On the Optimization of Resource Utilization In
Distributed Multimedia Applications

R. Yang ', R.D. van der Meif, D. Roubos, F.J. Seinstra and G.M. Koolé

*Vrije Universiteit Amsterdam, Faculty of Sciences
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands
Email: ryang@few.vu.nl

fCentre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands

Abstract—The application and research area of Multimedia from surveillance cameras, may even need to work under real-
Content Analysis (MMCA) considers all aspects of the automated time restrictions. To (automatically) optimize the resmuuti-
extraction of new knowledge from large multimedia data streams lization of such applications executing on large colletsiof
and archives. In recent years, there has been a tremendousawth . .
in the MMCA application domain (for real-time and off-line compute clustgrs, efficient methods must be available that d.
execution scenarios alike), and this growth is likely to continue termine the optimal number of nodes per compute clustes Thi
in the near future. Multimedia applications operated in a real- optimization problem generally depends on the applicasibn
time environment pose very strict requirements on the obtained hand, and on the specifics of the computation environment
processing times, while off-line applications have to perform (e.g., network characteristics, CPU power memory, I/0). In
within ‘tolerable’ time frames. To meet these requirements, large- g . . ’ : )
scale multimedia applications typically are being executed on this conte?(t, it is essential to properly balan_ce the foifgy
Grid systems consisting of large collections of compute clusters. trade-off: if the number of compute nodes is too low, then
For optimized use of resources, it is essential to determine the the processing power is insufficient to meet strict procegsi
optimal number of compute nodes per cluster, properly dealing time requirements of real-time applications; if the numbgr
with the perceived computation versus communication ratio. This - oomnte nodes is too high, the parallelization overhead wil
ratio generally depends on the characteristics of the application . .
at hand, and on the software and hardware specifics of the CAUSE & degradation of the_computatlonz_il p_erformance.d—,lenc
computational environment. there is an urgent need farmple and easily implementable,

Motivated by these observations, in this paper we develop a Yyet effective methods (in terms of the number of evaluation
simple and easy-to-implement method to determine the “optimal”  steps), to determine the optimal level of parallelism. Akbe
number of parallel compute nodes. The method is based on the method should bedaptive to system variation.

classical binary search method for non-linear optimization, and
does not depend on the, usually unknown, specifics of the system. Saavedra-Barrera et al. [12] have measured system per

Extensive experimental validafion on a real distributed system formance forsequential Fortran programs in terms of an

shows that our method is indeed highly effective. Abstract Fortran Machine (AFM), an approach referred to
as narrow spectrum benchmarking. The AFM-based approach
|. INTRODUCTION provides a solution to the problem of the high complexity of

complete analytical study of computer systems. The dralwbac

Today, multimedia data is rapidly gaining importance alongf the approach is that system variance is almost completely
with recent deployment of publicly accessible digital Wd@én ignored. For applications working on extensive dense data
archives, surveillance cameras in public locations, artd-aufields (e.g., image data structures) this is a too crudeicgsty
matic comparison of forensic video evidence [18]. In a fews variations in the hit ratio of caches and system intesrupt
years, computerized access to the content of multimedi deften have a significant impact on performance [4], [13].
will be a problem of phenomenal proportions, as digital vide Many other performance estimation techniques that incorpo
may produce high data rates, and multimedia archives $yeadate more detailed behavioral abstractions relating torthjr
run into petabytes 10'°) of storage space. As individualcomponents of a computer system [6], [8], however, need tens
compute clusters can not satisfy the increasing computtioif not hundreds, of platform-specific machine abstractitms
demands, distributed supercomputing on large collectmins obtain truly accurate estimations. Consequently, thentisse
clusters (Grids) is rapidly becoming indispensable. requirements of simplicity and applicability are not stid.

Problems in Multimedia Content Analysis (MMCA) oftenTo overcome this problem, Seinstra et al. [14] have designed
must work under strict time constraints. For example, @ new model for performance estimation jodrallel image
avoid delays in queues of people waiting, results of irigrocessing applications running on clusters, based on the
scans should be presented within a period of no more thAbstract Parallel Image Processing Machine (APIPM). The
5 seconds. Largely autonomous applications, such as #RIPM model has been used in a large set of realistic image
automatic detection of suspect behavior in video data néethi processing applications to find the optimal number of comput



Table |
OVERVIEW OF DAS-3 CLUSTER SITES

Cluster Nodes Type Speed Memory | Storage | Node HDDs Network

VU 85 dual dual-core 2.4 GHz 4 GB 10 TB 85 x 250 GB | Myri-10G and GbE
LU 32 dual single-core | 2.6 GHz 4 GB 10 TB 32 x 400 GB | Myri-10G and GbE
UVA 41 dual dual-core 2.2 GHz 4 GB 5TB 41 x 250 GB | Myri-10G and GbE
TUD 68 dual single-core | 2.4 GHz 4 GB 5TB 68 x 250 GB | GbE (no Myri-10G)
UVA-MN 46 dual single-core | 2.4 GHz 4 GB 3TB 46 x 1.5 TB Myri-10G and GbE

nodes. The main advantage of this model is that predictiooptimal number of compute nodés, and (2) themain phase
are based on the analysis of a small number of rather highactually run the application on the* parallel nodes. We
level system abstractions (i.e., represented by the APIRNhphasize that the method proposed in this paper is to be used
instruction set). The main limitation of this model, howeve during the initialisation phase.
that the instruction set and its related performance vadwes The remainder of this paper is organized as follows. Sec-
parameterized with a very large number of instruction bairav tion Il presents the experimental setup, and describes>our e
and workload indicators. As such, the model does not meet mmple applications. In Section Il our new modeling apploac
requirements, as obtaining accurate performance valueslfo is formulated. Section IV discussed our experimental tssul
possible parameter combinations is both costly and compldxinally, in Section V we present our conclusions and address
In this paper, we propose a simple method to determitapics for further research.
the “optimal” level of parallelism, in which the number
of evaluation steps is small. In this context, experimental
observations for realistic, large-scale problems in maétiia In a Grid environment, resources have different capacities
content analysis have revealed three important optingimatiand many fluctuations exist in load and performance of
properties. First, in many situations the optimal number @fographically distributed nodes [1]. As the availabildf
parallel compute nodes is found to be a power of 2, i.ggsources and their load continuously vary with time, the
of the form 2™ for somem = 0,1,.... This observation repeatability of the experimental results is hard to gumean
is important because it leads to a dramatic reduction of theder different scenarios in a real Grid environment. Atke,
set of possible solutions. For example, if the number eXperimental results are very hard to collect and to observe
available compute nodes is.,,,.., the size of the solution
space is reduced fromm,,,, (i.e., the number of elements
in the index set{1,..., Muaz}) tO [l0ga(Mimaz)] (i-€., the
number of elements of the s¢g® 2! ... 25} where K = -
[log2(mmaz)]). Here the symbollz| represents the largest
integer< x. Second, on compute nodes consisting of multiple
CPUs (and potentially multiple cores), for a fixed number o
compute elements, using more compute nodes and less CF
per node yields better performance. Third, if the comput
cluster processing time is denoted $¢L), with L the number
of compute nodes, then there exists a threshold vafusuch
that S(L) decreases fast as a function bffor L < L*,
whereasS(L) flattens out, and may even increase, fox L*.
L* is commonly referred to as theagineering knee. Moreover,
in practice using too many compute nodes may be very costl
Based on these observations, our proposed method is ainr
at determiningL* as the optimal point of operation. The
method takes the idea of the well-known classical binar
search method for non-linear optimization, and converdges
the relative improvement of (L) with respect toL (on a el
log scale) is close enough to 0 (s&y- 10%). To validate

the effectiveness of the proposed method, we have perform : ) Leiden\

Il. EXPERIMENTAL SETUP

C—

Universilzjl van
Amsterdam
(VL-e & MultimediaN)

{

extensive experimentation on a realistic distributed esyst /
(DAS-3 [9], [10]) for both real-time and off-line applicatis. ‘
The results show that our method is indeed highly effective. \ 4

In practice, running CPU-intensive applications in large-

scale distributed ComPlﬂt_'”Q e_nwronments typ'ca”}/ cotssi Figure 1. The Distributed ASCI Supercomputer 3 with the Star® wide-
of two phases: (1) annitialisation phase to determine the area optical interconnect.



SANTANDER |G

TRECVID DATABASE

Figure 2. Our example real-time (left) and off-line (rightstlibuted multimedia applications, which are capable of dpeirecuted on a world-wide scale.
The real-time application constitutes a visual object redogn task performed by a robot dog. The off-line applicat@pnstitutes our TRECVID system.

Hence, it is wise to perform experiments on a testbed th2@05, and 2006 editions of the international NIST TRECVID
contains the key characteristics of a Grid environment drenchmark evaluation for content-based video retrieval [5
the one hand, and that can be managed easily on the ofi&. The aim of the “TRECVID” application is to find seman-
hand. To meet these requirements, we perform all of otic concepts (e.g., vegetation, cars, people, etc.) in tadwd
experiments on the recently installed DAS-3 (the Distilout of hours of news broadcasts, a.o., from ABC and CNN. The
ASCI Supercomputer 3) Grid test bed [10]. TRECVID concept detection task is, in general terms, defined
DAS-3, see Table | and Figure 1, is a five-cluster wideas follows: Given the standardized TRECVID video data set, a
area distributed system, with individual clusters locaetbur common shot boundary reference for this data set, and & list o
different universities in The Netherlands: Vrije Univeedi feature definitions, participants must return for each epha
Amsterdam (VU), Leiden University (LU), University of Am- list of at most 2000 shots from the data set, ranked accotding
sterdam (UvA), and Delft University of Technology (TUD).the highest possibility of detecting the presence of thatsse
The MultimediaN Consortium (UvA-MN) also participatestic concept. Our “TRECVID” application is computationally
with one cluster, located at the University of Amsterdam. Aistensive; for thorough analysis it easily requires abo6t 1
one of its distinguishing features, DAS-3 employs a novekconds of processing per video frame on the fastest séajuent
internal wide-area interconnect based on optical 10G linksachine at our disposal [15]. Consequently, the requirae ti
(StarPlane [11]), causing DAS-3 sometimes to be referred far participating in the TRECVID evaluation using a single
as "the world’s fastest Grid” [2]. computer easily can take over one year of processing.
Both applications have been implemented using the Parallel
Horus software architecture, that allows programmers feewr
In our experiments, we use the DAS-3 system to run a re@iarallel and distributed multimedia applications in a yull
time multimedia application (referred to as “Aibo”), as Wwelsequential manner [16]. The automatic parallelization and
as an off-line application (referred to as “TRECVID"). distribution of both applications results in servicesdthex-
The “Aibo” application demonstrates real-time object igco ecution: a client program (typically a local desktop maefin
nition performed by a Sony Aibo robot dog [16] (see Figure 2Fonnects to one or moreultimedia servers, each running
Irrespective of the application of a robot, the general fmob on a (different) compute cluster. Each multimedia server is
of object recognition is to determine which, if any, of a give executing in a fully data parallel manner, thus resulting in
repository of objects, appears in an image or video streaftfransparentjask parallel execution of data parallel services.
It is a computationally demanding problem that involves a More specifically, in both applications, before any proeess
non-trivial trade-off between specificity of recognitioa.q., ing takes place, a connection is established between thet cli
discrimination between different faces) and invariancg.(e application and a multimedia server. As long as the conoecti
to shadows, or to differently colored light sources). Due g available, the client can send video frames to this server
the rapid increase in the size of multimedia repositories &very received video frame is scattered by this server into
'’known’ objects [3], state-of-the-art sequential compstao many pieces over the available compute nodes. Normallyy eac
longer can live up to the computational demands, making-higtompute node receives one partial video frame for procgssin
performance computing (potentially at a world-wide sca® The computations at all compute nodes take place in parallel
also Figure 2) indispensable. When the computations are completed, the partial results are
The “TRECVID” application represents a multimedia comgathered by the communication server again and the final
puting system that has been applied successfully in the,200&sult is returned to the client. In this paper, the time twcpss

A. Example applications



a single video frame in this manner is defined as d$@ice
processing time.

Average service processing time of Aibo application
600 T L —— T

I1l. M ETHOD FORMULATION soor

This section describes our newly proposed modeling ap-
proach in detail. The approach is based on the results of ex-
tensive experimentation performed on DAS-3 (see Section Il

In our example applications, video frames are being
processed on a per-cluster basis, using a varying humber o
compute nodes on each cluster, each consisting of multiple
CPUs. The compute cluster (®@ervice) processing time is
defined as a functiorS(L,n) of the number of compute
nodesL = 1,...,Muq, and the number of CPUs per node
n=1,2,....Our goal is to minimize the cost functidf(L, n)
over the set of possible values(df, n); thus, we are searching
for the point (,7n) where the functionS(L,n) attains its (@) Aibo application
minimum. In this context, it is important to note that the
set of possible combinationd.,n) may be very large, and
that in practice, finding the optimur@, n) may be very time
consuming. Therefore, our goal is to develop a simple but
effective heuristic method to obtain a nearly-optimal ol
within a short time frame. To this end, we first discuss a
number of observations that we collected during our extensi
experiments, leading to a dramatic reduction of the set of
possible value of L, n). Subsequently, the method to approach
the optimal(L, n) is described in detail.

Local minimum

Minimum

Average service processing time (ms)
w
o
o

. L . L
4 8 14 161820 32 56 64 80
Number of compute nodes

Average service processing time of TRECVID application

®
=]
=]

ms)
\1
o
" o
T

(
(22}
=]
=]

o

=]

=]
T

N

o

S
T

Local minimum

@w

=]

=]
T

Minimum

N

=]

=]
T

Average service processing time

A. Reduction of solution space

Many combinations(L,n) lead to the same total number
T = L-n of CPUs. The following observations, made for our

=

o

S
T

o

32 64 128 256

16
particular example applications, rule out many possibsit Number of compute nodes
1) The optimal number of CPUs often is a power of 2: In (b) TRECVID application

our experiments, we consistently observed that the optimal _ o
number of CPUs is found to be a power 2. For examplé:’|gure 3. Average service processing time v.s. number of ceenpodes.
Figure 3 shows the average processing times for our two

example applications: (a) Aibo, and (b) TRECVID. The resun(16,4). This is explained by the fact that the compute nodes i

show that bothlocal and global minima are consistently AS-3 are linked by a fast local Myrinet interconnect, wiesere
found when the total number of CPUs is a power of o . :
e CPUs within a single node communicate over a shared

This observation leads to a dramatic reduction of the sgt L L
memory bus, which is less efficient.

of possible solutions. Namely, if the number of available Based on these observations. the solution set can be re-
compute NOdes isy,q,, the number of available CPUs in uced drastically. For instance f’or a system having 85 siode
each compute node is,,,., then the solution set is reduce(]d y. ' y 9

to X = {(2¢,29),p = 0,....P,q = 0,...,Q}, where anci4 CPUs per node, the reduced solution spack is
P = [logs(Limaa)], @ := [logz(nmaz)]- {(27,1),p=0...6} U {(64, 2);(64a4)}- )

In a general form, to determine the optimal number of com-

2) Using more compute nodes, yet less CPUs per node, is  pute nodes and CPUs per node, the solution space is reduced to

better: Another important observation from our experimentdhe combinationsX = {(27,1),p =0... P} U {(27,24),q =
results is that for the same total number of CPUs- L -n, 1...Q}, where P := [loga(Limaz)], Q = [log2(nmaz)]-
using more compute nodes and fewer CPUs per nodeFor simplicity, we usg2("+9) 1) instead of(2%", 2¢) for our
n provides better performance. That is, for the same totadtation, although{2("+9) 1) does not exist.
number of CPUSI" = 2™, where the solution set should be )
X := {(2/,29),p + ¢ = m}, among themy should be as B- Steps to approach the optimal (L, n)
small as possible. This observation is illustrated by Fégdy 1) Engineering knee: From the reduced solution space,
where we consider the cade = 64 for three combinations we iteratively increase the total number of CPUs to find the
(L,n) € {(64,1),(32,2),(16,4)}; the results show that the optimal (L, n). When the number of applied compute nodes
combination (64,1) has better performance than (32,2) ahdcomes larger, the parallelization overhead increases, a



Service processmg time by usmg 64 CPUs Average service processing time of Aibo application
T T T T T

— G4 compute nodes, 1 CPU per node
380 11 32 comupte nodes, 2 CPUs per node |4 1600 -
= = 16 comupte nodes, 4 CPUs per node

- 1400
340

1200

IR

1000 -

Service processing time (ms)
w
o
o

@
=]
=]

N
o
=]

Average service processing time (ms)
@
o
o

Job number

n
o
=]

Figure 4. More compute nodes and less CPUs per node is better.

o

n n n i
4 8 16 32 64

1 2
. . Number of compute nodes
may even become dominant. Our experimental results show
that there exists a threshold value* such thatS(2™, 1) (@) Aibo application.
decreases fast fon < m*, Wherea§(2m’, 1) flattens out, and Average service processing time of TRECVID application

may even increase, fon > m*. As an illustration, Figure 5 26004

shows the average service processing times for the Aibo- anc
TRECVID-applications for different values af = 2™. In
both cases, we observe that there exists ssahgation point

L* = 2™ such that increasing the number of parallel nodes
L beyond L* does not lead to a significant reduction of the
service processing times. Throughodt: = 2™ will be
referred to as theengineering knee and is regarded as the
(near-)optimal point of operation.

2000

1500 -

1000 -

o
=]
=]

Average service processing time (ms)

C. LDS method

To find the engineering knele*, we have developed drog- . ‘ ‘ ‘ ‘ ‘
arithmic dichotomy search (LDS) method. The LDS method 4 8 Number of caompute nodes 128 256
follows the idea of a well-known conventional binary search
(CBS) algorithm [7] which aims to find a particular value in (b) TRECVID application

a sorted list. Compared to the CBS strategy, the LDS method Figure 5. Engineering knee of Aibo and TRECVID applications
makes progressively better guesses, and proceeds closer to

the optimal value. Let the elements in the solution Xelbe Low =0

denoted by(eg,...,ex), with K = P+ @, P and Q are High := K

defined in Section IlI-A2. The LDS strategy selects the media While (Low < High) {

element in the seX, denoted byyq. Definee as the desired Mid = Low+High

improvement in the service processing time by increasieg th ’

number of compute nodes. ﬁw > ¢, then we if S (emid) < S(PM“’”) {High = Mid;}
repeat this procedure with a smailer list, and we keep only else{Low = M|d +1}

the elements(emigs1, - - ., ex). If W < ¢ then end if;

the list in which we search becomés,, ..., emiq). Pursuing }

this strategy iteratively, it narrows the search by a factbr Optimal number of compute nodes := High.
two each time, and finds the minimum value that satisfies our

requirement aftetog,(K) iterations. The pseudo code for our Algorithm 1: Pseudo code of LDS strategy.

LDS method for the solution spaégis given in Algorithm 1.

number of compute nodes. In addition, the simplicity of LDS
IV. NUMERICAL RESULTS strategy to determine the optimal number of compute nodes
Even though our LDS method has been applied successfu#iyvalidated.

for all DAS-3 clusters, the detailed experiments presentedFirst, denote the possible solution space of the compute
here have been carried out on the largest cluster at the Vmjedes and the number of CPUs per nodeQasvhereQ =
Universiteit, that consists of 85 compute nodes with 4 CPU$L,n),L € [1,...,85] andn € [1,...,4]}. To show that
per node. In this section, we show the numerical results a$ing more compute nodes and less CPUs per node provides
the average service processing times versus a varying tdtatter performance in general, we ran our real-time “Aibo”



1000

Service processing time (ms) Service processing time (ms)

Service processing time (ms)

550

500

450

450

400

Service processing time by using 2 CPUs

2 compute nodes, 1 CPUs per node
t1iii 1 comupte nodes, 2 CPUs per node

20 40 60 80
Job number

100

(a) 2 CPUs

Service processing time by using 8 CPUs

m— 8 compute nodes, 1 CPU per node
11104 comupte nodes, 2 CPUs per node
= = 2 comupte nodes, 4 CPUs per node| |

20 40 60 80
Job number

(c) 8 CPUs

Service processing time by using 32 CPUs
— 32 compute nodes, 1 CPU per node
111111116 comupte nodes, 2 CPUs per node
= = 8 comupte nodes, 4 CPUs per node
0

Job number

(e) 32 CPUs

Service processing time by using 4 CPUs

750 T T T
— 4 cOmpute nodes, 1 CPU per node
112 comupte nodes, 2 CPUs per node
700 = = ] comupte nodes, 4 CPUs per node |-

Service processing time (ms)

400 . . . .
20 40 60 80 100
Job number
(b) 4 CPUs
Service processing time by using 16 CPUs
450 T T T
m— 16 compute nodes, 1 CPU per node
11100 8 comupte nodes, 2 CPUs per node
= = 4 comupte nodes, 4 CPUs per node
400 1

350

300

Service processing time (ms)

250

200 . . . .
20 40 60 80 100
Job number
(d) 16 CPUs
Service processing time by using 64 CPUs
400 T T T T
m— 64 compute nodes, 1 CPU per node
380 110032 comupte nodes, 2 CPUs per node |4
= = 16 comupte nodes, 4 CPUs per node
360 1

340

-

RERRRRRENRENT

280

Service processing time (ms)

200 y
0

Service processing time by using 128 CPUs

550 T

m— 64 compute nodes, 2 CPUs per node
111111132 comupte nodes, 4 CPUs per node

500

%) IS IS
a S @
=} s} =}

Service processing time (ms)

W
S
s}

250

20

40 60
Job number

80

(g) 128 CPUs

40
Job number

(f) 64 CPUs

100

Figure 6. Service processing time of the Aibo applicatiomgdiifferent total amount of CPUs.



Table I
AVERAGE SERVICE PROCESSING TIME OFRECVID APPLICATION.

(L, n) (16, 1) [ (82) | (4,4) [ (64,1) | (32,2) | (16,4) || (64,2) | (32, 4)
S(L,N) ms || 669.28 | 682.44 | 736.56 || 241.62 | 244.90 | 263.01 || 190.70 | 218.27

application on a varying numbers of CPUs (2, 4, 8, 16, 32, 6dhole procedure is finished. The LDS method returns index 6
and 128 CPUs). We compared the obtained service processasghe optimal solution. This means, foe 0.1, the optimal
times for a fixed total number of CPUs, while varying th@umber of CPUs i€ = 64 compute nodes.
number of CPUs per nodes. The results are shown in Figure 6For differente (0.1, 0.2 and 0.3), théL, n) to be evaluated
In this figure we notice that for small numbers of CPUs (sagnd the corresponding average service processing timetiof bo
< 16), the service processing time is largely independent applications are reported in Table IV and Table V, respebtiv
the ratio between the total number of employed CPUs and thee optimal * that we found for both applications for
number of employed CPUs per node. As the number of CPd#ferent values ofe are listed in Table VI. In this table, we
increases, it becomes obvious that wider distribution @f tmotice that with largee, the L* remains the same or decreases.
CPUs, that is, using less CPUs per node and more compute
nodes, provides better performance. Table Il

. . . THREE STEPS TO APPROACH THE OPTIMA(L, n).

We also compared the service processing time for our off-

line “TRECVID” application, on a varying total number of  [Step [Tow [FHigh [ Mid | compare | refative Action
CPUs (16, 64 and 128 CPUs). The results are tabulated in; 2 Sprovement

0 8 4 5 keep high half
i i 1 imi i . 2 5 8 6 7 -0.15 keep low half
Tabel II. For this application we have a similar conclusion: |2 2 . = £ ouE e T

more compute nodes and less CPUs per node provides the
best performance results.

In Section 1lI-Al, we mentioned that the optimal number Table IV
of compute nodes is consistently found to be a power of AVERAGE SERVICE PROCESSING TIME OAIBO APPLICATION.
2. Combining this result and the observations above, we

reduced the original spac® with 85 x 4 = 340 possible e=0.1 (SL(L")N) ms (11562’.;23 (ﬁb.le)4 (6;3’.23 (6f6§)55
solutions to the spac& with 9 possible solutions, where T, n) 6, 1) (32 1) (64 1) (64 2
X = {(2%,1),i € [0,...,6]} U (64,2) U (64,4). Based on €=02 g(L,N)ms 15226 11064 9358  108.55
X, we apply our LDS method to find the minimum value —__,, (") 41 @1 (@161 (321

=03
after |log29]| = 3 steps. We use Table Il to explain the three S(L,N)ms 44857 247.72 15226 11064

steps taken in AIBO application when= 0.1. We continue

to approach the optimal number of compute nodés by Table V

dOUinng the tOtal number Of CompUte nOdeS’ untiI the Mﬂﬁtl AVERAGE SERVICE PROCESSING TIME OFRECVID APPLICATION.
improvement is less than 10%. Here the index of the elements

of X is denoted ag0,1,...,8]. Then the LDS method is o1 (L<, n) ) 16,1 32,0) (64,1) (64,2) (64, 4)
. . _ . _ €=y S(L,N)ms 669.28 395.79 241.62 190.70 22261
applied. In the first step, we haveow = 0 and High = 8, - o, e (= e sy s
and thus ) €=02 gL N)ms 66928 39579 241.62 190.70 222.61
Mid — {LOU} + HZQhJ 4 EPY (73D 0.1 Gz (6L 1 (64 2)
- 2 - €= S(L,N) ms 669.28 39579 241.62 190.70
Therefore, we measure the service processing time @sing
16 and 2° = 32 compute nodes and 1 CPU per node. The Table VI
related average service processing times are shown in gte fir THE VALUE OF ENGINEERING KNEE
row of Table IV. Because the relative improvement using 32 (a) Aibo application (b) TRECVID application
compute nodes compared to 16 compute nodes is G:2}, < * < *
we conclude that 16 compute nodes is not optimal. Therefore, 0.1 64 (64.1) 0.1 128 (64,2)
; ; ; 0.2 32 (32,1) 0.2 128 (64,2)
we continue searching for the optimal. In the second step, th g 16 (16.0) g 54 64 0)

index value 5 32 compute nodes) is set as the value of Low.
The value of High remains the same. Therefdied = 6.
When calculating the relative improvement using 64 computeAs shown above, we notice that our method is very simple
nodes and 2 CPUs per node compare@taompute nodes, to implement. Besides this, it is very effective becausehef t
we find that the improvement (-0.15) is less thaMherefore, small number of steps required to find the optimal number of
in the third step, the value of High is reset to 6, and Lowompute nodes. In addition, by varyiagwe are able to obtain
remains the same. In this cageid = 5. The improvement of the optimal result related to the desired improvement in the
using2° compute nodes compared 2o is more thare. Thus, service processing time by increasing the number of compute
Low is reset to 6, such that Low is equal to High, and theodes.




V. CONCLUSIONS AND FURTHER RESEARCH
(1]

In this paper we explored the relation between the service
processing time and the number of compute nodes using dé—
ferent number of CPUs. In our experiments, we observed that
there exists a threshold valdé (referred to as thengineering
knee) such that the service processing time decreases fast ES
a function of L for L < L*, whereas the service processing
time flattens out, and may even increase, flor L*. To find  [5]
L*, first we reduce the possible solution set. Then we apply
our LDS method to find.* in a fast way. Extensive validation [g]
has shown that our method is highly effective.

Specifically, we have found that our method can find optima[|7]
resource utilization for an average sized cluster systemoin
more than three evaluation steps. As a result, we conclate tHel
our method adheres to all requirements as stated in the intro
duction: it is simple, easily implementable, and effectite (]
addition, our method also takes into account system vanati H(l)]

The work described in this paper is part of a much lardé?]
strive to bring the benefits of high-performance computing
to the multimedia computing community. One important ainy3]
in this respect, is to make large-scale distributed multiime
applications variability tolerant by way of controlled adiae [14]
resource utilization. This raises the need for new stoahast
control methodologies that react to the continuously chrang
circumstances in large-scale Grid systems. Whereas thentur
paper focuses on optimization of resource utilization urale
rather static repetitive workload, whilst taking into aoob
system variations, further sources of variability exist. [16]

First, in MMCA applications the amount of data that needs
to be processed often changes wildly over time. For one,
this is because data compression techniques generallg cqug
video streams to have variable bit rates. Also, in certain
specific settings, cameras may only start producing daés af[t18
motion has been detected. In other situations, such as Iris
scans performed at airports, the amount of data to be amhlyze
simply depends on the time schedule of arriving airplanes.

Second, MMCA algorithms themselves are a source of
variability. While many algorithms working on the pixel
values in images and video streams have predictable behavio
algorithms working on derived structures, such as feature
vectors describing part of the content of an image, often are
data-driven. A common example is support vector machine
(SVM) based classification, which tries to find an optimal
separation in high-dimensional clouds of labeled datatpoin
The identification of all support vectors that fully deserib
the separation depends on the positioning of the labeleal dat
points in the high-dimensional space. Consequently, the ti
required to find all support vectors is largely data depetiden
the near future we will incorporate such sources of varighil
in our current optimization method. In addition, we will tes
our method on a much larger scale for a much larger vari-
ety of state-of-the-art multimedia applications. The preed
example applications merely represent two of these.

f15]

REFERENCES

M. Dobber, G. Koole, and R. van der Mei, “Dynamic Load Balany
for a Grid Application,” in Proc. International Conference on High
Performance Computing (HiPC), vol. 1, pp. 342-352, 2004.

] M. Feldman, “Grid Envy”,ClusterVision News, pp. 6—7, 2006.
] J.M. Geusebroek, G.J. Burghouts, and A.W.M. Smeuldefae“Am-

sterdam Library of Object Images,” International JournalCafmputer
Vision, vol. 61, no. 1, pp. 103-112, 2005.

C. Grelck, “Array Padding in the Functional Language SAM Proc.
International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA), vol. 5, pp. 2553-2560, 2000.

A. Hauptman et al, "Informedia at TRECVID 2003: Analyzingnca
Searching Broadcast News Video”, IRroceedings of TREC 2003,
Gaithersburg, USA, November 2003.

R. Jain, The Art of Computer Systems Performance Analysis.
Wiley & Sons, 1991.

D. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc. Redwood
City, CA, USA, 1998.

B. Maggs, L. Matheson, and R. Tarjan, “Models of paratiefnputation:

a survey and synthesisih Proc. International Conference on System
Sciences, vol. 2, pp. 61-70, 1995.

Online, “http://www.asci.tudelft.nl/”, 2007.

John

] Online, “http://www.cs.vu.nl/das3/,” 2007.

Online, “http://www.starplane.org/”, 2007.

R. Saavedra-Barrera, A. Smith, and E. Miya, “Machine rabteriza-
tion based on an abstract high-level language machifiEE Trans.
Computers, vol. 38, no. 12, pp. 1659-1679, 1989.

K. Schutte and G. van Kempen, “Optimal Cache Usage for &=
Image Processing Algorithms on General Purpose WorkstdgtitBEE
Transactions on Sgnal Processing, vol. 59, no. 1, pp. 113-122, 1997.
F.J. Seinstra, D. Koelma, and J.M. Geusebroek, “A SakwAr-
chitecture for User Transparent Parallel Image Proce&siParallel
Computing, vol. 28, nos. 7-8, pp.967-993, 2002.

F.J. Seinstra, C.G.M. Snoek, D. Koelma, J.M. Geusehraeé M. Wor-
ring, "User Transparent Parallel Processing of the 2004INTIRECVID
Data Set”, InProceedings of the International Parallel & Distributed
Processing Symposium (IPDPS 2005)”, Denver, Colorado, USA, April
2005.

F.J. Seinstra, J.M. Geusebroek, D. Koelma, C. Snoek, kkrivig, and
A. Smeulders, “High-Performance Distributed Image and Videatént
Analysis with Parallel-Horus JEEE Multimedia, vol. 14, no. 4, pp. 64—
75, 2007.

C.G.M. Snoek et al, "The MediaMill TRECVID 2005 Semantieo
Search Engine”, IrProceedings of the 3rd TRECVID Workshop, Gath-
ersburg, USA, November 2005,

] C.G.M. Snoek, M. Worring, J.M. Geusebroek, D.C. KoelrRa), Sein-

stra, and A.W.M. Smeulders, “The Semantic Pathfinder: Using\an
thoring Metaphor for Generic Multimedia Indexind EEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1678—
1689, 2006.



