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Abstract. We consider an asymmetric cyclic polling system with gen-
eral service-time and switch-over time distributions with so-called two-
stage gated service at each queue, an interleaving scheme that aims to
enforce fairness among the different customer classes. For this model, we
(1) obtain a pseudo-conservation law, (2) describe how the mean delay
at each of the queues can be obtained recursively via the so-called De-
scendant Set Approach, and (3) present a closed-form expression for the
expected delay at each of the queues when the load tends to unity (under
proper heavy-traffic scalings), which is the main result of this paper. The
results are strikingly simple and provide new insights into the behavior
of two-stage polling systems, including several insensitivity properties
of the asymptotic expected delay with respect to the system parame-
ters. Moreover, the results provide insight in the delay-performance of
two-stage gated polling compared to the classical one-stage gated service
policies. The results show that the two-stage gated service policy indeed
leads to better fairness compared to one-stage gated service, at the ex-
pense of a decrease in efficiency. Finally, the results also suggest simple
and fast approximations for the expected delay in stable polling systems.
Numerical experiments demonstrate that the approximations are highly
accurate for moderately and heavily loaded systems.

1 Introduction

This paper is motivated by dynamic bandwidth allocation schemes in an Ether-
net Passive Optical Network (EPON), where packets from different Optical Net-
work Units (ONUs) share channel capacity in the upstream direction. An EPON
is a point-to-multipoint network in the downstream direction and a multi-point
to point network in the upstream direction. The Optical Line Terminal (OLT)
resides in the local office, connecting the access network to the Internet. The OLT
allocates the bandwidth to the Optical Network Units (ONUs) located at the
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customer premises, providing interfaces between the OLT and end-user network
to send voice, video and data traffic. In an EPON the process of transmitting
data downstream from the OLT to the ONUs is broadcast in variable-length
packets according to the 802.3 protocol [6]. However, in the upstream direc-
tion the ONUs share capacity, and various polling-based bandwidth allocation
schemes can be implemented. Simple time-division multiplexing access (TDMA)
schemes based on fixed time-slot assignment suffer from the lack of statistical
multiplexing, making inefficient use of the available bandwidth, which raises the
need for dynamic bandwidth allocation (DBA) schemes. A dynamic scheme that
reduces the time-slot size when there is no data to transmit would allow excess
bandwidth to be used by other ONUs. However, the main obstacle of implement-
ing such a scheme is the fact the OLT does not know in advance how much data
each ONU has to transmit. To overcome this problem, Kramer et al. [7,8] pro-
pose an OLT-based interleaved polling scheme similar to hub-polling to support
dynamic bandwidth allocation. To avoid monopolization of bandwidth usage of
ONUs with high data volumes they propose an interleaved DBA scheme with a
maximum transmission window size limit.

Motivated by this, in this paper we analyze the effectiveness of this inter-
leaved DBA scheme in a queueing-theoretical context. To this end, we quantify
fairness and efficiency measures related to the expected delay figures at each of
the queues, providing new fundamental insight in the trade-off between fairness
and efficiency by implementing one-stage and two-stage gated service policies.
The two-stage gated service policy was introduced in Park et al. [10] where the
authors study a symmetric version of the model described in this paper.

A polling system is a multi-queue single-server system in which the server vis-
its the queues in cyclic order to process requests pending at the queues. Polling
models occur naturally in the modeling of systems in which service capacity
(e.g., CPU, bandwidth) is shared by different types of users, each type having
specific traffic characteristics and performance requirements. Polling models find
many applications in the areas of computer-communication networks, produc-
tion, manufacturing and maintenance [9]. Since the late 1960s polling models
have received much attention in the literature [12,13]. There are several good
reasons for considering heavy-traffic asymptotics, which have recently started to
gain momentum in the literature, initiated by the pioneering work of Coffman
et al. [2,3] in the mid 90s. Exact analysis of the delay in polling models is only
possible in some cases, and even in those cases numerical techniques are usually
required to obtain the expected delay at each of the queues. However, the use of
numerical techniques for the analysis of polling models has several drawbacks.
First, numerical techniques do not reveal explicitly how the system performance
depends on the system parameters and can therefore contribute to the under-
standing of the system behavior only to a limited extent. Exact closed-form
expressions provide much more insight into the dependence of the performance
measures on the system parameters. Second, the efficiency of each of the nu-
merical algorithms degrades significantly for heavily loaded, highly asymmetric
systems with a large number of queues, while the proper operation of the system
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is particularly critical when the system is heavily loaded. These observations
raise the importance of an exact asymptotic analysis of the delay in polling
models in heavy traffic.

We consider an asymmetric cyclic polling model with generally distributed
service times and switch-over times. Each queue receives so-called two-stage
gated service, which works as follows: Newly incoming customers are first queued
at the stage-1 buffer. When the server arrives at a queue, it closes a gate behind
the customers residing in the stage-1 buffer, then serves all customers waiting
in the stage-2 buffer on a FCFS basis, and moves all customers before the gate
at the stage-1 buffer to the stage-2 buffer before moving to the next queue. We
focus on the expected delay incurred at each of the queues. First, we derive a
so-called pseudo-conservation law for the model under consideration, giving a
closed-form expression for a specific weighted sum of the mean waiting times.
Then, we describe how the individual expected delays at each of the queues can
be calculated recursively by means of the so-called Descendant Set Approach
(DSA), proposed for the case of standard one-stage gated and exhaustive service
in [5]. The two-stage gated model introduces several interesting complications
that do not occur for the standard gated/exhaustive case. Denoting by X

(k)
i

the number of customers at Qi in stage k at an arbitrary polling instant at
Qi (k = 1, 2), the mean delay at Qi does not only depend on the first two
marginal moments of X

(2)
i , but also depends on the cross-moments E

[
X

(1)
i X

(2)
i

]

(see (7)). To this end, we need to consider the numbers of customers at a queue
in both stage 1 and stage 2 at polling instants at that queue, which leads to a
two-dimensional analysis.

The main result of this paper is the presentation of a closed-form expres-
sion for (1 − ρ)E[Wi], referred to as the scaled expected delay at Qi, when the
load tends to 1. The expression is strikingly simple and shows explicitly how
the expected delay depends on the system parameters, thereby explicitly quan-
tifying the trade-off between the increase in fairness and decrease of efficiency
introduced by implementing two-stage gated service policies. In particular, the
results provide new fundamental insight with respect to mean waiting times for
one-stage versus two-stage gated service policies. Furthermore, the results reveal
a variety of asymptotic insensitivity properties, which provide new insights into
the behavior of polling system under heavy load. The validity of these proper-
ties is illustrated by numerical examples. In addition, the expressions obtained
suggest simple and fast approximations for the mean delay at each of the queues
in stable polling systems. The accuracy of the approximations is evaluated by
numerical experiments. The results show that the approximations are highly
accurate when the system load is significant.

The remainder of this paper is organized as follows. In section 2 the model
is described. In section 3 we present the pseudo-conservation law for the model
under consideration. In section 4 we describe how the expected delay figures
can be obtained by the use of the DSA. In section 5 we present closed-form
expressions for the scaled expected delay at each of the queues, and discuss
several asymptotic properties. Finally, in section 6 we propose and test simple
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approximations for the moments of the waiting times in heavy traffic, and address
the practicality of the asymptotic results.

2 Model Description

Consider a system consisting of N ≥ 2 stations Q1, . . . , QN , each consisting
of a stage-1 buffer and a stage-2 buffer. A single server visits and serves the
queues in cyclic order. Type-i customers arrive at Qi according to a Poisson
arrival process with rate λi, and enter the stage-1 buffer. The total arrival rate
is denoted by Λ =

∑N
i=1 λi. The service time of a type-i customer is a random

variable Bi, with Laplace-Stieltjes Transform (LST) B∗
i (·) and with finite k-th

moment b
(k)
i , k = 1, 2. The k-th moment of the service time of an arbitrary

customer is denoted by b(k) =
∑N

i=1 λib
(k)
i /Λ, k = 1, 2. The load offered to Qi

is ρi = λib
(1)
i , and the total offered load is equal to ρ =

∑N
i=1 ρi. Define a

polling instant at Qi as a time epoch at which the server visits Qi. Each queue
is served according to the two-stage gated service policy, which works as follows.
When the server arrives at a queue, it closes the gate behind the customers
residing in the stage-1 buffer. Then, all customers waiting in the stage-2 buffer are
served on a First-Come-First-Served (FCFS) basis. Subsequently, all customers
before the gate at the stage-1 buffer are instantaneously forwarded to the stage-
2 buffer, and the server proceeds to the next queue. Upon departure from Qi

the server immediately proceeds to Qi+1, incurring a switch-over time Ri, with
LST R∗

i (·) and finite k-th moment r
(k)
i , k = 1, 2. Denote by r :=

∑N
i=1 r

(1)
i > 0

the expected total switch-over time per cycle of the server along the queues.
All interarrival times, service times and switch-over times are assumed to be
mutually independent and independent of the state of the system. Necessary
and sufficient condition for the stability of the system is ρ < 1 (cf. [4]).

Let Wi be the delay incurred by an arbitrary customer at Qi, defined as the
time between the arrival of a customer at a station and the moment at which it
starts to receive service. Our main interest is in the behavior of E[Wi]. It will
be shown that, for i = 1, . . . , N ,

E [Wi] =
ωi

1 − ρ
+ o((1 − ρ)−1), ρ ↑ 1. (1)

where the limit is taken such that the arrival rates are increased, while keeping
both the ratios between the arrival rates and the service-time distributions fixed.
The main result of the paper is a closed-form expression for ωi, in a general param-
eter setting (see section 5). Throughout, the following notation is used. For each
variable x that is a function of ρ, we denote its values evaluated at ρ = 1 by x̂.

3 Pseudo-conservation Law

In this section we present a pseudo-conservation law (PCL) for the model de-
scribed above. On the basis of the principle of work decomposition, Boxma and
Groenendijk [1] show the following result: For ρ < 1,
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N∑
i=1

ρiE[Wi] = ρ
ρ

1 − ρ

b(2)

2b(1) + ρ
r(2)

2r
+

r

2(1 − ρ)

[
ρ2 −

N∑
i=1

ρ2
i

]
+

N∑
i=1

E [Mi] , (2)

where Mi stands for the amount of work at Qi at an arbitrary moment at which
the server departs from Qi. Then

Mi = M
(1)
i + M

(2)
i , (3)

where M
(k)
i is the amount of work at stage k at a server departure epoch from

Qi, k = 1, 2. Simple balancing arguments lead to the following expression for
E [Mi]: For i = 1, . . . , N ,

E [Mi] = E
[
M

(1)
i

]
+ E

[
M

(2)
i

]
= ρ2

i

r

1 − ρ
+ ρi

r

1 − ρ
. (4)

4 The Descendant Set Approach

For i=1, define the two-dimensional random variable Xi :=
(
X

(1)
i , X

(2)
i

)
, where

X
(k)
i is the number of stage-k customers at Qi at an arbitrary polling instant at

Qi when the system is in steady state (k = 1, 2), and denote the corresponding
Probability Generating Function (PGF) by

X∗
i (z1, z2) := E

[
z

X
(1)
i

1 z
X

(2)
i

2

]
. (5)

Denoting the Laplace-Stieltjes Transform (LST) of the waiting-time distribution
at Qi by W ∗

i (·), the waiting-time distribution at Qi is related to the distribution
of Xi through the following expressions (cf. [10]): For Re s ≥ 0, i = 1, . . . , N ,
ρ < 1,

W ∗
i (s) =

X∗
i (1 − s/λi, B

∗
i (s)) − X∗

i (1 − s/λi, 1 − s/λi)

E
[
X

(2)
i

]
(B∗

i (s) − 1 + s/λi)
. (6)

Then it is easy to verify that E[Wi] can be expressed in terms of the first two
(cross-)moments of X i as follows: for i = 1, . . . , N , ρ < 1,

E[Wi] =
1

λiE
[
X

(2)
i

]
(

1 + ρi

2
E

[
X

(2)
i (X(2)

i − 1)
]

+ E
[
X

(1)
i X

(2)
i

])
. (7)

Note that the first part of (7) is similar to the formula for the mean delay
in the model with one-stage gated service policy. For this model we have (see
Takagi [11])

E[W (one−stage)
i ] = (1 + ρi)

E [Xi(Xi − 1)]
2λiE [Xi]

, (8)

with Xi the steady-state number of customers at Qi at an arbitrary polling
instant at Qi.
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To derive E[Wi], it is sufficient to obtain the first two factorial moments of
X

(2)
i , and the cross-moments E

[
X

(1)
i X

(2)
i

]
. To this end, note first that straight-

forward balancing arguments indicate that the first moments E[X(k)
i ] (k = 1, 2)

can be expressed in following closed form:

E[X(1)
i ] = E[X(2)

i ] =
λir

1 − ρ
. (9)

However, in general the second-order moments can not be obtained explicitly. In
the literature, there are several (numerical) techniques to obtain the moments
of the delay. In this section we focus on the Descendant Set Approach (DSA),
an iterative technique based on the concept of so-called descendant sets [5]. The
use of the DSA for the present model is discussed below.

The customers in a polling system can be classified as originators and non-
originators. An originator is a customer that arrives at the system during a
switch-over period. A non-originator is a customer that arrives at the system
during the service of another customer. For a customer C, define the children
set to be the set of customers arriving during the service of C; the descen-
dant set of C is recursively defined to consist of C, its children and the descen-
dants of its children. The DSA is focused on the determination of the moments
of the delay at a fixed queue, say Q1. To this end, the DSA concentrates on
the determination of the distribution of the two-dimensional stochastic vector
X1(P

∗) :=
(
X

(1)
1 (P ∗), X(2)

1 (P ∗)
)
, where X

(k)
1 (P ∗) is defined as the number of

stage-k customers at Q1 present at an arbitrary fixed polling instant P ∗ at Q1
(k = 1, 2). P ∗ is referred to as the reference point at Q1. The main ideas are the
observations that (1) each of the customers present at Q1 at the reference point
P ∗ (either at stage-1 or stage-2) belongs to the descendant set of exactly one
originator, and (2) the evolutions of the descendant sets of different originators
are stochastically independent. Therefore, the DSA concentrates on an arbitrary
tagged customer which arrived at Qi in the past and on calculating the number
of type-1 descendants it has at both stages at P ∗. Summing up these numbers
over all past originators yields X1(P

∗), and hence X1, because P ∗ is chosen
arbitrarily.

The DSA considers the Markov process embedded at the polling instants of
the system. To this end, we number the successive polling instants as follows.
Let PN,0 be the last polling instant at QN prior to P ∗, and for i = N − 1, . . . , 1,
let Pi,0 be recursively defined as the last polling instant at Qi prior to Pi+1,0. In
addition, for c = 1, 2, . . ., we define Pi,c to be the last polling instant at Qi prior
to Pi,c−1, i = 1, . . . , N . The DSA is oriented towards the determination of the
contribution to X1(P

∗) of an arbitrary customer present at Qi at Pi,c. To this
end, define an (i, c)-customer to be a customer present at Qi at Pi,c. Moreover,

for a tagged (i, c)-customer Ti,c at stage 1, we define Ai,c :=
(
A

(1)
i,c , A

(2)
i,c

)
, where

A
(k)
i,c is the number of type-1 descendants it has at stage k at P ∗, k = 1, 2. In this

way, the two-dimensional random variable Ai,c can be viewed as the contribution
of Ti,c to X1(P

∗). Denote the joint PGF of Ai,c by
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A∗
i,c(z1, z2) := E

[
z

A
(1)
i,c

1 z
A

(2)
i,c

2

]
. (10)

To express the distribution of X1 in terms of the distributions of the DS variables
Ai,c, denote by Ri,c the switch-over period from Qi to Qi+1 immediately after the

service period at Qi starting at Pi,c. Moreover, denote Si,c :=
(
S

(1)
i,c , S

(2)
i,c

)
, where

S
(k)
i,c is the total contribution to X

(k)
1 of all customers that arrive at the system

during Ri,c (note that, by definition, these customers are original customers),
and denote the joint PGF of Si,c by

S∗
i,c(z1, z2) := E

[
z

S
(1)
i,c

1 z
S

(2)
i,c

2

]
. (11)

In this way, Si,c =
(
S

(1)
i,c , S

(2)
i,c

)
can be seen as the joint contribution of Ri,c to

X1. It is readily verified that we can write

X1 =
(
X

(1)
1 , X

(2)
1

)
=

N∑
i=1

∞∑
c=0

(
S

(1)
i,c , S

(2)
i,c

)
=

N∑
i=1

∞∑
c=0

Si,c. (12)

Note that S
(1)
i,c and S

(2)
i′,c′ are dependent if (i, c) = (i′, c′) but independent other-

wise. Hence we can write, for |z1|, |z2| ≤ 1,

X∗
1 (z1, z2) =

N∏
i=1

∞∏
c=0

S∗
i,c(z1, z2). (13)

Because Si,c is the total joint contribution to X1 of all (original) customers that
arrive during Ri,c, the joint distribution of Si,c can be expressed in terms of the
distributions of the DS-variables Ai,c as follows: For i = 1, . . . , N , c = 0, 1, . . .,
and |z1|, |z2| ≤ 1,

S∗
i,c(z1, z2) = R∗

i

⎛
⎝

N∑
j=i+1

[
λj − λjA

∗
j,c(z1, z2)

]
+

i∑
j=1

[
λj − λjA

∗
j,c−1(z1, z2)

]
⎞
⎠ .

(14)
To define a recursion for the evolution of the descendant set, note that a customer
at stage-1 present at Q1 at the polling instant at Q1 during cycle c is served
during the next cycle, which lead to the following relation: For i = 1, . . . , N ,
c = 0, 1, . . ., and |z1|, |z2| ≤ 1,

A∗
i,c(z1, z2)=B∗

i

⎛
⎝

N∑
j=i+1

[
λj − λjA

∗
j,c−1(z1, z2)

]
+

i∑
j=1

[
λj − λjA

∗
j,c−2(z1, z2)

]
⎞
⎠ ,

(15)
supplemented with the basis for the recursion

A∗
i,−1(z1, z2) = z1 I{i=1}, and A∗

i,−2(z1, z2) = z2 I{i=1}, (16)
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where IE is the indicator function of the event E. In this way, relations (13)-(16)
give a complete, characterization of the distribution of X1. Similarly, recursive
relations to calculate the (cross-)moments of X1 can be readily obtained from
those equations.

5 Results

In this section we will present heavy-traffic results that can be proven by explor-
ing the use of the DSA. For compactness of the presentation, the details of the
proofs are omitted.

Theorem 1. For i = 1, . . . , N ,

lim
ρ↑1

(1−ρ)2E
[
X

(2)
i

(
X

(2)
i − 1

)]
= lim

ρ↑1
(1−ρ)2E

[
X

(1)
i X

(2)
i

]
= λ̂2

i

[
r2 +

r

δ

b(2)

b(1)

]
,

(17)
where

δ :=
N∑

i=1

ρ̂i(3 + ρ̂i). (18)

Proof. The result can be obtained along the lines similar to the derivation of the
results for the one-stage polling models in [14,15]. ��

Theorem 2 (Main result). For i = 1, . . . , N ,

ωi =
(3 + ρ̂i)∑N

j=1 ρ̂j(3 + ρ̂j)

b(2)

2b(1) +
r(3 + ρ̂i)

2
. (19)

Proof. The result follows directly by combining (7), (9) and Theorem 1. ��

Theorem 2 reveals a variety of properties on the dependence of the limit of the
scaled mean waiting times with respect to the system parameters.

Corollary 1 (Insensitivity). For i = 1, . . . , N ,

(1) ωi is independent of the visit order,
(2) ωi depends on the switch-over time distributions only through r, i.e., the total
expected switch-over time per cycle,
(3) ωi depends on the second moments of the service-time distributions only
through b(2), i.e., the second moment of the service time of an arbitrary cus-
tomer.

Corollary 1 is known to be not generally valid for stable systems (i.e., for ρ < 1),
where the visit order, the second moments of the switch-over times and the
individual second moments of the service-time distributions do have an impact
on the mean waiting times. Hence, Corollary 1 shows that the influence of these
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parameters on the mean waiting times vanishes when the load tends to unity,
and as such can be viewed as lower-order effects in heavy traffic.

Let us now discuss the trade-off between efficiency and fairness for the one-
stage and two-stage gated service policies, using the exact asymptotic results
presented in Theorem 2. To this end, denote by ω

(one−stage)
i and ω

(two−stage)
i

the heavy-traffic residues of the mean waiting times for the case of one-stage
and two-stage gated service at all queues, respectively, defined in (1). For the
case of one-stage gated service at all queues, the following results holds (cf. [14]):
For i = 1, . . . , N ,

ω
(one−stage)
i =

(1 + ρ̂i)∑N
j=1 ρ̂j(1 + ρ̂j)

b(2)

2b(1) +
r(1 + ρ̂i)

2
. (20)

Also, for the one-stage gated polling model the pseudo-conservatiom law is given
by equation (2), supplemented with

E[Mi] = ρ2
i

r

1 − ρ
. (21)

Denote by V the amount of waiting work in the system. Then using Little’s Law
and straightforward arguments it is readily verified that, for ρ < 1,

E[V ] =
N∑

i=1

ρiE[Wi]. (22)

Throughout, we will use E[V ] to be the measure of efficiency: for a given set of
parameters, a combination of service policies (at each of the queues) is said to be
more efficient than another combination of policies if the resulting value of E[V ]
is smaller. Denoting by V (one−stage) and V (two−stage) the amount of work in the
one-stage and two-stage gated model, respectively, the following result follows
directly from (2)-(4), (21) and (22).

Corollary 2 (Efficiency). Two-stage gated service is less efficient than one-
stage gated service in the sense that

E[V (one−stage)] < E[V (two−stage)]. (23)

Definition of unfairness:
For a given polling model, the unfairness is defined as follows:

F := max
i,j=1,...,N

∣∣∣∣
E[Wi]
E[Wj ]

− 1
∣∣∣∣ . (24)

Note that according to this definition, the higher F , the less fair is the service
policy. Note also that the symmetric systems are optimally fair, in the sense that
F = 0. The following result follows directly from Theorem 2 and (20).
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Corollary 3 (Fairness). Two-stage gated service is asymptotically more fair
than one-stage gated service in the following sense: For i, j = 1, . . . , N ,

∣∣∣∣∣
ω

(two−stage)
i

ω
(two−stage)
j

− 1

∣∣∣∣∣ =
∣∣∣∣
3 + ρ̂i

3 + ρ̂j
− 1

∣∣∣∣ <

∣∣∣∣
1 + ρ̂i

1 + ρ̂j
− 1

∣∣∣∣ =

∣∣∣∣∣
ω

(one−stage)
i

ω
(one−stage)
j

− 1

∣∣∣∣∣ . (25)

Corollaries 2 and 3 give asymptotic results on the relative fairness and efficiency
between one-stage and two-stage gated service. To assess whether similar results
also hold for stable systems (i.e., whith ρ < 1) we have performed extensive nu-
merical validation. The results are outlined below. Consider the asymmetric model
with the following system parameters: N = 2; the service times at both queues
are deterministic with mean b

(1)
1 = 0.8 and b

(1)
2 = 0.2; the switch-over times are

deterministic with r
(1)
1 = r

(1)
2 = 1, and the arrival rates at both queues are equal.

For this model, we have calculated the expected waiting times at both queues and
the unfairness measure (24), for different values of the load, both for one-stage and
two-stage gated service at all queues. Table 1 below shows the results.

Table 1. Mean waiting times and fairness

one-stage gated two-stage gated

ρ E[W1] E[W2] F E[W1] E[W2] F

0.50 3.159 2.465 0.28 7.158 6.468 0.11
0.60 4.241 3.186 0.33 9.239 8.196 0.13
0.70 6.045 4.386 0.38 12.705 11.080 0.15
0.80 9.653 6.788 0.42 19.633 16.868 0.16
0.90 20.475 13.998 0.46 40.400 34.299 0.18
0.95 42.119 28.424 0.48 81.919 69.225 0.18
0.98 107.048 71.708 0.49 206.456 174.075 0.19
0.99 215.262 143.851 0.50 413.997 348.837 0.19

Note that for the model analyzed in Table 1 we have ρ̂1 = 4/5, ρ̂2 = 1/5, so
that it is readily seen that for the one-stage gated model F tends to 1/2 as ρ goes
to 1, whereas for two-stage gated F tends to 3/16 = 0.1875 in the limiting case.
The results shown in Table 1 show that the two-stage gated service is indeed
more “fair” than the one-stage gated service for all values of the load, which
suggests that Corollary 3 is also applicable to stable systems. We suspect that
this type of results may be proven rigorously; however, a more detailed analysis
of the relative fairness is beyond the scope of this paper.

6 Approximation

Equation (1) and Theorem 2 suggest the following approximation for E[Wi] in
stable polling systems: For i = 1, . . . , N , ρ < 1,

E[W (app)
i ] :=

ωi

1 − ρ
, (26)
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where ωi is given by Theorem 2. To assess the accuracy of the approximation
in (26), in terms of “How high should the load be for the approximation to be
accurate?”, we have performed numerical experiments to test the accuracy of
the approximations for different values of the load of the system. The relative
error of the approximation of E[Wi] is defined as follows: For i = 1, . . . , N ,

Δ% := abs

(
E[W (app)

i ] − E[Wi]
E[Wi]

)
× 100%. (27)

For the model considered in Table 1 above, Table 2 shows the exact (obtained
via the DSA discussed in section 3) and approximated values (obtained via
(26)) of E[W1] for different values of the load, both for the model in which all
queues receive one-stage gated service, and for the model in which all queues
receive two-stage gated service. The results in Table 2 demonstrate that the

Table 2. Exact and approximated values for E[W1]

one-stage gated two-stage gated

ρ E[W (app)
1 ] E[W1] Δ% E[W (app)

1 ] E[W1] Δ%

0.50 4.329 3.159 37.04 8.302 7.158 15.98
0.60 5.411 4.241 27.59 10.378 9.239 12.33
0.70 7.214 6.045 19.34 13.837 12.705 8.91
0.80 10.821 9.653 12.10 20.755 19.633 5.71
0.90 21.643 20.475 5.70 41.510 40.400 2.75
0.95 43.286 42.119 2.77 83.020 83.020 1.34
0.98 108.215 107.048 1.09 207.550 206.456 0.53
0.99 216.429 215.262 0.54 415.100 413.997 0.27

relative error of the approximations indeed tends to zero as the load tends to
1, as expected on the basis of Theorem 2. Moreover, the results show that the
approximation converges to the limit rather quickly when ρ ↑ 1. Roughly, the
results are accurate when the load is 80% or more, which demonstrates the ap-
plicability of the asymptotic results for practical heavy-traffic scenarios.

Acknowledgment. The authors wish to thank Onno Boxma for interesting
discussions on this topic.
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