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Abstract

We study an asymmetric cyclic polling system with Poisson arrivals, general service-time and
switch-over time distributions, and with so-called two-phase gated service at each queue, an
interleaving scheme that aims to enforce some level of ” fairness” among the different customer
classes. For this model, we use the classical theory of multi-type branching processes (MTBPs)
to derive closed-form expressions for the Laplace-Stieltjes Transform (LST) of the waiting-
time distributions when the load tends to 1, in a general parameter setting and under proper
heavy-traffic (HT) scalings. This result is strikingly simple and provides new insights in
the behavior of two-phase polling systems. In particular, the result provides insight in the
waiting-time performance, and the tradeoff between efficiency and fairness of two-phase gated
polling compared to the classical one-phase gated service policy.

1 Introduction

A polling system is a multi-queue single-server system in which the server visits the queues in cyclic
order to process requests pending at the queues. Polling models occur naturally in the modeling
of systems in which service capacity (e.g., CPU, bandwidth) is shared by different types of users,
each type having specific traffic characteristics and performance requirements. Polling models find
a variety of applications in the areas of computer-communication networks, production, manufac-
turing and maintenance [17, 31]. In many applications of polling models a key issue is how to
realize some level of fairness among different customer classes. Motivated by this, many service
disciplines have been proposed containing some kind of interleaving scheme to enforce fairness
among different customer classes by somehow limiting the number of customers served during a
single visit of the server to a queue. This has led to the definition of a variety of service policies,
including for example the classical K-limited, time-limited or Bernoulli-type service policies which



put (either fixed or stochastic) upper bounds to the duration of a visit of the server to a queue. In
addition, a number of variants of exhaustive and gated service policies have been proposed to avoid
monopolization by a single queue, including for example the binomial-gated, fractional-exhaustive
or Bernoulli-type service policies, amongst others. The two-phase gated policy analyzed in this
paper may be viewed as an interesting alternative to the classical gated service policy.

The motivation for studying polling models with two-phase gated service is twofold. First, the
ultimate goal of studying the performance of polling models is to understand how to efficiently
operate the system, e.g. in terms of 'How many customers should be served during a visit of the
server to a queue?’ and 'In what order should the queues be visited by the server?’ In this context,
two important issues are often considered: efficiency and fairness. The two-phase gated service
policy provides a promising means to realize fairness by enforcing some level of interleaving be-
tween differentent customer classes. As such two-phase gated service may be seen as an interesting
alternative to the classical limited-type (e.g., Bernoulli, K-limited, time-limited) or fractional-type
(e.g., binomial-gated, fractional-exhaustive) service policies. In this context, the aim of his pa-
per is to quantify the trade-off between efficiency and fairness by comparing the two-phase gated
model with the classical one-phase gated model. Second, two-phase service policies find specific
applications in the area of Ethernet Passive Optical Networks (EPONs). In fact, Kramer et al. [14]
propose two-phase scheduling policies to implement a dynamic bandwidth allocation scheme in an
Ethernet Passive Optical network (EPON), where packets from different Optical Network Units
(ONUs) share channel capacity in the upstream direction. An EPON is a point-to-multipoint net-
work in the downstream direction and a multi-point to point network in the upstream direction.
The Optical Line Terminal (OLT) resides in the local office, connecting the access network to
the Internet. The OLT allocates the bandwidth to the Optical Network Units (ONUs) located at
the customer premises, providing interfaces between the OLT and end-user network to send vocie,
video and data traffic. In an EPON the process of transmitting data downstream from the OLT to
the ONUs is broadcast in variable-length packet according to the 802.3 protocol [12]. However, in
the upstream direction the ONUs share capacity, and various polling-based bandwidth allocation
schemes can be implemented. Simple time-division multiplexing access (TDMA) schemes based on
fixed time-slot assignment suffer from the lack of statistical multiplexing, making inefficient use of
the available bandwidth, which raises the need for dynamic bandwidth allocation (DBA) schemes.
A dynamic scheme that reduces the time-slot size when there are no data to transmit would allow
excess bandwidth to be used by other ONUs. However, the main obstacle of implementing such a
scheme is the fact the OLT does not know in advance how much data each ONU has to transmit.
To overcome this problem, Kramer et al. [12, 13, 14] propose an OLT-based interleaved polling
scheme similar to hub-polling to support dynamic bandwidth allocation. To avoid monopolization
of bandwidth usage of ONUs with high data volumes they propose an interleaved DBA scheme
with a maximum transmission window size limit. Motivated by this, Park et al. [20] proposed the
two-phase gated service as a means to enforce interleaving between different traffic streams, aiming
to realize some degree of ”fairness” amongst different customer classes. To this end, they derive
a pseudo-conservation law for the two-phase gated system and use the classical buffer-occupancy
method to express the expected delay as the solution of a set of linear equations. We believe that
apart from its application in the specific context of EPONSs, the two-phase service policy may also
be an interesting ”fair” alternative to the classical gated service policy in other application areas,
such as production, manufacturing and maintenance.

Despite the fact that fairness is an important aspect in queueing models, there is no commonly ac-
cepted notion of fairness in queueing systems and how to quantify it. Wierman and Harchol-Balter
[44] propose to use as a fairness criterion the E[T(z)]/z, where T'(z) stands for the conditional
sojourn time of a job of size z, to evaluate whether a system is fair or unfair. Raz et al. [25] go a
step further by proposing the so-called Resource Allocation Queueing Fairness Measure (RAQFM)
as an unfairness measure that takes into account both seniority and service-time differences; they
also show that queue fairness is sensitive to service-time variability and that the fairness ranking
of commonly used scheduling policies (such as FCFS, LCFS, ROS) depends on this parameter.



Recently, Brosh et al. [6] have proposed the so-called Slowdown Queueing Fairness (SQF) mea-
sure, based on a proportionality principle as the underlying belief. SQF can be viewed as bridging
the gap between the slowdown expected criterion [44] (which focuses on service requirements only,
not on seniority) and the “natural” waiting-time variance (which focuses on job seniority, not on
service requirements). We refer to [6] for a recent overview of the available literature on fairness
in queueing systems. To the best of the authors’ knowledge fairness has not been addressed in the
context of polling models before.

The analysis of polling models has received much attention over the past couple of decades. One
of the most remarkable results is that there appears to be a striking difference in complexity be-
tween polling models. Resing [28] observed that for a large class of polling models, including for
example cyclic or periodic polling models with Poisson arrivals, exhaustive or gated service at all
queues, and switch-over times that are independent of the state of the system, the evolution of the
system at successive polling instants at a fixed queue can be described as a multi-type branching
process (MTBP) with immigration. Models that satisfy this MTBP-structure allow for an exact
analysis, whereas models that violate the MTBP-structure are often more intricate and require
heavy-weight numerical techniques to obtain the queue-length and waiting-time distributions [4, 5].
For MTBP-type polling models a number of solution techniques have been proposed, including
for example the classical buffer-occupancy and station-time techniques [29], the Descendant Set
Approach [11] and the recently proposed Mean Value Analysis [45]. As an interesting extension of
MTBP-type models, Groenevelt and Altman [10] and Altman and Fiems [1] consider polling mod-
els in which the switch-over times are correlated, by using stochastic recursive equations. Their
results show that the correlations between the switch-over times may have a significant impact
on the waiting-time performance of the system. We refer to [29, 30, 32, 43] for overviews of the
available results on polling models.

There are several strong reasons for considering heavy traffic (HT) asymptotics. Exact analy-
sis of the delay in polling models is only possible in some cases, and even in those cases numerical
techniques are usually required to obtain the expected delay at each of the queues. However,
the use of numerical techniques for the analysis of polling models has several drawbacks. First,
numerical techniques do not reveal explicitly how the system performance depends on the system
parameters and can therefore contribute to the understanding of the system behavior only to a
limited extent. Exact closed-form expressions provide much more insight into the dependence of
the performance measures on the system parameters. Second, the efficiency of each of the nu-
merical algorithms degrades significantly for heavily loaded, highly asymmetric systems with a
large number of queues, while the proper operation of the system is particularly critical when the
system is heavily loaded. These observations raise the importance of an exact asymptotic analysis
of the delay in polling models in HT.

Over the past decade, polling models in HT have received significant attention. For a two-queue
model with exhaustive service at both queues, Coffman et al. [7, 8] use an averaging principle to
derive expressions for the workload and waiting-time distributions under HT assumptions. For
models with independent Poisson arrivals, Kudoh et al. [16] give explicit expressions for the second
moment of the waiting time in fully symmetric systems with gated or exhaustive service at each
queue for models with two, three and four queues, by exploring the classical buffer-occupancy
approach [30]. They also give conjectures for the HT limits of the first two moments of the
waiting times for systems with an arbitrary number of queues. In a series of papers, Van der
Mei and co-authors explore the use of the Descendant Set Approach (DSA) [11] to derive exact
expressions for the waiting-time distributions in models with mixtures of exhaustive and gated
service and cyclic [33] or periodic [21] server routing, and with simultaneous batch arrivals [36].
Van der Mei [37] considers the general class of polling models that can be described by MTBPs
[28] and uses the theory of critical MTBP [24] to obtain a framework for deriving HT-limits for
the waiting-time and queue-length disributions. Van der Mei and Winands [41] use the Mean
Value Analysis (MVA) [45] to derive HT limits for the expected delay for cyclic Poisson-driven



polling models with exhaustive and gated service at all queues. In [40] they derive expressions for
the expected delay in cyclic polling models with gated and exhaustive service, providing rigorous
proofs for the results conjectured earlier in [7, 22]. Kroese [15] studies continuous polling systems
in HT with unit renewal arrivals on a circle and shows that the steady-state number of customers
has approximately a gamma-distribution. Vatutin and Dyakonova [42] use the theory of MTBPs
to obtain the limiting distributions for several two-queue polling models with zero switch-over
times. Altman and Kushner [1] study the HT-behavior of polling models in which the queue may
be temporarily unavailable. For this model, they show that the suitably scaled total workloads
converge to a controlled limit diffusion process with jumps. They also show that the individual
queued workloads and job numbers can be recovered (asymptotically) from the limiting scaled
workload. Another interesting limiting regime in which the queue lengths grow to infinity is when
the switch-over times are large. In this case, strikingly simple results about the distributions of
the delay can be obtained [23, 46, 34]. In addition to the evaluation of the performance of heavily
loaded polling systems, the results can also be used to address stochastic scheduling problems, see
for example [18, 19, 26, 27] and references therein.

We consider an asymmetric cyclic polling model with NV queues and with generally distributed
service times and switch-over times. Each queue receives so-called two-phase gated service, which
works as follows: Newly incoming customers are first queued at the phase-1 buffer. When the
server arrives at a queue, it closes the gate behind the customers residing in the phase-1 buffer,
then serves all customers waiting in the phase-2 buffer on a FCFS basis, and moves all customers
before the gate at the phase-1 buffer to the phase-2 buffer before moving to the next queue. In
a recent paper [39] we studied the mean of the delay W; incurred at queue i, when the load p
tends to unity, under proper HT scalings. Amongst others, the results in [39] explicitly quantify
the trade-off between the decrease of efficiency and the increase in the so-called queue fairness
introduced by implementing the two-phase gated service policy (in comparison with the classical
one-phase gated service policy); queue fairness is a simple fairness measure that only depends on
the expected delay at each of the queues. An interesting alternative notion of fairness is customer
fairness, which considers fairness between individual customers (e.g., depending on their seniority
and service-time requirements). Recently, Brosh et al. [6] proposed the so-called Slowdown Queue-
ing Fairness (SQF) as a customer fairness measure. However, to quantify the SQF of a polling
model, we need to quantify the second moments of the waiting times at the queues. Motivated by
this, in this paper we focus on the complete distribution of W; when p tends to unity, under proper
HT scalings. Following the general lines discussed in [37] for the derivation of HT-asymptotics
for branching-type polling models, we obtain a closed-form expression for the LST of the limit-
ing distribution of (1 — p)W; (i = 1,...,N) as p goes to 1. The expression is strikingly simple
and shows explicitly how the waiting-time distributions depend on the system parameters. The
results explicitly quantify the trade-off between the increase in fairness and decrease of efficiency
introduced by implementing two-phase gated service policies. In particular, the result provide
new fundamental insight in the relative waiting-time distributions for one-phase versus two-phase
gated service policies. Furthermore, the results reveal a variety of asymptotic insensitivity proper-
ties, which provide new insights into the behavior of polling system under medium and heavy load.

The remainder of this paper is organized as follows. In Section 2 the model is described and
the main result of the paper is formulated, i.e. a closed-form expression for the LST of the
waiting-time distribution in HT, under proper scalings. In Section 3 we discuss a stepwise ap-
proach to derive the main result. In Section 4 we discuss several asymptotic properties and address
the implications of the results on fairness and efficiency by comparing two-phase polling schemes
to the classical one-phase polling model. In Section 5 we address a number of topics for further
research. The use of the so-called Descendant Set Approach for the present model is discussed in
Appendix A.



2 Model

Consider a system consisting of N > 2 stations @1, ..., @, each consisting of a phase-1 buffer and
a phase-2 buffer. A single server visits and serves the queues in cyclic order. Type-i customers
arrive at ; according to a Poisson arrival process with rate A;, and enter the phase-1 buffer.
The total arrival rate is denoted by A = 2511 Ai. The service time of a type-i customer is a
random variable B;, with Laplace-Stieltjes Transform (LST) B(-) and with finite k-th moment
bl(-k) (k = 1,2). The k-th moment of the service time of an arbitrary customer is denoted by
b(k) = vazl )\ibl(-k)/A (k = 1,2). The load offered to Q; is p; = )\ibl(»l), and the total offered load
is equal to p = Zfil p; > 0. Define a polling instant at (); as a time epoch at which the server
visits @;. Each queue is served according to the two-phase gated service policy, which works as
follows. When the server arrives at a queue, it closes the gate behind the customers residing in
the phase-1 buffer. Then, all customers waiting in the phase-2 buffer are served on a First-Come-
First-Served (FCFS) basis. Subsequently, all customers before the gate at the phase-1 buffer are
instantaneously forwarded to the phase-2 buffer, and the server proceeds to the next queue. Upon
departure from @Q; the server immediately proceeds to @Q; 1, incurring a switch-over time R;, with
LST R}(-) and finite k-th moment rgk) (k = 1,2). Denote by r := Ziil 7.1(1) > 0 the expected
total switch-over time per cycle of the server along the queues. All interarrival times, service times
and switch-over times are assumed to be mutually independent and independent of the state of
the system. A necessary and sufficient condition for the stability of the system is p < 1 (cf. [9]).

The following notation will be useful. For each variable z that is a function of p, we denote
its value evaluated at p = 1 by &. For an event F, denote by I the indicator function on FE.
Moreover, denote by I the k-by-k identity matrix, and by 0y the k-by-k matrix whose entries
are all 0. To make the comparison between the model with two-phase gated defined above to the
classical model with one-stage gated service at all queues, we denote by Wi(k) the delay incurred
by an arbitrary customer at @);, defined as the time between the arrival of a customer at a station
and the moment at which it starts to receive service, for the model with k-phase gated service at
all queues (k = 1,2). The main result of this paper is the following closed-form expression for the
asymptotic waiting-time distribution for the two-phase gated polling model (defined above) at an
arbitrary queue.

Theorem 1 (Main result)
For cyclic polling models with two-phase gated service at each queue, we have fori=1,...,N:

1= WP =W (p11) (1)

where the LST of Wi(g) is given by

where

p) p(1) 1 . R
g = 21“521)(T)a M2 = 252()(72)7 and 03 ‘25291(3+pj)' (3)
j=1

Here, the limit is taken such that the arrival rates are increased, while keeping both the service-
time distributions and the ratios between the arrival rates fixed. The proof of Theorem 1, which
is based on a sequence of intermediate results, is given at the end of Section 3. For later reference,
we also give a similar result for the case of one-phase gated polling service at all queues (see [33]
for a rigorous proof). For cyclic polling models with one-phase gated service at each queue, we
have fori=1,...,N:

(1=pW S, W (pt1) (4)



where the LST of Wi(l) s given by

W) = (1 —lﬁi)”‘ { (Ml ilsﬁ)al - (Mlﬂjr 5>a1} (Re(s) > 0) (5)

where

p) p(1) 1 . R
o = 27“(51b(—2), 1= 2611)(—2)7 and 6, ‘=§ZP1(1+W)' (6)

j=1

3 Analysis

In this section we use the theory of MTBPs to derive the main result of the paper, Theorem 1. In
Section 3.1 we give a general description of MTBPs, and present a limiting theorem for general
MTBPs (Theorem 2) that will be useful throughout. In Section 3.2 we show how the evolution
of the polling model under consideration can be described as a MTBP with immigration at each
state (Theorem 3). In Section 3.3 we discuss a stepwise approach to combine these results to
derive Theorem 1.

3.1 Multi-type branching processes with immigration

In this subsection we give a general description of MTBPs with immigration in each state, and
introduce notation useful for further reference. The reader is referred to [3] for more details. We
consider a general M-dimensional multi-type branching process with immigration in each state,
Z=1{Z,,n=0,1,...}, where Z, = (ZT(LI), . .,ZT(lM)) is an M-dimensional vector denoting the
state of the process in the n-th generation, and where ZT(f) is the number of type-i particles in
the n-th generation. The process Z is completely characterized by the one-step offspring function
f(2) = (fD(2),...,fM(2)), with z = (21,...,2m), and where for |zz| <1 (k =1,...,M),i =
1 M

geey B

f(i)(é) = Z p(i)(jla"ij)Z{l"'Z?\j[M’ (7)
Jtseesjm 20

where p(i)(jl, ...y Jm) is the probability that a type-i particle produces jj particles of type k (k =
1,...,M). In addition, the immigration function is defined as follows, for |zx| <1 (k=1,..., M),

J1,-sim 20

where ¢q(j1,...,7m) is the probability that a group of immigrants consists of j; particles of type
k(k=1,...,M). Denote

dg(z .
9i= (g1, evanr), where g = DO =1 w) )

and where 1 is the M-vector where each component is equal to 1. A key role in the analysis will
be played by the first and second-order derivatives of f(z). The first-order derivatives are denoted
by the mean matrix

o
M = (mi,j), with m; ;= f7(§)|221 (Z,]:l,,M) (10)
8Zj -
Thus, for a given type-i particle at the n-th generation, m; ; is the mean number of type-j children
it has at the (n + 1)-st generation. Similarly, for a type-i particle, the second-order derivatives are
denoted by the matrix
) ) 2 £(i)
(i) — (1) ) . PfY() o
K0 — (kj7k> with K= ey (i k=1,..., M) (11)



Denote by v = (v1,...,vn) and w = (wy,...,wpy) the left and right eigenvectors corresponding

to the largest real-valued, positive eigenvalue £ of M, commonly referred to as the maximum

eigenvalue, or the Perron-Frobenius eigenvalue (cf., e.g., [3]), normalized such that
vl=v'w=1. (12)

The following conditions are necessary and sufficient conditions for the ergodicity of the process
Z (cf. [24, 28]): € <1 and

> gl dm)log(i + - + ju) < oo (13)
Jite+iar>0

Following standard branching-process terminology the process Z is called sub-critical if £ < 1,
critical if £ = 1 and super-critical if £ > 1. Throughout the following definitions are convenient.
For any variable z that depends on £ we use the hat-notation Z to indicate that z is evaluated at
& = 1. Moreover, for £ > 0 let

m(€) :==0, and m,(§) := ig"*z, n=12.... (14)

Definition
A non-negative continuous random variable I'(«, ) is said to have a gamma-distribution with
shape parameter a > 0 and scale parameter p > 0 if it has the probability density function

e (2 >0) with T'(a) ;:/ t*te~tdt, (15)
t=0

and Laplace-Stieltjes Transform (LST)

) p\”
I'(s) = Re(s) > 0). 16
©- (%) e >0 (16
Note that in the definition of the gamma-distribution p is a scaling parameter, and that I'(«a, u)
has the same distribution as u~'T'(a, 1).

Theorem 2
Assume that all derivatives of f(2) of order two ezist at z =1 and that 0 < g; < oo (i =1,..., M).
Then

. Z’r(zl) 01
I : —d A : F(aa 1) as (Ean) - (15 OO), (17)
T (€) (M) N
I, Um
where © = (¥1,...,0p) is the normalized left eigenvector of M, and where (e, 1) is a gamma-

distributed random variable with scale parameter 1 and shape parameter

g W= Z w;, with A:= Zvl (w KWy >>O (18)

Proof: See [24]. We refer to Remark 3.3 for the details about the convergence and the limiting
regime considered in (17). O

S = |

In the next two subsections we will show how Theorem 2, which was derived in the context
of generic MTBPs, can be transformed into results for the two-phase gated polling model under
consideration.



3.2 Preliminaries

Without loss of generality, throughout we will focus on the waiting times at @)1 and consider the
state of the system at polling instants at Q1. Let Xi(k) be the number of phase-k customers at Q);

at an arbitrary polling instant at @1 when the system is in steady state (k = 1,2, i =1,...,N).

Moreover, for ¢ = 1,..., N, we consider the two-dimensional random variable (Xi(l),Xim), and
denote the corresponding Probability Generating Function (PGF) by, for |z1], |z2| < 1,
1 5@
X} (21,20) = FE [zf’ zg(l ] (19)

Denoting the LST of the waiting-time distribution at @1 by Wl*(2) (+), the waiting-time distribution

at @1 is related to the joint distribution of (Xl(l), sz)) through the following expression (cf. [20]):

For Re s >0, p < 1,

X3(1=5/A,Bi(s)) — X5 (1 —5s/A1,1—8/X\1)
B X0 (Bi(s) - 1+ 5/7)

W (s) = . (20)

To start the analysis, note first that straightforward balancing arguments lead to the following
expression for the first moments F [ka)} (k=1,2): For p <1,

E {X{l)} —E {Xﬂ _ T (21)

In general the distributions and moments of Xfl) and sz) can not be obtained explicitly. The
following notation is useful. Let

Xo=(x,xQ,xP, L x Q) (22)

be the 2/N-dimensional vector that describes the state of the system at an arbitrary polling instant
at Q1. To determine the asymptotic behavior of the waiting-time distribution given in (20), we
focus on the limiting behavior of X as p goes to 1. To this end, below we describe the evolution
of the system as an MTBP. Subsequently, in Section 3.3 we use this to transform Theorem 2 into
an asymptotic expression for the distribution of (1—p)X, i.e. the scaled version of X as p goes to 1.
To establish the relation with the general MTBP-model described in Section 2, let XZ(];) be the num-
ber of type-i customers at phase-k in the system at the n-th polling instant at @1, fori =1,..., N,
k=1,2and n=0,1,..., and let

X, = (Xf}g, NS N ¢ X}?ﬂ) (23)

be the state vector at the n-th polling instant at Q1. Then similar to the analysis made by Resing
[28] we make the following observation.

Theorem 3

The discrete-time process {X,,n =0,1,...} constitutes a 2N-dimensional MTBP with immigra-
tion in each state, the LST of the offspring function is given by the following expression: For
s® <1 (i=1,....Nk=1,2),

f(s) = (f(l)(g),...,f(gN)(§)> , with s := (sgl),...,sg\l,),sgm,...,sS?) , (24)
and where fori=1,..., N,
fo (sgl),...,sg\l,),s§2)7...,553)) = 352)7 (25)



and

i N
FUHN) (551),...,553’,s§2),...,353)) =B (S (1 . sgl’) + 3 N (1 . s§2>) . (26)
j=1 j=it1

and where the LST of the immigration function is given by

i

N N
g(sgl),...,s%),sgg),...,sg\?)> = HR;‘ Z)\j (17551))) + Z Aj (17552)) (27

i=1 j=1 j=i+1

Proof: Relations (25)-(27) can be obtained along the lines of [28] for the case of one-phase
gated service, using simple generating-function manipulations. More specifically, in the spirit of
the work in [28], equation (25) follows from the fact that a type-i customer at phase-1 at a given
polling instant P; at @); is "effectively replaced” by a single type-i customer at phase-2 at the
next polling instant at (1; note that in this case, the type-i customer is simply forwarded from
phase-1 to phase-2. Similarly, (26) follows from the fact that a type-i customer at phase-2 at Py
is effectively replaced by all customers that arrive in the system during its service time with LST
B (-). Finally, (27) stems from the fact that the immigration consists of the contributions of newly
arriving customers that arrive during the switch-over times, which are independently distributed

with LST R!(:),i=1,...,N. O

3.3 Stepwise derivation of Theorem 1

In this section we use Theorem 3 to transform Theorem 2 into an expression for the limiting
distribution for (1 — p) X as p goes to 1 (Theorem 4). Subsequently, this result is combined with
(20) to prove Theorem 1. The stepwise approach consists of the following steps:

Step 1: Derive an expression for the mean offspring matrix M for the polling model under
consideration (Lemma 1).

Step 2: Derive an expression for the left and right eigenvectors v and w of the mean matrix,
evaluated at p = 1 (Lemma 2)

Step 3: Derive an expression for the mean immigration vector g, evaluated at p = 1 (Lemma 3).
Step 4: Derive an expression for limiting behavior of £(p) considered as a function of p, as p goes
to 1 (Lemma 4).

Step 5: Derive an expression for A, evaluated at p = 1 (Lemma 5).

Step 6: Combine steps 1 to 5 into an asymptotic expression for the distribution of (1 — p)X as p
goes to 1.

Step 7: Use this expression in combination with (20) to obtain Theorem 1.

In Subsections 3.3.1 to 3.3.7 each of the steps will be discussed in more detail below.

3.3.1 Step 1: Mean matrix

The following result gives an expression for the offspring matrix for the polling model under con-
sideration.

Lemma 1
For the two-phase gated polling model, the mean offspring matrix M = (m; ;) is given by

M =M, --- MyP, (28)

where P is the permutation block matriz

[ oy Iy
P(IN 0N>, (20)



where for k = 1,..., N, the elements of the matriz My = (mf?) are given by: For i,j =
1,...,2N,i# N + k,
k
miy) = =iy, (30)

and fori= N + k,

k .
mgvlk’kﬂ. = )\j+kb§c1) forj=1,...,N —k, (31)
M hkpsy = Ajsk-nbg for j=N—k+1,...,N, (32)
My, =0forj=1,.. . korj=N+k+1,.. 2N (33)

Proof: The result can be obtained in a tedious but fairly straightforward manner by taking the
partial derivatives of the offspring function defined in (25) and (26). As an alternative, we can use
the description of the Descendant Set Approach (DSA) discussed in Appendix A, and define for
c¢=—-1,0,1,... the following vector of descendant set variables, defined in (83)-(85):

T T
0= (o) ) o 0@ = (B, e a@ e a®) (e

;€ )

Then from DSA point-of-view it is readily seen that it suffices to show that the matrix M defined
in (28)-(33) satisfies the one-step relation a,,; = Ma,, for ¢ = —1,0,1,.... To this end, we first
note that using relation (34) it is easily verified that, for ¢ = —1,0,1,...

)
Pa.= () - o o, o). )

Then using equations (84)-(86), it is readily verified (by induction in &k, for k = N, N —1,...,1)
that for k=1,...,N,c=—-1,0,1,...,

T
M. MyPa, = (o) ... o o), o, o), - al,) (36)
which immediately implies by taking £ = 1 that

.
Ma, =M, ... MyPa, = (agz R AT aﬁi}cﬂ) =0, O (37)

,C

3.3.2 Step 2: Left and right eigenvectors of M at p=1

The following result gives the left and right eigenvectors of the mean offspring matrix M defined
in Lemma 1 above, evaluated at p = 1.

Lemma 2 .
For the two-phase gated polling model, the right and left eigenvectors of the mean matrix M are
given by

1
b
t xe
W = : = |b| b, with b:= bé\{) , (38)
o ;
b§3>



and

01 “
o = B with wem [ 1| wherews = Mot bon), wiw =N (=10,
Pon UaN
(39)
and where
T S 5 = L Y Z )
5= Q:;;pipj ;pi:§<1+z >+1:§;m(3+pi), and |b| :=2kz=: . (40)

Proof: First, it is readily seen by using equations (30)-(33) that for k = 1,..., N, we have

2N N—k N N

k - — N 1 1 1 1 1 — 1 3 1 — 1 ~
Somi gt = 1Y A6 ST Ay w0 | = (e S el = b e = e
j= j=1 N—k+1 j=1

j=

(41)

This immediately implies that Mk@ = @ for k = 1,...,N. Moreover, it is easy to see that
Pw = w. Combining these observations then implies Mw = M;j - -- MyPw = @, which shows
that @ indeed is a right eigenvector of M. Similar arguments can be used to show that MTd = .
The details of the proof are omitted for compactness of the presentation. []

3.3.3 Step 3: Mean immigration vector g

We now proceed to specify the mean immigration vector g, defined in (9), for the model under
consideration. Considering the evolution of the 2N-dimensional state vector as a discrete-time
Markov chain {X,,n = 0,1,...} at successive polling instants at @i, the “immigrants” in the
n-th generation are the customers present a time n that are not children of any of the customers
present at time n — 1. Denote the mean immigration vector by

-
1 1) (2 2

g=(9§)---g§v)g§)---g§v)) ; (42)

where g( ) stands for the mean number of type-¢ immigrants in phase-k. In the descendant set

point-of-view, g( ) can be seen as the mean number of type-i customers in phase-k present at the
reference point (at (1) that arrived during a switch-over time in cycle 0 (i.e. the time between
the reference point and the preceding polling instant at Q).

Lemma 3
For the two-phase gated model, for j =1,...,N,

N

g =Xy, (43)
i=j
j—1

g7 =x 3o (44)
=1

and
gl =[b""r (45)
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Proof: Equations (43) and (44) can be directly obtained from (27). To give a more intuitive
derivation, note that equation (43) follows directly from the fact that a type-j immigrant in
phase-1 should have arrived during a switch-over time from @; to Q;11, for some ¢ > j. Similarly,
equation (44) follows directly from the fact that a type-j immigrant in phase-2 should have arrived
during a switch-over time from Q; to Q; 1, for some i < j. Finally, to prove (45), assume p = 1.
Then (45) follows directly from the following sequence of relations:

2

N N N
R ST S L V SLRO WL WD
j=1 j=1 j=1

J i=j i=1

2

N
= SN | = b e =10 O (47)

3.3.4 Step 4: Limiting behavior of {(p) for p 11

The following result describes the limiting behavior of the maximum eigenvalue £(p) of the matrix
M defined in Lemma 1, considered as a function of p, as p goes to 1.

Lemma 4
For the two-phase gated polling model, the mazimum eigenvalue £ = £(p) satisfies the following
properties:

(1)¢<lifandonlyifp<1,&é=14fand only if p=1 and £ > 1 if and only if p > 1;
(2) &£(p) is a continuous function of p;
(3)
(4)

—

imyp1€(p) = €(1) =1
the derivative of £(p) at p = 1 is given by

g(1) =lim ———~ = - (48)
where § is defined in (40).

Proof: Part 1 was shown in [28]. Part 2 follows from the fact that all entries of M are con-
tinuous functions of p, which implies the continuity of £(p) with respect to p (see for example
3]). The fact that £(1) = 1 follows directly from the fact that Mb = b, which is an immediate
consequence of the fact that the model under consideration is work conserving. Finally, to prove
Part 4 we adopt the concept of the Descendant Set Approach (DSA) discussed in Appendix A.
Then, based on known properties for the maximum eigenvalue of positive semi-definite matrices
applied to M (see for example [3]) we can decompose '), defined in (83)-(85), into a dominant

2,c?
and a recessive part as follows: For p < 1,¢=1,..., N,

al(»1 = ¢ + s(-’l) (49)

where s{") is a lower-order term in the sense that there exists K (0< K <oo)and &, (0 < & < &)

2,C

such that |s§16)\ < K&¢ for all ¢ = 0,1, ..., which is readily seen to imply that, fori=1,..., N,

Z sglc) < oo. (50)

c=0

The result then follows directly from (49), (50), (21), (87) and Parts 1, 2 and 3 of Lemma 4. This
completes the proof. [

12



3.3.5 Step 5: Expression for A at p=1

Lemma 5

For the two-phase gated polling model,
b(2)

26(1)

A=[p 16! (51)
Proof: Using the definition of A in Theorem 2, we need to specify the eigenvectors ¢ and w of
the mean offspring matrix M, and the second-order matrices K () (1 =1,...,N). To this end,
note that © and  are given in Lemma 2. The matrices K (1 = 1,...,N) can be obtained
directly from Theorem 3. This method is methodologically straightforward, but practically quite
cumbersome; the details of this derivation are left as an exercise to the reader. As an alternative,

the scaling constant A in (51) can also be obtained by simple first-order arguments only, see
Remark 3.1 below. [

3.3.6 Step 6: Asymptotic expression for scaled state vector

We are now ready to present the HT result for the state vector at polling instants in the two-phase
gated polling model. Without loss of generality, we focus on the evolution of the state vector at
embedded polling instants at Q1.

Theorem 4
For the two-phase gated polling model, the state vector at polling instants at Q1 has the following
asymptotic behavior:

(1-pX" =46 A-0-T(e,1) (p11), (52)
where
p(1)

and where §, A and v; (i =1,...,2N) are defined in (40), (51) and (39), respectively.

Proof: To start, note that the process that describes the evolution of the state vector {X,,,n =
0,1,...} at successive polling instants at (J; constitutes an 2N-dimensional MTBP with offspring
function f(z) and immigration function g(z) defined in Theorem 3, and with mean matrix M
defined in Lemma 1. Moreover, from Theorem 3 and Lemma 3 it is readily verified that the
assumptions of Theorem 2 on the finiteness of the second-order derivatives of f(s) and the mean
immigration function g are satisfied (with M = 2N), based on the assumption that the second

2)

rlgl) (i=1,...,N) are finite. Then using Lemmas 2 to 4 and Theorem 2 it follows that

moments of the service times b, (i = 1,...,N) and the first moments of the switch-over times

1
™ (€(p))
where A, ¥ and a are defined in (17)-(18), see Remark 3.3 below for more details about the

convergence and the limiting regime. Hence, using the properties listed in Lemma 4, it readily
follows from (54) that

X! 54 A-0-T(a,1) as (p,n) — (1,00), (54)

(1-p)X, 540-A4-0-T(a,1) as (p,n) = (1,00). (55)
0

Remark 3.1
As an alternative to the proof of Lemma 5, a much simpler derivation of A can be obtained by
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combining Theorem 4 (which does not require the scaling parameter A to be known explicitly),
and (21). To this end, note that by taking the mean value of the first entry in (52) and taking the
limit for p 1 1 it readily follows that

. X b (M)
Sar =640 -a =042 28, o, (56)

which immediately implies (51). O

Remark 3.2

The parameters § and 9 in (52) only depend on the arrival rates and the mean values of the
service-time distributions. Therefore, the impact of the variability of the service-time distribu-
tions manifests itself in the parameters a (defined in (53)) and A (given in Lemma 5). From
Lemma 5 it follows that A is the mean residual service time of an arbitrary customer (regardless
of the queue it enters), up to a normalizing constant. This normalizing constant [b|='§~! could
be set to one by properly renormalizing the eigenvectors of the mean matrix M in Lemma 2.

Remark 3.3

A note on the convergence in Theorems 2 and 4. The convergence of Theorem 2 should be con-
sidered in the following sense (see [24] for details): for all € > 0 there exist § > 0 and N such that
if |1 —¢| < 0 then for all n > N it holds that

< €, (57)

sup
zeERM

1
rob zy —Prob{A T'(a,1) 92 <z
Prob { g < 2} P 4 T(0 1552

where &, m,(+), Z,,, A, @ and v are defined in Section 3.1. And similarly, for the polling model
under consideration the convergence in (52) is defined as follows: for all € > 0 there exist § > 0
and N such that if |1 — p| < 4 then for all n > N it holds that

sup ‘Prob {(1 —pX] < g} —Prob{A -T(a,1) -0 < z}| <, (58)

£6R2N

where X,,, A, o and v are specified for the two-phase gated polling model in Section 3.3. Using
these definitions, it is easily seen that Theorem 2 translates into Theorem 4 by using relations
(54)-(55), using Theorem 3 and the properties listed in Lemma 4.

We are now ready to formulate the proof of Theorem 1.

3.3.7 Proof of Theorem 1

Without loss of generality, we assume ¢ = 1. Throughout it will be convenient to relate the
waiting-time and queue-length distributions at polling instants at ()1 to the joint distribution of
two successive cycle times. More precisely, let a given polling instant P at (J; mark the end of a
cycle time with duration C4, and let the duration of the preceding cycle time be C; . Moreover,
denote the joint LST of (Cy,C; ) by: For Re(s), Re(t) > 0,

Ci(s,t) = E [e*scftcf } . (59)

Recall from (19) that X;(z1,22) is the joint PGF of the numbers of type-1 customers at both
phases at queue 1 at an arbitrary polling instant at Q1. Then the population of customers present
at @1 at phase 1 at polling instant P consists exactly of those customers that arrived during the
past cycle time of duration C4, whereas the population of customers present at phase 2 exactly
consists of those that arrived in the preceding cycle of duration C; . Standard GF manipulations
then immediately imply that for |z;], |22| < 1,

X1 (21,22) = C7 (A (1 — 21), M1 (1 = 22)). (60)
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Using (60), equation (20) can be reformulated in the following convenient form: For Re(s) > 0,

L-p)s  Cils,M(l-— Bi(s) — Ci(s,s)
s— (- Bi(s) sU—pr/(l—p)

Now, combining (39) with Lemma 5 and Theorem 3, by taking the first and the (N + 1)-st
component of the vector in (52), it readily follows that

Wi(s) = (61)

xM IICRAY
(1—P)< Xi(z) ) %d%'b(—l)< 5\1 >F(0471) (p11), (62)

where « is defined in (53). Then, using (60) and similar arguments as those discussed in [33],
equation (62) can be expressed in terms of cycle times as

w-0 (&) magsoim (1)@ 61, (63

where convergence should be considered in the supremum-sense defined in (58). Theorem 1 follows
then directly by combining (61), (63) and (16) and standard algebraic manipulations, recalling
that we focused on the waiting-time distributions (1 without loss of generality. [

4 Discussion and Implications

Theorem 1 reveals a variety of asymptotic properties of the performance of the model under consid-
eration. In Section 4.1 we formulate several insensitivity properties of the asymptotic waiting-time
distributions with respect to the system parameters. In Section 4.2 we assess the implications re-
garding the trade-off between efficiency and fairness, comparing the performance of two-phase
gated model to the classical one-phase gated model.

4.1 Insensitivity

The following result follows directly from Theorem 1.

Property 1 (Insensitivity)
Fori=1,...,N, the distribution of Wi@)

(1) is independent of the visit order,

(2) depends on the switch-over time distributions only through r, i.e., the total expected switch-over
time per cycle,

(3) depends on the higher moments of the service-time distributions only through b3, j.e., the
second moment of the service time of an arbitrary customer.

In general, Proposition 1 is not valid for stable systems (i.e., for p < 1), where the visit order, the
complete service-time and switch-over time distributions do have an impact on the waiting-times
distributions. Hence, Proposition 1 shows that the influence of these parameters on the waiting-
time distributions vanishes when the load tends to unity, and as such can be viewed as lower-order
effects in heavy traffic. Note that it follows from (4)-(6) that same insensitivity properties are

valid for the distribution of Wi(l), defined in (4)-(5), see also [33].

4.2 Efficiency and fairness

Theorem 1 also leads to several interesting insights regarding the trade-off between efficiency and
fairness when comparing models with one-phase and two-phase gated service.
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4.2.1 Efficiency

A commonly used measure of efficiency is the mean total amount of unfinished work in the sys-
tem. To this end, let V¥) denote the total amount of waiting work in the system, for the model
with k-phase gated service (k = 1,2). Note that it follows directly from Little’s formula that, for
p <1, E[VF] = Zf\;l piE[Wi(k)]. Then the following results follows directly from the pseudo-
conservation law (cf. [39] for details of the derivation).

Property 2 (Efficiency)
Two-phase gated service is less efficient than one-phase gated service in the sense that, for p < 1,

r

EV®] = E[v®] 4+ > E[VM], (64)

Note that Property 2 immediately implies that the one-phase gated model is also asymptotically
more efficient than the two-phase gated model, in the sense that if we define v(¥) := lim,4 (1—
p)E[VH)] (k= 1,2), then v = v 47 > v(1), We refer to [39] for numerical results that support
these observations.

4.2.2 Fairness

While efficiency in polling models has been extensively studied and is quite well understood, there
is no commonly agreed upon theoretical yardstick for measuring fairness in polling models. One
can think of different notions of fairness in polling systems. In this section we consider two types
of fairness: (1) queue fairness and (2) customer fairness. Intuitively, ultimate queue fairness is
realized when the waiting-time distributions are the same for all queues, while ultimate customer
fairness is reached when the customers somehow experience the same slowdown. For completeness,
we first outline the results on queue fairness (as discussed in more detail in equations (24), (25)
and Table 1 in [39]). Subsequently, we discuss the implications of Theorem 1 on customer fairness.

Queue fairness
Let us define the queue unfairness as follows (see also [39]): For p < 1,

E W]

FK = max |———= —1] (k=1,2). (65)
queue ij=1, N (k) 9
j E|w)]

Thus, the higher the (asymptotic) unfairness, the less fair is the service policy. Now, it follows
directly from (4)-(6) above that, for i =1,..., N,

A . N
O B Sy L (5 ) S o S
E|:W1 :|7 46, b(1)+ 9 ,  with 4 -72;PJ(1+P]); (66)
and from Theorem 1 that, fori =1,..., N,
plp®] = 3+80D rBrh) e LSS 67
W] = gm T e with By = 53 pi(3+ ). (67)

Il
—

J

The following result is an immediate consequence of (66) and (67).

Property 3 (Asymptotic queue fairness)
Two-phase gated service is asymptotically more fair than one-phase gated service in the sense that

£ E() (68)

queue queue-*
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This observation follows directly from the fact that for all i,7 = 1,..., N. Then by taking the
limit for p 1T 1 it holds that

B W] 34 4 y B W]
e[W®] _‘ ) B[]

-1 ) (69)

345

which is easily seen to imply (68), by taking the limit for p 1 1. We refer to [39] for numerical
results that support these observations.

Customer fairness
Let W) be the waiting time of an arbitrary customer in the k-phase gated polling system, and
recall that the m-th moment of its service time is denoted by b(™) = A1 Zi\;l )\ibz(-m) (m=1,2),
for both the one-phase and two-phase gated model. Then Brosh et al. [6] define the following
Slowdown Queueing Fairness (SQF) measure of customer unfairness for the polling model with
k-phase gated service at all queues: For k =1, 2,

2

E [W(k)]

(k) _
w p(1)

FSop = Var B|=E (70)

Then the asymptotic results presented in Theorem 1 can be used to quantify fggF in the limiting
case p T 1. More precisely, the asymptotic fairness for the polling model is given by the following
expression: For k = 1,2,

2

7 (k)
(71)
where
sl Sunler] el oS )] o
i=1 1 Z | i=1 l ' ’
and where
équ {Wm} _ % + by, -

which follows directly from the pseudo-conservation law derived in [39]. The following result fol-
lows directly from Theorem 1.

Property 4 (Second moment of the delay)
Fori=1,...,N, we have for the one-phase gated model

PO L (R L W
E [(Wi ) ] -—F s ) U s ) (74)
and for the two-stage gated model
p@\Y Z Tk (LA (16
E [(Wi ) ] - 3 "t ) \" T 5 em ) (75)

An exact expression for the asymptotic SQF (70) of both models can then be obtained by combin-
ing (72)-(75). Although an in-depth study of the asymptotic SQF properties of the one-phase and
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two-phase models is beyond the scope of the paper, we briefly touch upon some considerations
about SQF below.

An interesting question is whether in general the two-phase gated polling model, which is known
to be (asymptotically) less efficient, is asymptotically less unfair than its one-phase counterpart
(Property 2), which is one of the reasons for proposing the two-phase policy in the first place. The
answer is no. To illustrate this, consider the three-queue model with the following parameters:
A = 1/10, Ay = 2/10, A5 = 3/10 all the service times are deterministic with means 1, 2 and
3, respectively, so that b(Y) = 5/3 and b® = 10/3 and p; = 3/10, p» = 4/10 and ps = 3/10.
Table 1 below shows the asymptotic unfairness .7:';’8 r for k= 1,2 for different values of the mean
switch-over time per cycle r. The results in Table 1 illustrate the fact that in general there is no

r ﬁélc%F 7:1(921«“
0 1.35 1.22
0.05 1.40 1.34
0.1 1.46 1.46
0.25 1.63 1.85
1.0 2.55 4.18

Table 1: Asymptotic customer unfairness for different values of r.

dominance relation between the one-phase and two-phase gated polling systems with respect to
the asymptotic unfairness measure defined in (70).

The SQF-measure defined in (70) includes the combined impact of seniority and service-time
variability. Therefore, one might suspect that if all service times are deterministic with the same
mean the two-phase gated service is more fair in the SQF-sense, since the effect of overtaking (i.e.
customers that arrive earlier are served later) seems to be less. However, in general such a relation
does not hold. To illustrate this, consider the following three-queue model: \; = 1/12, Ay = 1/6,
5\3 = 1/4, all the service times are deterministic with mean 2, so that b = 2 and b® = 4 and
p1=1/6, po = 1/3 and p3 = 1/2. Table 2 shows the asymptotic unfairness fggp for k = 1,2 for
different values of r. Table 2 illustrates that even if the service-time distributions are deterministic

r félq)zF ]:SQF
0 1.15 1.03
0.1 1.24 1.20
0.2 1.32 1.38
0.3 1.59 1.91
1.0 2.04 2.82

Table 2: Asymptotic customer unfairness for different values of r.

and identical for all queues there is no dominance relation between the one-phase and two-phase
gated polling systems with respect to (70).

The results presented in (72)-(75) lead to a closed-form expression for the asymptotic SQF-
measure for one-phase and two-phase polling models, and can be extended to a much broader
class of MTBP-type polling models, following the general framework developed in [37]. The pre-
liminary results presented in Tables 1 and 2 show that the derivation of dominance relations
between fairness of policies with respect to the SQF-measure is far from trivial, and beyond the
scope of the present paper, addressing a challenging area for further research.
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5 Further Research

The results presented in this paper suggest a number of interesting topics for further research.
First, it is a tremendous challenge to develop some type of ordering of service policies with respect
to (asymptotic) efficiency and fairness. In the context of efficiency, such an ordering has been
obtained in [40]. However, the development of an ordering with respect to the fairness measure
defined in (70) [6], where seniority and service time variability are intertwined, is an open and
intriguing problem. The results shown in Table 1 suggest that developing such an ordering is far
from trivial. Second, the two-phase gated service policy may be naturally extended to a general
K;-phase gated service policy, where queue i receives K;-phase gated service, fori =1,..., N. We
suspect that the results in the present paper can be extended to the case of K;-phase gated service
by considering the evolution of the system as a K := Z;VZI K;-dimensional MTBP. Such results
would also raise challenging questions regarding the optimal setting of the K;-values that properly
balance fairness and efficiency. Extension of the results presented in this paper form an interesting
topic for further research. Third, in this paper it is assumed that the service-time distributions
have finite variance. It would be interesting to investigate if the results can be extended to include
infinite-variance (e.g., regularly varying) service-time distributions. In this context, note however
that Quine’s result (Theorem 2) explicitly relies on the finite-variance assumptions and no longer
holds if the assumption is violated. Extension of the results to service times with infinite variance
would be a breakthrough in the field. Finally, it would be interesting both from a theoretical and
application point-of-view to extend the results to non-Poisson arrivals. In this context, we can
build upon the recent results presented in [40], where we rigorously prove HT limits for polling
models with gated and exhauistive service at all queues and with renewal arrivals .

Acknowledgment: The authors would like to thank the referees for their useful suggestions,
which have led to a significant improvement of the paper.
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Appendix A: The Descendant Set Approach for the Two-
Phase Gated Model

In this Appendix we discuss how the model defined in Section 2 can be analyzed by means of the
Descendant Set Approach (DSA), introduced in [11] for models with exhaustive and gated service.

The customers in a polling system can be classified as originators and non-originators. An orig-
inator is a customer that arrives at the system during a switch-over period. A non-originator is
a customer that arrives at the system during the service of another customer. For a customer C,
define the children set to be the set of customers arriving during the service of C'; the descendant
set of C' is recursively defined to consist of C, its children and the descendants of its children. The
DSA is focused on the determination of the moments of the delay at a fixed queue, say Q1. To
this end, the DSA concentrates on the determination of the distribution of the two-dimensional

stochastic vector (Xl(l)(P*), XfZ)(P*)>7 where Xl(k)(P*) is defined as the number of phase-k cus-

tomers at Q; present at an arbitrary fixed polling instant P* at Q; (k = 1,2). P* is referred
to as the reference point. The main ideas are the observations that (1) each of the customers
present at (Q; at the reference point P* (either at phase 1 or phase 2) belongs to the descendant
set of exactly one originator, and (2) the evolutions of the descendant sets of different originators
are stochastically independent. Therefore, the DSA concentrates on an arbitrary tagged customer
which arrived at @); in the past and on calculating the number of type-1 descendants it has at both

phases at P*. Summing up these numbers over all past originators yields (Xl(l)(P*), XI(Q)(P*)),
and hence (Xl(l), X£2)>, because P* is chosen arbitrarily.

The DSA considers the Markov process embedded at the polling instants of the system. To
this end, we number the successive polling instants as follows. Let Py ¢ be the last polling instant
at Qn prior to P*, and for ¢ = N —1,...,1, let P; o be recursively defined as the last polling
instant at Q; prior to P;11,9. In addition, for ¢ = 1,2,..., we define P;. to be the last polling
instant at @Q; prior to P .1, ¢ = 1,...,N. Define the c-th cycle to be the time between P, .
and Py . 1, for c =0,1,.... The DSA is oriented towards the determination of the contribution

to (Xfl)(P*),Xl(Z) (P*)) of an arbitrary customer present at @; at P, .. To this end, define an
(i, ¢)-customer to be a customer present at @Q; at P; .. Moreover, for a tagged (i, ¢)-customer T; .
at phase-1, we define A, . := (A(l) A(zc)), where AE? is the number of type-1 descendants it

i,c? N,
has at phase-k at P* (k = 1,2). In this way, the two-dimensional random variable A, . can be

EEYNG

viewed as the contribution of T . to (Xfl)(P*), X{Q)(P*)). Denote the joint PGF of A, , by, for
‘21|,|22‘ S l,Z: 1,...,N, CZO,I,...,

Al A(?)]

Al (z1,20) = E [zl 2 (76)

To express the distribution of (Xfl),Xl(Q)> in terms of the distributions of the descendant set

variables A, ., denote by R;. the switch-over period from Q; to @Q;y; immediately after the

£24,co

service period at (); starting at P; .. Moreover, denote S, . 1= (S(l) SE?), where SZ.(’,Z) is the total

i,c )
contribution to X 1(k) of all customers that arrive at the system during R; . (note that, by definition,
these customers are original customers), and denote the joint PGF of S, . by, |21],|22] < 1,
i=1,...,N,c=0,1,...,

(1 (2
Si,c Si c} . (77)

Sic(zl,@) = F {zl Zo "
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In this way, S, . = (S R ) can be seen as the (joint) contribution of R; . to (Xl(l)(P*), Xf”(P*)).

i,c? e

It is readily verified that we can write

X, = (X0 XP) = 3 (s,52) =33 s

i=1 c=0 i=1 ¢

Mg

(78)

Il
=)

Note that S(l) and S(, ‘):, are dependent if (7,¢) = (i',¢') but independent otherwise. Hence we can
write, for \21\ |zo| <1,

N oo

Xi(21,22) = [[[] 51 (21, 22)- (79)

i=1c¢=0

Because S, . is the total joint contribution to X of all (original) customers that arrive during R; .,
the joint dlstrlbutlon of S, . can be expressed in terms of the distributions of the DS-variables 4, .
as follows: Fori=1,.. N c=0,1,..., and 21|, |22] < 1,

N i
S;:C(Zh 22) = R: Z [)\] — )\jA;’C(Zl, 22)] + Z [)\] — )\]-A;’cfl(zl, 22)] . (80)
j=it1 =1

To define a recursion for the evolution of the descendant set, note that a customer at phase-1
present at (@1 at the polling instant at ;1 during cycle c is served during the nezt cycle, which
leads to the following relation: For i =1,...,N, ¢ =0,1,..., and |21], |22]| < 1,

N 1
A (z,2) =By | Y N = NAL (e 2)] + D [N = NAL (2, 2)] | (81)
j=it1 j=1

supplemented with the basis for the recursion
Al y(z1,22) = z1li—1y, and A7 ,(21,22) = 29151} (82)

In this way, relations (78)-(82) give a complete characterization of the simultaneous distribution
of (X;”,sz)). Similarly, recursive relations to calculate the (cross-)moments of (Xl(l),Xl(Q)>

can be readily obtained from those equations.

Relation (81) leads to the following recursive relations for the first moment of the DS variables
Afkp) More precisely, if we define for i =1,...,N,¢c=-2,—-1,0,1,... and k =1, 2,

ol =B [al)], (83)

then (78)-(82) are easily seen to lead to the following recursive scheme: For i = 1,...,N, ¢ =
0,1,...,and k = 1,2,

az(i):bgl) Z/\oz]c 1+2Aa]c2 , (84)
j=i+1
supplemented with the following basis for the recursion, for i =1,..., N,
ag}zz =0, afzz = Iy, ozg’lzl := Ij—1y and ag?zl = 0. (85)

Note that since a phase-1 customer at (); present in the system at P;. is served during the
(¢ — 1)-st cycle, the contribution of that phase-1 customer is stochastically identical to that of a
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type-i¢ customer in phase-2 who is present at the system at P; . ;. Consequently, we have, for
i=1,...,N,c=-1,0,1,..., that

ot =al?) . (86)

,C 1,c71

Moreover, it follows directly from (78) and (80) that, for k£ = 1, 2,

oo

B[x®) - Yk [509] = S5 T Al +Z>\ o® (87)

=1 =0 1=1 ¢=0 Jj=i+1
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