
On the Optimization of Resource Utilization in
Distributed Multimedia Applications
R. Yang∗†, R.D. van der Mei∗†, D. Roubos∗, F.J. Seinstra∗, and G.M. Koole∗

∗Vrije Universiteit Amsterdam, Faculty of Sciences
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

Email: ryang@few.vu.nl

†Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands

Abstract—The application and research area of Multimedia
Content Analysis (MMCA) considers all aspects of the automated
extraction of new knowledge from large multimedia data streams
and archives. In recent years, there has been a tremendous growth
in the MMCA application domain (for real-time and off-line
execution scenarios alike), and this growth is likely to continue
in the near future. Multimedia applications operated in a real-
time environment pose very strict requirements on the obtained
processing times, while off-line applications have to perform
within ‘tolerable’ time frames. To meet these requirements, large-
scale multimedia applications typically are being executed on
Grid systems consisting of large collections of compute clusters.
For optimized use of resources, it is essential to determine the
optimal number of compute nodes per cluster, properly dealing
with the perceived computation versus communication ratio. This
ratio generally depends on the characteristics of the application
at hand, and on the software and hardware specifics of the
computational environment.

Motivated by these observations, in this paper we develop a
simple and easy-to-implement method to determine the “optimal”
number of parallel compute nodes. The method is based on the
classical binary search method for non-linear optimization, and
does not depend on the, usually unknown, specifics of the system.
Extensive experimental validation on a real distributed system
shows that our method is indeed highly effective.

I. I NTRODUCTION

Today, multimedia data is rapidly gaining importance along
with recent deployment of publicly accessible digital television
archives, surveillance cameras in public locations, and auto-
matic comparison of forensic video evidence [18]. In a few
years, computerized access to the content of multimedia data
will be a problem of phenomenal proportions, as digital video
may produce high data rates, and multimedia archives steadily
run into petabytes (1015) of storage space. As individual
compute clusters can not satisfy the increasing computational
demands, distributed supercomputing on large collectionsof
clusters (Grids) is rapidly becoming indispensable.

Problems in Multimedia Content Analysis (MMCA) often
must work under strict time constraints. For example, to
avoid delays in queues of people waiting, results of iris-
scans should be presented within a period of no more than
5 seconds. Largely autonomous applications, such as the
automatic detection of suspect behavior in video data obtained

from surveillance cameras, may even need to work under real-
time restrictions. To (automatically) optimize the resource uti-
lization of such applications executing on large collections of
compute clusters, efficient methods must be available that de-
termine the optimal number of nodes per compute cluster. This
optimization problem generally depends on the applicationat
hand, and on the specifics of the computation environment
(e.g., network characteristics, CPU power memory, I/O). In
this context, it is essential to properly balance the following
trade-off: if the number of compute nodes is too low, then
the processing power is insufficient to meet strict processing-
time requirements of real-time applications; if the numberof
compute nodes is too high, the parallelization overhead will
cause a degradation of the computational performance. Hence,
there is an urgent need forsimple and easily implementable,
yet effective methods (in terms of the number of evaluation
steps), to determine the optimal level of parallelism. Also, the
method should beadaptive to system variation.

Saavedra-Barrera et al. [12] have measured system per-
formance for sequential Fortran programs in terms of an
Abstract Fortran Machine (AFM), an approach referred to
as narrow spectrum benchmarking. The AFM-based approach
provides a solution to the problem of the high complexity of
complete analytical study of computer systems. The drawback
of the approach is that system variance is almost completely
ignored. For applications working on extensive dense data
fields (e.g., image data structures) this is a too crude restriction
as variations in the hit ratio of caches and system interrupts
often have a significant impact on performance [4], [13].

Many other performance estimation techniques that incorpo-
rate more detailed behavioral abstractions relating to themajor
components of a computer system [6], [8], however, need tens,
if not hundreds, of platform-specific machine abstractionsto
obtain truly accurate estimations. Consequently, the essential
requirements of simplicity and applicability are not satisfied.
To overcome this problem, Seinstra et al. [14] have designed
a new model for performance estimation ofparallel image
processing applications running on clusters, based on the
Abstract Parallel Image Processing Machine (APIPM). The
APIPM model has been used in a large set of realistic image
processing applications to find the optimal number of compute

Table I
OVERVIEW OF DAS-3 CLUSTER SITES.

Cluster Nodes Type Speed Memory Storage Node HDDs Network
VU 85 dual dual-core 2.4 GHz 4 GB 10 TB 85 × 250 GB Myri-10G and GbE
LU 32 dual single-core 2.6 GHz 4 GB 10 TB 32 × 400 GB Myri-10G and GbE
UvA 41 dual dual-core 2.2 GHz 4 GB 5 TB 41 × 250 GB Myri-10G and GbE
TUD 68 dual single-core 2.4 GHz 4 GB 5 TB 68 × 250 GB GbE (no Myri-10G)
UvA-MN 46 dual single-core 2.4 GHz 4 GB 3 TB 46 × 1.5 TB Myri-10G and GbE

nodes. The main advantage of this model is that predictions
are based on the analysis of a small number of rather high
level system abstractions (i.e., represented by the APIPM
instruction set). The main limitation of this model, however, is
that the instruction set and its related performance valuesare
parameterized with a very large number of instruction behavior
and workload indicators. As such, the model does not meet our
requirements, as obtaining accurate performance values for all
possible parameter combinations is both costly and complex.

In this paper, we propose a simple method to determine
the “optimal” level of parallelism, in which the number
of evaluation steps is small. In this context, experimental
observations for realistic, large-scale problems in multimedia
content analysis have revealed three important optimization
properties. First, in many situations the optimal number of
parallel compute nodes is found to be a power of 2, i.e.,
of the form 2m for some m = 0, 1, This observation
is important because it leads to a dramatic reduction of the
set of possible solutions. For example, if the number of
available compute nodes ismmax, the size of the solution
space is reduced frommmax (i.e., the number of elements
in the index set{1, . . . ,mmax}) to blog2(mmax)c (i.e., the
number of elements of the set{20, 21, . . . , 2K} whereK =
blog2(mmax)c). Here the symbolbxc represents the largest
integer≤ x. Second, on compute nodes consisting of multiple
CPUs (and potentially multiple cores), for a fixed number of
compute elements, using more compute nodes and less CPUs
per node yields better performance. Third, if the compute
cluster processing time is denoted byS(L), with L the number
of compute nodes, then there exists a threshold valueL∗ such
that S(L) decreases fast as a function ofL for L < L∗,
whereasS(L) flattens out, and may even increase, forL > L∗.
L∗ is commonly referred to as theengineering knee. Moreover,
in practice using too many compute nodes may be very costly.

Based on these observations, our proposed method is aimed
at determiningL∗ as the optimal point of operation. The
method takes the idea of the well-known classical binary
search method for non-linear optimization, and converges if
the relative improvement ofS(L) with respect toL (on a
log scale) is close enough to 0 (say5 − 10%). To validate
the effectiveness of the proposed method, we have performed
extensive experimentation on a realistic distributed system
(DAS-3 [9], [10]) for both real-time and off-line applications.
The results show that our method is indeed highly effective.

In practice, running CPU-intensive applications in large-
scale distributed computing environments typically consists
of two phases: (1) aninitialisation phase to determine the

optimal number of compute nodesL∗, and (2) themain phase
to actually run the application on theL∗ parallel nodes. We
emphasize that the method proposed in this paper is to be used
during the initialisation phase.

The remainder of this paper is organized as follows. Sec-
tion II presents the experimental setup, and describes our ex-
ample applications. In Section III our new modeling approach
is formulated. Section IV discussed our experimental results.
Finally, in Section V we present our conclusions and address
topics for further research.

II. EXPERIMENTAL SETUP

In a Grid environment, resources have different capacities
and many fluctuations exist in load and performance of
geographically distributed nodes [1]. As the availabilityof
resources and their load continuously vary with time, the
repeatability of the experimental results is hard to guarantee
under different scenarios in a real Grid environment. Also,the
experimental results are very hard to collect and to observe.

Figure 1. The Distributed ASCI Supercomputer 3 with the StarPlane wide-
area optical interconnect.

Figure 2. Our example real-time (left) and off-line (right) distributed multimedia applications, which are capable of being executed on a world-wide scale.
The real-time application constitutes a visual object recognition task performed by a robot dog. The off-line application constitutes our TRECVID system.

Hence, it is wise to perform experiments on a testbed that
contains the key characteristics of a Grid environment on
the one hand, and that can be managed easily on the other
hand. To meet these requirements, we perform all of our
experiments on the recently installed DAS-3 (the Distributed
ASCI Supercomputer 3) Grid test bed [10].

DAS-3, see Table I and Figure 1, is a five-cluster wide-
area distributed system, with individual clusters locatedat four
different universities in The Netherlands: Vrije Universiteit
Amsterdam (VU), Leiden University (LU), University of Am-
sterdam (UvA), and Delft University of Technology (TUD).
The MultimediaN Consortium (UvA-MN) also participates
with one cluster, located at the University of Amsterdam. As
one of its distinguishing features, DAS-3 employs a novel
internal wide-area interconnect based on optical 10G links
(StarPlane [11]), causing DAS-3 sometimes to be referred to
as ”the world’s fastest Grid” [2].

A. Example applications

In our experiments, we use the DAS-3 system to run a real-
time multimedia application (referred to as “Aibo”), as well
as an off-line application (referred to as “TRECVID”).

The “Aibo” application demonstrates real-time object recog-
nition performed by a Sony Aibo robot dog [16] (see Figure 2).
Irrespective of the application of a robot, the general problem
of object recognition is to determine which, if any, of a given
repository of objects, appears in an image or video stream.
It is a computationally demanding problem that involves a
non-trivial trade-off between specificity of recognition (e.g.,
discrimination between different faces) and invariance (e.g.,
to shadows, or to differently colored light sources). Due to
the rapid increase in the size of multimedia repositories of
’known’ objects [3], state-of-the-art sequential computers no
longer can live up to the computational demands, making high-
performance computing (potentially at a world-wide scale,see
also Figure 2) indispensable.

The “TRECVID” application represents a multimedia com-
puting system that has been applied successfully in the 2004,

2005, and 2006 editions of the international NIST TRECVID
benchmark evaluation for content-based video retrieval [5],
[17]. The aim of the “TRECVID” application is to find seman-
tic concepts (e.g., vegetation, cars, people, etc.) in hundreds
of hours of news broadcasts, a.o., from ABC and CNN. The
TRECVID concept detection task is, in general terms, defined
as follows: Given the standardized TRECVID video data set, a
common shot boundary reference for this data set, and a list of
feature definitions, participants must return for each concept a
list of at most 2000 shots from the data set, ranked accordingto
the highest possibility of detecting the presence of that seman-
tic concept. Our “TRECVID” application is computationally
intensive; for thorough analysis it easily requires about 16
seconds of processing per video frame on the fastest sequential
machine at our disposal [15]. Consequently, the required time
for participating in the TRECVID evaluation using a single
computer easily can take over one year of processing.

Both applications have been implemented using the Parallel-
Horus software architecture, that allows programmers to write
parallel and distributed multimedia applications in a fully
sequential manner [16]. The automatic parallelization and
distribution of both applications results in services-based ex-
ecution: a client program (typically a local desktop machine)
connects to one or moremultimedia servers, each running
on a (different) compute cluster. Each multimedia server is
executing in a fully data parallel manner, thus resulting in
(transparent)task parallel execution of data parallel services.

More specifically, in both applications, before any process-
ing takes place, a connection is established between the client
application and a multimedia server. As long as the connection
is available, the client can send video frames to this server.
Every received video frame is scattered by this server into
many pieces over the available compute nodes. Normally, each
compute node receives one partial video frame for processing.
The computations at all compute nodes take place in parallel.
When the computations are completed, the partial results are
gathered by the communication server again and the final
result is returned to the client. In this paper, the time to process

a single video frame in this manner is defined as theservice
processing time.

III. M ETHOD FORMULATION

This section describes our newly proposed modeling ap-
proach in detail. The approach is based on the results of ex-
tensive experimentation performed on DAS-3 (see Section II).

In our example applications, video frames are being
processed on a per-cluster basis, using a varying number of
compute nodes on each cluster, each consisting of multiple
CPUs. The compute cluster (orservice) processing time is
defined as a functionS(L, n) of the number of compute
nodesL = 1, . . . ,mmax and the number of CPUs per node
n = 1, 2, Our goal is to minimize the cost functionS(L, n)
over the set of possible values of(L, n); thus, we are searching
for the point (̂L, n̂) where the functionS(L, n) attains its
minimum. In this context, it is important to note that the
set of possible combinations(L, n) may be very large, and
that in practice, finding the optimum(L̂, n̂) may be very time
consuming. Therefore, our goal is to develop a simple but
effective heuristic method to obtain a nearly-optimal solution
within a short time frame. To this end, we first discuss a
number of observations that we collected during our extensive
experiments, leading to a dramatic reduction of the set of
possible value of(L, n). Subsequently, the method to approach
the optimal(L, n) is described in detail.

A. Reduction of solution space

Many combinations(L, n) lead to the same total number
T = L ·n of CPUs. The following observations, made for our
particular example applications, rule out many possibilities:

1) The optimal number of CPUs often is a power of 2: In
our experiments, we consistently observed that the optimal
number of CPUs is found to be a power 2. For example,
Figure 3 shows the average processing times for our two
example applications: (a) Aibo, and (b) TRECVID. The results
show that bothlocal and global minima are consistently
found when the total number of CPUs is a power of 2.
This observation leads to a dramatic reduction of the set
of possible solutions. Namely, if the number of available
compute nodes isLmax, the number of available CPUs in
each compute node isnmax, then the solution set is reduced
to X := {(2p, 2q), p = 0, . . . , P, q = 0, . . . , Q}, where
P := blog2(Lmax)c, Q := blog2(nmax)c.

2) Using more compute nodes, yet less CPUs per node, is
better: Another important observation from our experimental
results is that for the same total number of CPUsT = L · n,
using more compute nodesL and fewer CPUs per node
n provides better performance. That is, for the same total
number of CPUsT = 2m, where the solution set should be
X := {(2p, 2q), p + q = m}, among them,q should be as
small as possible. This observation is illustrated by Figure 4,
where we consider the caseT = 64 for three combinations
(L, n) ∈ {(64, 1), (32, 2), (16, 4)}; the results show that the
combination (64,1) has better performance than (32,2) and

4 8 14 16 1820 32 56 64 80
0

100

200

300

400

500

600
Average service processing time of Aibo application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

Local minimum

Minimum

(a) Aibo application

16 32 64 128 256
0

100

200

300

400

500

600

700

800
Average service processing time of TRECVID application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

Local minimum
Minimum

(b) TRECVID application

Figure 3. Average service processing time v.s. number of compute nodes.

(16,4). This is explained by the fact that the compute nodes in
DAS-3 are linked by a fast local Myrinet interconnect, whereas
the CPUs within a single node communicate over a shared
memory bus, which is less efficient.

Based on these observations, the solution set can be re-
duced drastically. For instance, for a system having 85 nodes
and 4 CPUs per node, the reduced solution space isX =
{(2p, 1), p = 0 . . . 6} ∪ {(64, 2), (64, 4)}.

In a general form, to determine the optimal number of com-
pute nodes and CPUs per node, the solution space is reduced to
the combinationsX = {(2p, 1), p = 0 . . . P} ∪ {(2P , 2q), q =
1 . . . Q}, where P := blog2(Lmax)c, Q := blog2(nmax)c.
For simplicity, we use(2(P+q), 1) instead of(2P , 2q) for our
notation, although(2(P+q), 1) does not exist.

B. Steps to approach the optimal (L, n)

1) Engineering knee: From the reduced solution space,
we iteratively increase the total number of CPUs to find the
optimal (L, n). When the number of applied compute nodes
becomes larger, the parallelization overhead increases, and

0 20 40 60 80 100
200

220

240

260

280

300

320

340

360

380

400
Service processing time by using 64 CPUs

Job number

Se
rv

ic
e

pr
oc

es
si

ng
 ti

m
e

(m
s)

64 compute nodes, 1 CPU per node
32 comupte nodes, 2 CPUs per node
16 comupte nodes, 4 CPUs per node

Figure 4. More compute nodes and less CPUs per node is better.

may even become dominant. Our experimental results show
that there exists a threshold valuem∗ such thatS(2m, 1)
decreases fast form < m∗, whereasS(2m, 1) flattens out, and
may even increase, form > m∗. As an illustration, Figure 5
shows the average service processing times for the Aibo- and
TRECVID-applications for different values ofL = 2m. In
both cases, we observe that there exists somesaturation point
L∗ = 2m∗

such that increasing the number of parallel nodes
L beyondL∗ does not lead to a significant reduction of the
service processing times. Throughout,L∗ = 2m∗

will be
referred to as theengineering knee and is regarded as the
(near-)optimal point of operation.

C. LDS method

To find the engineering kneeL∗, we have developed anLog-
arithmic dichotomy search (LDS) method. The LDS method
follows the idea of a well-known conventional binary search
(CBS) algorithm [7] which aims to find a particular value in
a sorted list. Compared to the CBS strategy, the LDS method
makes progressively better guesses, and proceeds closer to
the optimal value. Let the elements in the solution setX be
denoted by(e0, . . . , eK), with K = P + Q, P and Q are
defined in Section III-A2. The LDS strategy selects the median
element in the setX, denoted byeMid . Defineε as the desired
improvement in the service processing time by increasing the
number of compute nodes. IfS(eMid)−S(eMid+1)

S(eMid)
> ε, then we

repeat this procedure with a smaller list, and we keep only
the elements(eMid+1, . . . , eK). If S(eMid)−S(eMid+1)

S(eMid)
≤ ε then

the list in which we search becomes(e1, . . . , eMid). Pursuing
this strategy iteratively, it narrows the search by a factorof
two each time, and finds the minimum value that satisfies our
requirement afterlog2(K) iterations. The pseudo code for our
LDS method for the solution spaceX is given in Algorithm 1.

IV. N UMERICAL RESULTS

Even though our LDS method has been applied successfully
for all DAS-3 clusters, the detailed experiments presented
here have been carried out on the largest cluster at the Vrije
Universiteit, that consists of 85 compute nodes with 4 CPUs
per node. In this section, we show the numerical results of
the average service processing times versus a varying total

1 2 4 8 16 32 64
0

200

400

600

800

1000

1200

1400

1600

Average service processing time of Aibo application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

L*

(a) Aibo application.

4 8 16 32 64 128 256
0

500

1000

1500

2000

2500
Average service processing time of TRECVID application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

L*

(b) TRECVID application

Figure 5. Engineering knee of Aibo and TRECVID applications.

Low := 0
High := K
While (Low < High) {

Mid :=
⌊

Low+High
2

⌋

if S (eMid) ≤ S(eMid+1)
1−ε

{High = Mid;}
else{Low = Mid +1;}
end if;

}
Optimal number of compute nodes := High.

Algorithm 1: Pseudo code of LDS strategy.

number of compute nodes. In addition, the simplicity of LDS
strategy to determine the optimal number of compute nodes
is validated.

First, denote the possible solution space of the compute
nodes and the number of CPUs per node asO, whereO =
{(L, n), L ∈ [1, . . . , 85] and n ∈ [1, . . . , 4]}. To show that
using more compute nodes and less CPUs per node provides
better performance in general, we ran our real-time “Aibo”

0 20 40 60 80 100
700

750

800

850

900

950

1000
Service processing time by using 2 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

2 compute nodes, 1 CPUs per node
1 comupte nodes, 2 CPUs per node

(a) 2 CPUs

0 20 40 60 80 100
400

450

500

550

600

650

700

750
Service processing time by using 4 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

4 compute nodes, 1 CPU per node
2 comupte nodes, 2 CPUs per node
1 comupte nodes, 4 CPUs per node

(b) 4 CPUs

0 20 40 60 80 100
250

300

350

400

450

500

550
Service processing time by using 8 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

8 compute nodes, 1 CPU per node
4 comupte nodes, 2 CPUs per node
2 comupte nodes, 4 CPUs per node

(c) 8 CPUs

0 20 40 60 80 100
200

250

300

350

400

450
Service processing time by using 16 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

16 compute nodes, 1 CPU per node
8 comupte nodes, 2 CPUs per node
4 comupte nodes, 4 CPUs per node

(d) 16 CPUs

0 20 40 60 80 100
200

250

300

350

400

450
Service processing time by using 32 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

32 compute nodes, 1 CPU per node
16 comupte nodes, 2 CPUs per node
8 comupte nodes, 4 CPUs per node

(e) 32 CPUs

0 20 40 60 80 100
200

220

240

260

280

300

320

340

360

380

400
Service processing time by using 64 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

64 compute nodes, 1 CPU per node
32 comupte nodes, 2 CPUs per node
16 comupte nodes, 4 CPUs per node

(f) 64 CPUs

0 20 40 60 80 100
200

250

300

350

400

450

500

550
Service processing time by using 128 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g

tim
e

(m
s)

64 compute nodes, 2 CPUs per node
32 comupte nodes, 4 CPUs per node

(g) 128 CPUs

Figure 6. Service processing time of the Aibo application using different total amount of CPUs.

Table II
AVERAGE SERVICE PROCESSING TIME OFTRECVID APPLICATION.

(L, n) (16, 1) (8, 2) (4, 4) (64, 1) (32, 2) (16, 4) (64, 2) (32, 4)
S(L, N) ms 669.28 682.44 736.56 241.62 244.90 263.01 190.70 218.27

application on a varying numbers of CPUs (2, 4, 8, 16, 32, 64,
and 128 CPUs). We compared the obtained service processing
times for a fixed total number of CPUs, while varying the
number of CPUs per nodes. The results are shown in Figure 6.
In this figure we notice that for small numbers of CPUs (say,
≤ 16), the service processing time is largely independent of
the ratio between the total number of employed CPUs and the
number of employed CPUs per node. As the number of CPUs
increases, it becomes obvious that wider distribution of the
CPUs, that is, using less CPUs per node and more compute
nodes, provides better performance.

We also compared the service processing time for our off-
line “TRECVID” application, on a varying total number of
CPUs (16, 64 and 128 CPUs). The results are tabulated in
Tabel II. For this application we have a similar conclusion:
more compute nodes and less CPUs per node provides the
best performance results.

In Section III-A1, we mentioned that the optimal number
of compute nodes is consistently found to be a power of
2. Combining this result and the observations above, we
reduced the original spaceO with 85 × 4 = 340 possible
solutions to the spaceX with 9 possible solutions, where
X = {(2i, 1), i ∈ [0, . . . , 6]} ∪ (64, 2) ∪ (64, 4). Based on
X, we apply our LDS method to find the minimum value
after blog29c = 3 steps. We use Table III to explain the three
steps taken in AIBO application whenε = 0.1. We continue
to approach the optimal number of compute nodesL∗ by
doubling the total number of compute nodes, until the relative
improvement is less than 10%. Here the index of the elements
of X is denoted as[0, 1, . . . , 8]. Then the LDS method is
applied. In the first step, we haveLow = 0 and High = 8,
and thus

Mid =

⌊

Low + High

2

⌋

= 4.

Therefore, we measure the service processing time using24 =
16 and 25 = 32 compute nodes and 1 CPU per node. The
related average service processing times are shown in the first
row of Table IV. Because the relative improvement using 32
compute nodes compared to 16 compute nodes is 0.27 (> ε),
we conclude that 16 compute nodes is not optimal. Therefore,
we continue searching for the optimal. In the second step, the
index value 5 (= 32 compute nodes) is set as the value of Low.
The value of High remains the same. ThereforeMid = 6.
When calculating the relative improvement using 64 compute
nodes and 2 CPUs per node compared to26 compute nodes,
we find that the improvement (-0.15) is less thanε. Therefore,
in the third step, the value of High is reset to 6, and Low
remains the same. In this case,Mid = 5. The improvement of
using26 compute nodes compared to25 is more thanε. Thus,
Low is reset to 6, such that Low is equal to High, and the

whole procedure is finished. The LDS method returns index 6
as the optimal solution. This means, forε = 0.1, the optimal
number of CPUs is26 = 64 compute nodes.

For differentε (0.1, 0.2 and 0.3), the(L, n) to be evaluated
and the corresponding average service processing time of both
applications are reported in Table IV and Table V, respectively.
The optimal L∗ that we found for both applications for
different values ofε are listed in Table VI. In this table, we
notice that with largerε, theL∗ remains the same or decreases.

Table III
THREE STEPS TO APPROACH THE OPTIMAL(L, n).

Step Low High Mid compare relative Action
to improvement

1 0 8 4 5 0.27 keep high half
2 5 8 6 7 -0.15 keep low half
3 5 6 5 6 0.15 finish, return index 6

Table IV
AVERAGE SERVICE PROCESSING TIME OFA IBO APPLICATION.

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ε = 0.1

S(L, N) ms 152.26 110.64 93.58 108.55

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ε = 0.2

S(L, N) ms 152.26 110.64 93.58 108.55

(L, n) (4, 1) (8, 1) (16, 1) (32, 1)
ε = 0.3

S(L, N) ms 448.57 247.72 152.26 110.64

Table V
AVERAGE SERVICE PROCESSING TIME OFTRECVID APPLICATION.

(L, n) (16, 1) (32, 1) (64, 1) (64, 2) (64, 4)
ε = 0.1

S(L, N) ms 669.28 395.79 241.62 190.70 222.61

(L, n) (16, 1) (32, 1) (64, 1) (64, 2) (64, 4)
ε = 0.2

S(L, N) ms 669.28 395.79 241.62 190.70 222.61

(L, n) (16, 1) (32, 1) (64, 1) (64, 2)
ε = 0.3

S(L, N) ms 669.28 395.79 241.62 190.70

Table VI
THE VALUE OF ENGINEERING KNEE.

(a) Aibo application

ε L∗

0.1 64 (64,1)
0.2 32 (32,1)
0.3 16 (16,1)

(b) TRECVID application

ε L∗

0.1 128 (64,2)
0.2 128 (64,2)
0.3 64 (64,1)

As shown above, we notice that our method is very simple
to implement. Besides this, it is very effective because of the
small number of steps required to find the optimal number of
compute nodes. In addition, by varyingε, we are able to obtain
the optimal result related to the desired improvement in the
service processing time by increasing the number of compute
nodes.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper we explored the relation between the service
processing time and the number of compute nodes using dif-
ferent number of CPUs. In our experiments, we observed that
there exists a threshold valueL∗ (referred to as theengineering
knee) such that the service processing time decreases fast as
a function ofL for L < L∗, whereas the service processing
time flattens out, and may even increase, forL > L∗. To find
L∗, first we reduce the possible solution set. Then we apply
our LDS method to findL∗ in a fast way. Extensive validation
has shown that our method is highly effective.

Specifically, we have found that our method can find optimal
resource utilization for an average sized cluster system inno
more than three evaluation steps. As a result, we conclude that
our method adheres to all requirements as stated in the intro-
duction: it is simple, easily implementable, and effective. In
addition, our method also takes into account system variation.

The work described in this paper is part of a much large
strive to bring the benefits of high-performance computing
to the multimedia computing community. One important aim,
in this respect, is to make large-scale distributed multimedia
applications variability tolerant by way of controlled adaptive
resource utilization. This raises the need for new stochastic
control methodologies that react to the continuously changing
circumstances in large-scale Grid systems. Whereas the current
paper focuses on optimization of resource utilization under a
rather static repetitive workload, whilst taking into account
system variations, further sources of variability exist.

First, in MMCA applications the amount of data that needs
to be processed often changes wildly over time. For one,
this is because data compression techniques generally cause
video streams to have variable bit rates. Also, in certain
specific settings, cameras may only start producing data after
motion has been detected. In other situations, such as iris
scans performed at airports, the amount of data to be analyzed
simply depends on the time schedule of arriving airplanes.

Second, MMCA algorithms themselves are a source of
variability. While many algorithms working on the pixel
values in images and video streams have predictable behavior,
algorithms working on derived structures, such as feature
vectors describing part of the content of an image, often are
data-driven. A common example is support vector machine
(SVM) based classification, which tries to find an optimal
separation in high-dimensional clouds of labeled data points.
The identification of all support vectors that fully describe
the separation depends on the positioning of the labeled data
points in the high-dimensional space. Consequently, the time
required to find all support vectors is largely data dependent. In
the near future we will incorporate such sources of variability
in our current optimization method. In addition, we will test
our method on a much larger scale for a much larger vari-
ety of state-of-the-art multimedia applications. The presented
example applications merely represent two of these.

REFERENCES

[1] M. Dobber, G. Koole, and R. van der Mei, “Dynamic Load Balancing
for a Grid Application,” in Proc. International Conference on High
Performance Computing (HiPC), vol. 1, pp. 342–352, 2004.

[2] M. Feldman, “Grid Envy”,ClusterVision News, pp. 6–7, 2006.
[3] J.M. Geusebroek, G.J. Burghouts, and A.W.M. Smeulders, “The Am-

sterdam Library of Object Images,” International Journal ofComputer
Vision, vol. 61, no. 1, pp. 103–112, 2005.

[4] C. Grelck, “Array Padding in the Functional Language SAC,” in Proc.
International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA), vol. 5, pp. 2553–2560, 2000.

[5] A. Hauptman et al, ”Informedia at TRECVID 2003: Analyzing and
Searching Broadcast News Video”, InProceedings of TREC 2003,
Gaithersburg, USA, November 2003.

[6] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[7] D. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc. Redwood
City, CA, USA, 1998.

[8] B. Maggs, L. Matheson, and R. Tarjan, “Models of parallelcomputation:
a survey and synthesis,”in Proc. International Conference on System
Sciences, vol. 2, pp. 61–70, 1995.

[9] Online, “http://www.asci.tudelft.nl/”, 2007.
[10] Online, “http://www.cs.vu.nl/das3/,” 2007.
[11] Online, “http://www.starplane.org/”, 2007.
[12] R. Saavedra-Barrera, A. Smith, and E. Miya, “Machine characteriza-

tion based on an abstract high-level language machine,”IEEE Trans.
Computers, vol. 38, no. 12, pp. 1659–1679, 1989.

[13] K. Schutte and G. van Kempen, “Optimal Cache Usage for Separable
Image Processing Algorithms on General Purpose Workstations,” IEEE
Transactions on Signal Processing, vol. 59, no. 1, pp. 113–122, 1997.

[14] F.J. Seinstra, D. Koelma, and J.M. Geusebroek, “A Software Ar-
chitecture for User Transparent Parallel Image Processing,” Parallel
Computing, vol. 28, nos. 7-8, pp.967–993, 2002.

[15] F.J. Seinstra, C.G.M. Snoek, D. Koelma, J.M. Geusebroek, and M. Wor-
ring, ”User Transparent Parallel Processing of the 2004 NIST TRECVID
Data Set”, InProceedings of the International Parallel & Distributed
Processing Symposium (IPDPS 2005)”, Denver, Colorado, USA, April
2005.

[16] F.J. Seinstra, J.M. Geusebroek, D. Koelma, C. Snoek, M. Worring, and
A. Smeulders, “High-Performance Distributed Image and Video Content
Analysis with Parallel-Horus,”IEEE Multimedia, vol. 14, no. 4, pp. 64–
75, 2007.

[17] C.G.M. Snoek et al, ”The MediaMill TRECVID 2005 SemanticVideo
Search Engine”, InProceedings of the 3rd TRECVID Workshop, Gath-
ersburg, USA, November 2005,

[18] C.G.M. Snoek, M. Worring, J.M. Geusebroek, D.C. Koelma,F.J. Sein-
stra, and A.W.M. Smeulders, “The Semantic Pathfinder: Using anAu-
thoring Metaphor for Generic Multimedia Indexing,”IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1678–
1689, 2006.

