
Polling Systems with Two-Phase Gated Servie:Heavy TraÆ Results for the Waiting TimeDistributionR.D. van der Meia;b and J.A.C. ResingaCentre for Mathematis and Computer SieneDepartment of Probability and Stohasti NetworksAmsterdam, NetherlandsbVrije UniversiteitFaulty of Sienes, Department of MathematisAmsterdam, NetherlandsEindhoven University of TehnologyDepartment of Mathematis and Computer SieneEindhoven, The NetherlandsE-mail: mei�wi.nl, resing�win.tue.nl
AbstratWe study an asymmetri yli polling system with Poisson arrivals, general servie-time andswith-over time distributions, and with so-alled two-phase gated servie at eah queue, aninterleaving sheme that aims to enfore some level of "fairness" among the di�erent ustomerlasses. For this model, we use the lassial theory of multi-type branhing proesses (MTBPs)to derive losed-form expressions for the Laplae-Stieltjes Transform (LST) of the waiting-time distributions when the load tends to 1, in a general parameter setting and under properheavy-traÆ (HT) salings. This result is strikingly simple and provides new insights inthe behavior of two-phase polling systems. In partiular, the result provides insight in thewaiting-time performane, and the tradeo� between eÆieny and fairness of two-phase gatedpolling ompared to the lassial one-phase gated servie poliy.

1 IntrodutionA polling system is a multi-queue single-server system in whih the server visits the queues in yliorder to proess requests pending at the queues. Polling models our naturally in the modelingof systems in whih servie apaity (e.g., CPU, bandwidth) is shared by di�erent types of users,eah type having spei� traÆ harateristis and performane requirements. Polling models �nda variety of appliations in the areas of omputer-ommuniation networks, prodution, manufa-turing and maintenane [17, 31℄. In many appliations of polling models a key issue is how torealize some level of fairness among di�erent ustomer lasses. Motivated by this, many serviedisiplines have been proposed ontaining some kind of interleaving sheme to enfore fairnessamong di�erent ustomer lasses by somehow limiting the number of ustomers served during asingle visit of the server to a queue. This has led to the de�nition of a variety of servie poliies,inluding for example the lassial K-limited, time-limited or Bernoulli-type servie poliies whih1



put (either �xed or stohasti) upper bounds to the duration of a visit of the server to a queue. Inaddition, a number of variants of exhaustive and gated servie poliies have been proposed to avoidmonopolization by a single queue, inluding for example the binomial-gated, frational-exhaustiveor Bernoulli-type servie poliies, amongst others. The two-phase gated poliy analyzed in thispaper may be viewed as an interesting alternative to the lassial gated servie poliy.The motivation for studying polling models with two-phase gated servie is twofold. First, theultimate goal of studying the performane of polling models is to understand how to eÆientlyoperate the system, e.g. in terms of 'How many ustomers should be served during a visit of theserver to a queue?' and 'In what order should the queues be visited by the server?' In this ontext,two important issues are often onsidered: eÆieny and fairness. The two-phase gated serviepoliy provides a promising means to realize fairness by enforing some level of interleaving be-tween di�erentent ustomer lasses. As suh two-phase gated servie may be seen as an interestingalternative to the lassial limited-type (e.g., Bernoulli, K-limited, time-limited) or frational-type(e.g., binomial-gated, frational-exhaustive) servie poliies. In this ontext, the aim of his pa-per is to quantify the trade-o� between eÆieny and fairness by omparing the two-phase gatedmodel with the lassial one-phase gated model. Seond, two-phase servie poliies �nd spei�appliations in the area of Ethernet Passive Optial Networks (EPONs). In fat, Kramer et al. [14℄propose two-phase sheduling poliies to implement a dynami bandwidth alloation sheme in anEthernet Passive Optial network (EPON), where pakets from di�erent Optial Network Units(ONUs) share hannel apaity in the upstream diretion. An EPON is a point-to-multipoint net-work in the downstream diretion and a multi-point to point network in the upstream diretion.The Optial Line Terminal (OLT) resides in the loal oÆe, onneting the aess network tothe Internet. The OLT alloates the bandwidth to the Optial Network Units (ONUs) loated atthe ustomer premises, providing interfaes between the OLT and end-user network to send voie,video and data traÆ. In an EPON the proess of transmitting data downstream from the OLT tothe ONUs is broadast in variable-length paket aording to the 802.3 protool [12℄. However, inthe upstream diretion the ONUs share apaity, and various polling-based bandwidth alloationshemes an be implemented. Simple time-division multiplexing aess (TDMA) shemes based on�xed time-slot assignment su�er from the lak of statistial multiplexing, making ineÆient use ofthe available bandwidth, whih raises the need for dynami bandwidth alloation (DBA) shemes.A dynami sheme that redues the time-slot size when there are no data to transmit would allowexess bandwidth to be used by other ONUs. However, the main obstale of implementing suh asheme is the fat the OLT does not know in advane how muh data eah ONU has to transmit.To overome this problem, Kramer et al. [12, 13, 14℄ propose an OLT-based interleaved pollingsheme similar to hub-polling to support dynami bandwidth alloation. To avoid monopolizationof bandwidth usage of ONUs with high data volumes they propose an interleaved DBA shemewith a maximum transmission window size limit. Motivated by this, Park et al. [20℄ proposed thetwo-phase gated servie as a means to enfore interleaving between di�erent traÆ streams, aimingto realize some degree of "fairness" amongst di�erent ustomer lasses. To this end, they derivea pseudo-onservation law for the two-phase gated system and use the lassial bu�er-oupanymethod to express the expeted delay as the solution of a set of linear equations. We believe thatapart from its appliation in the spei� ontext of EPONs, the two-phase servie poliy may alsobe an interesting "fair" alternative to the lassial gated servie poliy in other appliation areas,suh as prodution, manufaturing and maintenane.Despite the fat that fairness is an important aspet in queueing models, there is no ommonly a-epted notion of fairness in queueing systems and how to quantify it. Wierman and Harhol-Balter[44℄ propose to use as a fairness riterion the E[T (x)℄=x, where T (x) stands for the onditionalsojourn time of a job of size x, to evaluate whether a system is fair or unfair. Raz et al. [25℄ go astep further by proposing the so-alled Resoure Alloation Queueing Fairness Measure (RAQFM)as an unfairness measure that takes into aount both seniority and servie-time di�erenes; theyalso show that queue fairness is sensitive to servie-time variability and that the fairness rankingof ommonly used sheduling poliies (suh as FCFS, LCFS, ROS) depends on this parameter.2



Reently, Brosh et al. [6℄ have proposed the so-alled Slowdown Queueing Fairness (SQF) mea-sure, based on a proportionality priniple as the underlying belief. SQF an be viewed as bridgingthe gap between the slowdown expeted riterion [44℄ (whih fouses on servie requirements only,not on seniority) and the \natural" waiting-time variane (whih fouses on job seniority, not onservie requirements). We refer to [6℄ for a reent overview of the available literature on fairnessin queueing systems. To the best of the authors' knowledge fairness has not been addressed in theontext of polling models before.The analysis of polling models has reeived muh attention over the past ouple of deades. Oneof the most remarkable results is that there appears to be a striking di�erene in omplexity be-tween polling models. Resing [28℄ observed that for a large lass of polling models, inluding forexample yli or periodi polling models with Poisson arrivals, exhaustive or gated servie at allqueues, and swith-over times that are independent of the state of the system, the evolution of thesystem at suessive polling instants at a �xed queue an be desribed as a multi-type branhingproess (MTBP) with immigration. Models that satisfy this MTBP-struture allow for an exatanalysis, whereas models that violate the MTBP-struture are often more intriate and requireheavy-weight numerial tehniques to obtain the queue-length and waiting-time distributions [4, 5℄.For MTBP-type polling models a number of solution tehniques have been proposed, inludingfor example the lassial bu�er-oupany and station-time tehniques [29℄, the Desendant SetApproah [11℄ and the reently proposed Mean Value Analysis [45℄. As an interesting extension ofMTBP-type models, Groenevelt and Altman [10℄ and Altman and Fiems [1℄ onsider polling mod-els in whih the swith-over times are orrelated, by using stohasti reursive equations. Theirresults show that the orrelations between the swith-over times may have a signi�ant impaton the waiting-time performane of the system. We refer to [29, 30, 32, 43℄ for overviews of theavailable results on polling models.There are several strong reasons for onsidering heavy traÆ (HT) asymptotis. Exat analy-sis of the delay in polling models is only possible in some ases, and even in those ases numerialtehniques are usually required to obtain the expeted delay at eah of the queues. However,the use of numerial tehniques for the analysis of polling models has several drawbaks. First,numerial tehniques do not reveal expliitly how the system performane depends on the systemparameters and an therefore ontribute to the understanding of the system behavior only to alimited extent. Exat losed-form expressions provide muh more insight into the dependene ofthe performane measures on the system parameters. Seond, the eÆieny of eah of the nu-merial algorithms degrades signi�antly for heavily loaded, highly asymmetri systems with alarge number of queues, while the proper operation of the system is partiularly ritial when thesystem is heavily loaded. These observations raise the importane of an exat asymptoti analysisof the delay in polling models in HT.Over the past deade, polling models in HT have reeived signi�ant attention. For a two-queuemodel with exhaustive servie at both queues, Co�man et al. [7, 8℄ use an averaging priniple toderive expressions for the workload and waiting-time distributions under HT assumptions. Formodels with independent Poisson arrivals, Kudoh et al. [16℄ give expliit expressions for the seondmoment of the waiting time in fully symmetri systems with gated or exhaustive servie at eahqueue for models with two, three and four queues, by exploring the lassial bu�er-oupanyapproah [30℄. They also give onjetures for the HT limits of the �rst two moments of thewaiting times for systems with an arbitrary number of queues. In a series of papers, Van derMei and o-authors explore the use of the Desendant Set Approah (DSA) [11℄ to derive exatexpressions for the waiting-time distributions in models with mixtures of exhaustive and gatedservie and yli [33℄ or periodi [21℄ server routing, and with simultaneous bath arrivals [36℄.Van der Mei [37℄ onsiders the general lass of polling models that an be desribed by MTBPs[28℄ and uses the theory of ritial MTBP [24℄ to obtain a framework for deriving HT-limits forthe waiting-time and queue-length disributions. Van der Mei and Winands [41℄ use the MeanValue Analysis (MVA) [45℄ to derive HT limits for the expeted delay for yli Poisson-driven3



polling models with exhaustive and gated servie at all queues. In [40℄ they derive expressions forthe expeted delay in yli polling models with gated and exhaustive servie, providing rigorousproofs for the results onjetured earlier in [7, 22℄. Kroese [15℄ studies ontinuous polling systemsin HT with unit renewal arrivals on a irle and shows that the steady-state number of ustomershas approximately a gamma-distribution. Vatutin and Dyakonova [42℄ use the theory of MTBPsto obtain the limiting distributions for several two-queue polling models with zero swith-overtimes. Altman and Kushner [1℄ study the HT-behavior of polling models in whih the queue maybe temporarily unavailable. For this model, they show that the suitably saled total workloadsonverge to a ontrolled limit di�usion proess with jumps. They also show that the individualqueued workloads and job numbers an be reovered (asymptotially) from the limiting saledworkload. Another interesting limiting regime in whih the queue lengths grow to in�nity is whenthe swith-over times are large. In this ase, strikingly simple results about the distributions ofthe delay an be obtained [23, 46, 34℄. In addition to the evaluation of the performane of heavilyloaded polling systems, the results an also be used to address stohasti sheduling problems, seefor example [18, 19, 26, 27℄ and referenes therein.We onsider an asymmetri yli polling model with N queues and with generally distributedservie times and swith-over times. Eah queue reeives so-alled two-phase gated servie, whihworks as follows: Newly inoming ustomers are �rst queued at the phase-1 bu�er. When theserver arrives at a queue, it loses the gate behind the ustomers residing in the phase-1 bu�er,then serves all ustomers waiting in the phase-2 bu�er on a FCFS basis, and moves all ustomersbefore the gate at the phase-1 bu�er to the phase-2 bu�er before moving to the next queue. Ina reent paper [39℄ we studied the mean of the delay Wi inurred at queue i, when the load �tends to unity, under proper HT salings. Amongst others, the results in [39℄ expliitly quantifythe trade-o� between the derease of eÆieny and the inrease in the so-alled queue fairnessintrodued by implementing the two-phase gated servie poliy (in omparison with the lassialone-phase gated servie poliy); queue fairness is a simple fairness measure that only depends onthe expeted delay at eah of the queues. An interesting alternative notion of fairness is ustomerfairness, whih onsiders fairness between individual ustomers (e.g., depending on their seniorityand servie-time requirements). Reently, Brosh et al. [6℄ proposed the so-alled Slowdown Queue-ing Fairness (SQF) as a ustomer fairness measure. However, to quantify the SQF of a pollingmodel, we need to quantify the seond moments of the waiting times at the queues. Motivated bythis, in this paper we fous on the omplete distribution ofWi when � tends to unity, under properHT salings. Following the general lines disussed in [37℄ for the derivation of HT-asymptotisfor branhing-type polling models, we obtain a losed-form expression for the LST of the limit-ing distribution of (1 � �)Wi (i = 1; : : : ; N) as � goes to 1. The expression is strikingly simpleand shows expliitly how the waiting-time distributions depend on the system parameters. Theresults expliitly quantify the trade-o� between the inrease in fairness and derease of eÆienyintrodued by implementing two-phase gated servie poliies. In partiular, the result providenew fundamental insight in the relative waiting-time distributions for one-phase versus two-phasegated servie poliies. Furthermore, the results reveal a variety of asymptoti insensitivity proper-ties, whih provide new insights into the behavior of polling system under medium and heavy load.The remainder of this paper is organized as follows. In Setion 2 the model is desribed andthe main result of the paper is formulated, i.e. a losed-form expression for the LST of thewaiting-time distribution in HT, under proper salings. In Setion 3 we disuss a stepwise ap-proah to derive the main result. In Setion 4 we disuss several asymptoti properties and addressthe impliations of the results on fairness and eÆieny by omparing two-phase polling shemesto the lassial one-phase polling model. In Setion 5 we address a number of topis for furtherresearh. The use of the so-alled Desendant Set Approah for the present model is disussed inAppendix A.
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2 ModelConsider a system onsisting of N � 2 stations Q1; : : : ; QN , eah onsisting of a phase-1 bu�er anda phase-2 bu�er. A single server visits and serves the queues in yli order. Type-i ustomersarrive at Qi aording to a Poisson arrival proess with rate �i, and enter the phase-1 bu�er.The total arrival rate is denoted by � = PNi=1 �i. The servie time of a type-i ustomer is arandom variable Bi, with Laplae-Stieltjes Transform (LST) B�i (�) and with �nite k-th momentb(k)i (k = 1; 2). The k-th moment of the servie time of an arbitrary ustomer is denoted byb(k) = PNi=1 �ib(k)i =� (k = 1; 2). The load o�ered to Qi is �i = �ib(1)i , and the total o�ered loadis equal to � = PNi=1 �i > 0. De�ne a polling instant at Qi as a time epoh at whih the servervisits Qi. Eah queue is served aording to the two-phase gated servie poliy, whih works asfollows. When the server arrives at a queue, it loses the gate behind the ustomers residing inthe phase-1 bu�er. Then, all ustomers waiting in the phase-2 bu�er are served on a First-Come-First-Served (FCFS) basis. Subsequently, all ustomers before the gate at the phase-1 bu�er areinstantaneously forwarded to the phase-2 bu�er, and the server proeeds to the next queue. Upondeparture from Qi the server immediately proeeds to Qi+1, inurring a swith-over time Ri, withLST R�i (�) and �nite k-th moment r(k)i (k = 1; 2). Denote by r := PNi=1 r(1)i > 0 the expetedtotal swith-over time per yle of the server along the queues. All interarrival times, servie timesand swith-over times are assumed to be mutually independent and independent of the state ofthe system. A neessary and suÆient ondition for the stability of the system is � < 1 (f. [9℄).The following notation will be useful. For eah variable x that is a funtion of �, we denoteits value evaluated at � = 1 by x̂. For an event E, denote by IE the indiator funtion on E.Moreover, denote by Ik the k-by-k identity matrix, and by 0k the k-by-k matrix whose entriesare all 0. To make the omparison between the model with two-phase gated de�ned above to thelassial model with one-stage gated servie at all queues, we denote by W (k)i the delay inurredby an arbitrary ustomer at Qi, de�ned as the time between the arrival of a ustomer at a stationand the moment at whih it starts to reeive servie, for the model with k-phase gated servie atall queues (k = 1; 2). The main result of this paper is the following losed-form expression for theasymptoti waiting-time distribution for the two-phase gated polling model (de�ned above) at anarbitrary queue.Theorem 1 (Main result)For yli polling models with two-phase gated servie at eah queue, we have for i = 1; : : : ; N :(1� �)W (2)i !d ~W (2)i (� " 1) (1)where the LST of ~W (2)i is given by~W �(2)i (s) = 1(1� �̂i)rs�� �2�2 + s(1 + �̂i)��2 � � �2�2 + 2s��2� (Re(s) > 0); (2)where�2 := 2rÆ2 b(1)b(2) ; �2 := 2Æ2 b(1)b(2) ; and Æ2 := 12 NXj=1 �̂j(3 + �̂j): (3)Here, the limit is taken suh that the arrival rates are inreased, while keeping both the servie-time distributions and the ratios between the arrival rates �xed. The proof of Theorem 1, whihis based on a sequene of intermediate results, is given at the end of Setion 3. For later referene,we also give a similar result for the ase of one-phase gated polling servie at all queues (see [33℄for a rigorous proof). For yli polling models with one-phase gated servie at eah queue, wehave for i = 1; : : : ; N :(1� �)W (1)i !d ~W (1)i (� " 1) (4)5



where the LST of ~W (1)i is given by~W �(1)i (s) = 1(1� �̂i)rs�� �1�1 + s�̂i��1 � � �1�1 + s��1� (Re(s) > 0); (5)where�1 := 2rÆ1 b(1)b(2) ; �1 := 2Æ1 b(1)b(2) ; and Æ1 := 12 NXj=1 �̂j(1 + �̂j): (6)
3 AnalysisIn this setion we use the theory of MTBPs to derive the main result of the paper, Theorem 1. InSetion 3.1 we give a general desription of MTBPs, and present a limiting theorem for generalMTBPs (Theorem 2) that will be useful throughout. In Setion 3.2 we show how the evolutionof the polling model under onsideration an be desribed as a MTBP with immigration at eahstate (Theorem 3). In Setion 3.3 we disuss a stepwise approah to ombine these results toderive Theorem 1.3.1 Multi-type branhing proesses with immigrationIn this subsetion we give a general desription of MTBPs with immigration in eah state, andintrodue notation useful for further referene. The reader is referred to [3℄ for more details. Weonsider a general M -dimensional multi-type branhing proess with immigration in eah state,Z = fZn; n = 0; 1; : : :g, where Zn = (Z(1)n ; : : : ; Z(M)n ) is an M -dimensional vetor denoting thestate of the proess in the n-th generation, and where Z(i)n is the number of type-i partiles inthe n-th generation. The proess Z is ompletely haraterized by the one-step o�spring funtionf(z) = (f (1)(z); : : : ; f (M)(z)), with z = (z1; : : : ; zM ), and where for jzkj � 1 (k = 1; : : : ;M); i =1; : : : ;M ,f (i)(z) = Xj1;:::;jM�0 p(i)(j1; : : : ; jM )zj11 � � � zjMM ; (7)
where p(i)(j1; : : : ; jM ) is the probability that a type-i partile produes jk partiles of type k (k =1; : : : ;M). In addition, the immigration funtion is de�ned as follows, for jzkj � 1 (k = 1; : : : ;M),g(z) = Xj1;:::;jM�0 q(j1; : : : ; jM )zj11 � � � zjMM ; (8)where q(j1; : : : ; jM ) is the probability that a group of immigrants onsists of jk partiles of typek (k = 1; : : : ;M). Denoteg := (g1; : : : ; gM ); where gi := �g(z)�zi jz=1 (i = 1; : : : ;M); (9)and where 1 is the M -vetor where eah omponent is equal to 1. A key role in the analysis willbe played by the �rst and seond-order derivatives of f(z). The �rst-order derivatives are denotedby the mean matrixM = (mi;j) ; with mi;j := �f (i)(z)�zj jz=1 (i; j = 1; : : : ;M): (10)Thus, for a given type-i partile at the n-th generation, mi;j is the mean number of type-j hildrenit has at the (n+1)-st generation. Similarly, for a type-i partile, the seond-order derivatives aredenoted by the matrixK(i) = �k(i)j;k� ; with k(i)j;k := �2f (i)(z)�zj�zk jz=1 (i; j; k = 1; : : : ;M): (11)
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Denote by v = (v1; : : : ; vM ) and w = (w1; : : : ; wM ) the left and right eigenvetors orrespondingto the largest real-valued, positive eigenvalue � of M, ommonly referred to as the maximumeigenvalue, or the Perron-Frobenius eigenvalue (f., e.g., [3℄), normalized suh thatv>1 = v>w = 1: (12)The following onditions are neessary and suÆient onditions for the ergodiity of the proessZ (f. [24, 28℄): � < 1 andXj1+���+jM>0 q(j1; : : : ; jM )log(j1 + � � �+ jM ) <1: (13)
Following standard branhing-proess terminology the proess Z is alled sub-ritial if � < 1,ritial if � = 1 and super-ritial if � > 1. Throughout the following de�nitions are onvenient.For any variable x that depends on � we use the hat-notation x̂ to indiate that x is evaluated at� = 1. Moreover, for � > 0 let�0(�) := 0; and �n(�) := nXr=1 �r�2; n = 1; 2; : : : : (14)
De�nitionA non-negative ontinuous random variable �(�; �) is said to have a gamma-distribution withshape parameter � > 0 and sale parameter � > 0 if it has the probability density funtionf�(x) = ���(�)x��1e��x (x > 0) with �(�) := Z 1t=0 t��1e�tdt; (15)and Laplae-Stieltjes Transform (LST)��(s) = � ��+ s�� (Re(s) > 0): (16)Note that in the de�nition of the gamma-distribution � is a saling parameter, and that �(�; �)has the same distribution as ��1�(�; 1).Theorem 2Assume that all derivatives of f(z) of order two exist at z = 1 and that 0 < gi <1 (i = 1; : : : ;M).Then

1�n(�)
0BB� Z(1)n...Z(M)n

1CCA!d A0B� v̂1...v̂M
1CA�(�; 1) as (�; n)! (1;1); (17)

where v̂ = (v̂1; : : : ; v̂M ) is the normalized left eigenvetor of M̂, and where �(�; 1) is a gamma-distributed random variable with sale parameter 1 and shape parameter
� := 1Aĝ>ŵ = 1A MXi=1 ĝiŵi; with A := MXi=1 v̂i �ŵ>K̂(i)ŵ� > 0: (18)

Proof: See [24℄. We refer to Remark 3.3 for the details about the onvergene and the limitingregime onsidered in (17). �In the next two subsetions we will show how Theorem 2, whih was derived in the ontextof generi MTBPs, an be transformed into results for the two-phase gated polling model underonsideration. 7



3.2 PreliminariesWithout loss of generality, throughout we will fous on the waiting times at Q1 and onsider thestate of the system at polling instants at Q1. Let X(k)i be the number of phase-k ustomers at Qiat an arbitrary polling instant at Q1 when the system is in steady state (k = 1; 2; i = 1; : : : ; N).Moreover, for i = 1; : : : ; N , we onsider the two-dimensional random variable �X(1)i ; X(2)i �, anddenote the orresponding Probability Generating Funtion (PGF) by, for jz1j; jz2j � 1,X�i (z1; z2) := E �zX(1)i1 zX(2)i2 � : (19)Denoting the LST of the waiting-time distribution at Q1 byW �(2)1 (�), the waiting-time distributionat Q1 is related to the joint distribution of �X(1)1 ; X(2)1 � through the following expression (f. [20℄):For Re s � 0, � < 1,W �(2)1 (s) = X�1 (1� s=�1; B�1(s))�X�1 (1� s=�1; 1� s=�1)E hX(1)1 i (B�1(s)� 1 + s=�1) : (20)
To start the analysis, note �rst that straightforward balaning arguments lead to the followingexpression for the �rst moments E hX(k)1 i (k = 1; 2): For � < 1,E hX(1)1 i = E hX(2)1 i = �1r1� � : (21)In general the distributions and moments of X(1)1 and X(2)1 an not be obtained expliitly. Thefollowing notation is useful. LetX := �X(1)1 ; : : : ; X(1)N ; X(2)1 ; : : : ; X(2)N � (22)be the 2N -dimensional vetor that desribes the state of the system at an arbitrary polling instantat Q1. To determine the asymptoti behavior of the waiting-time distribution given in (20), wefous on the limiting behavior of X as � goes to 1. To this end, below we desribe the evolutionof the system as an MTBP. Subsequently, in Setion 3.3 we use this to transform Theorem 2 intoan asymptoti expression for the distribution of (1��)X, i.e. the saled version ofX as � goes to 1.To establish the relation with the general MTBP-model desribed in Setion 2, letX(k)i;n be the num-ber of type-i ustomers at phase-k in the system at the n-th polling instant at Q1, for i = 1; : : : ; N ,k = 1; 2 and n = 0; 1; : : :, and letXn := �X(1)1;n; : : : ; X(1)N;n; X(2)1;n; : : : ; X(2)N;n� (23)be the state vetor at the n-th polling instant at Q1. Then similar to the analysis made by Resing[28℄ we make the following observation.Theorem 3The disrete-time proess fXn; n = 0; 1; : : :g onstitutes a 2N -dimensional MTBP with immigra-tion in eah state, the LST of the o�spring funtion is given by the following expression: Forjs(k)i j � 1 (i = 1; : : : ; N; k = 1; 2),f(s) := �f (1)(s); : : : ; f (2N)(s)� ; with s := �s(1)1 ; : : : ; s(1)N ; s(2)1 ; : : : ; s(2)N � ; (24)and where for i = 1; : : : ; N ,f (i) �s(1)1 ; : : : ; s(1)N ; s(2)1 ; : : : ; s(2)N � := s(2)i ; (25)
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and f (i+N) �s(1)1 ; : : : ; s(1)N ; s(2)1 ; : : : ; s(2)N � := B�i 0� iXj=1 �j �1� s(1)j �+ NXj=i+1�j �1� s(2)j �1A ; (26)
and where the LST of the immigration funtion is given by

g �s(1)1 ; : : : ; s(1)N ; s(2)1 ; : : : ; s(2)N � := NYi=1R�i
0� iXj=1 �j �1� s(1))j �+ NXj=i+1�j �1� s(2)j �1A : (27)

Proof: Relations (25)-(27) an be obtained along the lines of [28℄ for the ase of one-phasegated servie, using simple generating-funtion manipulations. More spei�ally, in the spirit ofthe work in [28℄, equation (25) follows from the fat that a type-i ustomer at phase-1 at a givenpolling instant P1 at Q1 is "e�etively replaed" by a single type-i ustomer at phase-2 at thenext polling instant at Q1; note that in this ase, the type-i ustomer is simply forwarded fromphase-1 to phase-2. Similarly, (26) follows from the fat that a type-i ustomer at phase-2 at P1is e�etively replaed by all ustomers that arrive in the system during its servie time with LSTB�i (�). Finally, (27) stems from the fat that the immigration onsists of the ontributions of newlyarriving ustomers that arrive during the swith-over times, whih are independently distributedwith LST R�i (�); i = 1; : : : ; N . �3.3 Stepwise derivation of Theorem 1In this setion we use Theorem 3 to transform Theorem 2 into an expression for the limitingdistribution for (1� �)X as � goes to 1 (Theorem 4). Subsequently, this result is ombined with(20) to prove Theorem 1. The stepwise approah onsists of the following steps:Step 1: Derive an expression for the mean o�spring matrix M for the polling model underonsideration (Lemma 1).Step 2: Derive an expression for the left and right eigenvetors v and w of the mean matrix,evaluated at � = 1 (Lemma 2)Step 3: Derive an expression for the mean immigration vetor g, evaluated at � = 1 (Lemma 3).Step 4: Derive an expression for limiting behavior of �(�) onsidered as a funtion of �, as � goesto 1 (Lemma 4).Step 5: Derive an expression for A, evaluated at � = 1 (Lemma 5).Step 6: Combine steps 1 to 5 into an asymptoti expression for the distribution of (1� �)X as �goes to 1.Step 7: Use this expression in ombination with (20) to obtain Theorem 1.In Subsetions 3.3.1 to 3.3.7 eah of the steps will be disussed in more detail below.3.3.1 Step 1: Mean matrixThe following result gives an expression for the o�spring matrix for the polling model under on-sideration.Lemma 1For the two-phase gated polling model, the mean o�spring matrix M = (mi;j) is given byM =M1 � � �MNP; (28)where P is the permutation blok matrixP = � 0N ININ 0N � ; (29)
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where for k = 1; : : : ; N , the elements of the matrix Mk = �m(k)i;j � are given by: For i; j =1; : : : ; 2N , i 6= N + k,m(k)i;j = Ifi=jg; (30)and for i = N + k,m(k)N+k;k+j = �j+kb(1)k for j = 1; : : : ; N � k; (31)m(k)N+k;k+j = �j+k�Nb(1)k for j = N � k + 1; : : : ; N; (32)m(k)N+k;j = 0 for j = 1; : : : ; k or j = N + k + 1; : : : ; 2N: (33)Proof: The result an be obtained in a tedious but fairly straightforward manner by taking thepartial derivatives of the o�spring funtion de�ned in (25) and (26). As an alternative, we an usethe desription of the Desendant Set Approah (DSA) disussed in Appendix A, and de�ne for = �1; 0; 1; : : : the following vetor of desendant set variables, de�ned in (83)-(85):� := ��(1)1; � � � �(1)N; �(2)1; � � � �(2)N;�> = ��(2)1;�1 � � � �(2)N;�1 �(2)1; � � � �(2)N;�> ; (34)Then from DSA point-of-view it is readily seen that it suÆes to show that the matrix M de�nedin (28)-(33) satis�es the one-step relation �+1 = M�, for  = �1; 0; 1; : : :. To this end, we �rstnote that using relation (34) it is easily veri�ed that, for  = �1; 0; 1; : : :P� = ��(2)1; � � � �(2)N; �(2)1;�1 � � � �(2)N;�1�> : (35)Then using equations (84)-(86), it is readily veri�ed (by indution in k, for k = N;N � 1; : : : ; 1)that for k = 1; : : : ; N ,  = �1; 0; 1; : : :,Mk : : :MNP� = ��(2)1; : : : �(2)N; �(2)1;�1 � � � �(2)k�1;�1 �(2)k;+1 � � � �(2)N;+1�> ; (36)whih immediately implies by taking k = 1 thatM� =M1 : : :MNP� = ��(2)1; � � � �(2)N; �(2)1;+1 � � � �(2)N;+1�> = �+1: � (37)
3.3.2 Step 2: Left and right eigenvetors of M at � = 1The following result gives the left and right eigenvetors of the mean o�spring matrix M de�nedin Lemma 1 above, evaluated at � = 1.Lemma 2For the two-phase gated polling model, the right and left eigenvetors of the mean matrix M̂ aregiven by

ŵ = 0B� ŵ1...ŵ2N
1CA := jbj�1b; with b :=

0BBBBBBBBB�
b(1)1...b(1)Nb(1)1...b(1)N

1CCCCCCCCCA ; (38)
10



and
v̂ = 0B� v̂1...v̂2N

1CA := jbjÆ û; with u := 0B� u1...u2N
1CA ; where ui := �i(�i+� � �+�N ); ui+N := �i (i = 1; : : : ; N);

(39)and whereÆ := û>b = NXi=1 NXj=i �̂i�̂j+ NXi=1 �̂i = 12  1 + NXi=1 �̂2i!+1 = 12 NXi=1 �̂i(3+�̂i); and jbj := 2 NXk=1 b(1)k : (40)
Proof: First, it is readily seen by using equations (30)-(33) that for k = 1; : : : ; N , we have2NXj=1m(k)N+k;jŵj = jbj�10�N�kXj=1 �̂j+kb(1)k b(1)j + NXj=N�k+1 �̂j+k�Nb(1)k b(1)j 1A = jbj�1b(1)k NXj=1 �̂jb(1)j = jbj�1b(1)k = ŵN+k:(41)This immediately implies that M̂kŵ = ŵ for k = 1; : : : ; N . Moreover, it is easy to see thatPŵ = ŵ. Combining these observations then implies Mŵ = M1 � � �MNPŵ = ŵ, whih showsthat ŵ indeed is a right eigenvetor of M̂. Similar arguments an be used to show that M̂>v̂ = v̂.The details of the proof are omitted for ompatness of the presentation. �3.3.3 Step 3: Mean immigration vetor gWe now proeed to speify the mean immigration vetor g, de�ned in (9), for the model underonsideration. Considering the evolution of the 2N -dimensional state vetor as a disrete-timeMarkov hain fXn; n = 0; 1; : : :g at suessive polling instants at Q1, the \immigrants" in then-th generation are the ustomers present a time n that are not hildren of any of the ustomerspresent at time n� 1. Denote the mean immigration vetor byg = �g(1)1 � � � g(1)N g(2)1 � � � g(2)N �> ; (42)where g(k)i stands for the mean number of type-i immigrants in phase-k. In the desendant setpoint-of-view, g(k)i an be seen as the mean number of type-i ustomers in phase-k present at thereferene point (at Q1) that arrived during a swith-over time in yle 0 (i.e. the time betweenthe referene point and the preeding polling instant at Q1).Lemma 3For the two-phase gated model, for j = 1; : : : ; N ,

g(1)j = �j NXi=j r(1)i ; (43)
g(2)j = �j j�1Xi=1 r(1)i (44)and ĝ>ŵ = jbj�1r: (45)11



Proof: Equations (43) and (44) an be diretly obtained from (27). To give a more intuitivederivation, note that equation (43) follows diretly from the fat that a type-j immigrant inphase-1 should have arrived during a swith-over time from Qi to Qi+1, for some i � j. Similarly,equation (44) follows diretly from the fat that a type-j immigrant in phase-2 should have arrivedduring a swith-over time from Qi to Qi+1, for some i < j. Finally, to prove (45), assume � = 1.Then (45) follows diretly from the following sequene of relations:
ĝ>ŵ := 2NXj=1 ĝjŵj = NXj=1 ĝ(1)j ŵj+ NXj=1 ĝ(2)j ŵN+j = jbj�10� NXj=1 b(1)j �̂j NXi=j r(1)i + NXj=1 b(1)j �̂j j�1Xi=1 r(1)i 1A(46)
= jbj�10� NXj=1 b(1)j �̂jr1A = jbj�1�̂r = jbj�1r: � (47)

3.3.4 Step 4: Limiting behavior of �(�) for � " 1The following result desribes the limiting behavior of the maximum eigenvalue �(�) of the matrixM de�ned in Lemma 1, onsidered as a funtion of �, as � goes to 1.Lemma 4For the two-phase gated polling model, the maximum eigenvalue � = �(�) satis�es the followingproperties:(1) � < 1 if and only if � < 1, � = 1 if and only if � = 1 and � > 1 if and only if � > 1;(2) �(�) is a ontinuous funtion of �;(3) lim�"1 �(�) = �(1) = 1;(4) the derivative of �(�) at � = 1 is given by�0(1) = lim�"1 1� �(�)1� � = 1Æ ; (48)where Æ is de�ned in (40).Proof: Part 1 was shown in [28℄. Part 2 follows from the fat that all entries of M are on-tinuous funtions of �, whih implies the ontinuity of �(�) with respet to � (see for example[3℄). The fat that �(1) = 1 follows diretly from the fat that M̂b = b, whih is an immediateonsequene of the fat that the model under onsideration is work onserving. Finally, to provePart 4 we adopt the onept of the Desendant Set Approah (DSA) disussed in Appendix A.Then, based on known properties for the maximum eigenvalue of positive semi-de�nite matriesapplied to M (see for example [3℄) we an deompose �(1)i; , de�ned in (83)-(85), into a dominantand a reessive part as follows: For � < 1, i = 1; : : : ; N ,�(1)i; = �+1wiv1 + s(1)i; (49)where s(1)i; is a lower-order term in the sense that there exists K (0 < K <1) and �� (0 < �� < �)suh that js(1)i; j < K�� for all  = 0; 1; : : :, whih is readily seen to imply that, for i = 1; : : : ; N ,1X=0 s(1)i; <1: (50)
The result then follows diretly from (49), (50), (21), (87) and Parts 1, 2 and 3 of Lemma 4. Thisompletes the proof. � 12



3.3.5 Step 5: Expression for A at � = 1Lemma 5For the two-phase gated polling model,A = jbj�1Æ�1 b(2)2b(1) : (51)Proof: Using the de�nition of A in Theorem 2, we need to speify the eigenvetors v̂ and ŵ ofthe mean o�spring matrix M̂, and the seond-order matries K̂(i) (i = 1; : : : ; N). To this end,note that v̂ and ŵ are given in Lemma 2. The matries K̂(i) (i = 1; : : : ; N) an be obtaineddiretly from Theorem 3. This method is methodologially straightforward, but pratially quiteumbersome; the details of this derivation are left as an exerise to the reader. As an alternative,the saling onstant A in (51) an also be obtained by simple �rst-order arguments only, seeRemark 3.1 below. �3.3.6 Step 6: Asymptoti expression for saled state vetorWe are now ready to present the HT result for the state vetor at polling instants in the two-phasegated polling model. Without loss of generality, we fous on the evolution of the state vetor atembedded polling instants at Q1.Theorem 4For the two-phase gated polling model, the state vetor at polling instants at Q1 has the followingasymptoti behavior:(1� �)X> !d Æ �A � v̂ � �(�; 1) (� " 1); (52)where� = 2rÆ b(1)b(2) : (53)and where Æ, A and v̂i (i = 1; : : : ; 2N) are de�ned in (40), (51) and (39), respetively.Proof: To start, note that the proess that desribes the evolution of the state vetor fXn; n =0; 1; : : :g at suessive polling instants at Q1 onstitutes an 2N -dimensional MTBP with o�springfuntion f(z) and immigration funtion g(z) de�ned in Theorem 3, and with mean matrix Mde�ned in Lemma 1. Moreover, from Theorem 3 and Lemma 3 it is readily veri�ed that theassumptions of Theorem 2 on the �niteness of the seond-order derivatives of f(s) and the meanimmigration funtion g are satis�ed (with M = 2N), based on the assumption that the seondmoments of the servie times b(2)i (i = 1; : : : ; N) and the �rst moments of the swith-over timesr(1)i (i = 1; : : : ; N) are �nite. Then using Lemmas 2 to 4 and Theorem 2 it follows that1�n(�(�)) �X>n !d A � v̂ � �(�; 1) as (�; n)! (1;1); (54)where A, v̂ and � are de�ned in (17)-(18), see Remark 3.3 below for more details about theonvergene and the limiting regime. Hene, using the properties listed in Lemma 4, it readilyfollows from (54) that(1� �)X>n !d Æ �A � v̂ � �(�; 1) as (�; n)! (1;1): (55)�Remark 3.1As an alternative to the proof of Lemma 5, a muh simpler derivation of A an be obtained by13



ombining Theorem 4 (whih does not require the saling parameter A to be known expliitly),and (21). To this end, note that by taking the mean value of the �rst entry in (52) and taking thelimit for � " 1 it readily follows that�̂1r = ÆAv̂1 � � = ÆA � jbjÆ �̂1 � 2rÆ b(1)b(2) ; (56)whih immediately implies (51). �Remark 3.2The parameters Æ and v̂ in (52) only depend on the arrival rates and the mean values of theservie-time distributions. Therefore, the impat of the variability of the servie-time distribu-tions manifests itself in the parameters � (de�ned in (53)) and A (given in Lemma 5). FromLemma 5 it follows that A is the mean residual servie time of an arbitrary ustomer (regardlessof the queue it enters), up to a normalizing onstant. This normalizing onstant jbj�1Æ�1 ouldbe set to one by properly renormalizing the eigenvetors of the mean matrix M in Lemma 2.Remark 3.3A note on the onvergene in Theorems 2 and 4. The onvergene of Theorem 2 should be on-sidered in the following sense (see [24℄ for details): for all � > 0 there exist Æ > 0 and N suh thatif j1� �j < Æ then for all n > N it holds thatsupx2RM ����Prob� 1�n(�)Zn � x�� Prob fA � �(�; 1) � v̂ � xg���� < �; (57)where �, �n(�), Zn, A, � and v are de�ned in Setion 3.1. And similarly, for the polling modelunder onsideration the onvergene in (52) is de�ned as follows: for all � > 0 there exist Æ > 0and N suh that if j1� �j < Æ then for all n > N it holds thatsupx2R2N ���Probn(1� �)X>n � xo� Prob fA � �(�; 1) � v̂ � xg��� < �; (58)where Xn, A, � and v are spei�ed for the two-phase gated polling model in Setion 3.3. Usingthese de�nitions, it is easily seen that Theorem 2 translates into Theorem 4 by using relations(54)-(55), using Theorem 3 and the properties listed in Lemma 4.We are now ready to formulate the proof of Theorem 1.3.3.7 Proof of Theorem 1Without loss of generality, we assume i = 1. Throughout it will be onvenient to relate thewaiting-time and queue-length distributions at polling instants at Q1 to the joint distribution oftwo suessive yle times. More preisely, let a given polling instant P at Q1 mark the end of ayle time with duration C1, and let the duration of the preeding yle time be C�1 . Moreover,denote the joint LST of (C1; C�1 ) by: For Re(s); Re(t) > 0,C�1 (s; t) := E he�sC1�tC�1 i : (59)Reall from (19) that X�1 (z1; z2) is the joint PGF of the numbers of type-1 ustomers at bothphases at queue 1 at an arbitrary polling instant at Q1. Then the population of ustomers presentat Q1 at phase 1 at polling instant P onsists exatly of those ustomers that arrived during thepast yle time of duration C1, whereas the population of ustomers present at phase 2 exatlyonsists of those that arrived in the preeding yle of duration C�1 . Standard GF manipulationsthen immediately imply that for jz1j; jz2j � 1,X�1 (z1; z2) = C�1 (�1(1� z1); �1(1� z2)) : (60)14



Using (60), equation (20) an be reformulated in the following onvenient form: For Re(s) > 0,W �1 (s) = (1� �1)ss� �1(1�B�1(s)) � C�1 (s; �1(1�B�1(s)))� C�1 (s; s)s(1� �1)r=(1� �) : (61)Now, ombining (39) with Lemma 5 and Theorem 3, by taking the �rst and the (N + 1)-stomponent of the vetor in (52), it readily follows that
(1� �) X(1)1X(2)1 !!d 12Æ � b(2)b(1) � �̂1�̂1 ��(�; 1) (� " 1); (62)

where � is de�ned in (53). Then, using (60) and similar arguments as those disussed in [33℄,equation (62) an be expressed in terms of yle times as(1� �)� C1C�1 �!d 12Æ � b(2)b(1) � 11 ��(�; 1) (� " 1); (63)where onvergene should be onsidered in the supremum-sense de�ned in (58). Theorem 1 followsthen diretly by ombining (61), (63) and (16) and standard algebrai manipulations, reallingthat we foused on the waiting-time distributions Q1 without loss of generality. �
4 Disussion and ImpliationsTheorem 1 reveals a variety of asymptoti properties of the performane of the model under onsid-eration. In Setion 4.1 we formulate several insensitivity properties of the asymptoti waiting-timedistributions with respet to the system parameters. In Setion 4.2 we assess the impliations re-garding the trade-o� between eÆieny and fairness, omparing the performane of two-phasegated model to the lassial one-phase gated model.4.1 InsensitivityThe following result follows diretly from Theorem 1.Property 1 (Insensitivity)For i = 1; : : : ; N , the distribution of ~W (2)i(1) is independent of the visit order,(2) depends on the swith-over time distributions only through r, i.e., the total expeted swith-overtime per yle,(3) depends on the higher moments of the servie-time distributions only through b(2), i.e., theseond moment of the servie time of an arbitrary ustomer.In general, Proposition 1 is not valid for stable systems (i.e., for � < 1), where the visit order, theomplete servie-time and swith-over time distributions do have an impat on the waiting-timesdistributions. Hene, Proposition 1 shows that the inuene of these parameters on the waiting-time distributions vanishes when the load tends to unity, and as suh an be viewed as lower-ordere�ets in heavy traÆ. Note that it follows from (4)-(6) that same insensitivity properties arevalid for the distribution of ~W (1)i , de�ned in (4)-(5), see also [33℄.4.2 EÆieny and fairnessTheorem 1 also leads to several interesting insights regarding the trade-o� between eÆieny andfairness when omparing models with one-phase and two-phase gated servie.15



4.2.1 EÆienyA ommonly used measure of eÆieny is the mean total amount of un�nished work in the sys-tem. To this end, let V (k) denote the total amount of waiting work in the system, for the modelwith k-phase gated servie (k = 1; 2). Note that it follows diretly from Little's formula that, for� < 1, E[V (k)℄ = PNi=1 �iE[W (k)i ℄. Then the following results follows diretly from the pseudo-onservation law (f. [39℄ for details of the derivation).Property 2 (EÆieny)Two-phase gated servie is less eÆient than one-phase gated servie in the sense that, for � < 1,E[V (2)℄ = E[V (1)℄ + r1� � > E[V (1)℄: (64)Note that Property 2 immediately implies that the one-phase gated model is also asymptotiallymore eÆient than the two-phase gated model, in the sense that if we de�ne v(k) := lim�"1 (1 ��)E[V (k)℄ (k = 1; 2), then v(2) = v(1)+r > v(1). We refer to [39℄ for numerial results that supportthese observations.4.2.2 FairnessWhile eÆieny in polling models has been extensively studied and is quite well understood, thereis no ommonly agreed upon theoretial yardstik for measuring fairness in polling models. Onean think of di�erent notions of fairness in polling systems. In this setion we onsider two typesof fairness: (1) queue fairness and (2) ustomer fairness. Intuitively, ultimate queue fairness isrealized when the waiting-time distributions are the same for all queues, while ultimate ustomerfairness is reahed when the ustomers somehow experiene the same slowdown. For ompleteness,we �rst outline the results on queue fairness (as disussed in more detail in equations (24), (25)and Table 1 in [39℄). Subsequently, we disuss the impliations of Theorem 1 on ustomer fairness.Queue fairnessLet us de�ne the queue unfairness as follows (see also [39℄): For � < 1,
F (k)queue := maxi;j=1;:::;N ������E

hW (k)i i
E hW (k)j i � 1������ (k = 1; 2): (65)

Thus, the higher the (asymptoti) unfairness, the less fair is the servie poliy. Now, it followsdiretly from (4)-(6) above that, for i = 1; : : : ; N ,
E h ~W (1)i i = 1 + �̂i4Æ1 b(2)b(1) + r(1 + �̂i)2 ; with Æ1 := 12 NXj=1 �̂j(1 + �̂j); (66)

and from Theorem 1 that, for i = 1; : : : ; N ,
E h ~W (2)i i = 3 + �̂i4Æ2 b(2)b(1) + r(3 + �̂i)2 ; with Æ2 := 12 NXj=1 �̂j(3 + �̂j): (67)

The following result is an immediate onsequene of (66) and (67).Property 3 (Asymptoti queue fairness)Two-phase gated servie is asymptotially more fair than one-phase gated servie in the sense thatF̂ (2)queue < F̂ (1)queue: (68)16



This observation follows diretly from the fat that for all i; j = 1; : : : ; N . Then by taking thelimit for � " 1 it holds that������E
h ~W (2)i i

E h ~W (2)j i � 1������ = ���� 3 + �̂i3 + �̂j � 1���� < ���� 1 + �̂i1 + �̂j � 1���� = ������E
h ~W (1)i i

E h ~W (1)j i � 1������ ; (69)
whih is easily seen to imply (68), by taking the limit for � " 1. We refer to [39℄ for numerialresults that support these observations.Customer fairnessLet W (k) be the waiting time of an arbitrary ustomer in the k-phase gated polling system, andreall that the m-th moment of its servie time is denoted by b(m) = ��1PNi=1 �ib(m)i (m = 1; 2),for both the one-phase and two-phase gated model. Then Brosh et al. [6℄ de�ne the followingSlowdown Queueing Fairness (SQF) measure of ustomer unfairness for the polling model withk-phase gated servie at all queues: For k = 1; 2,

F (k)SQF := V ar "W (k) � E �W (k)�b(1) B# = E "W (k) � E �W (k)�b(1) B#2 : (70)
Then the asymptoti results presented in Theorem 1 an be used to quantify F (k)SQF in the limitingase � " 1. More preisely, the asymptoti fairness for the polling model is given by the followingexpression: For k = 1; 2,
F̂ (k)SQF := E 24 ~W (k) � E h ~W (k)ib(1) B352 = E �� ~W (k)�2��2E h ~W (k)i NXi=1 �̂iE h ~W (k)i i+�E h ~W (k)i�2� b(2)�b(1)�2 ;(71)whereE h ~W (k)i = �̂�1 NXi=1 �̂iE h ~W (k)i i ; E �� ~W (k)�2� = �̂�1 NXi=1 �̂iE �� ~W (k)i �2� ; (72)and whereNXi=1 �̂iE h ~W (k)i i = b(2)2b(1) + rÆk; (73)whih follows diretly from the pseudo-onservation law derived in [39℄. The following result fol-lows diretly from Theorem 1.Property 4 (Seond moment of the delay)For i = 1; : : : ; N , we have for the one-phase gated modelE �� ~W (1)i �2� = 1 + �̂i + �̂2i3 �r + 12Æ1 b(2)b(1)��r + 1Æ1 b(2)b(1)� ; (74)and for the two-stage gated modelE �� ~W (2)i �2� = 7 + 4�̂i + �̂2i3 �r + 12Æ2 b(2)b(1)��r + 1Æ2 b(2)b(1)� : (75)An exat expression for the asymptoti SQF (70) of both models an then be obtained by ombin-ing (72)-(75). Although an in-depth study of the asymptoti SQF properties of the one-phase and17



two-phase models is beyond the sope of the paper, we briey touh upon some onsiderationsabout SQF below.An interesting question is whether in general the two-phase gated polling model, whih is knownto be (asymptotially) less eÆient, is asymptotially less unfair than its one-phase ounterpart(Property 2), whih is one of the reasons for proposing the two-phase poliy in the �rst plae. Theanswer is no. To illustrate this, onsider the three-queue model with the following parameters:�̂1 = 1=10, �̂2 = 2=10, �̂3 = 3=10, all the servie times are deterministi with means 1, 2 and3, respetively, so that b(1) = 5=3 and b(2) = 10=3 and �̂1 = 3=10, �̂2 = 4=10 and �̂3 = 3=10.Table 1 below shows the asymptoti unfairness F̂ (k)SQF for k = 1; 2 for di�erent values of the meanswith-over time per yle r. The results in Table 1 illustrate the fat that in general there is nor F̂ (1)SQF F̂ (2)SQF0 1.35 1.220.05 1.40 1.340.1 1.46 1.460.25 1.63 1.851.0 2.55 4.18Table 1: Asymptoti ustomer unfairness for di�erent values of r.
dominane relation between the one-phase and two-phase gated polling systems with respet tothe asymptoti unfairness measure de�ned in (70).The SQF-measure de�ned in (70) inludes the ombined impat of seniority and servie-timevariability. Therefore, one might suspet that if all servie times are deterministi with the samemean the two-phase gated servie is more fair in the SQF-sense, sine the e�et of overtaking (i.e.ustomers that arrive earlier are served later) seems to be less. However, in general suh a relationdoes not hold. To illustrate this, onsider the following three-queue model: �̂1 = 1=12, �̂2 = 1=6,�̂3 = 1=4, all the servie times are deterministi with mean 2, so that b(1) = 2 and b(2) = 4 and�̂1 = 1=6, �̂2 = 1=3 and �̂3 = 1=2. Table 2 shows the asymptoti unfairness F̂ (k)SQF for k = 1; 2 fordi�erent values of r. Table 2 illustrates that even if the servie-time distributions are deterministir F̂ (1)SQF F̂ (2)SQF0 1.15 1.030.1 1.24 1.200.2 1.32 1.380.3 1.59 1.911.0 2.04 2.82Table 2: Asymptoti ustomer unfairness for di�erent values of r.
and idential for all queues there is no dominane relation between the one-phase and two-phasegated polling systems with respet to (70).The results presented in (72)-(75) lead to a losed-form expression for the asymptoti SQF-measure for one-phase and two-phase polling models, and an be extended to a muh broaderlass of MTBP-type polling models, following the general framework developed in [37℄. The pre-liminary results presented in Tables 1 and 2 show that the derivation of dominane relationsbetween fairness of poliies with respet to the SQF-measure is far from trivial, and beyond thesope of the present paper, addressing a hallenging area for further researh.18



5 Further ResearhThe results presented in this paper suggest a number of interesting topis for further researh.First, it is a tremendous hallenge to develop some type of ordering of servie poliies with respetto (asymptoti) eÆieny and fairness. In the ontext of eÆieny, suh an ordering has beenobtained in [40℄. However, the development of an ordering with respet to the fairness measurede�ned in (70) [6℄, where seniority and servie time variability are intertwined, is an open andintriguing problem. The results shown in Table 1 suggest that developing suh an ordering is farfrom trivial. Seond, the two-phase gated servie poliy may be naturally extended to a generalKi-phase gated servie poliy, where queue i reeives Ki-phase gated servie, for i = 1; : : : ; N . Wesuspet that the results in the present paper an be extended to the ase of Ki-phase gated servieby onsidering the evolution of the system as a K :=PNj=1 Kj-dimensional MTBP. Suh resultswould also raise hallenging questions regarding the optimal setting of the Ki-values that properlybalane fairness and eÆieny. Extension of the results presented in this paper form an interestingtopi for further researh. Third, in this paper it is assumed that the servie-time distributionshave �nite variane. It would be interesting to investigate if the results an be extended to inludein�nite-variane (e.g., regularly varying) servie-time distributions. In this ontext, note howeverthat Quine's result (Theorem 2) expliitly relies on the �nite-variane assumptions and no longerholds if the assumption is violated. Extension of the results to servie times with in�nite varianewould be a breakthrough in the �eld. Finally, it would be interesting both from a theoretial andappliation point-of-view to extend the results to non-Poisson arrivals. In this ontext, we anbuild upon the reent results presented in [40℄, where we rigorously prove HT limits for pollingmodels with gated and exhauistive servie at all queues and with renewal arrivals .Aknowledgment: The authors would like to thank the referees for their useful suggestions,whih have led to a signi�ant improvement of the paper.
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Appendix A: The Desendant Set Approah for the Two-Phase Gated ModelIn this Appendix we disuss how the model de�ned in Setion 2 an be analyzed by means of theDesendant Set Approah (DSA), introdued in [11℄ for models with exhaustive and gated servie.The ustomers in a polling system an be lassi�ed as originators and non-originators. An orig-inator is a ustomer that arrives at the system during a swith-over period. A non-originator isa ustomer that arrives at the system during the servie of another ustomer. For a ustomer C,de�ne the hildren set to be the set of ustomers arriving during the servie of C; the desendantset of C is reursively de�ned to onsist of C, its hildren and the desendants of its hildren. TheDSA is foused on the determination of the moments of the delay at a �xed queue, say Q1. Tothis end, the DSA onentrates on the determination of the distribution of the two-dimensionalstohasti vetor �X(1)1 (P �); X(2)1 (P �)�, where X(k)1 (P �) is de�ned as the number of phase-k us-tomers at Q1 present at an arbitrary �xed polling instant P � at Q1 (k = 1; 2). P � is referredto as the referene point. The main ideas are the observations that (1) eah of the ustomerspresent at Q1 at the referene point P � (either at phase 1 or phase 2) belongs to the desendantset of exatly one originator, and (2) the evolutions of the desendant sets of di�erent originatorsare stohastially independent. Therefore, the DSA onentrates on an arbitrary tagged ustomerwhih arrived at Qi in the past and on alulating the number of type-1 desendants it has at bothphases at P �. Summing up these numbers over all past originators yields �X(1)1 (P �); X(2)1 (P �)�,and hene �X(1)1 ; X(2)1 �, beause P � is hosen arbitrarily.The DSA onsiders the Markov proess embedded at the polling instants of the system. Tothis end, we number the suessive polling instants as follows. Let PN;0 be the last polling instantat QN prior to P �, and for i = N � 1; : : : ; 1, let Pi;0 be reursively de�ned as the last pollinginstant at Qi prior to Pi+1;0. In addition, for  = 1; 2; : : :, we de�ne Pi; to be the last pollinginstant at Qi prior to Pi;�1, i = 1; : : : ; N . De�ne the -th yle to be the time between P1;and P1;�1, for  = 0; 1; : : :. The DSA is oriented towards the determination of the ontributionto �X(1)1 (P �); X(2)1 (P �)� of an arbitrary ustomer present at Qi at Pi;. To this end, de�ne an(i; )-ustomer to be a ustomer present at Qi at Pi;. Moreover, for a tagged (i; )-ustomer Ti;at phase-1, we de�ne Ai; := �A(1)i; ; A(2)i; �, where A(k)i; is the number of type-1 desendants ithas at phase-k at P � (k = 1; 2). In this way, the two-dimensional random variable Ai; an beviewed as the ontribution of Ti; to �X(1)1 (P �); X(2)1 (P �)�. Denote the joint PGF of Ai; by, forjz1j; jz2j � 1, i = 1; : : : ; N ,  = 0; 1; : : :,
A�i;(z1; z2) := E �zA(1)i;1 zA(2)i;2 � : (76)

To express the distribution of �X(1)1 ; X(2)1 � in terms of the distributions of the desendant setvariables Ai;, denote by Ri; the swith-over period from Qi to Qi+1 immediately after theservie period at Qi starting at Pi;. Moreover, denote Si; := �S(1)i; ; S(2)i; �, where S(k)i; is the totalontribution toX(k)1 of all ustomers that arrive at the system during Ri; (note that, by de�nition,these ustomers are original ustomers), and denote the joint PGF of Si; by, jz1j; jz2j � 1,i = 1; : : : ; N ,  = 0; 1; : : :,
S�i;(z1; z2) := E �zS(1)i;1 zS(2)i;2 � : (77)
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In this way, Si; = �S(1)i; ; S(2)i; � an be seen as the (joint) ontribution ofRi; to �X(1)1 (P �); X(2)1 (P �)�.It is readily veri�ed that we an write
X1 = �X(1)1 ; X(2)1 � = NXi=1 1X=0 �S(1)i; ; S(2)i; � = NXi=1 1X=0 Si;: (78)

Note that S(1)i; and S(2)i0;0 are dependent if (i; ) = (i0; 0) but independent otherwise. Hene we anwrite, for jz1j; jz2j � 1,
X�1 (z1; z2) = NYi=1 1Y=0S�i;(z1; z2): (79)

Beause Si; is the total joint ontribution to X1 of all (original) ustomers that arrive during Ri;,the joint distribution of Si; an be expressed in terms of the distributions of the DS-variables Ai;as follows: For i = 1; : : : ; N ,  = 0; 1; : : :, and jz1j; jz2j � 1,
S�i;(z1; z2) = R�i 0� NXj=i+1 ��j � �jA�j;(z1; z2)�+ iXj=1 ��j � �jA�j;�1(z1; z2)�1A : (80)

To de�ne a reursion for the evolution of the desendant set, note that a ustomer at phase-1present at Q1 at the polling instant at Q1 during yle  is served during the next yle, whihleads to the following relation: For i = 1; : : : ; N ,  = 0; 1; : : :, and jz1j; jz2j � 1,
A�i;(z1; z2) = B�i 0� NXj=i+1 ��j � �jA�j;�1(z1; z2)�+ iXj=1 ��j � �jA�j;�2(z1; z2)�1A ; (81)

supplemented with the basis for the reursionA�i;�1(z1; z2) = z1Ifi=1g; and A�i;�2(z1; z2) = z2Ifi=1g: (82)In this way, relations (78)-(82) give a omplete haraterization of the simultaneous distributionof �X(1)1 ; X(2)1 �. Similarly, reursive relations to alulate the (ross-)moments of �X(1)1 ; X(2)1 �an be readily obtained from those equations.Relation (81) leads to the following reursive relations for the �rst moment of the DS variablesA(k)i; . More preisely, if we de�ne for i = 1; : : : ; N ,  = �2;�1; 0; 1; : : : and k = 1; 2,�(k)i; := E hA(k)i; i ; (83)then (78)-(82) are easily seen to lead to the following reursive sheme: For i = 1; : : : ; N ,  =0; 1; : : :, and k = 1; 2,
�(k)i; = b(1)i 24 NXj=i+1�j�(k)j;�1 + iXj=1 �j�(k)j;�235 ; (84)

supplemented with the following basis for the reursion, for i = 1; : : : ; N ,�(1)i;�2 := 0; �(2)i;�2 := Ifi=1g; �(1)i;�1 := Ifi=1g and �(2)i;�1 := 0: (85)Note that sine a phase-1 ustomer at Qi present in the system at Pi; is served during the( � 1)-st yle, the ontribution of that phase-1 ustomer is stohastially idential to that of a23



type-i ustomer in phase-2 who is present at the system at Pi;�1. Consequently, we have, fori = 1; : : : ; N ,  = �1; 0; 1; : : :, that�(1)i; = �(2)i;�1: (86)Moreover, it follows diretly from (78) and (80) that, for k = 1; 2,
E hX(k)1 i = NXi=1 1X=0E hS(k)i; i = NXi=1 1X=0 r(1)i 24 NXj=i+1�j�(k)j; + iXj=1 �j�(k)j;�135 : (87)
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