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Abstract. For a broad class of polling models the evolution of the sys-
tem at specific embedded polling instants is known to constitute multi-
type branching process (MTBP) with immigration. In this paper it is
shown that for this class of polling models the vector X that describes
the state of the system at these polling instants satisfies the following
heavy-traffic behavior, under mild assumptions:

(1 − ρ)X →d γ Γ (α, μ) (ρ ↑ 1), (1)

where γ is a known vector, Γ (α, μ) has a gamma-distribution with known
parameters α and μ, and where ρ is the load of the system. This general
and powerful result is shown to lead to exact - and in many cases even
closed-form - expressions for the Laplace-Stieltjes Transform (LST) of the
complete asymptotic queue-length and waiting-time distributions for a
broad class of branching-type polling models that includes many well-
studied polling models policies as special cases. The results generalize
and unify many known results on the waiting times in polling systems in
heavy traffic, and moreover, lead to new exact results for classical polling
models that have not been observed before. As an illustration of the use-
fulness of the results, we derive new closed-form expressions for the LST
of the waiting-time distributions for models with a cyclic globally-gated
polling regime. As a by-product, our results lead to a number of asymp-
totic insensitivity properties, providing new fundamental insights in the
behavior of polling models.

Keywords: polling models, queueing theory, heavy traffic, unfication.

1 Introduction

Polling systems are multi-queue systems in which a single server visits the queues
in some order to serve the customers waiting at the queues, typically incurring
some amount of switch-over time to proceed from one queue to the next. Polling
models find a wide variety of applications in which processing power (e.g., CPU,
bandwidth, manpower) is shared among different types of users. Typical appli-
cation areas of polling models are computer-communication systems, logistics,
flexible manufacturing systems, production systems and maintenance systems;
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the reader is referred to [24,13] for extensive overviews of the applicability of
polling models. Over the past few decades the performance analysis of polling
models has received much attention in the literature. We refer to the classical
surveys by [22,23], and to a recent survey paper by Vishnevskii and Semenova
[34] for overviews of the available results on polling models. One of the most
remarkable results is that there appears to be a striking difference in complexity
between polling models. Resing [18] observed that for a large class of polling
models, including for example cyclic polling models with Poisson arrivals and
exhaustive and gated service at all queues, the evolution of the system at succes-
sive polling instants at a fixed queue can be described as a multi-type branching
process (MTBP) with immigration. Models that satisfy this MTBP-structure
allow for an exact analysis, whereas models that violate the MTBP-structure
are often more intricate.

In this paper we study the heavy-traffic behavior for the class of polling models
that have an MTBP-structure, in a general parameter setting. Initiated by the
pioneering work of Coffman et al. [6,7], the analysis of the heavy-traffic behavior
of polling models has gained a lot of interest over the past decade. This has led to
the derivation of asymptotic expressions for key performance metrics, such as the
moments and distributions of the waiting times and the queue lengths, for a vari-
ety of model variants, including for example models with mixtures of exhaustive
and gated service policies with cyclic server routing [25], periodic server routing
[31,32], simultaneous batch arrivals [28], continuous polling [11], amongst others.
In this context, a remarkable observation is that in the heavy-traffic behavior of
polling models a central role is played by the gamma-distribution, which occurs
in the analysis of these different model variants as the limiting distribution of
the (scaled) cycle times and the marginal queue-lengths at polling instants. This
observation has motivated us to develop a unifying theory on the heavy-traffic
behavior of polling models that includes all these model instances as special
cases, where everything falls into place. We believe that the results presented in
this paper are a significant step towards such a general unifying theory.

The motivation for studying heavy-traffic asymptotics in polling models is
twofold. First, a particularly attractive feature of heavy-traffic asymptotics (i.e.,
when the load tends to 1) for MTBP-type models is that in many cases they
lead to strikingly simple expressions for queue-length and waiting-time distribu-
tions, especially when compared to their counterparts for arbitrary values of the
load, which usually leads to very cumbersome expressions, even for the first few
moments (e.g., [12]). The remarkable simplicity of the heavy-traffic asymptotics
provides fundamental insight in the impact of the system parameters on the
performance of the system, and in many cases attractive insensitivity properties
have been observed. A second motivation for considering heavy-traffic asymp-
totics is that the computation time needed to calculate the relevant performance
metrics usually become prohibitively long when the system is close to satura-
tion, both for branching-type [5] and non-branching-type polling models [3],
which raises the need for simple and fast approximations. To this end, heavy-
traffic asymptotics form an excellent basis for developing such approximations,
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and in fact, have been found to be remarkably accurate in several cases, even for
moderate load [25,27,32].

To develop a unifying theory on the heavy-traffic behavior of branching-type
polling models, it is interesting to observe that the theory of MTBPs, which
was largely developed in the early 1970s, is well-matured and powerful [17,9].
Nonetheless, the theory of MTBPs has received remarkably little attention in
the literature on polling models. In fact, throughout this paper we will show that
the following result on MTBPs can be used as the basis for the development of
a unifying theory on branching-type polling models under heavy-traffic assump-
tions: the joint probability distribution of the M -dimensional branching process
{Zn, n = 0, 1, . . .} (with immigration in each state) converges in distribution to
vΓ (α, μ) in the sense that Quine [17]:

lim
n→∞

1
πn(ξ)

Zn →d vΓ (α, μ) (ξ ↑ 1), (2)

where ξ is the maximum eigenvalue of the so-called mean matrix, πn(ξ) is a
scaling function, v is a known M -dimensional vector and Γ (α, μ) is a gamma-
distributed random variable with known shape and scale parameters α and μ,
respectively. We emphasize that (2) is valid for general MTBPs under very mild
moment conditions (see Section 2 for details). In this paper, we show that this
result (2) can be transformed into equation (1), providing an asymptotic anal-
ysis for a very general class of MTBP-type polling models. Subsequently, we
show that equation (1) leads to exact asymptotic expressions for the scaled time-
average queue-length and waiting-time distributions under heavy-traffic assump-
tions; for specific model instances, basically all we have to do is calculate the
parameters v, α and μ, and the derivative of ξ as a function of ρ at ρ = 1, which is
usually straightforward. In this way, we propose a new and powerful approach to
derive heavy-traffic asymptotics for polling model that have MTBP-structure. To
demonstrate the usefulness of the results we use the approach developed in this
paper to derive new and yet unknown closed-form expressions for the complete
asymptotic waiting-time distributions for a number of classical polling models.
To this end, we derive closed-form expressions for the asymptotic waiting-time
distributions for cyclic polling models with the Globally-Gated (GG) service
policy, and for models with general branching-type service policies. As a by-
product, the results also lead to asymptotic insensitivity properties providing
new fundamental insights in the behavior of polling models. Moreover, the re-
sults lead to simple approximatons for the waiting-time distributions in stable
polling systems.

The remainder of this paper is organized as follows. In Section 2 we give a
brief introduction on MTBPs and formulate the limiting result by Quine [17] (see
Theorem 1) that will be used throughout. In Section 3 we translate this result
to the context of polling models, and give an approach for how to obtain heavy-
traffic asymptotics for MTBP-type polling models. To illustrate the usefulness
of the approach, we derive closed-form expressions for the LST of the scaled
asymptotic waiting-time distributions for cyclic models with GG service. The
implications of these results are discussed extensively.
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2 Multitype Branching Processes with Immigration

We consider a general M -dimensional multi-type branching process Z={Zn, n =
0, 1, . . .}, where Zn = (Z(1)

n , . . . , Z
(M)
n ) is an M -dimensional vector denoting the

state of the process in the n-th generation, and where Z
(i)
n is the number of

type-i particles in the n-th generation, for i = 1, . . . , M , n = 0, 1, . . .. The
process Z is completely characterized by (1) its one-step offspring function and
(2) its immigration function, which are assumed mutually independent and to
be stochastically the same for each generation. The one-step offspring function
is denoted by f(z) = (f (1)(z), . . . , f (M)(z)), with z = (z1, . . . , zM ), and where
for |zk| ≤ 1 (k = 1, . . . , M), i = 1, . . . , M ,

f (i)(z) =
∑

j1,...,jM≥0

p(i)(j1, . . . , jM )zj1
1 · · · zjM

M , (3)

where p(i)(j1, . . . , jM ) is the probability that a type-i particle produces jk par-
ticles of type k (k = 1, . . . , M). The immigration function is denoted as follows:
For |zk| ≤ 1 (k = 1, . . . , M),

g(z) =
∑

j1,...,jM≥0

q(j1, . . . , jM )zj1
1 · · · zjM

M , (4)

where q(j1, . . . , jM ) is the probability that a group of immigrant consists of jk

particles of type k (k = 1, . . . , M). Denote

g := (g1, . . . , gM ), where gi :=
∂g(z)
∂zi

|z=1, (5)

and where 1 is the M -vector where each component is equal to 1. A key role in
the analysis will be played by the first and second-order derivatives of f(z). The
first-order derivatives are denoted by the mean matrix

M = (mi,j) , with mi,j :=
∂f (i)(z)

∂zj
|z=1 (i, j = 1, . . . , M). (6)

Thus, adopting the standard notion of “children”, for a given type-i particle in
the n-th generation, mi,j is the mean number of type-j children it has in the
(n+1)-st generation. Similarly, for a type-i particle, the second-order derivatives
are denoted by the matrix

K(i) =
(
k

(i)
j,k

)
, with k

(i)
j,k :=

∂2f (i)(z)
∂zj∂zk

|z=1, i, j, k = 1, . . . , M. (7)

Denote by v = (v1, . . . , vM ) and w = (w1, . . . , wM ) the left and right eigenvectors
corresponding to the largest real-valued, positive eigenvalue ξ of M, commonly
referred to as the maximum eigenvalue [2], normalized such that

v�1 = v�w = 1. (8)
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The following conditions are necessary and sufficient conditions for the ergodicity
of the process Z (cf. [18]): ξ < 1 and

∑

j1+···+jM >0

q(j1, . . . , jM )log(j1 + · · · + jM ) < ∞. (9)

Throughout the following definitions are convenient. For any variable x that
depends on ξ we use the hat-notation x̂ to indicate that x is evaluated at ξ = 1.
Moreover, for ξ ≥ 0 let

π0(ξ) := 0, and πn(ξ) :=
n∑

r=1

ξr−2, n = 1, 2, . . . . (10)

A non-negative continuous random variable Γ (α, μ) is said to have a gamma-
distribution with shape parameter α > 0 and scale parameter μ > 0 if it has the
probability density function

fΓ (x) =
1

Γ (α)
xα−1e−μx (x > 0) with Γ (α) :=

∫ ∞

t=0
tα−1e−tdt, (11)

and Laplace-Stieltjes Transform (LST)

Γ ∗(s) =
(

μ

μ + s

)α

(Re(s) > 0). (12)

Note that in the definition of the gamma-distribution μ is a scaling parameter,
and that Γ (α, μ) has the same distribution as μ−1Γ (α, 1). Using these defini-
tions, the following result was shown in [17]:

Theorem 1
Assume that all derivatives of f(z) through order two exist at z = 1 and that
0 < gi < ∞ (i = 1, . . . , M). Then

lim
n→∞

1
πn(ξ)

⎛

⎜⎜⎝

Z
(1)
n

...
Z

(M)
n

⎞

⎟⎟⎠ →d A

⎛

⎜⎝
v̂1
...

v̂M

⎞

⎟⎠Γ (α, 1) (ξ ↑ 1) (13)

where v̂ = (v̂1, . . . , v̂M ) is the normalized the left eigenvector of M̂, and where
Γ (α, 1) is a gamma-distributed random variable with scale parameter 1 and shape
parameter

α :=
1
A

ĝ�ŵ =
1
A

M∑

i=1

ĝiŵi, with A :=
M∑

i=1

v̂i

(
ŵ�K̂(i)ŵ

)
> 0. (14)
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3 Heavy-Traffic Asymptotics for Polling Models

In this section we show how Theorem 1 can be transformed to derive new closed-
form expressions for the LST of the queue-length and waiting-time distributions
for a broad class of polling models, under heavy-traffic scalings. As an illustra-
tion, we consider a cyclic polling model with globally-gated (GG) service, in a
general parameter setting. For this model, we show how Theorem 1 can be used
to obtain derive the LST of the asymptotic waiting-time distribution at each of
the queues. In Section 3.1 we discribe the GG-model, in Section 3.2 we derive
HT-asymptotics for the waiting-time distributions at each of the queues and in
Section 3.3 we extensively discuss the implications of the results.

3.1 Model

Consider an asymmetric cyclic polling model that consists of N ≥ 2 queues,
Q1, . . . , QN , and a single server that visits the queues in cyclic order. Customers
arrive at Qi accoring to a Poisson process with rate λi, and are referred to as
type-i customers. The total arrival rate is Λ :=

∑N
i=1 λi. The service time of a

type-i customer is a random variable Bi, with LST B∗
i (·) and k-th moment b

(k)
i ,

which is assumed to be finite for k = 1, 2. The k-th moment of the service time of
an arbitrary customer is b(k) :=

∑N
i=1 λib

(k)
i /Λ (k = 1, 2). The total load of the

system is ρ :=
∑N

i=1 ρi. We define a polling instant at Qi to be the moment at
which the server arrives at Qi, and a departure epoch at Qi a moment at which
the server depart from Qi. The visit time at Qi is defined as the time elapsed
between a polling instant and its successive departure epoch at Qi. Moreover,
as i-cycle is the time between two successive polling instants at Qi. The GG
service discipline works as follows (cf. [4]). At the beginning of a 1-cycle, marked
by a polling instant at Q1 (see above), all customers present at Q1, . . . , QN are
marked. During the coming 1-cycle (i.e., the visit of queues Q1, . . . , QN ), the
server serves all (and only) the marked customers. Customers that meanwhile
arrive at the queues will have to wait until being marked at the next cycle-
beginning, and will be served during the next 1-cycle. Since at each cycle the
server serves all the work that arrived during the previous cycle, the stability
condition is ρ < 1, which is both necessary and sufficient (cf. [8,4]). Throughout
this paper, this model will be referred to as the GG-model. Upon departing from
Qi the server immediately proceeds to Qi+1, incurring a switch-over time Ri with
LST R∗

i (·) and first two moments r
(k)
i (k = 1, 2), which are assumed to be finite.

Denote by r > 0 and r(2) > 0 be the first two moments of the switch-over time
per 1-cycle of the server along the queues. The interarrivel times, service times
and switch-over times are assumed to be mutually independent and independent
of the state of the system.

Throughout, we focus on the behavior of the model when the load ρ tends
to 1. For ease of the discussion we assume that as ρ changes the total arrival
rate changes while the service-time distributions and ratios between the arrival
rates are kept fixed; note that in this way, the limit for ρ ↑ 1, which will be used
frequently throughout this paper, is uniquely defined. Similar to the hat-notation
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for the MTBPs defined in Section 2, for each variable x that is a function of ρ
we use the hat-notation x̂ to indicate its value at ρ = 1.

For GG-model model the joint queue-length vector at successive moments
when the server arrives at a fixed queue (say Qk) consitutes an MTBPs with
immigration. To this end, the following notation is useful. Let X

(k)
i,n be the

number of type-i customers in the system at the n-th polling instant at Qk,
for i, k = 1, . . . , N and n = 0, 1, . . ., and let X(k)

n = (X(k)
1,n, . . . , X

(k)
N,n) be the

joint queue-length vector at the n-th pollling instant at Qk. Moreover, X(k) =
{X(k)

n , n = 0, 1, . . .} is the MTBP describing the evolution of the state of the
system at successive polling instants at Qk. For ρ < 1, we have X(k)

n →d X(k)

for n → ∞, where X(k) denotes the steady state joint queue-length vector at an
arbitrary polling instant at Qk.

3.2 Analysis

To analyze the HT-behavior of the GG-model, we proceed along a number of
steps. First, we establish the relation between the GG-model and the general
MTBP-model described in Section 2. Then, we use Theorem 1 to obtain HT-
limits for the joint queue-length vector at polling instants at a fixed queue (The-
orem 2). Finally, this result is transformed into an expression for the asymptotic
scaled waiting-time distribution at an arbitrary queue (Theorem 3). For com-
pactness of the presentation, the proofs of the various results are omitted.

To start, we consider the MTBP X(1) := {X(1)
n , n = 0, 1, . . .} describing the

evolution of the joint queue-length vector at successive polling instants of the
server at Q1. Then the process X(1) is characterized by the offspring generating
functions, for i = 1, . . . , N ,

f (i)(z1, . . . , zN ) = B∗
i

⎛

⎝
N∑

j=1

λj(1 − zj)

⎞

⎠ (15)

and the immigration function

g(z1, . . . , zN ) =
N∏

i=1

R∗
i

⎛

⎝
N∑

j=1

λj(1 − zj)

⎞

⎠ . (16)

Note that it follows directly from (16) that, for j = 1, . . . , N ,

gj =
N∑

i=1

riλj = rλj . (17)

To derive the limiting distribution of the joint queue-length vector at polling in-
stants at Q1, we need to specify the following parameters: (a) the mean matrix
M and its corresponding left and right eigenvectors v̂ and ŵ at ρ = 1 (normal-
ized according to (8)), and (b) the parameters A and ĝ. These parameters are
obtained in the following two lemmas.



On a Unifying Theory on Polling Models in Heavy Traffic 563

Lemma 1
For the GG-model, the mean matrix M̂ is given by the following expression:

M̂ =

⎛

⎜⎜⎜⎜⎝

b
(1)
1 λ̂1 b

(1)
1 λ̂2 · · · b

(1)
1 λ̂N

b
(1)
2 λ̂1 · · · · · · b

(1)
2 λ̂N

...
...

...
...

b
(1)
N λ̂1 · · · · · · b

(1)
N λ̂N

⎞

⎟⎟⎟⎟⎠
. (18)

Moreover, the right and left eigenvectors of M̂ are

ŵ = |b|−1

⎛

⎜⎜⎜⎜⎝

b
(1)
1

b
(1)
2
...

b
(1)
N

⎞

⎟⎟⎟⎟⎠
, and v̂ = |b|

⎛

⎜⎜⎜⎝

λ̂1

λ̂2
...

λ̂N

⎞

⎟⎟⎟⎠ , respectively, (19)

with

b := (b(1)
1 , . . . , b

(1)
N )�, and |b| :=

N∑

i=1

b
(1)
i . (20)

Lemma 2
For the GG-model, we have

ĝ�ŵ = |b|−1r, and A = |b|−1 b(2)

b(1) . (21)

Let us consider the heavy-traffic behavior of the maximum eigenvalue ξ of M.
Note that in general, ξ is a non-negative real-valued function of ρ (cf. [2]), say

ξ = ξ(ρ), (22)

for ρ ≥ 0. Then the following result describes the behavior of ξ(·) in the neigh-
bourhood of ρ = 1.

Lemma 3
For the GG-model, the maximum eigenvalue ξ = ξ(ρ) has the following proper-
ties:

(1) ξ < 1 if and only if 0 ≤ ρ < 1, ξ = 1 if and only if ρ = 1, and ξ > 1
if and only if ρ > 1;
(2) ξ = ξ(ρ) is a continuous function of ρ;
(3) limρ↑1 ξ(ρ) = f(1) = 1;
(4) the derivative of ξ(·) at ρ = 1 is given by

ξ′(1) := lim
ρ↑1

1 − ξ(ρ)
1 − ρ

= 1. (23)
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The following result transform Theorem 1 into an HT-result for the GG-model
under consideration.

Theorem 2
For the GG-model, the steady-state joint queue-length distribution at polling in-
stants at Qk (k = 1, . . . , N) satisfies the following limiting behavior:

(1−ρ)

⎛

⎜⎜⎝

X
(k)
1
...

X
(k)
N

⎞

⎟⎟⎠ →d
b(2)

b(1)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ρ̂1 + · · · + ρ̂k−1)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ̂1
...

λ̂k−1

λ̂k

...
λ̂N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
λ̂k

...
λ̂N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γ (α, 1) (ρ ↑ 1),

(24)
where

α = r
b(1)

b(2) . (25)

We are now ready to present the main result for the GG-model.

Theorem 3
For the GG-model, the waiting-time distribution satisfies the following limiting
behavior: For i = 1, . . . , N ,

(1 − ρ)Wi →d W̃i (ρ ↑ 1) (26)

where the LST of W̃i is given by, for Re(s) > 0,

W̃ ∗
i (s) =

1
(1−ρ̂i)rs

{(
μ

μ + s(ρ̂1 + · · · + ρ̂i)

)α

−
(

μ

μ + s(1 + ρ̂1 + · · · + ρ̂i−1)

)α}
,

where

α = r
b(1)

b(2)
, and μ =

b(1)

b(2)
. (27)

3.3 Discussion

Theorem 3 leads to a number of interesting implications that will be discussed
below.

Corrollary 1 (Insensitivity properties)
For i = 1, . . . , N , the asymptotic waiting-time distribution W̃i,

(1) is independent of the visit order (assuming the order is cyclic),
(2) depends on the variability of the service-time distributions only through b(2),
(3) depends on the switch-over time distributions only through r.
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Note that similar insensitivity properties are generally not valid for stable sys-
tems (i.e., ρ < 1), in which case the waiting-time distributions do depend on the
visit order, the complete service-time distributions and each of the individual
switch-over time distributions. Apparently, these dependencies are of lower or-
der, and hence their effect on the waiting-time distributions becomes negligible,
in heavy traffic.

We end this session with a number of remarks.

Remark 1 (Model extensions): The results presented for the GG-model de-
scribed in Section 3.1 mainly serve as an illustration, and can be readily extended
to a broader set of models. The requirements for the derivation of heavy-traffic
limits similar to Theorems 2 and 3 are that (a) the evolution of the system
at specific moments can be described as a multi-dimensional branching process
with immigration, and (b) that the system is work conserving. In addition to the
models addressed above, this class of models includes as special cases for exam-
ple models with gated/exhaustive service and non-cyclic periodic server routing
[31], models with (simultaneous) batch arrivals [28,14], continuous polling mod-
els [11], models with customer routing [20], globally-gated models with elevator-
type routing [1], models with local priorities [19], amongst many other model
variants. Basically, all that needs to be done for each of these model variants is
to determine the parameters α, û and the derivative of ξ = ξ(ρ) at ρ = 1, which
is usually straightforward.

Remark 2 (Assumptions on the finiteness of moments): Theorems 2
and 3 are valid under the assumption that the second moments of the service
times and the first moments of the switch-over times are finite; these assump-
tions are an immediate consequence of the assumptions on the finiteness of the
mean immigration function g and the second-order derivatives of the offspring
function K

(i)
j,k, defined in (5) and (7), respectively. It is interesting to observe

that the results obtained in by Van der Mei [25] via the use of the Descendant
Set Approach (DSA) assumes the finiteness of all moments of the service times
and switch-over times; these assumptions were required, since the DSA-based
proofs in [25] are based on a bottom-up approach in the sense that the limiting
results for the waiting-time distributions are obtained from the asymptotic ex-
pressions for the moments of the waiting times obtained in [27,26]. Note that
in this way the DSA-based approach differs fundamentally from the top-down
approach taken in the present paper, where the asymptotic expressions for the
moments can be obtained from the expressions for the asymptotic waiting-time
distributions in Theorem 3.

Remark 3 (Approximations): The results presented in Theorem 3 suggest
the following simple approximations for the waiting-time distributions for stable
systems: For ρ < 1, i = 1, . . . , N ,

Pr{Wi < x} ≈ Pr{W̃i < x(1 − ρ)}, (28)
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and similarly for the moments: for ρ < 1, i = 1, . . . , N , k = 1, 2 . . .,

E[W k
i ] ≈ E[W̃ k

i ]
(1 − ρ)k

, (29)

where closed-form expressions for E[W̃ k
i ] can be directly obtained from Theo-

rem 3 by k-fold differentiation. Extensive validation of these appoximations fall
beyond the scope of this paper. We refer to [25,29,30] for extensive discussions
about the accuracy of these approximations for the special case of exhaustive
and gated service.
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