

by exploiting the continuity of the mean delay (see Borst and Boxma [3]) and by adding a single
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non-homogenous equation, i.e., a scaled version of the conservation law (see, e.g., [5]), i.e.,

N
∑

i=1

ρ̂iE[W ∗
i ] =

σ2

2
, (14)

which yields, for i = 1, 2, . . . , N ,

E[W ∗
i ] =

(1 + ρ̂i)σ
2

2
∑N

j=1 ρ̂j(1 + ρ̂j)
, (15)

which completes our analysis of the Poisson case by recalling that in this case σ2 is defined as

b(2)/b(1). We want to remark that this result is in agreement with results of Coffman et al. [6], Van

der Mei and Levy [21] and Van der Mei and Winands [26]. In the next subsection, the analysis is

extended to the case of renewal arrivals, but, first, we close this subsection with a remark.

Remark 3.1. Although numerics show that the set presented by Sarkar and Zangwill [17] always

possesses a unique solution for stable systems, i.e., ρ < 1, we did not come across an explicit

justification of this observation.

3.2 Renewal arrivals

The present subsection is devoted to the HT analysis of polling systems with general renewal ar-

rivals and, thus, arrivals are no longer assumed to be Poisson but instead follow a renewal process.

Analoge to the Poisson case, we again assume, for the time being, that the total (deterministic)

setup time r in a cycle is larger than zero.

Our analysis relies on results of Bertsimas and Mourtzinou [1], who state that the equations

describing the physics of the system with renewal arrivals in HT are (almost) identical to the ones

for the system with Poisson arrivals under any traffic intensity. More specifically, they show that

the mean delay E[Wi] in case of renewal arrivals in the limit of ρ tending to 1 is given by, for

i = 1, 2, . . . , N ,

E[Wi] ∽ (1 + ρ̂i)

(

V ar[Ci]

E[Ci]
+ E[Ci]

)

+
(c2

Ai
− 1)b

(1)
i

2
, (16)

where an i-cycle Ci is defined identically to the Poisson case and where c2
Ai

is the squared coef-

ficient of the interarrival time for queue i. Equation (16) has to be compared with its Poisson

counterpart (4), where the latter holds under any traffic intensity.
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First of all, one can observe that the mean cycle lengths E[Ci] once more satisfy the remark-

ably simple form as given by (5). Bertsimas and Mourtzinou [1] prove that, in case of HT, the

unknown variables V ar[Ci] again satisfy the set of equations formed by (7), i.e., as ρ ↑ 1 for

i = 1, 2, . . . , N ,

(

1 + 2ρ̂i − ρ̂3
i

2(1 + ρ̂i)
−

i−1
∑

l=1

F
(i)
i,l −

N
∑

l=i+1

E
(i)
l,i

)

V ar[Ci]

−

(

1

2(1 + ρ̂i)
+

i−1
∑

l=1

F
(i+1)
i,l +

N
∑

l=i+1

E
(i+1)
l,i

)

V ar[Ci+1] (17)

−
∑

k 6=i,i+1

(

i−1
∑

l=1

F
(k)
i,l +

N
∑

l=i+1

E
(k)
l,i

)

V ar[Ck] ∽

Hiρ̂i

1 + ρ̂i

+
i−1
∑

l=1

F
(0)
i,l +

N
∑

l=i+1

E
(0)
l,i ,

where the coefficients E
(k)
i,j and F

(k)
i,j are defined in Appendix A. The only minor difference,

compared to the Poisson case, is that the constant Hi is now defined as, for i = 1, 2, . . . , N ,

Hi = λ̂iE[Ci]
(

V ar[Bi] + ρ̂2
i V ar[Âi]

)

. (18)

It is important to stress that the above set is not applicable for stable systems, where, in case of

renewal arrivals, the construction of such a set is still an open problem.

As remarked before, the structure of the set (17) does not allow for a closed-form solution and,

in order to find the dominating terms of V ar[Ci] in HT, we scale this set again by (1 − ρ) and

let ρ tend to 1. Due to the fact that the (scaled) set for renewal arrivals is completely identical

to the corresponding set for Poisson arrivals (except for the slightly different definition of the

constant Hi), exactly the same conclusions as in the preceding subsection can be drawn. That is,

in the limit of ρ ↑ 1, the unknowns V ar[C∗
i ] are independent of the queue involved which renders

a homogeneous set consisting of one single equation with an infinite number of non-degenerate

solutions, i.e., 0 × V ar[C∗
i ] = 0, which implies that, for i = 1, 2, . . . , N ,

V ar[C∗
i ] = c, (19)

with c ∈ R some unknown scaling factor. Proceeding along the lines of the analysis in the Poisson

case, we obtain by using the scaled counterpart of Identity (16), in conjunction with the fact that
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both E[C∗
i ] and V ar[C∗

i ] do not depend on i, for i, j = 1, 2, . . . , N ,

E[W ∗
i ]

E[W ∗
j ]

=
1 + ρ̂i

1 + ρ̂j

. (20)

These mean asymptotic scaled delays can be scaled properly, in the limit of r ↓ 0, using a scaled

version of the conservation law in HT (see, e.g., [1]),

N
∑

i=1

ρ̂iE[W ∗
i ] =

σ2

2
, (21)

which yields, for i = 1, 2, . . . , N ,

E[W ∗
i ] =

(1 + ρ̂i)σ
2

2
∑N

j=1 ρ̂j(1 + ρ̂j)
, (22)

and, thus, the proof of the main result of the paper is completed after noting that σ2 is defined in

Equation (3). The approach elucidated in the present section is the first one allowing for a rigorous

proof of HT asymptotics in polling systems with a general number of queues. In this context, it is

important to remark that our results are in agreement with the conjectures of [6, 7, 15]. We close

this subsection with some remarks.

Remark 3.2. In the model defined in Section 2 it is assumed that the setup times are zero.

This assumption is realistic for many application areas (e.g., computer-communication systems),

but may be unrealistic for other applications (e.g., manufacturing, maintenance). The reason for

assuming the switch-over times to be zero is mainly technical: the set of linear equations in [1]

for the variance of the scaled cycle times determines the unknowns V ar[C∗
i ] (i = 1, 2, . . . , N) up

to a scaling constant; for the case of zero switch-over times this scaling constant follows directly

from the work-conservation law, while for the case of non-zero switch-over times such a normalizing

relation is only available for Poisson arrivals - the so-called pseudo-conservation law which is based

on the principle of work decomposition [4] - but not for renewal arrivals.

Remark 3.3. In Section 2, we have assumed that the mean delay incurred at each of the queues,

considered as function of ρ, has a first order pole at ρ = 1, although (to the best of the authors

knowledge) a rigorous proof of this assumption in case of renewal arrivals has not been published

in the open literature. However, the results presented here actually prove the validity of this

assumption. In fact, the normalizing relation (21) dictates that
∑N

i=1 ρiE[Wi] has a first-order

11



pole at ρ = 1. Moreover, Equations (19) and (5) together imply that, for i, j = 1, 2, . . . , N ,

lim
ρ↑1

E[Wi]

E[Wj ]
=

1 + ρ̂i

1 + ρ̂j

, (23)

which in turn implies that E[Wi], i = 1, 2, . . . , N , indeed has a first-order pole at ρ = 1.

Remark 3.4. The present paper focuses on the mean delay as performance measure of interest

both for compactness of presentation as well as for the fact that these delay figures are in many

applications the most important performance measures. The scope of applicability of our approach,

goes, however, beyond this measure. For example, by exploiting the fact that the scaled variance of

the cycle lengths are independent of the queue involved in combination with the (scaled) Equations

(55) and (58) in [1] readily leads to the observation that the correlations between successive visit

times in gated systems with renewal arrivals converge to one as the load tends to one. It is

important to stress that the analysis in this paper proves this observation in systems with and

without setup times. For a discussion of the importance of these correlation terms as performance

metrics, we refer to [26]. An intuitive explanation for this result can be found in Coffman et al.

[6, 7], who prove a HT averaging principle for a two-queue polling system with exhaustive service

at both queues, from which they conjecture that the same result applies for systems with more

than two queues. This averaging principle says that, in HT, the total workload in the system

converges to a known process, while on the time scale of this process, the individual workloads

change at an infinite rate. This means that the work is shifting between the queues in a rather

deterministic way for a period of time, in which the total workload stays relatively constant. This

deterministic behavior in the shifting of the workload manifests itself in the perfect correlations

between the successive visit times. As such, the results rigorously proven in this paper support

the validity of the partially-conjectured results in [6, 7].

3.3 Implications

Theorem 1 reveals the following properties about the dependence of the mean asymptotic scaled

delay with respect to the system parameters.

Corollary 1 (Insensitivity)

For i = 1, 2, . . . , N , the mean asymptotic scaled delay E[W ∗
i ],
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(1) depends on the interarrival-time distributions only through σ2, defined in Equation (3);

(2) is independent of the visit order;

(3) depends on the second moments of the service-time distributions only through b(2), i.e., the

second moment of the service time of an arbitrary customer.

Corollary 1 is known to be not generally valid for stable systems, i.e., for ρ < 1, where the

individual interarrival-time distributions, the visit order and the individual second moments of

the service-time distributions do have an impact on the mean waiting times. Hence, Corollary 1

shows that the influence of these parameters on the mean delays vanishes when the load tends to

unity, and as such can be viewed as lower-order effects in HT.

4 Approximation

Theorem 1 suggests the following approximation for E[Wi] in stable polling systems, for i =

1, 2, . . . , N , ρ < 1,

E[W
(app)
i ] :=

1

1 − ρ

{

1 + ρ̂i

2
∑N

j=1 ρ̂j(1 + ρ̂j)

(

N
∑

i=1

λ̂i

(

V ar[Bi] + ρ̂2
i V ar[Âi]

)

)}

. (24)

To assess the accuracy of the approximation in (24), in terms of “How high should the load be

for the approximation to be accurate?”, we have performed numerical experiments to test the

accuracy of the approximations for different values of the load of the system. The relative error

of the approximation of E[Wi] is defined as follows, for i = 1, 2, . . . , N ,

∆% := abs

(

E[W
(app)
i ] − E[Wi]

E[Wi]

)

× 100%. (25)

Of course, a wide variety of cases could be examined: different number of queues, choice of

interarrival-time distributions and their parameters, choice of service-time distributions and their

parameters, etcetera. Since our goal is, however, only to give a flavor of the behavior of the

approximation, we confine ourselves to two of the most basic systems. First, we consider a sym-

metric gated polling model with exponential service times with mean 1. Interarrival times are

taken to be deterministic, Erlang2 or exponential. The latter case, which is included as a bench-

mark, actually allows for an exact closed-form representation of the mean delay, since - due to the

work-conserving nature of the gated service policy - this expected delay figure is identical to the

13



corresponding quantity in the M/G/1 queue (see, e.g., [5]), for i = 1, 2, . . . , N , ρ < 1,

E[Wi] =
ρb(2)/b(1)

2(1 − ρ)
. (26)

Subsequently, observing that E[W
(app)
i ], in this case, reduces as follows, for i = 1, 2, . . . , N , ρ < 1,

E[W
(app)
i ] =

b(2)/b(1)

2(1 − ρ)
, (27)

yields an explicit expression of the relative error as a function of the total load,

∆% :=

(

1

ρ
− 1

)

× 100%. (28)

For the other two arrival processes, we obtain the exact values via simulations based on the sim-

ulation code described in [28]. Each simulation run is sufficiently long such that the widths of

the 95% confidence intervals are smaller than 1% of the predicted value. Table 1 shows the exact

and approximated (obtained via (24)) values of E[Wi] for different values of the load (note that

these mean delays are independent of i due to symmetry). The results in Table 1 demonstrate

that the relative error of the approximations indeed tends to zero as the load tends to 1, as ex-

pected on the basis of Theorem 1. Moreover, the results show that the approximation converges

to the limit rather quickly when ρ ↑ 1. Roughly, the results are accurate when the load is 90%

or more, which demonstrates the applicability of the asymptotic results for practical HT scenarios.

In the second case, we want to study the effect of asymmetry in the system. Therefore, we

consider an asymmetric two-queue polling system with Poisson arrivals, where the ratios between

the arrival rates are 3 : 1 and where the service times follow exponential distributions with mean

equal to 1 for both queues. In Table 2 the results of this case are summarized, from which we can

again conclude that the approximation is accurate when the total load is 90% or more.

It goes without saying that other (larger) instances can be evaluated just as easily, but we have

omitted them for reasons of presentation. Furthermore, it is not inconceivable that the approx-

imations can be refined, but since the primary goal of this paper has been the rigorous proof of

HT limits such refinements are beyond the scope of the paper.
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Deterministic Erlang2 Exponential

ρ E[W
(app)
i ] E[Wi] ∆% E[W

(app)
i ] E[Wi] ∆% E[W

(app)
i ] E[Wi] ∆%

0.80 2.50 2.02 23.8 3.75 2.91 28.9 5.00 4.00 25.0
0.85 3.33 2.84 17.3 5.00 4.13 21.1 6.67 5.67 17.6
0.90 5.00 4.49 11.4 7.50 6.65 12.8 10.00 9.00 11.1
0.95 10.00 9.43 6.0 15.00 14.15 6.0 20.00 19.00 5.3
0.98 25.00 24.41 2.4 37.50 36.72 2.1 50.00 49.00 2.0

Table 1. Exact and approximated values for E[Wi] for different values of the load. (Case 1).

Queue 1 Queue 2

ρ E[W
(app)
i ] E[Wi] ∆% E[W

(app)
i ] E[Wi] ∆%

0.80 5.38 4.25 26.6 3.85 3.25 18.5
0.85 7.18 6.04 18.9 5.13 4.55 12.7
0.90 10.77 9.63 11.8 7.69 7.13 7.9
0.95 21.54 20.39 5.6 15.38 14.84 3.6
0.98 53.85 52.70 2.2 38.46 37.93 1.4

Table 2. Exact and approximated values for E[Wi] for different values of the load (Case 2).

5 Topics for Further Research

In this paper we have proposed a new method to rigorously prove HT limits for the expected delay

in a polling model with gated service at each queue and with general renewal arrivals. The results

presented may be generalized in several directions. First, it is interesting to see to what extent

the results can be generalized to include non-zero switch-over times. In this context, note that

in that case the work-conserving property used is violated, and that the pseudo-conservation law

(PCL) that is known to hold for the case of Poisson arrivals [4] is no longer generally valid (see also

Remark 3.2). Therefore, extension of the results in [4] to renewal arrivals, under HT assumptions,

addresses a challenging area for further research. Second, the approach may be used to handle

other types of service policies. We expect that the method can easily be extended to exhaustive

service policies at all queues, although the branching property in [16] no longer holds for renewal

arrivals. Finally, the proposed method might be extended to derive HT results for the complete

waiting-time distributions, rather than for the means only. To this end, decomposition results

similar to those on [1] may form an excellent basis to actually prove the conjectures formulated in

[6, 7, 15], opening up a very challenging area for further research.
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A Appendix

The coefficients E
(k)
i,j and F

(k)
i,j in (7) and (17) are recursively defined as, for k = 0, 1, . . . , N ,

E
(0)
i,j = (ai − ρiej)E

(0)
i−1,j − aifjE

(0)
i−1,j+1 + fjE

(0)
i,j+1 +

Hi−1ρi

ai−1ρi−1
, for i − j = 2, (29)

E
(k)
i,j = (ai − ρiej)E

(k)
i−1,j − aifjE

(k)
i−1,j+1 + fjE

(k)
i,j+1, for i − j = 2, (30)

E
(k)
i,j = (ai − ρiej)E

(k)
i−1,j − aifjE

(k)
i−1,j+1 + fjE

(k)
i,j+1, for i − j ≥ 3, (31)

F
(k)
i,j = (ai − ρiej)F

(k)
i−1,j − aifjF

(k)
i−1,j+1 + fjF

(k)
i,j+1, for i − j ≥ 2, (32)

(33)

with initial conditions, for j = 1, 2, . . . , N ,

E
(0)
j,j = Hj , (34)

E
(k)
j,j =











ρ2
j , k = j,

0, else,
(35)

and, for j = 1, 2, . . . , N − 1,

E
(0)
j+1,j =

Hjρj+1

1 + ρj

, (36)

E
(k)
j+1,j =























ρj(1+2ρj)ρj+1

2(1+ρj)
, k = j + 1,

+
ρjρj+1

2(1+ρj)
, k = j,

0, else.

(37)

For j = 1, 2, . . . , N ,

F
(0)
j,j =

Hjρj

1 + ρj

, (38)

F
(k)
j,j =























ρj(1+2ρj+2ρ3
j )

2(1+ρj)
, k = j,

−
ρj

2(1+ρj)
, k = j + 1,

0, else.

(39)
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and, for j = 1, 2, . . . , N − 1,

F
(0)
j+1,j =

ejρj+1

1 + ρj

Hj +
fjρj+1

1 + ρj+1
Hj+1, (40)

F
(k)
j+1,j =



































ejρj(1+2ρj)ρj+1

2(1+ρj)
, k = j,

+
ejρjρj+1

2(1+ρj)
+

fjρj+1(1+2ρj+1+2ρ3
j+1)

2(1+ρj+1)
, k = j + 1,

−
fjρj+1

2(1+ρj+1)
, k = j + 2,

0, else.

(41)

Finally, the constants ai, ei and fi are defined as, respectively, for i = 1, 2, . . . , N ,

ai =
ρi(1 + ρi−1)

ρi−1
, ei =

ρi

1 + ρi

and fi =
1

ai+1
. (42)
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