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Global-sale grids provide a massive soure of proessing power, providing the means to support proessorintensive parallel appliations. The strong burstiness and unpreditability of the available proessing andnetwork resoures raise the strong need to make appliations robust against the dynamis of grid environ-ments. The two main tehniques that are most suitable to ope with the dynami nature of the grid areDynami Load Balaning (DLB) and job repliation (JR). In this paper, we analyze and ompare the ef-fetiveness of these two approahes by means of trae-driven simulations. We observe that there exists aneasy-to-measure statisti Y , and a orresponding threshold value Y �, suh that DLB onsistently outperformsJR when Y > Y �, whereas the reverse is true for Y < Y �. Based on this observation, we propose a simpleand easy-to-implement approah, throughout referred to as the DLB/JR method, that an make dynamideisions about whether to use DLB or JR. Extensive simulations based on a large set of real data monitoredin a global-sale grid show that our DLB/JR method onsistently performs at least as good as both DLB andJR in all irumstanes, whih makes our DLB/JR method highly robust against the unpreditable natureof global-sale grids.
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1 Introdution
Variations in the available resoures (e.g., omputing power, bandwidth) may have a dramati impat onthe running times of parallel appliations. Over the years, muh researh has been done on this subjet ingrid omputing. Generally, two methods for parallel appliations have been developed to deal with thoseutuations in proessor speeds on the nodes: Dynami Load Balaning (DLB) (e.g., [3, 5, 8, 9, 18, 22, 23℄),
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and job repliation (JR) [2, 4, 6, 7, 14, 17, 21, 16, 23℄. DLB adapts the load on the di�erent proessors inproportion to the expeted proessor speeds. JR makes a given number of opies of eah job, sends the opiesand the original job to di�erent proessors, and waits until the �rst repliation is �nished. A omparison ofthe performane of those two methods on a heterogeneous globally distributed grid environment has - to thebest of the author's knowledge - never been performed.Reently, a variety of grid test-beds have been developed (e.g., Planetlab [1℄). This enables us to performomprehensive measurements of realisti job times to investigate how well ertain implementations of gridappliations perform in pratie for a wide range of di�erent experimental setups. In this paper, we provideextensive trae-driven simulation experiments of dynami load balaning (DLB) and job repliation (JR)as two implementation onepts to deal with the ever-hanging environment on widespread grid nodes.Moreover, we introdue a new seletion method that dynamially selets the best implementation and showits e�etiveness in global-sale grid environments.In general, two types of investigations have been applied to aurately verify whether ertain algorithmsor implementations are e�etive: (1) trae-driven simulation, and (2) real implementation. On the onehand, the �rst type is (1) often easier to implement than a real implementation, beause no advanedommuniation implementations are neessary, and (2) less lok time is needed to test di�erent experimentalsetups. Consequently, trae-driven simulations need a shorter time period in whih more situations anbe analyzed. For example, previously done researh [9℄ e�etively shows the performane gain of a realimplementation of DLB in a real grid environment. As many as 60 days of parallel-implementation runswere neessary to derive a reliable estimation of the performane improvement (speedup) of DLB omparedto Equal Load Balaning (ELB) on four proessors. Trae-driven simulations (e.g., [8, 23℄) would take lesstime and more extensive analyses an be performed. On the other hand, trae-driven simulations requiredetailed knowledge about the proesses. To this end, in this paper we program a real implementation ofDLB to aquire more knowledge about the durations of the di�erent proesses within an appliation whihis based on DLB.The omputations and ommmuniations struture of many parallel appliations an be desribed by theBulk Synhronous Parallel (BSP) model (f. [19℄). The relevane of the BSP model lies in the fat that it hasthe important property that the problems an be divided into sub-problems, eah of whih an be solved orexeuted in roughly the same way. As suh, in the absene of any prior knowledge about the proessor speedsand link rates in large-sale grid environments, the BSP model an be seen as a default means to parallelizeomputationally intensive appliations. The BSP model inludes the struture of Single-Program-Multiple-
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Data (SPMD) [13℄, whih is a lassi�ation of the struture of many parallel implementations. Currently,not many of the BSP type of appliations are able to run in a grid environment, due to the fat that theyannot deal with the ever-hanging environment. Espeially, the synhronization in BSP programs ausesineÆieny: one late job an delay the whole proess. This raises the need for methods that make the BSPappliations robust against hanges in the grid environment.In this paper, we analyze and ompare the e�etiveness of ELB, DLB and JR, using trae-driven simulationsbased on real data gathered in a global-sale grid test bed, alled Planetlab [1℄. The results show that bothDLB and JR strongly outperform the default ELB, whih is widely deployed in grid environments today.Further, an extensive omparison between DLB and JR reveals that in some irumstanes JR performanebetter than DLB, but in other irumstanes DLB is preferable. Given the strong unpreditability of theirumstanes in the grid environment, this observation makes it diÆult to assess the relative e�etivenessof DLB or JR. Nonetheless, in-depth analysis shows that we an identify an easy-to-measure statisti Yand a orresponding threshold value Y � suh that DLB onsistently outperforms JR for Y > Y �, whereasJR onsistently performs better for Y < Y �. This observation naturally leads to a simple and easy-to-implement approah that an make on-the-y deisions about whether to use to DLB or JR. Extensivesimulation experiments show that this DLB/JR method always performs at least as good as both DLB andJR in all irumstanes. As suh, the DLB/JR methode presented in this paper provides a highly e�etivemeans to make parallel appliations robust in large-sale grid environments.This paper is organized as follows. In Setion 2, we introdue the onept of Bulk Synhronous Proessing.Moreover, we desribe two di�erent implementation types to deal with utuations in grid environments:dynami load balaning (DLB), and job repliation (JR). In Setion 3, we desribe the details of data-olletion proedure and the implementation details of the trae-driven simulations of DLB, JR, and theseletion method. Next, in Setion 4, we show the results of the extensive experiments. Finally, in Setion5, we formulate the onlusions.
2 Preliminaries
In setion 2.1 we briey desribe the onept of the Bulk Synhronous Parallel (BSP) model. Then, inSetion 2.2 we desribe the implementation details of DLB and JR.2.1 Bulk Synhronous ProessingBSP parallel programs have the property that the problem an be divided into sub-problems or jobs, eah ofwhih an be solved or exeuted in roughly the same way. Eah run onsists of I iterations of P jobs whih3



are distributed on P proessors: eah proessor reeives one job per iteration. Further, every run ontains Isynhronization moments: after omputing the jobs, all the proessors send their data and wait for eahothersdata before the next iteration starts. In general, the run time equals the sum of the individual iterationtimes. Figure 1(a) presents the situation for one iteration of a BSP run in a grid environment. The �gureshows that eah proessor reeives a job and the iteration time equals the maximum of the individual jobtimes plus the synhronization time. Equal load balaning (ELB) assumes no prior knowledge of proessorspeeds of the nodes, and onsequently balanes the load equally among the di�erent nodes. The standardBSP program is implemented aording to the ELB priniple.

(a) ELB (b) DLB () 2-JR
Figure 1: The di�erent types of implementations on four proessors: ELB, DLB, and 2-JR

2.2 Load Balaning and Job RepliationIn this setion, we briey disuss the two main methods to ope with the dynamis of the grid environment:DLB and JR.2.2.1 Dynami Load BalaningDLB starts with the exeution of an iteration, whih does not di�er from the ommon BSP program explainedabove. However, at the end of eah iteration the proessors predit their proessing speed for the nextiteration. We selet one proessor to be the DLB sheduler. After every N iterations the proessors sendtheir predition to this sheduler. Subsequently, this proessor alulates the \optimal" load distributiongiven those preditions and sends relevant information to eah proessor. The load distribution is optimalwhen all proessors �nish their alulation exatly at the same time. Therefore, it is \optimal" when theload assigned to eah proessor is proportional to its predited proessor speed. Finally, all proessorsredistribute the load. Figure 1(b) provides an overview of the di�erent steps within a DLB implementationon 4 proessors. The e�etiveness of DLB partly relies on the dividing possibilities of the load.
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Load balaning at every single iteration is rarely a good strategy. On the one hand, the running time ofa parallel appliation diretly depends on the overhead of DLB, and therefore it is better to inrease thenumber of iterations between two load balaning steps. On the other hand, less load balaning leads to animbalane of the load for the proessors for sustained periods of time, due to signi�ant hanges in proessingspeeds. In [8℄ we present the theoretial speedups in running times when using DLB ompared to ELB, giventhat the appliation re-balanes the load every N iterations, but without taking into aount the overhead.Based on those speedups and the load balaning overhead addressed above, a suitable value of N was foundto be 2:5P iterations, for P > 1. The e�etiveness of DLB strongly relies on the auray of the preditions.Previous researh [10℄ has shown that the Dynami Exponential Smoothing (DES) preditor auratelypredits the job times on shared proessors. For that reason, the DES preditor has been implemented inthe DLB-simulation implementation of this paper.2.2.2 Job RepliationIn this setion, we introdue the onept of job repliating in BSP parallel programs. In a R-JR run, R� 1exat opies of eah job have been reated and have to be exeuted, suh that there exist R samples ofeah job. Two opies of a job perform exatly the same omputations: the datasets, the parameters, andthe alulations are ompletely the same. A JR run onsists of I iterations. One iteration takes in total Rsteps. R opies of all P jobs have been distributed to P proessors and therefore, eah proessor reeiveseah iteration R di�erent jobs. As soon as a proessor has �nished one of the opies it sends a messageto the other proessors that they an kill the job and start the next job in the sequene. The number ofsynhronization moments I is the same as for the non-JR ase.Figure 1() shows the situation for a 2-JR run on four proessors. As an be seen in the �gure, eah job andits opy are distributed to R = 2 proessors and during one iteration eah proessor reeives R = 2 jobs.Proessor one �nished as �rst job A and sends a '�nalize' message to proessor two. Sending the messageover the internet takes some time and, therefore, it takes a while before the other proessors start the nextjob. Eah job-type time, whih is the duration of a spei� job type (the original and its opies), equals theminimum of all its job times plus a possible send time. An individual proessor time of one iteration equalsthe sum of the job-type times whih were sent to that proessor and the send times of the 'kill'-messages.Finally, the iteration time of all the proessors orresponds to the sum of the synhronization time and themaximum of all proessor times.
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2.2.3 Seletion methodNext, we introdue the onept of a method that selets between the above two di�erent types of imple-mentations. This method has the aim to selet dynamially the optimal implementation type. To this end,it measures a statisti Y and de�nes a threshold Y � during the run. After eah Ip iterations, the methodgives a preferene for a given type of implementation, based on a omparison of Y with the threshold valueY �. In this method, the proessor that redistributes the load in DLB is moreover the proessor that deideswhether JR or DLB is used. When the method deides that a swith to the other type of implementationis neessary, the steps to be taken are the same as in the DLB resheduling phase: (1) the nodes send theirpredition to the sheduler, (2) the sheduler omputes the optimal load distribution, and (3) the nodesredistribute their load.
3 Experimental setup
In this setion, we desribe the grid test-bed, the data-olletion proedure, the simulation details of DLBand JR, the development of the seletion method and, �nally, we introdue the method.3.1 Data-olletion proedureIn order to perform extensive investigations with the di�erent types of implementations, in total 130 runshave been performed on 22 di�erent heterogeneous proessors of Planetlab [1℄. The proessors are globallydistributed, shared with others, and the apaities of the proessors are unknown. Eah run onsists of 2000onseutive and idential jobs (or omputations) and generates a dataset of 2000 job times. We onstrutedthe jobs suh that on a ompletely available Pentium 4, 3.0GHz proessor, the omputations in the jobswould take 10000 ms. The time between suessive runs that are performed on the same proessor rangesfrom one day to one month. We notie that the more time between the runs, the more di�erene between theharateristis of the job times of those runs. This is due to the fat that due to the highly random natureof global-sale grid environments, the dependenies of the harateristis of the system will be highly de-pendent over short timesales (e.g., during sudden traÆ bursts, ausing strong orrelations), whereas thesedependenies ar emost likely to "die out" over longer timesales. In order to orrelate the datasets in thesimulations, eah run is started at 9:00 CET. Unfortunately, Planetlab version 2.0 was not mature enoughat the time of the experiments to be able to run experiments on 130 di�erent proessors. However, the jobtimes of runs that are performed on the same node mostly show di�erent harateristis (see also [11℄). Forthese reasons, we use those di�erent datasets as if they were performed on two di�erent homogeneous nodes
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at the same site.We divided the datasets of the 130 runs into two sets of datasets: one set ontains 40 datasets and the other90 datasets. In order to ompare the results of [8℄ with the simulation results of this paper, the �rst set on-sists of datasets whih are generated from the same nodes as in that paper. The seond set ontains datasetsgenerated from in total 22 di�erent nodes whih inludes datasets generated from the same nodes whih areused for set one. We note that set two does not ontain opies of datasets of set one. Set one only onsists ofnodes in the USA: Boston, Pasadena, Salt Lake City, San Diego, Tuson, and Washington DC. The seondset ontains, besides the datasets whih are generated on the same nodes as set one, datasets whih aregenerated on the following additional nodes: Amsterdam, The Netherlands; Cambridge, UK; Beijing, China;Copenhagen, Denmark; Le Chesnay, Frane; Madrid, Spain; Mosow, Russia; Santa Barbara, USA; Seoul,South Korea; Singapore; Sydney, Australia; Tel Aviv, Israel; Taipei, Taiwan (Aademia Sinia); Taipei,Taiwan (National Taiwan University); Vanouver, Canada; and Warsaw, Poland.The job times in set one are on average approximately 72500 ms, and in set two 65000 ms. Further analysisshows that the job times on the nodes in set two show more burstiness and have higher di�erenes betweenthe average job times on the proessors. That last property is mainly aused by the fat that the nodes inset two are globally distributed and the nodes in set one are distributed within the USA; set one shows moreoherene between the generated datasets. In order to work with the di�erent job time measurements, wede�ne JTi(k) as the kth job time measurement of dataset i, where i = 1 : : : 130 and k = 1 : : : 2000. The �rst40 datasets form set one and the last 90 form set two.To provide a strong basis of the simulations, extensive measurements on the durations of the other di�erentproesses besides the job times (as explained in Setion 2) of a BSP program are neessary. The appliationfor the measurements has been arefully hosen so as to meet the following requirements. The appliationmust have the same dependenies between its iterations as a general BSP program and the same struturebetween the proessors. A suitable appliation is the Suessive Over Relaxation (SOR) appliation. SORis an iterative method that has proven to be useful in solving Laplae equations. For more information, werefer to [12℄.For our simulations, we need realisti measurements of the synhronization times (ST s) for the simulationsof ELB, DLB, and JR. We disovered that the synhronization time strongly depends on the maximum ofthe send times between all pairs of neighbor proessors. Therefore, for realisti simulations we need sendtimes measurements between all possible pairs of nodes. Analysis of the send times have shown that the sendtimes between two nodes do not depend on the number of proessors used. Consequently, in total 77 original
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SOR-appliation runs on four proessors were neessary to generate datasets of the send times between eahpossible pair of nodes. In total 231 datasets of 2000 send times have been reated during this proess. Thesend times are on average around 750 ms. We de�ne SndTi;j(k) as the kth send time measurement betweennode i and j, where i; j = 1 : : : 130, and k = 1 : : : 2000.Further, it is important for the JR simulation to gather realisti measurements of the time that the �nalizemessage takes to be sent from the fastest node to another node. Therefore, we implemented this send proessin the SOR-appliation. This proess is di�erent from the above send proess, beause less information hasto be sent, and no aknowledgement is needed. We ran again in total 77 original SOR-appliation runs onfour proessors to generate 231 datasets of 2000 �nalize-message times. The �nalize message times wereon average around 300 ms. We de�ne FMi;j(k) as the kth measurement of the �nalize-message send-timebetween node i and j, where i; j = 1 : : : 130, and k = 1 : : : 2000.Moreover, for the DLB simulation it is essential to gather measurements of the resheduling time. Conse-quently, we implemented the omplete resheduling phase in the DLB appliation. Analyses have shown thatit is suÆient to randomly selet in the simulation resheduling times (RShT s) from a set of 10000 mea-surements. The RShT depends on too many di�erent fators to subdivide the RShT s to all those fators.The total resheduling proedure, as explained in 2.2.1, takes on average around 37500 ms. We note that itis possible to apply more e�etive pakaging methods in this proedure, whih an signi�antly derease theRShT s. De�ne RShT (l) as the lth measurement of the resheduling time, where l = 1 : : : 10000.In addition, we use the data of the DLB resheduling times to estimate the overhead to swith from one tothe other implementation type. Those times will in pratie show omparable harateristis for the followingreason. During an implementation swith, the steps to be taken are the same as during as DLB reshedulingphase (details in: 2.2.3) A swith from JR to DLB takes less time than a DLB resheduling phase beausethe amount of the to be redistributed load is smaller; the nodes already ontain most of the neessary loadof the other proessors. Small experiments have shown that a swith from JR to DLB takes around 60% ofthe time of a DLB resheduling step. During a swith from DLB to JR, more data has to be redistributeddue to the fat that all the proessors need to gather repliations of load from the other proessors. Thisswith takes around 140% of the time of a DLB resheduling step.Altogether, we generated the following datasets for our trae-driven simulation analyses: JTi(k), with i =1 : : : 130, k = 1 : : : 2000, SndTi;j(k), FMi;j(k), and RShT (l), with i = 1 : : : 22, j = 1 : : : 22, k = 1 : : : 2000,and l = 1 : : : 10000.
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3.2 Simulation detailsBefore we explain the simulation details of DLB, and JR, we de�ne for both strategies:
D(P ) := runtime of DLB-run on P nodesR(R;P ) := runtime of R-JR run on P nodesR�(P ) := runtime best JR strategy on P nodes:= minR=1;2;4;:::;P R(R;P ):

Furthermore, we de�ne the speedups of DLB and of the best JR strategy as the number of times that thosestrategies are faster than the run without DLB or JR: ELB.
speedup D(P ) := R(1; P )D(P ) ; (1)
speedup R�(P ) := R(1; P )R�(P ) : (2)

Note that R(1; P ), whih is the running time of a 1-JR run (i.e., eah job exists only one time), equals therunning time of a ELB run.Simulations of dynami load balaningIn this setion, we desribe the details of the trae-driven DLB simulations. We assume a linear relationbetween the job size and their job times in BSP programs. The following steps have been inorporated inthe simulations:Step 1: We randomly selet a resoure set S = fp1; : : : ; pP g of P proessors from the datasets and orderthem suh that the send times between the proessors are minimized. These numbers p1; : : : ; pP orrespondto the numbers of the datasets.Step 2: The DES-based predition ŷi (see for more details: [10℄) represents the predited job time onproessor i. Consequently, the expeted speed of proessor i (i.e., the fration of the total load proessed perms) for the next iteration is 1P ŷi . Further, the expetation of the total proessor speed of the P proessorstogether is PPi=1 1P ŷi . Consequently, the expeted time of the next iteration without send- and reshedulingtimes given an optimal load distribution is: 11P PPi=1 1̂yi : (3)
As a onsequene, the optimal load fration of proessor i is:9



PŷiPPi=1 1̂yi (4)
Finally, to simulate the EJTi of proessor i for this and the next iterations before the next load reshedulingstep, we multiply the frations with the real orresponding data values JTi from the datasets. We introdueparameter k whih indiates the iteration number.

EJTi(k) = Pŷi(k)PPi=1 1ŷi(k) JTi(k): (5)
Step 3: Next, we derive the iteration time (IT) whih is the maximum of the EJTis of that iteration plusthe synhronization time (ST): IT (k) = maxi=1;:::;P EJTi(k) + ST (k): (6)
Step 4: We derive the running time of the R-JR run by repeating step three 2000 times, sum up all theITs, and add up all the load resheduling times:

D(P ) := 2000Xk=1 IT (k) + b2000=NXl=1 RShT (l); (7)
with N as the number of iterations between two load resheduling steps.Step 5: We derive the expeted running time of a DLB run on P proessors by repeating steps one to four1000 times, and �nally omputing the average of the running times.Simulations of job repliationWithin a R-JR run, R repliations of the same job are exeuted by a set of R di�erent proessors. Forsimpliity, we assume that PR is an integer value. Consequently, the same groups of proessors exeute eahiteration the same job. Thus, we are able to divide the P proessors in PR exeution groups whih all onsistof R proessors. We proeed along the following 6 steps to simulate the exeted running time of a R-JR runon P proessors.Step 1: See step one of the DLB simulation.Step 2: Divide the set of proessors in exeution groups. Exeution group 1 onsists of proessors p1; : : : ; pR,group 2 onsists of proessors pR+1; : : : ; p2R, until group PR that onsists of proessors pP�R+1; : : : ; pP . Wede�ne EG(i) as the set of proessors that are in the same exeution group as proessor i.Step 3: In this step, we derive the e�etive job times (EJT1; : : : ; EJTP ) for all P proessors. Therefore,we �rst derive within eah exeution group whih proessor �nished the same job as �rst. This an be done
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by taking one job time value from eah dataset of that exeution group and observe whih proessor has thelowest job time. Within one exetion group the EJT of the fastest proessor (f), EJTf , equals the job timevalue from its dataset (JTf ). The EJT s of the other proessors in the same exeution group equal EJTfplus the time that it takes to send the �nalize-message from f to the other proessors in the exeution group,whih is the above de�ned FMf;j.
EJTi = 8><>: minj2EG(i) JTj when i = f;minj2EG(i) JTj + FMf;i else. (8)

Step 4: Next, we derive the iteration time (IT ). This time an be derived by repeating step two R times(eah proessor gets R di�erent jobs during one iteration), sum up the EJT s for eah proessor, taking themaximum of those sums, and adding up the synhronization time (ST ). Note that it is neessary to take intoaount all the previous EJT s of eah proessor, beause of the dependenies between onseutive EJT s.We introdue parameters k, and m, whih respetively indiate the iteration number and the step numberwithin a iteration. Given the above de�nitions, the iteration time equals:
IT (k) = maxi=1;:::;P RXm=1EJTi(k;m) + ST (k): (9)

Step 5: We derive the running time of the R-JR run by repeating step three until all datavalues of theR datasets have been proessed in the simulation and sum up all the IT s. In order to be able to omparethe running times of runs with di�erent values for R, we multiply this sum with R to derive a omparablerunning time of 2000 iterations for eah possible R-JR run:
R(R;P ) := R� b2000=RXk=1 IT (k): (10)

Step 6: We derive the expeted running time of a R-JR run on P proessors by repeating steps one to �ve1000 times, and �nally omputing the average of the running times.3.3 Dynami seletion methodIn this setion, we �rst analyze the opportunity to develop a seletion method that is based on a thresholdvalue. Seond we propose a seletion method that optimally selets between the two implementation types:DLB and JR.
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3.3.1 AnalysisTo be able to develop suh a seletion method, we need to �nd formulas that indiate the height of theiteration times for the di�erent implementations for a given easy-to-measure statisti. To this end, we �rstderive an approximation of the expeted IT for DLB, whih is based on the preditions ŷt, by adding theexpeted ST and resheduling time to (3).EITD(P ) � 11P PPi=1 1Eŷi +EST + ERShTN : (11)
However, this expetation di�ers from the real measured ITs, mainly due to inevitable di�erenes betweenthe expeted job times and the realized job times. Therefore, we de�ne an equation for the expeted iterationtime of DLB (namely, EITD(P )) with a- and b-values whih take into aount those di�erenes. We assumethat the send- and resheduling times an also be inluded in the b values.

EITD(P ) = aDLB 11P PPi=1 1Eŷi + bDLB: (12)
Furthermore, beause of the reason that the iteration time of JR also has a strong linear relation to (3), wede�ne the expeted iteration time of JR as:

EITR(R;P ) = aR(R;P ) 11P PPi=1 1Eŷi + bR(R;P ): (13)
We address that the heights of the a- and the b-values depend on (1) the MSE between the predited andthe realized job times, (2) the distribution of the send times, (3) the distribution of the resheduling times,and (4) the values of the parameters R and P .Next, we investigate the relation between the average of 100 realized iteration times provided by realistitrae-driven simulations and the estimations of the ITs by the above equations. An e�etive statistial prop-erty to quantify this dependeny is the orrelation oeÆient. This property an be derived by substitutingthe data values of both quantities in the orrelation formula. The orrelation oeÆient varies by de�nitionbetween -1.0, whih indiates a omplete negative linear dependeny, and 1.0, whih indiates a ompletepositive linear dependeny. A orrelation of 0.0 indiates no linear dependeny. More details an be foundin [15℄. The high orrelation of 0.97 between those values implies that equations (12) to (13) are aurateindiations of the possibly realizable speedups. Consequently, this means that for a given implementationand a given hoie of parameters (e.g., number of proessors), the speedup strongly depends on the statisti,whih is de�ned in (3). In the rest of this paper, we all this statisti Y ( = P=PPi=1 1EJTi ).
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We onsider the following situation. We perform 1000 simulations of a 4-JR implementation on 4 nodes and1000 simulations of a DLB implementation on 4 nodes. For omparison reasons, the 1000 simulations of theDLB implementation have been exeuted on the same set of nodes as on the orresponding JR simulation.Figure 2 depits the averages of 100 iteration times of those trae-driven simulated runs of DLB and JRagainst statisti Y .

Figure 2: Satterplot of DLB and JR iteration times
This �gure shows, as expeted, the strong linear relation between the statisti Y and the ITs. We �ttedtrendlines by a least-square �t and derived the R2 values of those equations, whih will both be explainedat the end of this setion. The trendline of the ITs of JR has the following equation:

ITR(4;4) = 2:0475Y + 1224; (14)
with a R2-value of 0.9228, and for DLB the trendline equals:

ITDLB(4) = 1:2779Y + 7157; (15)
with a R2-value of 0.9597.The above observations imply the possibility of deriving a threshold value Y � of statisti Y that de�nes theoptimal implementation hoie by equating both equations. The threshold poliy works as follows: whenstatisti Y is lower than this threshold, we hoose for JR and when Y is higher, we hoose for DLB. Thethreshold for the above situation would be: Y = 7708, whih is the solution of equating the formulas for
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ITR(4;4) with ITDLB(4).The DLB/JR methodGiven the above equations, we are able to develop a method that dynamially hooses the most e�etiveimplementation from both DLB or JR. We propose the following seletion method:Step 1: Start with DLB as the urrent hoie.Step 2: Measure for the urrent implementation hoie the job- and iteration times during Ip iterations.Step 3: Estimate the job- and iteration times for the other as the urrent implementation by straightforwardomputations, whih are shown in 3.2.Step 4: Compute statisti Y := P=PPi=1 1EJTi .Step 5: Fit the values of aDLB, aR(R;P ), bDLB, and bR(R;P ) in equations (12)-(13) by a least-square �t (moreinformation below) of the olleted data about the ITs and the statistis [20℄. When only one datapoint hasbeen olleted, go to step eight and take the ITs of the �rst Ip iterations as expeted ITs for the next Ipiterations.Step 6: To derive an expetation of the ITs of the di�erent implementations, take the latest omputed valueof Y and substitute it in equations (12)-(13) with the �tted values of aDLB, aR(R;P ), bDLB, and bR(R;P ).Step 7: Choose the implementation with the lowest expeted IT for the next Ip iterations.Step 8: If the run is not �nished, go to step two.A least-square �t is an e�etive method that �ts a linear equation in a olletion of datapoints. It is basedon minimizing the sum of the squares of the deviations between the linear equation and the datapoints. Thevalues of a and b an be derived by a diret formula of the values of the data points. The R2 value is anindiation of the overall deviation between the trendline and the datapoints, and ranges between 0.0 (no �t)and 1.0 (omplete �t). For brevity, we omitted the formulas for a, b, and the R2. For more details, we referto [15℄.We hose to take Ip = 100 as the number of iterations between two implementation-evaluation steps. Onthe one hand, this number is low enough to reat fast on a hange in the best implementation type. On theother hand, an implementation with this number involves relatively low overhead osts that is aused by theswith proedure between DLB and JR.The results of extensive analysis of IT-preditions have shown that an estimation whih is based on sub-stituting measurements of Y in (12)-(13) is far more aurate than taking the average IT of the last 100
14



P Sets R CCRs1 1 2 1 0.01, 0.25, 0.502 1 2 1 2 0.01, 0.25, 0.504 1 2 1 2 4 0.01, 0.25, 0.508 1 2 1 2 4 8 0.01, 0.25, 0.5016 1 2 1 2 4 8 16 0.01, 0.25, 0.5032 1 2 1 2 4 8 16 32 0.01, 0.25, 0.5064 2 1 2 4 8 16 32 64 0.01, 0.25, 0.50
Table 1: Sets, Rs and CCRs, for given P (a) 40 datasets of USA nodes (b) 90 datasets of globalnodesFigure 3: DLB Runtimes for di�erent CCRs
iterations.
4 Experimental Results
In this setion, we present the experimental results of the trae-driven simulation experiments. We onsidersimulations of the previously desribed di�erent methods to ope with the utuating job times on the pro-essors: (1) equal load balaning (ELB), (2) dynami load balaning (DLB), (3) job repliation (JR), and(4) the seletion method. We perform extensive simulations in whih we investigate several experimentalsettings. As desribed in Setion 3, we use the two generated sets of datasets: one set of 40 datasets and oneset of 90 datasets.First, we simulate the running times of DLB for di�erent numbers of proessors with set one and two. Fur-thermore, we analyze the impat of the CCR, de�ned as the ommuniation time divided by the omputationtime, on the runtimes of DLB. The average CCR of a ELB run on 2 proessors is found to be 0.01 in ourdatasets. This value indiates that the omputations take around 99% of the total run time. In order toinvestigate this impat, we linearly interpolate the heights of the omputation times suh that we are ableto derive simulations of runs with a CCR of 0.25, and of 0.50. With those interpolated job times, we againsimulate runs based on DLB for a wide range of situations.Seond, we simulate runs of BSP parallel appliations that use JR and analyze the expeted speedups fordi�erent numbers of proessors, for di�erent numbers of repliations, for the two di�erent sets of datasets,and for the following di�erent CCR values: 0.01, 0.25, and 0.50. Subsequently, we derive the optimal numberof repliations for the di�erent situations. Table 1 depits whih di�erent situations have been investigated.
Third, we ompare the results of the running times and the speedups of the ELB-, DLB- and the JR imple-
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P R� R�(set one) (set two)2 2 24 4 48 4 816 4 432 4 464 - 4
Table 2: R�s for given P s (a) 40 datasets of USA nodes (b) 90 datasets of global nodes

Figure 4: Speedups of JR
mentations.Fourth, we simulate the speedups of the proposed seletion method whih is desribed in 3.3. Therefore, weperform trae-driven simulations of this method with set two of datasets.4.1 DLB experimentsIn this setion, we present the results of the simulations of the DLB runs. We investigated the DLB running-times with both sets of proessors for runs with a CCR of 0.01, 0.25, and 0.50 on 1, 2, 4, 8, 16, and 32proessors. Figure 3(a) depits the average runtimes on a logaritmi sale of all performed simulations onnodes of set one. Moreover, Figure 3(b) depits the average runtimes on a logaritmi sale of all the performedsimulations on nodes of set two.From the simulations results of the runs with a CCR of 0.01, we onlude that seleting more proessors inthe run dereases the running times, whih is the main motivation for programming in parallel. Althoughthe resheduling- and send times inrease when more proessors are seleted in the run, the derease in theomputation times for this ase is always higher. As is shown by Figures 3(a) and 3(b), we draw di�erentonlusions when the CCR is higher. For runs on nodes of set one and a CCR of 0.25, we notie a derease inrunning times until the amount of 16 proessors is seleted. When more proessors have been seleted, therunning times will inrease due to the signi�ant heights of the resheduling- and send times. Furthermore,we onlude that for every experimental setting, DLB onsistently shows a speedup in omparison to ELB,even for runs with a CCR of 0.50. However, one ould doubt the e�etiveness of programming in parallel,beause of the inrease in running times when more proessors are used.
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4.2 Job Repliation experimentsIn this setion, we show the results of the JR experiments. Figure 4(a) and 4(b) depit the speedups in therunning times of JR on di�erent numbers of proessors with CCR 0.01 (the original CCR) for set one andtwo respetively. For example, the white bars show the speedup that an be gained by JR for di�erent Rs on32 proessors. Subsequently, we present in Table 2 the optimal number of repliations for di�erent numbersof proessors.We onlude from Figure 4(a) and Table 2 that for a given number of proessors, the speedup inreaseswhen 2-JR or 4-JR has been applied. The impat of the utuations on the running times is high enoughsuh that 4 repliations of eah job (i.e., make 3 extra opies of eah job) have to be made to maximallyderease the running times. Repliating more than 4 times leads to a speeddown ompared to a 4-JR run.Furthermore, we onlude that the impat of JR on the speedup for a given number of repliations inreaseswhen the number of proessors has been inreased.The results of the set with 90 datasets, whih are shown by Figure 4(b) and Table 2, show again 4 as theoptimal number of repliations for most numbers of proessors. Exept for the runs with 8 proessors, asan be seen in Figure 4(b), a slightly higher speedup an be gained for the 8- in omparison with the 4-JRase. A di�erene between the results of this set and the results of the �rst set is that the speedups aresigni�antly higher. For example, the highest speedup for set one is below the 2.0, while for set two evenspeedups of higher than 6.0 have been registered. This is aused by the di�erenes between set one and two,whih is desribed in 3.1.Furthermore, we simulated the running times of JR on parallel appliations with a CCR of 0.25 and 0.50.Figure 5(a) and 5(b) present the results. We onlude that JR on parallel appliations with a CCR of 0.50never leads to dereases in the running times; the best repliation strategy is not to repliate, whih equalsan ELB run. Furthermore, JR for the nodes in set one and a CCR of 0.25, JR again does not lead to arunning-time derease. However, the running times on nodes of set two and a CCR of 0.25 show in manyases a small derease of 30% ompared to ELB for the best JR strategy. The runtimes of runs with CCRof 0.50 show a onsistent inrease in running times when the number of proessors inreases, whih showsthat running in parallel in this ase is not e�etive.4.3 Comparison of ELB, DLB, and JRIn this setion, we ompare the running times of the best JR strategy, the DLB implementation, and of theELB. Figures 6(a) and 6(b) depit the running times of the above mentioned three di�erent strategies for
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(a) 40 datasets of USA nodes (b) 90 datasets of globally distributednodesFigure 5: Running times of JR for di�erent CCRproessors set one and set two respetively.

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributednodesFigure 6: Runtimes of DLB and JR with CCR 0.01
From Figures 6(a) and 6(b) an be onluded that the running times of JR and of DLB are onsistently lowerthan those of the ELB implementation. For a CCR of 0.01 holds that for all three types of implementationsand for both sets of datasets deploying more proessors for the same amount of load leads to a signi�antspeedup. Figure 6(b) depits superlinear speedups for JR and DLB if two proessors are used instead ofone. This is aused by the e�et that if one proessor is used, peaks in the job times have a dramati impaton the total runtime of the appliation. In runs with two proessors this e�et an be redued by the fasterseond proessor. A di�erene between the results of set one and set two is that the running times of theDLB and JR implementations of set two derease faster while the running times of ELB derease slower.This is aused by the di�erenes between set one and two, whih is desribed in 3.1.
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For further analysis, we ompute the speedups, as de�ned in 3.2, of the best JR strategy and DLB for set oneand two from the running times from Figures 6(a) and 6(b). Figures 7(a) and 7(b) depit those omputedspeedups.

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributednodesFigure 7: Speedups of DLB and JR with sets of 40 and 90 datasets with CCR 0.01Figure 7(a) shows for the simulations with set one that DLB onsistently outperforms or at least performs asgood as JR. We onlude from Figure 7(b) that in omparison with the results of nodes from set one signif-iantly higher speedups an be gained on the nodes of set two. This insight orresponds to the observationsmentioned above in this setion. In 3.1, the auses of these observationed have been mentioned. Moreover,we notie for the experiments with the nodes of set two that the best JR strategy has a higher speedupthan DLB for runs on 2 or 4 proessors. However, when more proessors are used, DLB outperforms all JRstrategies. This is mainly aused by the fat that when more proessors are used, the amount of load perproessor dereases and, as a onsequene, the load that has to be redistributed during the DLB reshedul-ing phase dereases. For this reason, the overhead time of DLB shows more sensitivity to the number ofproessors. Those numbers are the results of the following trade-o�. On the one hand, when more proessorshave been deployed, the load per proessor and, therefore, the gain by DLB, dereases. On the other hand,the probability on slow proessors inreases, whih delay the whole proess in ELB implementations. Weobserve that the results of set one show that the speedup of DLB has its maximum at 16 proessors andfor set two the maximal speedup an be gained when 32 proessors are used. This is again aused by thedi�erenes in average proessing times between the nodes and the higher utuations over time. We remarkthat the results of Figure 7(a) are onsistent with the results in [9℄: the DLB runs on four randomly seletedproessors of set one show again on average a speedup of 1.8.Comparing the results of DLB and JR for the di�erent CCR 0.01, 0.25, and 0.50 show that for a CCR of
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0.01, there are some irumstanes for whih repliation shows the best results. However, for CCRs of 0.25and 0.50 DLB learly outperforms JR for all situations. For many of the ases, repliation does not evenshow speedups in omparison with ELB. We onlude that when the CCR inreases, the gain that an beobtained by JR is too small the ompensate the overhead and extra omputations of this method. On theother hand, the overhead of DLB remains low enough when the CCR inreases, to be able to gain speedups.4.4 Seletion-method experimentsIn this setion, we present the results of the trae-driven simulations of the seletion-method implementation.This method selets dynamially during the run between the two implementations DLB and JR. The detailsof this method are desribed in 3.3. For example, we perform an experiment with DLB, and 4-JR on4 proessors. Figure 8 shows us for this experiment the derived values of statisti Y for the followingdi�erent groups of iteration numbers: 1� 100; 101� 200; : : : ; 1901� 2000. Moreover, the Figure depits theorresponding realized iteration times of DLB and JR.

Figure 8: Statisti Y against ITs of DLB and JR
As we have seen above, the threshold value Y � for the omparison between a JR-run with 4 repliationsand a DLB run on 4 proessors is 7708. Figure 8 shows that for this situation, the Y is lower of equal than7708 until iteration number 900. This means that JR has the lowest running times, whih orresponds tothe measured average ITs for these iteration numbers. Until iteration number 1400, the statiti Y movesaround the threshold value and therefore both implementations an be used. Likewise, the realized ITs ofboth implementations do not di�er signi�antly. After iteration number 1400, the threshold value learlymoves above the threshold whih indiates that DLB is the best hoie, beause of lower iteration times.Finally, we ompare the speedups of the seletion method to those of the DLB and JR implementations. Tothis end, we performed 1000 experiments with the seletion method on 1, 2, 4, 8, 16, 32, and 64 randomly
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hosen nodes from set two. Figure 9 depits the speedups of the method ompared to those of DLB and JR.

Figure 9: Speedup of seletion method, DLB and JR
We onlude that the method that selets between DLB and JR performs at least as good as both DLB and JRfor all situations. The overhead of the swithes to the best performing method is in every experimental settingompletely ompensated by the gain in running time resulting from those e�etive swithes. For the ases inwhih one of the two implementation types is signi�antly faster, the performane of the seletion methodexatly equals the highest possible performane, beause for those situations it immediately selets the onewith the highest speedups. Altogether, the results in Figure 9 show that the introdued dynami method isvery e�etive in making Bulk Synhronous Proessing parallel programs robust against the utuations of aglobally distributed grid environment and in whih there is no knowledge about whih of the methods JR orDLB will perform best.
5 Conlusion and Outlook
In summary, in this paper we have made an extensive assessment and omparison between the two maintehniques that are most suitable to make parallel appliations robust against the unpreditability of the grid:DLB and JR. We found that there exists an easy-to-measure statisti Y and a orresponding threshold valueY � suh that DLB outperforms JR for Y > Y �, whereas JR onsistently performs better for Y < Y �. Basedon this observation, we propose the so-alled DLB/JR method, a simple and easy-to-implement approahthat an make on-the-y deisions about whether to use to DLB or JR. Extensive simulations based on alarge set of real data in a global-sale grid show that this new dynami approah always performs at leastas good as both DLB and JR in all irumstanes. As suh, the DLB/JR approah presented provides apowerful means to make parallel appliations robust in large-sale grid environments.The results presented in this paper address a number of hallenges for further researh. First, the ex-
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perimental results presented are based on trae-driven simulations. The next step is to bring the resultsto a higher level of reality by extensively analyzing the e�etiveness of our approah for a variety of "live"global-sale grid environments. Seond, a hallenging area for further researh is to make use of mathematialtehniques to provide a more solid foundation for the results presented in this paper, e.g., by formally provingthe inreased e�etiveness indued by the our approah. Finally, an interesting and important problem is todetermine the optimal number of job replias needed to obtain the best speedup performane. Our experi-mental results suggest that generating four job replias seems to be a good value to start with. It remainsa hallenging topi for further researh to develop pratial guidelines for determining the (near-)optimalrepliation level in large-sale grid environments.
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