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Abstra
tWe study an asymmetri
 
y
li
 polling system with Poisson arrivals, general servi
e-time andswit
h-over time distributions, and with so-
alled two-phase gated servi
e at ea
h queue, aninterleaving s
heme that aims to enfor
e some level of "fairness" among the di�erent 
ustomer
lasses. For this model, we use the 
lassi
al theory of multi-type bran
hing pro
esses (MTBPs)to derive 
losed-form expressions for the Lapla
e-Stieltjes Transform (LST) of the waiting-time distributions when the load tends to 1, in a general parameter setting and under properheavy-traÆ
 (HT) s
alings. This result is strikingly simple and provides new insights inthe behavior of two-phase polling systems. In parti
ular, the result provides insight in thewaiting-time performan
e, and the tradeo� between eÆ
ien
y and fairness of two-phase gatedpolling 
ompared to the 
lassi
al one-phase gated servi
e poli
y.

1 Introdu
tionA polling system is a multi-queue single-server system in whi
h the server visits the queues in 
y
li
order to pro
ess requests pending at the queues. Polling models o

ur naturally in the modelingof systems in whi
h servi
e 
apa
ity (e.g., CPU, bandwidth) is shared by di�erent types of users,ea
h type having spe
i�
 traÆ
 
hara
teristi
s and performan
e requirements. Polling models �nda variety of appli
ations in the areas of 
omputer-
ommuni
ation networks, produ
tion, manufa
-turing and maintenan
e [17, 31℄. In many appli
ations of polling models a key issue is how torealize some level of fairness among di�erent 
ustomer 
lasses. Motivated by this, many servi
edis
iplines have been proposed 
ontaining some kind of interleaving s
heme to enfor
e fairnessamong di�erent 
ustomer 
lasses by somehow limiting the number of 
ustomers served during asingle visit of the server to a queue. This has led to the de�nition of a variety of servi
e poli
ies,in
luding for example the 
lassi
al K-limited, time-limited or Bernoulli-type servi
e poli
ies whi
h1



put (either �xed or sto
hasti
) upper bounds to the duration of a visit of the server to a queue. Inaddition, a number of variants of exhaustive and gated servi
e poli
ies have been proposed to avoidmonopolization by a single queue, in
luding for example the binomial-gated, fra
tional-exhaustiveor Bernoulli-type servi
e poli
ies, amongst others. The two-phase gated poli
y analyzed in thispaper may be viewed as an interesting alternative to the 
lassi
al gated servi
e poli
y.The motivation for studying polling models with two-phase gated servi
e is twofold. First, theultimate goal of studying the performan
e of polling models is to understand how to eÆ
ientlyoperate the system, e.g. in terms of 'How many 
ustomers should be served during a visit of theserver to a queue?' and 'In what order should the queues be visited by the server?' In this 
ontext,two important issues are often 
onsidered: eÆ
ien
y and fairness. The two-phase gated servi
epoli
y provides a promising means to realize fairness by enfor
ing some level of interleaving be-tween di�erentent 
ustomer 
lasses. As su
h two-phase gated servi
e may be seen as an interestingalternative to the 
lassi
al limited-type (e.g., Bernoulli, K-limited, time-limited) or fra
tional-type(e.g., binomial-gated, fra
tional-exhaustive) servi
e poli
ies. In this 
ontext, the aim of his pa-per is to quantify the trade-o� between eÆ
ien
y and fairness by 
omparing the two-phase gatedmodel with the 
lassi
al one-phase gated model. Se
ond, two-phase servi
e poli
ies �nd spe
i�
appli
ations in the area of Ethernet Passive Opti
al Networks (EPONs). In fa
t, Kramer et al. [14℄propose two-phase s
heduling poli
ies to implement a dynami
 bandwidth allo
ation s
heme in anEthernet Passive Opti
al network (EPON), where pa
kets from di�erent Opti
al Network Units(ONUs) share 
hannel 
apa
ity in the upstream dire
tion. An EPON is a point-to-multipoint net-work in the downstream dire
tion and a multi-point to point network in the upstream dire
tion.The Opti
al Line Terminal (OLT) resides in the lo
al oÆ
e, 
onne
ting the a

ess network tothe Internet. The OLT allo
ates the bandwidth to the Opti
al Network Units (ONUs) lo
ated atthe 
ustomer premises, providing interfa
es between the OLT and end-user network to send vo
ie,video and data traÆ
. In an EPON the pro
ess of transmitting data downstream from the OLT tothe ONUs is broad
ast in variable-length pa
ket a

ording to the 802.3 proto
ol [12℄. However, inthe upstream dire
tion the ONUs share 
apa
ity, and various polling-based bandwidth allo
ations
hemes 
an be implemented. Simple time-division multiplexing a

ess (TDMA) s
hemes based on�xed time-slot assignment su�er from the la
k of statisti
al multiplexing, making ineÆ
ient use ofthe available bandwidth, whi
h raises the need for dynami
 bandwidth allo
ation (DBA) s
hemes.A dynami
 s
heme that redu
es the time-slot size when there are no data to transmit would allowex
ess bandwidth to be used by other ONUs. However, the main obsta
le of implementing su
h as
heme is the fa
t the OLT does not know in advan
e how mu
h data ea
h ONU has to transmit.To over
ome this problem, Kramer et al. [12, 13, 14℄ propose an OLT-based interleaved pollings
heme similar to hub-polling to support dynami
 bandwidth allo
ation. To avoid monopolizationof bandwidth usage of ONUs with high data volumes they propose an interleaved DBA s
hemewith a maximum transmission window size limit. Motivated by this, Park et al. [20℄ proposed thetwo-phase gated servi
e as a means to enfor
e interleaving between di�erent traÆ
 streams, aimingto realize some degree of "fairness" amongst di�erent 
ustomer 
lasses. To this end, they derivea pseudo-
onservation law for the two-phase gated system and use the 
lassi
al bu�er-o

upan
ymethod to express the expe
ted delay as the solution of a set of linear equations. We believe thatapart from its appli
ation in the spe
i�
 
ontext of EPONs, the two-phase servi
e poli
y may alsobe an interesting "fair" alternative to the 
lassi
al gated servi
e poli
y in other appli
ation areas,su
h as produ
tion, manufa
turing and maintenan
e.Despite the fa
t that fairness is an important aspe
t in queueing models, there is no 
ommonly a
-
epted notion of fairness in queueing systems and how to quantify it. Wierman and Har
hol-Balter[44℄ propose to use as a fairness 
riterion the E[T (x)℄=x, where T (x) stands for the 
onditionalsojourn time of a job of size x, to evaluate whether a system is fair or unfair. Raz et al. [25℄ go astep further by proposing the so-
alled Resour
e Allo
ation Queueing Fairness Measure (RAQFM)as an unfairness measure that takes into a

ount both seniority and servi
e-time di�eren
es; theyalso show that queue fairness is sensitive to servi
e-time variability and that the fairness rankingof 
ommonly used s
heduling poli
ies (su
h as FCFS, LCFS, ROS) depends on this parameter.2



Re
ently, Brosh et al. [6℄ have proposed the so-
alled Slowdown Queueing Fairness (SQF) mea-sure, based on a proportionality prin
iple as the underlying belief. SQF 
an be viewed as bridgingthe gap between the slowdown expe
ted 
riterion [44℄ (whi
h fo
uses on servi
e requirements only,not on seniority) and the \natural" waiting-time varian
e (whi
h fo
uses on job seniority, not onservi
e requirements). We refer to [6℄ for a re
ent overview of the available literature on fairnessin queueing systems. To the best of the authors' knowledge fairness has not been addressed in the
ontext of polling models before.The analysis of polling models has re
eived mu
h attention over the past 
ouple of de
ades. Oneof the most remarkable results is that there appears to be a striking di�eren
e in 
omplexity be-tween polling models. Resing [28℄ observed that for a large 
lass of polling models, in
luding forexample 
y
li
 or periodi
 polling models with Poisson arrivals, exhaustive or gated servi
e at allqueues, and swit
h-over times that are independent of the state of the system, the evolution of thesystem at su

essive polling instants at a �xed queue 
an be des
ribed as a multi-type bran
hingpro
ess (MTBP) with immigration. Models that satisfy this MTBP-stru
ture allow for an exa
tanalysis, whereas models that violate the MTBP-stru
ture are often more intri
ate and requireheavy-weight numeri
al te
hniques to obtain the queue-length and waiting-time distributions [4, 5℄.For MTBP-type polling models a number of solution te
hniques have been proposed, in
ludingfor example the 
lassi
al bu�er-o

upan
y and station-time te
hniques [29℄, the Des
endant SetApproa
h [11℄ and the re
ently proposed Mean Value Analysis [45℄. As an interesting extension ofMTBP-type models, Groenevelt and Altman [10℄ and Altman and Fiems [1℄ 
onsider polling mod-els in whi
h the swit
h-over times are 
orrelated, by using sto
hasti
 re
ursive equations. Theirresults show that the 
orrelations between the swit
h-over times may have a signi�
ant impa
ton the waiting-time performan
e of the system. We refer to [29, 30, 32, 43℄ for overviews of theavailable results on polling models.There are several strong reasons for 
onsidering heavy traÆ
 (HT) asymptoti
s. Exa
t analy-sis of the delay in polling models is only possible in some 
ases, and even in those 
ases numeri
alte
hniques are usually required to obtain the expe
ted delay at ea
h of the queues. However,the use of numeri
al te
hniques for the analysis of polling models has several drawba
ks. First,numeri
al te
hniques do not reveal expli
itly how the system performan
e depends on the systemparameters and 
an therefore 
ontribute to the understanding of the system behavior only to alimited extent. Exa
t 
losed-form expressions provide mu
h more insight into the dependen
e ofthe performan
e measures on the system parameters. Se
ond, the eÆ
ien
y of ea
h of the nu-meri
al algorithms degrades signi�
antly for heavily loaded, highly asymmetri
 systems with alarge number of queues, while the proper operation of the system is parti
ularly 
riti
al when thesystem is heavily loaded. These observations raise the importan
e of an exa
t asymptoti
 analysisof the delay in polling models in HT.Over the past de
ade, polling models in HT have re
eived signi�
ant attention. For a two-queuemodel with exhaustive servi
e at both queues, Co�man et al. [7, 8℄ use an averaging prin
iple toderive expressions for the workload and waiting-time distributions under HT assumptions. Formodels with independent Poisson arrivals, Kudoh et al. [16℄ give expli
it expressions for the se
ondmoment of the waiting time in fully symmetri
 systems with gated or exhaustive servi
e at ea
hqueue for models with two, three and four queues, by exploring the 
lassi
al bu�er-o

upan
yapproa
h [30℄. They also give 
onje
tures for the HT limits of the �rst two moments of thewaiting times for systems with an arbitrary number of queues. In a series of papers, Van derMei and 
o-authors explore the use of the Des
endant Set Approa
h (DSA) [11℄ to derive exa
texpressions for the waiting-time distributions in models with mixtures of exhaustive and gatedservi
e and 
y
li
 [33℄ or periodi
 [21℄ server routing, and with simultaneous bat
h arrivals [36℄.Van der Mei [37℄ 
onsiders the general 
lass of polling models that 
an be des
ribed by MTBPs[28℄ and uses the theory of 
riti
al MTBP [24℄ to obtain a framework for deriving HT-limits forthe waiting-time and queue-length disributions. Van der Mei and Winands [41℄ use the MeanValue Analysis (MVA) [45℄ to derive HT limits for the expe
ted delay for 
y
li
 Poisson-driven3



polling models with exhaustive and gated servi
e at all queues. In [40℄ they derive expressions forthe expe
ted delay in 
y
li
 polling models with gated and exhaustive servi
e, providing rigorousproofs for the results 
onje
tured earlier in [7, 22℄. Kroese [15℄ studies 
ontinuous polling systemsin HT with unit renewal arrivals on a 
ir
le and shows that the steady-state number of 
ustomershas approximately a gamma-distribution. Vatutin and Dyakonova [42℄ use the theory of MTBPsto obtain the limiting distributions for several two-queue polling models with zero swit
h-overtimes. Altman and Kushner [1℄ study the HT-behavior of polling models in whi
h the queue maybe temporarily unavailable. For this model, they show that the suitably s
aled total workloads
onverge to a 
ontrolled limit di�usion pro
ess with jumps. They also show that the individualqueued workloads and job numbers 
an be re
overed (asymptoti
ally) from the limiting s
aledworkload. Another interesting limiting regime in whi
h the queue lengths grow to in�nity is whenthe swit
h-over times are large. In this 
ase, strikingly simple results about the distributions ofthe delay 
an be obtained [23, 46, 34℄. In addition to the evaluation of the performan
e of heavilyloaded polling systems, the results 
an also be used to address sto
hasti
 s
heduling problems, seefor example [18, 19, 26, 27℄ and referen
es therein.We 
onsider an asymmetri
 
y
li
 polling model with N queues and with generally distributedservi
e times and swit
h-over times. Ea
h queue re
eives so-
alled two-phase gated servi
e, whi
hworks as follows: Newly in
oming 
ustomers are �rst queued at the phase-1 bu�er. When theserver arrives at a queue, it 
loses the gate behind the 
ustomers residing in the phase-1 bu�er,then serves all 
ustomers waiting in the phase-2 bu�er on a FCFS basis, and moves all 
ustomersbefore the gate at the phase-1 bu�er to the phase-2 bu�er before moving to the next queue. Ina re
ent paper [39℄ we studied the mean of the delay Wi in
urred at queue i, when the load �tends to unity, under proper HT s
alings. Amongst others, the results in [39℄ expli
itly quantifythe trade-o� between the de
rease of eÆ
ien
y and the in
rease in the so-
alled queue fairnessintrodu
ed by implementing the two-phase gated servi
e poli
y (in 
omparison with the 
lassi
alone-phase gated servi
e poli
y); queue fairness is a simple fairness measure that only depends onthe expe
ted delay at ea
h of the queues. An interesting alternative notion of fairness is 
ustomerfairness, whi
h 
onsiders fairness between individual 
ustomers (e.g., depending on their seniorityand servi
e-time requirements). Re
ently, Brosh et al. [6℄ proposed the so-
alled Slowdown Queue-ing Fairness (SQF) as a 
ustomer fairness measure. However, to quantify the SQF of a pollingmodel, we need to quantify the se
ond moments of the waiting times at the queues. Motivated bythis, in this paper we fo
us on the 
omplete distribution ofWi when � tends to unity, under properHT s
alings. Following the general lines dis
ussed in [37℄ for the derivation of HT-asymptoti
sfor bran
hing-type polling models, we obtain a 
losed-form expression for the LST of the limit-ing distribution of (1 � �)Wi (i = 1; : : : ; N) as � goes to 1. The expression is strikingly simpleand shows expli
itly how the waiting-time distributions depend on the system parameters. Theresults expli
itly quantify the trade-o� between the in
rease in fairness and de
rease of eÆ
ien
yintrodu
ed by implementing two-phase gated servi
e poli
ies. In parti
ular, the result providenew fundamental insight in the relative waiting-time distributions for one-phase versus two-phasegated servi
e poli
ies. Furthermore, the results reveal a variety of asymptoti
 insensitivity proper-ties, whi
h provide new insights into the behavior of polling system under medium and heavy load.The remainder of this paper is organized as follows. In Se
tion 2 the model is des
ribed andthe main result of the paper is formulated, i.e. a 
losed-form expression for the LST of thewaiting-time distribution in HT, under proper s
alings. In Se
tion 3 we dis
uss a stepwise ap-proa
h to derive the main result. In Se
tion 4 we dis
uss several asymptoti
 properties and addressthe impli
ations of the results on fairness and eÆ
ien
y by 
omparing two-phase polling s
hemesto the 
lassi
al one-phase polling model. In Se
tion 5 we address a number of topi
s for furtherresear
h. The use of the so-
alled Des
endant Set Approa
h for the present model is dis
ussed inAppendix A.
4



2 ModelConsider a system 
onsisting of N � 2 stations Q1; : : : ; QN , ea
h 
onsisting of a phase-1 bu�er anda phase-2 bu�er. A single server visits and serves the queues in 
y
li
 order. Type-i 
ustomersarrive at Qi a

ording to a Poisson arrival pro
ess with rate �i, and enter the phase-1 bu�er.The total arrival rate is denoted by � = PNi=1 �i. The servi
e time of a type-i 
ustomer is arandom variable Bi, with Lapla
e-Stieltjes Transform (LST) B�i (�) and with �nite k-th momentb(k)i (k = 1; 2). The k-th moment of the servi
e time of an arbitrary 
ustomer is denoted byb(k) = PNi=1 �ib(k)i =� (k = 1; 2). The load o�ered to Qi is �i = �ib(1)i , and the total o�ered loadis equal to � = PNi=1 �i > 0. De�ne a polling instant at Qi as a time epo
h at whi
h the servervisits Qi. Ea
h queue is served a

ording to the two-phase gated servi
e poli
y, whi
h works asfollows. When the server arrives at a queue, it 
loses the gate behind the 
ustomers residing inthe phase-1 bu�er. Then, all 
ustomers waiting in the phase-2 bu�er are served on a First-Come-First-Served (FCFS) basis. Subsequently, all 
ustomers before the gate at the phase-1 bu�er areinstantaneously forwarded to the phase-2 bu�er, and the server pro
eeds to the next queue. Upondeparture from Qi the server immediately pro
eeds to Qi+1, in
urring a swit
h-over time Ri, withLST R�i (�) and �nite k-th moment r(k)i (k = 1; 2). Denote by r := PNi=1 r(1)i > 0 the expe
tedtotal swit
h-over time per 
y
le of the server along the queues. All interarrival times, servi
e timesand swit
h-over times are assumed to be mutually independent and independent of the state ofthe system. A ne
essary and suÆ
ient 
ondition for the stability of the system is � < 1 (
f. [9℄).The following notation will be useful. For ea
h variable x that is a fun
tion of �, we denoteits value evaluated at � = 1 by x̂. For an event E, denote by IE the indi
ator fun
tion on E.Moreover, denote by Ik the k-by-k identity matrix, and by 0k the k-by-k matrix whose entriesare all 0. To make the 
omparison between the model with two-phase gated de�ned above to the
lassi
al model with one-stage gated servi
e at all queues, we denote by W (k)i the delay in
urredby an arbitrary 
ustomer at Qi, de�ned as the time between the arrival of a 
ustomer at a stationand the moment at whi
h it starts to re
eive servi
e, for the model with k-phase gated servi
e atall queues (k = 1; 2). The main result of this paper is the following 
losed-form expression for theasymptoti
 waiting-time distribution for the two-phase gated polling model (de�ned above) at anarbitrary queue.Theorem 1 (Main result)For 
y
li
 polling models with two-phase gated servi
e at ea
h queue, we have for i = 1; : : : ; N :(1� �)W (2)i !d ~W (2)i (� " 1) (1)where the LST of ~W (2)i is given by~W �(2)i (s) = 1(1� �̂i)rs�� �2�2 + s(1 + �̂i)��2 � � �2�2 + 2s��2� (Re(s) > 0); (2)where�2 := 2rÆ2 b(1)b(2) ; �2 := 2Æ2 b(1)b(2) ; and Æ2 := 12 NXj=1 �̂j(3 + �̂j): (3)Here, the limit is taken su
h that the arrival rates are in
reased, while keeping both the servi
e-time distributions and the ratios between the arrival rates �xed. The proof of Theorem 1, whi
his based on a sequen
e of intermediate results, is given at the end of Se
tion 3. For later referen
e,we also give a similar result for the 
ase of one-phase gated polling servi
e at all queues (see [33℄for a rigorous proof). For 
y
li
 polling models with one-phase gated servi
e at ea
h queue, wehave for i = 1; : : : ; N :(1� �)W (1)i !d ~W (1)i (� " 1) (4)5



where the LST of ~W (1)i is given by~W �(1)i (s) = 1(1� �̂i)rs�� �1�1 + s�̂i��1 � � �1�1 + s��1� (Re(s) > 0); (5)where�1 := 2rÆ1 b(1)b(2) ; �1 := 2Æ1 b(1)b(2) ; and Æ1 := 12 NXj=1 �̂j(1 + �̂j): (6)
3 AnalysisIn this se
tion we use the theory of MTBPs to derive the main result of the paper, Theorem 1. InSe
tion 3.1 we give a general des
ription of MTBPs, and present a limiting theorem for generalMTBPs (Theorem 2) that will be useful throughout. In Se
tion 3.2 we show how the evolutionof the polling model under 
onsideration 
an be des
ribed as a MTBP with immigration at ea
hstate (Theorem 3). In Se
tion 3.3 we dis
uss a stepwise approa
h to 
ombine these results toderive Theorem 1.3.1 Multi-type bran
hing pro
esses with immigrationIn this subse
tion we give a general des
ription of MTBPs with immigration in ea
h state, andintrodu
e notation useful for further referen
e. The reader is referred to [3℄ for more details. We
onsider a general M -dimensional multi-type bran
hing pro
ess with immigration in ea
h state,Z = fZn; n = 0; 1; : : :g, where Zn = (Z(1)n ; : : : ; Z(M)n ) is an M -dimensional ve
tor denoting thestate of the pro
ess in the n-th generation, and where Z(i)n is the number of type-i parti
les inthe n-th generation. The pro
ess Z is 
ompletely 
hara
terized by the one-step o�spring fun
tionf(z) = (f (1)(z); : : : ; f (M)(z)), with z = (z1; : : : ; zM ), and where for jzkj � 1 (k = 1; : : : ;M); i =1; : : : ;M ,f (i)(z) = Xj1;:::;jM�0 p(i)(j1; : : : ; jM )zj11 � � � zjMM ; (7)
where p(i)(j1; : : : ; jM ) is the probability that a type-i parti
le produ
es jk parti
les of type k (k =1; : : : ;M). In addition, the immigration fun
tion is de�ned as follows, for jzkj � 1 (k = 1; : : : ;M),g(z) = Xj1;:::;jM�0 q(j1; : : : ; jM )zj11 � � � zjMM ; (8)where q(j1; : : : ; jM ) is the probability that a group of immigrants 
onsists of jk parti
les of typek (k = 1; : : : ;M). Denoteg := (g1; : : : ; gM ); where gi := �g(z)�zi jz=1 (i = 1; : : : ;M); (9)and where 1 is the M -ve
tor where ea
h 
omponent is equal to 1. A key role in the analysis willbe played by the �rst and se
ond-order derivatives of f(z). The �rst-order derivatives are denotedby the mean matrixM = (mi;j) ; with mi;j := �f (i)(z)�zj jz=1 (i; j = 1; : : : ;M): (10)Thus, for a given type-i parti
le at the n-th generation, mi;j is the mean number of type-j 
hildrenit has at the (n+1)-st generation. Similarly, for a type-i parti
le, the se
ond-order derivatives aredenoted by the matrixK(i) = �k(i)j;k� ; with k(i)j;k := �2f (i)(z)�zj�zk jz=1 (i; j; k = 1; : : : ;M): (11)

6



Denote by v = (v1; : : : ; vM ) and w = (w1; : : : ; wM ) the left and right eigenve
tors 
orrespondingto the largest real-valued, positive eigenvalue � of M, 
ommonly referred to as the maximumeigenvalue, or the Perron-Frobenius eigenvalue (
f., e.g., [3℄), normalized su
h thatv>1 = v>w = 1: (12)The following 
onditions are ne
essary and suÆ
ient 
onditions for the ergodi
ity of the pro
essZ (
f. [24, 28℄): � < 1 andXj1+���+jM>0 q(j1; : : : ; jM )log(j1 + � � �+ jM ) <1: (13)
Following standard bran
hing-pro
ess terminology the pro
ess Z is 
alled sub-
riti
al if � < 1,
riti
al if � = 1 and super-
riti
al if � > 1. Throughout the following de�nitions are 
onvenient.For any variable x that depends on � we use the hat-notation x̂ to indi
ate that x is evaluated at� = 1. Moreover, for � > 0 let�0(�) := 0; and �n(�) := nXr=1 �r�2; n = 1; 2; : : : : (14)
De�nitionA non-negative 
ontinuous random variable �(�; �) is said to have a gamma-distribution withshape parameter � > 0 and s
ale parameter � > 0 if it has the probability density fun
tionf�(x) = ���(�)x��1e��x (x > 0) with �(�) := Z 1t=0 t��1e�tdt; (15)and Lapla
e-Stieltjes Transform (LST)��(s) = � ��+ s�� (Re(s) > 0): (16)Note that in the de�nition of the gamma-distribution � is a s
aling parameter, and that �(�; �)has the same distribution as ��1�(�; 1).Theorem 2Assume that all derivatives of f(z) of order two exist at z = 1 and that 0 < gi <1 (i = 1; : : : ;M).Then

1�n(�)
0BB� Z(1)n...Z(M)n

1CCA!d A0B� v̂1...v̂M
1CA�(�; 1) as (�; n)! (1;1); (17)

where v̂ = (v̂1; : : : ; v̂M ) is the normalized left eigenve
tor of M̂, and where �(�; 1) is a gamma-distributed random variable with s
ale parameter 1 and shape parameter
� := 1Aĝ>ŵ = 1A MXi=1 ĝiŵi; with A := MXi=1 v̂i �ŵ>K̂(i)ŵ� > 0: (18)

Proof: See [24℄. We refer to Remark 3.3 for the details about the 
onvergen
e and the limitingregime 
onsidered in (17). �In the next two subse
tions we will show how Theorem 2, whi
h was derived in the 
ontextof generi
 MTBPs, 
an be transformed into results for the two-phase gated polling model under
onsideration. 7



3.2 PreliminariesWithout loss of generality, throughout we will fo
us on the waiting times at Q1 and 
onsider thestate of the system at polling instants at Q1. Let X(k)i be the number of phase-k 
ustomers at Qiat an arbitrary polling instant at Q1 when the system is in steady state (k = 1; 2; i = 1; : : : ; N).Moreover, for i = 1; : : : ; N , we 
onsider the two-dimensional random variable �X(1)i ; X(2)i �, anddenote the 
orresponding Probability Generating Fun
tion (PGF) by, for jz1j; jz2j � 1,X�i (z1; z2) := E �zX(1)i1 zX(2)i2 � : (19)Denoting the LST of the waiting-time distribution at Q1 byW �(2)1 (�), the waiting-time distributionat Q1 is related to the joint distribution of �X(1)1 ; X(2)1 � through the following expression (
f. [20℄):For Re s � 0, � < 1,W �(2)1 (s) = X�1 (1� s=�1; B�1(s))�X�1 (1� s=�1; 1� s=�1)E hX(1)1 i (B�1(s)� 1 + s=�1) : (20)
To start the analysis, note �rst that straightforward balan
ing arguments lead to the followingexpression for the �rst moments E hX(k)1 i (k = 1; 2): For � < 1,E hX(1)1 i = E hX(2)1 i = �1r1� � : (21)In general the distributions and moments of X(1)1 and X(2)1 
an not be obtained expli
itly. Thefollowing notation is useful. LetX := �X(1)1 ; : : : ; X(1)N ; X(2)1 ; : : : ; X(2)N � (22)be the 2N -dimensional ve
tor that des
ribes the state of the system at an arbitrary polling instantat Q1. To determine the asymptoti
 behavior of the waiting-time distribution given in (20), wefo
us on the limiting behavior of X as � goes to 1. To this end, below we des
ribe the evolutionof the system as an MTBP. Subsequently, in Se
tion 3.3 we use this to transform Theorem 2 intoan asymptoti
 expression for the distribution of (1��)X, i.e. the s
aled version ofX as � goes to 1.To establish the relation with the general MTBP-model des
ribed in Se
tion 2, letX(k)i;n be the num-ber of type-i 
ustomers at phase-k in the system at the n-th polling instant at Q1, for i = 1; : : : ; N ,k = 1; 2 and n = 0; 1; : : :, and letXn := �X(1)1;n; : : : ; X(1)N;n; X(2)1;n; : : : ; X(2)N;n� (23)be the state ve
tor at the n-th polling instant at Q1. Then similar to the analysis made by Resing[28℄ we make the following observation.Theorem 3The dis
rete-time pro
ess fXn; n = 0; 1; : : :g 
onstitutes a 2N -dimensional MTBP with immigra-tion in ea
h state, the LST of the o�spring fun
tion is given by the following expression: Forjs(k)i j � 1 (i = 1; : : : ; N; k = 1; 2),f(s) := �f (1)(s); : : : ; f (2N)(s)� ; with s := �s(1)1 ; : : : ; s(1)N ; s(2)1 ; : : : ; s(2)N � ; (24)and where for i = 1; : : : ; N ,f (i) �s(1)1 ; : : : ; s(1)N ; s(2)1 ; : : : ; s(2)N � := s(2)i ; (25)
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and f (i+N) �s(1)1 ; : : : ; s(1)N ; s(2)1 ; : : : ; s(2)N � := B�i 0� iXj=1 �j �1� s(1)j �+ NXj=i+1�j �1� s(2)j �1A ; (26)
and where the LST of the immigration fun
tion is given by

g �s(1)1 ; : : : ; s(1)N ; s(2)1 ; : : : ; s(2)N � := NYi=1R�i
0� iXj=1 �j �1� s(1))j �+ NXj=i+1�j �1� s(2)j �1A : (27)

Proof: Relations (25)-(27) 
an be obtained along the lines of [28℄ for the 
ase of one-phasegated servi
e, using simple generating-fun
tion manipulations. More spe
i�
ally, in the spirit ofthe work in [28℄, equation (25) follows from the fa
t that a type-i 
ustomer at phase-1 at a givenpolling instant P1 at Q1 is "e�e
tively repla
ed" by a single type-i 
ustomer at phase-2 at thenext polling instant at Q1; note that in this 
ase, the type-i 
ustomer is simply forwarded fromphase-1 to phase-2. Similarly, (26) follows from the fa
t that a type-i 
ustomer at phase-2 at P1is e�e
tively repla
ed by all 
ustomers that arrive in the system during its servi
e time with LSTB�i (�). Finally, (27) stems from the fa
t that the immigration 
onsists of the 
ontributions of newlyarriving 
ustomers that arrive during the swit
h-over times, whi
h are independently distributedwith LST R�i (�); i = 1; : : : ; N . �3.3 Stepwise derivation of Theorem 1In this se
tion we use Theorem 3 to transform Theorem 2 into an expression for the limitingdistribution for (1� �)X as � goes to 1 (Theorem 4). Subsequently, this result is 
ombined with(20) to prove Theorem 1. The stepwise approa
h 
onsists of the following steps:Step 1: Derive an expression for the mean o�spring matrix M for the polling model under
onsideration (Lemma 1).Step 2: Derive an expression for the left and right eigenve
tors v and w of the mean matrix,evaluated at � = 1 (Lemma 2)Step 3: Derive an expression for the mean immigration ve
tor g, evaluated at � = 1 (Lemma 3).Step 4: Derive an expression for limiting behavior of �(�) 
onsidered as a fun
tion of �, as � goesto 1 (Lemma 4).Step 5: Derive an expression for A, evaluated at � = 1 (Lemma 5).Step 6: Combine steps 1 to 5 into an asymptoti
 expression for the distribution of (1� �)X as �goes to 1.Step 7: Use this expression in 
ombination with (20) to obtain Theorem 1.In Subse
tions 3.3.1 to 3.3.7 ea
h of the steps will be dis
ussed in more detail below.3.3.1 Step 1: Mean matrixThe following result gives an expression for the o�spring matrix for the polling model under 
on-sideration.Lemma 1For the two-phase gated polling model, the mean o�spring matrix M = (mi;j) is given byM =M1 � � �MNP; (28)where P is the permutation blo
k matrixP = � 0N ININ 0N � ; (29)
9



where for k = 1; : : : ; N , the elements of the matrix Mk = �m(k)i;j � are given by: For i; j =1; : : : ; 2N , i 6= N + k,m(k)i;j = Ifi=jg; (30)and for i = N + k,m(k)N+k;k+j = �j+kb(1)k for j = 1; : : : ; N � k; (31)m(k)N+k;k+j = �j+k�Nb(1)k for j = N � k + 1; : : : ; N; (32)m(k)N+k;j = 0 for j = 1; : : : ; k or j = N + k + 1; : : : ; 2N: (33)Proof: The result 
an be obtained in a tedious but fairly straightforward manner by taking thepartial derivatives of the o�spring fun
tion de�ned in (25) and (26). As an alternative, we 
an usethe des
ription of the Des
endant Set Approa
h (DSA) dis
ussed in Appendix A, and de�ne for
 = �1; 0; 1; : : : the following ve
tor of des
endant set variables, de�ned in (83)-(85):�
 := ��(1)1;
 � � � �(1)N;
 �(2)1;
 � � � �(2)N;
�> = ��(2)1;
�1 � � � �(2)N;
�1 �(2)1;
 � � � �(2)N;
�> ; (34)Then from DSA point-of-view it is readily seen that it suÆ
es to show that the matrix M de�nedin (28)-(33) satis�es the one-step relation �
+1 = M�
, for 
 = �1; 0; 1; : : :. To this end, we �rstnote that using relation (34) it is easily veri�ed that, for 
 = �1; 0; 1; : : :P�
 = ��(2)1;
 � � � �(2)N;
 �(2)1;
�1 � � � �(2)N;
�1�> : (35)Then using equations (84)-(86), it is readily veri�ed (by indu
tion in k, for k = N;N � 1; : : : ; 1)that for k = 1; : : : ; N , 
 = �1; 0; 1; : : :,Mk : : :MNP�
 = ��(2)1;
 : : : �(2)N;
 �(2)1;
�1 � � � �(2)k�1;
�1 �(2)k;
+1 � � � �(2)N;
+1�> ; (36)whi
h immediately implies by taking k = 1 thatM�
 =M1 : : :MNP�
 = ��(2)1;
 � � � �(2)N;
 �(2)1;
+1 � � � �(2)N;
+1�> = �
+1: � (37)
3.3.2 Step 2: Left and right eigenve
tors of M at � = 1The following result gives the left and right eigenve
tors of the mean o�spring matrix M de�nedin Lemma 1 above, evaluated at � = 1.Lemma 2For the two-phase gated polling model, the right and left eigenve
tors of the mean matrix M̂ aregiven by

ŵ = 0B� ŵ1...ŵ2N
1CA := jbj�1b; with b :=

0BBBBBBBBB�
b(1)1...b(1)Nb(1)1...b(1)N

1CCCCCCCCCA ; (38)
10



and
v̂ = 0B� v̂1...v̂2N

1CA := jbjÆ û; with u := 0B� u1...u2N
1CA ; where ui := �i(�i+� � �+�N ); ui+N := �i (i = 1; : : : ; N);

(39)and whereÆ := û>b = NXi=1 NXj=i �̂i�̂j+ NXi=1 �̂i = 12  1 + NXi=1 �̂2i!+1 = 12 NXi=1 �̂i(3+�̂i); and jbj := 2 NXk=1 b(1)k : (40)
Proof: First, it is readily seen by using equations (30)-(33) that for k = 1; : : : ; N , we have2NXj=1m(k)N+k;jŵj = jbj�10�N�kXj=1 �̂j+kb(1)k b(1)j + NXj=N�k+1 �̂j+k�Nb(1)k b(1)j 1A = jbj�1b(1)k NXj=1 �̂jb(1)j = jbj�1b(1)k = ŵN+k:(41)This immediately implies that M̂kŵ = ŵ for k = 1; : : : ; N . Moreover, it is easy to see thatPŵ = ŵ. Combining these observations then implies Mŵ = M1 � � �MNPŵ = ŵ, whi
h showsthat ŵ indeed is a right eigenve
tor of M̂. Similar arguments 
an be used to show that M̂>v̂ = v̂.The details of the proof are omitted for 
ompa
tness of the presentation. �3.3.3 Step 3: Mean immigration ve
tor gWe now pro
eed to spe
ify the mean immigration ve
tor g, de�ned in (9), for the model under
onsideration. Considering the evolution of the 2N -dimensional state ve
tor as a dis
rete-timeMarkov 
hain fXn; n = 0; 1; : : :g at su

essive polling instants at Q1, the \immigrants" in then-th generation are the 
ustomers present a time n that are not 
hildren of any of the 
ustomerspresent at time n� 1. Denote the mean immigration ve
tor byg = �g(1)1 � � � g(1)N g(2)1 � � � g(2)N �> ; (42)where g(k)i stands for the mean number of type-i immigrants in phase-k. In the des
endant setpoint-of-view, g(k)i 
an be seen as the mean number of type-i 
ustomers in phase-k present at thereferen
e point (at Q1) that arrived during a swit
h-over time in 
y
le 0 (i.e. the time betweenthe referen
e point and the pre
eding polling instant at Q1).Lemma 3For the two-phase gated model, for j = 1; : : : ; N ,

g(1)j = �j NXi=j r(1)i ; (43)
g(2)j = �j j�1Xi=1 r(1)i (44)and ĝ>ŵ = jbj�1r: (45)11



Proof: Equations (43) and (44) 
an be dire
tly obtained from (27). To give a more intuitivederivation, note that equation (43) follows dire
tly from the fa
t that a type-j immigrant inphase-1 should have arrived during a swit
h-over time from Qi to Qi+1, for some i � j. Similarly,equation (44) follows dire
tly from the fa
t that a type-j immigrant in phase-2 should have arrivedduring a swit
h-over time from Qi to Qi+1, for some i < j. Finally, to prove (45), assume � = 1.Then (45) follows dire
tly from the following sequen
e of relations:
ĝ>ŵ := 2NXj=1 ĝjŵj = NXj=1 ĝ(1)j ŵj+ NXj=1 ĝ(2)j ŵN+j = jbj�10� NXj=1 b(1)j �̂j NXi=j r(1)i + NXj=1 b(1)j �̂j j�1Xi=1 r(1)i 1A(46)
= jbj�10� NXj=1 b(1)j �̂jr1A = jbj�1�̂r = jbj�1r: � (47)

3.3.4 Step 4: Limiting behavior of �(�) for � " 1The following result des
ribes the limiting behavior of the maximum eigenvalue �(�) of the matrixM de�ned in Lemma 1, 
onsidered as a fun
tion of �, as � goes to 1.Lemma 4For the two-phase gated polling model, the maximum eigenvalue � = �(�) satis�es the followingproperties:(1) � < 1 if and only if � < 1, � = 1 if and only if � = 1 and � > 1 if and only if � > 1;(2) �(�) is a 
ontinuous fun
tion of �;(3) lim�"1 �(�) = �(1) = 1;(4) the derivative of �(�) at � = 1 is given by�0(1) = lim�"1 1� �(�)1� � = 1Æ ; (48)where Æ is de�ned in (40).Proof: Part 1 was shown in [28℄. Part 2 follows from the fa
t that all entries of M are 
on-tinuous fun
tions of �, whi
h implies the 
ontinuity of �(�) with respe
t to � (see for example[3℄). The fa
t that �(1) = 1 follows dire
tly from the fa
t that M̂b = b, whi
h is an immediate
onsequen
e of the fa
t that the model under 
onsideration is work 
onserving. Finally, to provePart 4 we adopt the 
on
ept of the Des
endant Set Approa
h (DSA) dis
ussed in Appendix A.Then, based on known properties for the maximum eigenvalue of positive semi-de�nite matri
esapplied to M (see for example [3℄) we 
an de
ompose �(1)i;
 , de�ned in (83)-(85), into a dominantand a re
essive part as follows: For � < 1, i = 1; : : : ; N ,�(1)i;
 = �
+1wiv1 + s(1)i;
 (49)where s(1)i;
 is a lower-order term in the sense that there exists K (0 < K <1) and �� (0 < �� < �)su
h that js(1)i;
 j < K�
� for all 
 = 0; 1; : : :, whi
h is readily seen to imply that, for i = 1; : : : ; N ,1X
=0 s(1)i;
 <1: (50)
The result then follows dire
tly from (49), (50), (21), (87) and Parts 1, 2 and 3 of Lemma 4. This
ompletes the proof. � 12



3.3.5 Step 5: Expression for A at � = 1Lemma 5For the two-phase gated polling model,A = jbj�1Æ�1 b(2)2b(1) : (51)Proof: Using the de�nition of A in Theorem 2, we need to spe
ify the eigenve
tors v̂ and ŵ ofthe mean o�spring matrix M̂, and the se
ond-order matri
es K̂(i) (i = 1; : : : ; N). To this end,note that v̂ and ŵ are given in Lemma 2. The matri
es K̂(i) (i = 1; : : : ; N) 
an be obtaineddire
tly from Theorem 3. This method is methodologi
ally straightforward, but pra
ti
ally quite
umbersome; the details of this derivation are left as an exer
ise to the reader. As an alternative,the s
aling 
onstant A in (51) 
an also be obtained by simple �rst-order arguments only, seeRemark 3.1 below. �3.3.6 Step 6: Asymptoti
 expression for s
aled state ve
torWe are now ready to present the HT result for the state ve
tor at polling instants in the two-phasegated polling model. Without loss of generality, we fo
us on the evolution of the state ve
tor atembedded polling instants at Q1.Theorem 4For the two-phase gated polling model, the state ve
tor at polling instants at Q1 has the followingasymptoti
 behavior:(1� �)X> !d Æ �A � v̂ � �(�; 1) (� " 1); (52)where� = 2rÆ b(1)b(2) : (53)and where Æ, A and v̂i (i = 1; : : : ; 2N) are de�ned in (40), (51) and (39), respe
tively.Proof: To start, note that the pro
ess that des
ribes the evolution of the state ve
tor fXn; n =0; 1; : : :g at su

essive polling instants at Q1 
onstitutes an 2N -dimensional MTBP with o�springfun
tion f(z) and immigration fun
tion g(z) de�ned in Theorem 3, and with mean matrix Mde�ned in Lemma 1. Moreover, from Theorem 3 and Lemma 3 it is readily veri�ed that theassumptions of Theorem 2 on the �niteness of the se
ond-order derivatives of f(s) and the meanimmigration fun
tion g are satis�ed (with M = 2N), based on the assumption that the se
ondmoments of the servi
e times b(2)i (i = 1; : : : ; N) and the �rst moments of the swit
h-over timesr(1)i (i = 1; : : : ; N) are �nite. Then using Lemmas 2 to 4 and Theorem 2 it follows that1�n(�(�)) �X>n !d A � v̂ � �(�; 1) as (�; n)! (1;1); (54)where A, v̂ and � are de�ned in (17)-(18), see Remark 3.3 below for more details about the
onvergen
e and the limiting regime. Hen
e, using the properties listed in Lemma 4, it readilyfollows from (54) that(1� �)X>n !d Æ �A � v̂ � �(�; 1) as (�; n)! (1;1): (55)�Remark 3.1As an alternative to the proof of Lemma 5, a mu
h simpler derivation of A 
an be obtained by13




ombining Theorem 4 (whi
h does not require the s
aling parameter A to be known expli
itly),and (21). To this end, note that by taking the mean value of the �rst entry in (52) and taking thelimit for � " 1 it readily follows that�̂1r = ÆAv̂1 � � = ÆA � jbjÆ �̂1 � 2rÆ b(1)b(2) ; (56)whi
h immediately implies (51). �Remark 3.2The parameters Æ and v̂ in (52) only depend on the arrival rates and the mean values of theservi
e-time distributions. Therefore, the impa
t of the variability of the servi
e-time distribu-tions manifests itself in the parameters � (de�ned in (53)) and A (given in Lemma 5). FromLemma 5 it follows that A is the mean residual servi
e time of an arbitrary 
ustomer (regardlessof the queue it enters), up to a normalizing 
onstant. This normalizing 
onstant jbj�1Æ�1 
ouldbe set to one by properly renormalizing the eigenve
tors of the mean matrix M in Lemma 2.Remark 3.3A note on the 
onvergen
e in Theorems 2 and 4. The 
onvergen
e of Theorem 2 should be 
on-sidered in the following sense (see [24℄ for details): for all � > 0 there exist Æ > 0 and N su
h thatif j1� �j < Æ then for all n > N it holds thatsupx2RM ����Prob� 1�n(�)Zn � x�� Prob fA � �(�; 1) � v̂ � xg���� < �; (57)where �, �n(�), Zn, A, � and v are de�ned in Se
tion 3.1. And similarly, for the polling modelunder 
onsideration the 
onvergen
e in (52) is de�ned as follows: for all � > 0 there exist Æ > 0and N su
h that if j1� �j < Æ then for all n > N it holds thatsupx2R2N ���Probn(1� �)X>n � xo� Prob fA � �(�; 1) � v̂ � xg��� < �; (58)where Xn, A, � and v are spe
i�ed for the two-phase gated polling model in Se
tion 3.3. Usingthese de�nitions, it is easily seen that Theorem 2 translates into Theorem 4 by using relations(54)-(55), using Theorem 3 and the properties listed in Lemma 4.We are now ready to formulate the proof of Theorem 1.3.3.7 Proof of Theorem 1Without loss of generality, we assume i = 1. Throughout it will be 
onvenient to relate thewaiting-time and queue-length distributions at polling instants at Q1 to the joint distribution oftwo su

essive 
y
le times. More pre
isely, let a given polling instant P at Q1 mark the end of a
y
le time with duration C1, and let the duration of the pre
eding 
y
le time be C�1 . Moreover,denote the joint LST of (C1; C�1 ) by: For Re(s); Re(t) > 0,C�1 (s; t) := E he�sC1�tC�1 i : (59)Re
all from (19) that X�1 (z1; z2) is the joint PGF of the numbers of type-1 
ustomers at bothphases at queue 1 at an arbitrary polling instant at Q1. Then the population of 
ustomers presentat Q1 at phase 1 at polling instant P 
onsists exa
tly of those 
ustomers that arrived during thepast 
y
le time of duration C1, whereas the population of 
ustomers present at phase 2 exa
tly
onsists of those that arrived in the pre
eding 
y
le of duration C�1 . Standard GF manipulationsthen immediately imply that for jz1j; jz2j � 1,X�1 (z1; z2) = C�1 (�1(1� z1); �1(1� z2)) : (60)14



Using (60), equation (20) 
an be reformulated in the following 
onvenient form: For Re(s) > 0,W �1 (s) = (1� �1)ss� �1(1�B�1(s)) � C�1 (s; �1(1�B�1(s)))� C�1 (s; s)s(1� �1)r=(1� �) : (61)Now, 
ombining (39) with Lemma 5 and Theorem 3, by taking the �rst and the (N + 1)-st
omponent of the ve
tor in (52), it readily follows that
(1� �) X(1)1X(2)1 !!d 12Æ � b(2)b(1) � �̂1�̂1 ��(�; 1) (� " 1); (62)

where � is de�ned in (53). Then, using (60) and similar arguments as those dis
ussed in [33℄,equation (62) 
an be expressed in terms of 
y
le times as(1� �)� C1C�1 �!d 12Æ � b(2)b(1) � 11 ��(�; 1) (� " 1); (63)where 
onvergen
e should be 
onsidered in the supremum-sense de�ned in (58). Theorem 1 followsthen dire
tly by 
ombining (61), (63) and (16) and standard algebrai
 manipulations, re
allingthat we fo
used on the waiting-time distributions Q1 without loss of generality. �
4 Dis
ussion and Impli
ationsTheorem 1 reveals a variety of asymptoti
 properties of the performan
e of the model under 
onsid-eration. In Se
tion 4.1 we formulate several insensitivity properties of the asymptoti
 waiting-timedistributions with respe
t to the system parameters. In Se
tion 4.2 we assess the impli
ations re-garding the trade-o� between eÆ
ien
y and fairness, 
omparing the performan
e of two-phasegated model to the 
lassi
al one-phase gated model.4.1 InsensitivityThe following result follows dire
tly from Theorem 1.Property 1 (Insensitivity)For i = 1; : : : ; N , the distribution of ~W (2)i(1) is independent of the visit order,(2) depends on the swit
h-over time distributions only through r, i.e., the total expe
ted swit
h-overtime per 
y
le,(3) depends on the higher moments of the servi
e-time distributions only through b(2), i.e., these
ond moment of the servi
e time of an arbitrary 
ustomer.In general, Proposition 1 is not valid for stable systems (i.e., for � < 1), where the visit order, the
omplete servi
e-time and swit
h-over time distributions do have an impa
t on the waiting-timesdistributions. Hen
e, Proposition 1 shows that the in
uen
e of these parameters on the waiting-time distributions vanishes when the load tends to unity, and as su
h 
an be viewed as lower-ordere�e
ts in heavy traÆ
. Note that it follows from (4)-(6) that same insensitivity properties arevalid for the distribution of ~W (1)i , de�ned in (4)-(5), see also [33℄.4.2 EÆ
ien
y and fairnessTheorem 1 also leads to several interesting insights regarding the trade-o� between eÆ
ien
y andfairness when 
omparing models with one-phase and two-phase gated servi
e.15



4.2.1 EÆ
ien
yA 
ommonly used measure of eÆ
ien
y is the mean total amount of un�nished work in the sys-tem. To this end, let V (k) denote the total amount of waiting work in the system, for the modelwith k-phase gated servi
e (k = 1; 2). Note that it follows dire
tly from Little's formula that, for� < 1, E[V (k)℄ = PNi=1 �iE[W (k)i ℄. Then the following results follows dire
tly from the pseudo-
onservation law (
f. [39℄ for details of the derivation).Property 2 (EÆ
ien
y)Two-phase gated servi
e is less eÆ
ient than one-phase gated servi
e in the sense that, for � < 1,E[V (2)℄ = E[V (1)℄ + r1� � > E[V (1)℄: (64)Note that Property 2 immediately implies that the one-phase gated model is also asymptoti
allymore eÆ
ient than the two-phase gated model, in the sense that if we de�ne v(k) := lim�"1 (1 ��)E[V (k)℄ (k = 1; 2), then v(2) = v(1)+r > v(1). We refer to [39℄ for numeri
al results that supportthese observations.4.2.2 FairnessWhile eÆ
ien
y in polling models has been extensively studied and is quite well understood, thereis no 
ommonly agreed upon theoreti
al yardsti
k for measuring fairness in polling models. One
an think of di�erent notions of fairness in polling systems. In this se
tion we 
onsider two typesof fairness: (1) queue fairness and (2) 
ustomer fairness. Intuitively, ultimate queue fairness isrealized when the waiting-time distributions are the same for all queues, while ultimate 
ustomerfairness is rea
hed when the 
ustomers somehow experien
e the same slowdown. For 
ompleteness,we �rst outline the results on queue fairness (as dis
ussed in more detail in equations (24), (25)and Table 1 in [39℄). Subsequently, we dis
uss the impli
ations of Theorem 1 on 
ustomer fairness.Queue fairnessLet us de�ne the queue unfairness as follows (see also [39℄): For � < 1,
F (k)queue := maxi;j=1;:::;N ������E

hW (k)i i
E hW (k)j i � 1������ (k = 1; 2): (65)

Thus, the higher the (asymptoti
) unfairness, the less fair is the servi
e poli
y. Now, it followsdire
tly from (4)-(6) above that, for i = 1; : : : ; N ,
E h ~W (1)i i = 1 + �̂i4Æ1 b(2)b(1) + r(1 + �̂i)2 ; with Æ1 := 12 NXj=1 �̂j(1 + �̂j); (66)

and from Theorem 1 that, for i = 1; : : : ; N ,
E h ~W (2)i i = 3 + �̂i4Æ2 b(2)b(1) + r(3 + �̂i)2 ; with Æ2 := 12 NXj=1 �̂j(3 + �̂j): (67)

The following result is an immediate 
onsequen
e of (66) and (67).Property 3 (Asymptoti
 queue fairness)Two-phase gated servi
e is asymptoti
ally more fair than one-phase gated servi
e in the sense thatF̂ (2)queue < F̂ (1)queue: (68)16



This observation follows dire
tly from the fa
t that for all i; j = 1; : : : ; N . Then by taking thelimit for � " 1 it holds that������E
h ~W (2)i i

E h ~W (2)j i � 1������ = ���� 3 + �̂i3 + �̂j � 1���� < ���� 1 + �̂i1 + �̂j � 1���� = ������E
h ~W (1)i i

E h ~W (1)j i � 1������ ; (69)
whi
h is easily seen to imply (68), by taking the limit for � " 1. We refer to [39℄ for numeri
alresults that support these observations.Customer fairnessLet W (k) be the waiting time of an arbitrary 
ustomer in the k-phase gated polling system, andre
all that the m-th moment of its servi
e time is denoted by b(m) = ��1PNi=1 �ib(m)i (m = 1; 2),for both the one-phase and two-phase gated model. Then Brosh et al. [6℄ de�ne the followingSlowdown Queueing Fairness (SQF) measure of 
ustomer unfairness for the polling model withk-phase gated servi
e at all queues: For k = 1; 2,

F (k)SQF := V ar "W (k) � E �W (k)�b(1) B# = E "W (k) � E �W (k)�b(1) B#2 : (70)
Then the asymptoti
 results presented in Theorem 1 
an be used to quantify F (k)SQF in the limiting
ase � " 1. More pre
isely, the asymptoti
 fairness for the polling model is given by the followingexpression: For k = 1; 2,
F̂ (k)SQF := E 24 ~W (k) � E h ~W (k)ib(1) B352 = E �� ~W (k)�2��2E h ~W (k)i NXi=1 �̂iE h ~W (k)i i+�E h ~W (k)i�2� b(2)�b(1)�2 ;(71)whereE h ~W (k)i = �̂�1 NXi=1 �̂iE h ~W (k)i i ; E �� ~W (k)�2� = �̂�1 NXi=1 �̂iE �� ~W (k)i �2� ; (72)and whereNXi=1 �̂iE h ~W (k)i i = b(2)2b(1) + rÆk; (73)whi
h follows dire
tly from the pseudo-
onservation law derived in [39℄. The following result fol-lows dire
tly from Theorem 1.Property 4 (Se
ond moment of the delay)For i = 1; : : : ; N , we have for the one-phase gated modelE �� ~W (1)i �2� = 1 + �̂i + �̂2i3 �r + 12Æ1 b(2)b(1)��r + 1Æ1 b(2)b(1)� ; (74)and for the two-stage gated modelE �� ~W (2)i �2� = 7 + 4�̂i + �̂2i3 �r + 12Æ2 b(2)b(1)��r + 1Æ2 b(2)b(1)� : (75)An exa
t expression for the asymptoti
 SQF (70) of both models 
an then be obtained by 
ombin-ing (72)-(75). Although an in-depth study of the asymptoti
 SQF properties of the one-phase and17



two-phase models is beyond the s
ope of the paper, we brie
y tou
h upon some 
onsiderationsabout SQF below.An interesting question is whether in general the two-phase gated polling model, whi
h is knownto be (asymptoti
ally) less eÆ
ient, is asymptoti
ally less unfair than its one-phase 
ounterpart(Property 2), whi
h is one of the reasons for proposing the two-phase poli
y in the �rst pla
e. Theanswer is no. To illustrate this, 
onsider the three-queue model with the following parameters:�̂1 = 1=10, �̂2 = 2=10, �̂3 = 3=10, all the servi
e times are deterministi
 with means 1, 2 and3, respe
tively, so that b(1) = 5=3 and b(2) = 10=3 and �̂1 = 3=10, �̂2 = 4=10 and �̂3 = 3=10.Table 1 below shows the asymptoti
 unfairness F̂ (k)SQF for k = 1; 2 for di�erent values of the meanswit
h-over time per 
y
le r. The results in Table 1 illustrate the fa
t that in general there is nor F̂ (1)SQF F̂ (2)SQF0 1.35 1.220.05 1.40 1.340.1 1.46 1.460.25 1.63 1.851.0 2.55 4.18Table 1: Asymptoti
 
ustomer unfairness for di�erent values of r.
dominan
e relation between the one-phase and two-phase gated polling systems with respe
t tothe asymptoti
 unfairness measure de�ned in (70).The SQF-measure de�ned in (70) in
ludes the 
ombined impa
t of seniority and servi
e-timevariability. Therefore, one might suspe
t that if all servi
e times are deterministi
 with the samemean the two-phase gated servi
e is more fair in the SQF-sense, sin
e the e�e
t of overtaking (i.e.
ustomers that arrive earlier are served later) seems to be less. However, in general su
h a relationdoes not hold. To illustrate this, 
onsider the following three-queue model: �̂1 = 1=12, �̂2 = 1=6,�̂3 = 1=4, all the servi
e times are deterministi
 with mean 2, so that b(1) = 2 and b(2) = 4 and�̂1 = 1=6, �̂2 = 1=3 and �̂3 = 1=2. Table 2 shows the asymptoti
 unfairness F̂ (k)SQF for k = 1; 2 fordi�erent values of r. Table 2 illustrates that even if the servi
e-time distributions are deterministi
r F̂ (1)SQF F̂ (2)SQF0 1.15 1.030.1 1.24 1.200.2 1.32 1.380.3 1.59 1.911.0 2.04 2.82Table 2: Asymptoti
 
ustomer unfairness for di�erent values of r.
and identi
al for all queues there is no dominan
e relation between the one-phase and two-phasegated polling systems with respe
t to (70).The results presented in (72)-(75) lead to a 
losed-form expression for the asymptoti
 SQF-measure for one-phase and two-phase polling models, and 
an be extended to a mu
h broader
lass of MTBP-type polling models, following the general framework developed in [37℄. The pre-liminary results presented in Tables 1 and 2 show that the derivation of dominan
e relationsbetween fairness of poli
ies with respe
t to the SQF-measure is far from trivial, and beyond thes
ope of the present paper, addressing a 
hallenging area for further resear
h.18



5 Further Resear
hThe results presented in this paper suggest a number of interesting topi
s for further resear
h.First, it is a tremendous 
hallenge to develop some type of ordering of servi
e poli
ies with respe
tto (asymptoti
) eÆ
ien
y and fairness. In the 
ontext of eÆ
ien
y, su
h an ordering has beenobtained in [40℄. However, the development of an ordering with respe
t to the fairness measurede�ned in (70) [6℄, where seniority and servi
e time variability are intertwined, is an open andintriguing problem. The results shown in Table 1 suggest that developing su
h an ordering is farfrom trivial. Se
ond, the two-phase gated servi
e poli
y may be naturally extended to a generalKi-phase gated servi
e poli
y, where queue i re
eives Ki-phase gated servi
e, for i = 1; : : : ; N . Wesuspe
t that the results in the present paper 
an be extended to the 
ase of Ki-phase gated servi
eby 
onsidering the evolution of the system as a K :=PNj=1 Kj-dimensional MTBP. Su
h resultswould also raise 
hallenging questions regarding the optimal setting of the Ki-values that properlybalan
e fairness and eÆ
ien
y. Extension of the results presented in this paper form an interestingtopi
 for further resear
h. Third, in this paper it is assumed that the servi
e-time distributionshave �nite varian
e. It would be interesting to investigate if the results 
an be extended to in
ludein�nite-varian
e (e.g., regularly varying) servi
e-time distributions. In this 
ontext, note howeverthat Quine's result (Theorem 2) expli
itly relies on the �nite-varian
e assumptions and no longerholds if the assumption is violated. Extension of the results to servi
e times with in�nite varian
ewould be a breakthrough in the �eld. Finally, it would be interesting both from a theoreti
al andappli
ation point-of-view to extend the results to non-Poisson arrivals. In this 
ontext, we 
anbuild upon the re
ent results presented in [40℄, where we rigorously prove HT limits for pollingmodels with gated and exhauistive servi
e at all queues and with renewal arrivals .A
knowledgment: The authors would like to thank the referees for their useful suggestions,whi
h have led to a signi�
ant improvement of the paper.
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Appendix A: The Des
endant Set Approa
h for the Two-Phase Gated ModelIn this Appendix we dis
uss how the model de�ned in Se
tion 2 
an be analyzed by means of theDes
endant Set Approa
h (DSA), introdu
ed in [11℄ for models with exhaustive and gated servi
e.The 
ustomers in a polling system 
an be 
lassi�ed as originators and non-originators. An orig-inator is a 
ustomer that arrives at the system during a swit
h-over period. A non-originator isa 
ustomer that arrives at the system during the servi
e of another 
ustomer. For a 
ustomer C,de�ne the 
hildren set to be the set of 
ustomers arriving during the servi
e of C; the des
endantset of C is re
ursively de�ned to 
onsist of C, its 
hildren and the des
endants of its 
hildren. TheDSA is fo
used on the determination of the moments of the delay at a �xed queue, say Q1. Tothis end, the DSA 
on
entrates on the determination of the distribution of the two-dimensionalsto
hasti
 ve
tor �X(1)1 (P �); X(2)1 (P �)�, where X(k)1 (P �) is de�ned as the number of phase-k 
us-tomers at Q1 present at an arbitrary �xed polling instant P � at Q1 (k = 1; 2). P � is referredto as the referen
e point. The main ideas are the observations that (1) ea
h of the 
ustomerspresent at Q1 at the referen
e point P � (either at phase 1 or phase 2) belongs to the des
endantset of exa
tly one originator, and (2) the evolutions of the des
endant sets of di�erent originatorsare sto
hasti
ally independent. Therefore, the DSA 
on
entrates on an arbitrary tagged 
ustomerwhi
h arrived at Qi in the past and on 
al
ulating the number of type-1 des
endants it has at bothphases at P �. Summing up these numbers over all past originators yields �X(1)1 (P �); X(2)1 (P �)�,and hen
e �X(1)1 ; X(2)1 �, be
ause P � is 
hosen arbitrarily.The DSA 
onsiders the Markov pro
ess embedded at the polling instants of the system. Tothis end, we number the su

essive polling instants as follows. Let PN;0 be the last polling instantat QN prior to P �, and for i = N � 1; : : : ; 1, let Pi;0 be re
ursively de�ned as the last pollinginstant at Qi prior to Pi+1;0. In addition, for 
 = 1; 2; : : :, we de�ne Pi;
 to be the last pollinginstant at Qi prior to Pi;
�1, i = 1; : : : ; N . De�ne the 
-th 
y
le to be the time between P1;
and P1;
�1, for 
 = 0; 1; : : :. The DSA is oriented towards the determination of the 
ontributionto �X(1)1 (P �); X(2)1 (P �)� of an arbitrary 
ustomer present at Qi at Pi;
. To this end, de�ne an(i; 
)-
ustomer to be a 
ustomer present at Qi at Pi;
. Moreover, for a tagged (i; 
)-
ustomer Ti;
at phase-1, we de�ne Ai;
 := �A(1)i;
 ; A(2)i;
 �, where A(k)i;
 is the number of type-1 des
endants ithas at phase-k at P � (k = 1; 2). In this way, the two-dimensional random variable Ai;
 
an beviewed as the 
ontribution of Ti;
 to �X(1)1 (P �); X(2)1 (P �)�. Denote the joint PGF of Ai;
 by, forjz1j; jz2j � 1, i = 1; : : : ; N , 
 = 0; 1; : : :,
A�i;
(z1; z2) := E �zA(1)i;
1 zA(2)i;
2 � : (76)

To express the distribution of �X(1)1 ; X(2)1 � in terms of the distributions of the des
endant setvariables Ai;
, denote by Ri;
 the swit
h-over period from Qi to Qi+1 immediately after theservi
e period at Qi starting at Pi;
. Moreover, denote Si;
 := �S(1)i;
 ; S(2)i;
 �, where S(k)i;
 is the total
ontribution toX(k)1 of all 
ustomers that arrive at the system during Ri;
 (note that, by de�nition,these 
ustomers are original 
ustomers), and denote the joint PGF of Si;
 by, jz1j; jz2j � 1,i = 1; : : : ; N , 
 = 0; 1; : : :,
S�i;
(z1; z2) := E �zS(1)i;
1 zS(2)i;
2 � : (77)
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In this way, Si;
 = �S(1)i;
 ; S(2)i;
 � 
an be seen as the (joint) 
ontribution ofRi;
 to �X(1)1 (P �); X(2)1 (P �)�.It is readily veri�ed that we 
an write
X1 = �X(1)1 ; X(2)1 � = NXi=1 1X
=0 �S(1)i;
 ; S(2)i;
 � = NXi=1 1X
=0 Si;
: (78)

Note that S(1)i;
 and S(2)i0;
0 are dependent if (i; 
) = (i0; 
0) but independent otherwise. Hen
e we 
anwrite, for jz1j; jz2j � 1,
X�1 (z1; z2) = NYi=1 1Y
=0S�i;
(z1; z2): (79)

Be
ause Si;
 is the total joint 
ontribution to X1 of all (original) 
ustomers that arrive during Ri;
,the joint distribution of Si;
 
an be expressed in terms of the distributions of the DS-variables Ai;
as follows: For i = 1; : : : ; N , 
 = 0; 1; : : :, and jz1j; jz2j � 1,
S�i;
(z1; z2) = R�i 0� NXj=i+1 ��j � �jA�j;
(z1; z2)�+ iXj=1 ��j � �jA�j;
�1(z1; z2)�1A : (80)

To de�ne a re
ursion for the evolution of the des
endant set, note that a 
ustomer at phase-1present at Q1 at the polling instant at Q1 during 
y
le 
 is served during the next 
y
le, whi
hleads to the following relation: For i = 1; : : : ; N , 
 = 0; 1; : : :, and jz1j; jz2j � 1,
A�i;
(z1; z2) = B�i 0� NXj=i+1 ��j � �jA�j;
�1(z1; z2)�+ iXj=1 ��j � �jA�j;
�2(z1; z2)�1A ; (81)

supplemented with the basis for the re
ursionA�i;�1(z1; z2) = z1Ifi=1g; and A�i;�2(z1; z2) = z2Ifi=1g: (82)In this way, relations (78)-(82) give a 
omplete 
hara
terization of the simultaneous distributionof �X(1)1 ; X(2)1 �. Similarly, re
ursive relations to 
al
ulate the (
ross-)moments of �X(1)1 ; X(2)1 �
an be readily obtained from those equations.Relation (81) leads to the following re
ursive relations for the �rst moment of the DS variablesA(k)i;
 . More pre
isely, if we de�ne for i = 1; : : : ; N , 
 = �2;�1; 0; 1; : : : and k = 1; 2,�(k)i;
 := E hA(k)i;
 i ; (83)then (78)-(82) are easily seen to lead to the following re
ursive s
heme: For i = 1; : : : ; N , 
 =0; 1; : : :, and k = 1; 2,
�(k)i;
 = b(1)i 24 NXj=i+1�j�(k)j;
�1 + iXj=1 �j�(k)j;
�235 ; (84)

supplemented with the following basis for the re
ursion, for i = 1; : : : ; N ,�(1)i;�2 := 0; �(2)i;�2 := Ifi=1g; �(1)i;�1 := Ifi=1g and �(2)i;�1 := 0: (85)Note that sin
e a phase-1 
ustomer at Qi present in the system at Pi;
 is served during the(
 � 1)-st 
y
le, the 
ontribution of that phase-1 
ustomer is sto
hasti
ally identi
al to that of a23



type-i 
ustomer in phase-2 who is present at the system at Pi;
�1. Consequently, we have, fori = 1; : : : ; N , 
 = �1; 0; 1; : : :, that�(1)i;
 = �(2)i;
�1: (86)Moreover, it follows dire
tly from (78) and (80) that, for k = 1; 2,
E hX(k)1 i = NXi=1 1X
=0E hS(k)i;
 i = NXi=1 1X
=0 r(1)i 24 NXj=i+1�j�(k)j;
 + iXj=1 �j�(k)j;
�135 : (87)
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