
Dynami
 Load Balan
ing and Job Repli
ation in a Global-S
ale Grid
Environment: a Comparison

Menno Dobbery, Rob van der Meiyx, and Ger Kooleyy Vrije Universiteit, Fa
ulty of S
ien
es, Amsterdam, The Netherlandsx Center for Mathemati
s and Computer S
ien
e, Amsterdam, The Netherlands
Global-s
ale grids provide a massive sour
e of pro
essing power, providing the means to support pro
essorintensive parallel appli
ations. The strong burstiness and unpredi
tability of the available pro
essing andnetwork resour
es raise the strong need to make appli
ations robust against the dynami
s of grid environ-ments. The two main te
hniques that are most suitable to
ope with the dynami
 nature of the grid areDynami
 Load Balan
ing (DLB) and job repli
ation (JR). In this paper, we analyze and
ompare the ef-fe
tiveness of these two approa
hes by means of tra
e-driven simulations. We observe that there exists aneasy-to-measure statisti
 Y , and a
orresponding threshold value Y �, su
h that DLB
onsistently outperformsJR when Y > Y �, whereas the reverse is true for Y < Y �. Based on this observation, we propose a simpleand easy-to-implement approa
h, throughout referred to as the DLB/JR method, that
an make dynami
de
isions about whether to use DLB or JR. Extensive simulations based on a large set of real data monitoredin a global-s
ale grid show that our DLB/JR method
onsistently performs at least as good as both DLB andJR in all
ir
umstan
es, whi
h makes our DLB/JR method highly robust against the unpredi
table natureof global-s
ale grids.
Keywords: Grid
omputing, dynami
 load balan
ing, job repli
ation, performan
e
1 Introdu
tion
Variations in the available resour
es (e.g.,
omputing power, bandwidth) may have a dramati
 impa
t onthe running times of parallel appli
ations. Over the years, mu
h resear
h has been done on this subje
t ingrid
omputing. Generally, two methods for parallel appli
ations have been developed to deal with those
u
tuations in pro
essor speeds on the nodes: Dynami
 Load Balan
ing (DLB) (e.g., [3, 5, 8, 9, 18, 22, 23℄),

1

and job repli
ation (JR) [2, 4, 6, 7, 14, 17, 21, 16, 23℄. DLB adapts the load on the di�erent pro
essors inproportion to the expe
ted pro
essor speeds. JR makes a given number of
opies of ea
h job, sends the
opiesand the original job to di�erent pro
essors, and waits until the �rst repli
ation is �nished. A
omparison ofthe performan
e of those two methods on a heterogeneous globally distributed grid environment has - to thebest of the author's knowledge - never been performed.Re
ently, a variety of grid test-beds have been developed (e.g., Planetlab [1℄). This enables us to perform
omprehensive measurements of realisti
 job times to investigate how well
ertain implementations of gridappli
ations perform in pra
ti
e for a wide range of di�erent experimental setups. In this paper, we provideextensive tra
e-driven simulation experiments of dynami
 load balan
ing (DLB) and job repli
ation (JR)as two implementation
on
epts to deal with the ever-
hanging environment on widespread grid nodes.Moreover, we introdu
e a new sele
tion method that dynami
ally sele
ts the best implementation and showits e�e
tiveness in global-s
ale grid environments.In general, two types of investigations have been applied to a

urately verify whether
ertain algorithmsor implementations are e�e
tive: (1) tra
e-driven simulation, and (2) real implementation. On the onehand, the �rst type is (1) often easier to implement than a real implementation, be
ause no advan
ed
ommuni
ation implementations are ne
essary, and (2) less
lo
k time is needed to test di�erent experimentalsetups. Consequently, tra
e-driven simulations need a shorter time period in whi
h more situations
anbe analyzed. For example, previously done resear
h [9℄ e�e
tively shows the performan
e gain of a realimplementation of DLB in a real grid environment. As many as 60 days of parallel-implementation runswere ne
essary to derive a reliable estimation of the performan
e improvement (speedup) of DLB
omparedto Equal Load Balan
ing (ELB) on four pro
essors. Tra
e-driven simulations (e.g., [8, 23℄) would take lesstime and more extensive analyses
an be performed. On the other hand, tra
e-driven simulations requiredetailed knowledge about the pro
esses. To this end, in this paper we program a real implementation ofDLB to a
quire more knowledge about the durations of the di�erent pro
esses within an appli
ation whi
his based on DLB.The
omputations and
ommmuni
ations stru
ture of many parallel appli
ations
an be des
ribed by theBulk Syn
hronous Parallel (BSP) model (
f. [19℄). The relevan
e of the BSP model lies in the fa
t that it hasthe important property that the problems
an be divided into sub-problems, ea
h of whi
h
an be solved orexe
uted in roughly the same way. As su
h, in the absen
e of any prior knowledge about the pro
essor speedsand link rates in large-s
ale grid environments, the BSP model
an be seen as a default means to parallelize
omputationally intensive appli
ations. The BSP model in
ludes the stru
ture of Single-Program-Multiple-
2

Data (SPMD) [13℄, whi
h is a
lassi�
ation of the stru
ture of many parallel implementations. Currently,not many of the BSP type of appli
ations are able to run in a grid environment, due to the fa
t that they
annot deal with the ever-
hanging environment. Espe
ially, the syn
hronization in BSP programs
ausesineÆ
ien
y: one late job
an delay the whole pro
ess. This raises the need for methods that make the BSPappli
ations robust against
hanges in the grid environment.In this paper, we analyze and
ompare the e�e
tiveness of ELB, DLB and JR, using tra
e-driven simulationsbased on real data gathered in a global-s
ale grid test bed,
alled Planetlab [1℄. The results show that bothDLB and JR strongly outperform the default ELB, whi
h is widely deployed in grid environments today.Further, an extensive
omparison between DLB and JR reveals that in some
ir
umstan
es JR performan
ebetter than DLB, but in other
ir
umstan
es DLB is preferable. Given the strong unpredi
tability of the
ir
umstan
es in the grid environment, this observation makes it diÆ
ult to assess the relative e�e
tivenessof DLB or JR. Nonetheless, in-depth analysis shows that we
an identify an easy-to-measure statisti
 Yand a
orresponding threshold value Y � su
h that DLB
onsistently outperforms JR for Y > Y �, whereasJR
onsistently performs better for Y < Y �. This observation naturally leads to a simple and easy-to-implement approa
h that
an make on-the-
y de
isions about whether to use to DLB or JR. Extensivesimulation experiments show that this DLB/JR method always performs at least as good as both DLB andJR in all
ir
umstan
es. As su
h, the DLB/JR methode presented in this paper provides a highly e�e
tivemeans to make parallel appli
ations robust in large-s
ale grid environments.This paper is organized as follows. In Se
tion 2, we introdu
e the
on
ept of Bulk Syn
hronous Pro
essing.Moreover, we des
ribe two di�erent implementation types to deal with
u
tuations in grid environments:dynami
 load balan
ing (DLB), and job repli
ation (JR). In Se
tion 3, we des
ribe the details of data-
olle
tion pro
edure and the implementation details of the tra
e-driven simulations of DLB, JR, and thesele
tion method. Next, in Se
tion 4, we show the results of the extensive experiments. Finally, in Se
tion5, we formulate the
on
lusions.
2 Preliminaries
In se
tion 2.1 we brie
y des
ribe the
on
ept of the Bulk Syn
hronous Parallel (BSP) model. Then, inSe
tion 2.2 we des
ribe the implementation details of DLB and JR.2.1 Bulk Syn
hronous Pro
essingBSP parallel programs have the property that the problem
an be divided into sub-problems or jobs, ea
h ofwhi
h
an be solved or exe
uted in roughly the same way. Ea
h run
onsists of I iterations of P jobs whi
h3

are distributed on P pro
essors: ea
h pro
essor re
eives one job per iteration. Further, every run
ontains Isyn
hronization moments: after
omputing the jobs, all the pro
essors send their data and wait for ea
hothersdata before the next iteration starts. In general, the run time equals the sum of the individual iterationtimes. Figure 1(a) presents the situation for one iteration of a BSP run in a grid environment. The �gureshows that ea
h pro
essor re
eives a job and the iteration time equals the maximum of the individual jobtimes plus the syn
hronization time. Equal load balan
ing (ELB) assumes no prior knowledge of pro
essorspeeds of the nodes, and
onsequently balan
es the load equally among the di�erent nodes. The standardBSP program is implemented a

ording to the ELB prin
iple.

(a) ELB (b) DLB (
) 2-JR
Figure 1: The di�erent types of implementations on four pro
essors: ELB, DLB, and 2-JR

2.2 Load Balan
ing and Job Repli
ationIn this se
tion, we brie
y dis
uss the two main methods to
ope with the dynami
s of the grid environment:DLB and JR.2.2.1 Dynami
 Load Balan
ingDLB starts with the exe
ution of an iteration, whi
h does not di�er from the
ommon BSP program explainedabove. However, at the end of ea
h iteration the pro
essors predi
t their pro
essing speed for the nextiteration. We sele
t one pro
essor to be the DLB s
heduler. After every N iterations the pro
essors sendtheir predi
tion to this s
heduler. Subsequently, this pro
essor
al
ulates the \optimal" load distributiongiven those predi
tions and sends relevant information to ea
h pro
essor. The load distribution is optimalwhen all pro
essors �nish their
al
ulation exa
tly at the same time. Therefore, it is \optimal" when theload assigned to ea
h pro
essor is proportional to its predi
ted pro
essor speed. Finally, all pro
essorsredistribute the load. Figure 1(b) provides an overview of the di�erent steps within a DLB implementationon 4 pro
essors. The e�e
tiveness of DLB partly relies on the dividing possibilities of the load.
4

Load balan
ing at every single iteration is rarely a good strategy. On the one hand, the running time ofa parallel appli
ation dire
tly depends on the overhead of DLB, and therefore it is better to in
rease thenumber of iterations between two load balan
ing steps. On the other hand, less load balan
ing leads to animbalan
e of the load for the pro
essors for sustained periods of time, due to signi�
ant
hanges in pro
essingspeeds. In [8℄ we present the theoreti
al speedups in running times when using DLB
ompared to ELB, giventhat the appli
ation re-balan
es the load every N iterations, but without taking into a

ount the overhead.Based on those speedups and the load balan
ing overhead addressed above, a suitable value of N was foundto be 2:5P iterations, for P > 1. The e�e
tiveness of DLB strongly relies on the a

ura
y of the predi
tions.Previous resear
h [10℄ has shown that the Dynami
 Exponential Smoothing (DES) predi
tor a

uratelypredi
ts the job times on shared pro
essors. For that reason, the DES predi
tor has been implemented inthe DLB-simulation implementation of this paper.2.2.2 Job Repli
ationIn this se
tion, we introdu
e the
on
ept of job repli
ating in BSP parallel programs. In a R-JR run, R� 1exa
t
opies of ea
h job have been
reated and have to be exe
uted, su
h that there exist R samples ofea
h job. Two
opies of a job perform exa
tly the same
omputations: the datasets, the parameters, andthe
al
ulations are
ompletely the same. A JR run
onsists of I iterations. One iteration takes in total Rsteps. R
opies of all P jobs have been distributed to P pro
essors and therefore, ea
h pro
essor re
eivesea
h iteration R di�erent jobs. As soon as a pro
essor has �nished one of the
opies it sends a messageto the other pro
essors that they
an kill the job and start the next job in the sequen
e. The number ofsyn
hronization moments I is the same as for the non-JR
ase.Figure 1(
) shows the situation for a 2-JR run on four pro
essors. As
an be seen in the �gure, ea
h job andits
opy are distributed to R = 2 pro
essors and during one iteration ea
h pro
essor re
eives R = 2 jobs.Pro
essor one �nished as �rst job A and sends a '�nalize' message to pro
essor two. Sending the messageover the internet takes some time and, therefore, it takes a while before the other pro
essors start the nextjob. Ea
h job-type time, whi
h is the duration of a spe
i�
 job type (the original and its
opies), equals theminimum of all its job times plus a possible send time. An individual pro
essor time of one iteration equalsthe sum of the job-type times whi
h were sent to that pro
essor and the send times of the 'kill'-messages.Finally, the iteration time of all the pro
essors
orresponds to the sum of the syn
hronization time and themaximum of all pro
essor times.

5

2.2.3 Sele
tion methodNext, we introdu
e the
on
ept of a method that sele
ts between the above two di�erent types of imple-mentations. This method has the aim to sele
t dynami
ally the optimal implementation type. To this end,it measures a statisti
 Y and de�nes a threshold Y � during the run. After ea
h Ip iterations, the methodgives a preferen
e for a given type of implementation, based on a
omparison of Y with the threshold valueY �. In this method, the pro
essor that redistributes the load in DLB is moreover the pro
essor that de
ideswhether JR or DLB is used. When the method de
ides that a swit
h to the other type of implementationis ne
essary, the steps to be taken are the same as in the DLB res
heduling phase: (1) the nodes send theirpredi
tion to the s
heduler, (2) the s
heduler
omputes the optimal load distribution, and (3) the nodesredistribute their load.
3 Experimental setup
In this se
tion, we des
ribe the grid test-bed, the data-
olle
tion pro
edure, the simulation details of DLBand JR, the development of the sele
tion method and, �nally, we introdu
e the method.3.1 Data-
olle
tion pro
edureIn order to perform extensive investigations with the di�erent types of implementations, in total 130 runshave been performed on 22 di�erent heterogeneous pro
essors of Planetlab [1℄. The pro
essors are globallydistributed, shared with others, and the
apa
ities of the pro
essors are unknown. Ea
h run
onsists of 2000
onse
utive and identi
al jobs (or
omputations) and generates a dataset of 2000 job times. We
onstru
tedthe jobs su
h that on a
ompletely available Pentium 4, 3.0GHz pro
essor, the
omputations in the jobswould take 10000 ms. The time between su

essive runs that are performed on the same pro
essor rangesfrom one day to one month. We noti
e that the more time between the runs, the more di�eren
e between the
hara
teristi
s of the job times of those runs. This is due to the fa
t that due to the highly random natureof global-s
ale grid environments, the dependen
ies of the
hara
teristi
s of the system will be highly de-pendent over short times
ales (e.g., during sudden traÆ
 bursts,
ausing strong
orrelations), whereas thesedependen
ies ar emost likely to "die out" over longer times
ales. In order to
orrelate the datasets in thesimulations, ea
h run is started at 9:00 CET. Unfortunately, Planetlab version 2.0 was not mature enoughat the time of the experiments to be able to run experiments on 130 di�erent pro
essors. However, the jobtimes of runs that are performed on the same node mostly show di�erent
hara
teristi
s (see also [11℄). Forthese reasons, we use those di�erent datasets as if they were performed on two di�erent homogeneous nodes

6

at the same site.We divided the datasets of the 130 runs into two sets of datasets: one set
ontains 40 datasets and the other90 datasets. In order to
ompare the results of [8℄ with the simulation results of this paper, the �rst set
on-sists of datasets whi
h are generated from the same nodes as in that paper. The se
ond set
ontains datasetsgenerated from in total 22 di�erent nodes whi
h in
ludes datasets generated from the same nodes whi
h areused for set one. We note that set two does not
ontain
opies of datasets of set one. Set one only
onsists ofnodes in the USA: Boston, Pasadena, Salt Lake City, San Diego, Tu
son, and Washington DC. The se
ondset
ontains, besides the datasets whi
h are generated on the same nodes as set one, datasets whi
h aregenerated on the following additional nodes: Amsterdam, The Netherlands; Cambridge, UK; Beijing, China;Copenhagen, Denmark; Le Chesnay, Fran
e; Madrid, Spain; Mos
ow, Russia; Santa Barbara, USA; Seoul,South Korea; Singapore; Sydney, Australia; Tel Aviv, Israel; Taipei, Taiwan (A
ademi
a Sini
a); Taipei,Taiwan (National Taiwan University); Van
ouver, Canada; and Warsaw, Poland.The job times in set one are on average approximately 72500 ms, and in set two 65000 ms. Further analysisshows that the job times on the nodes in set two show more burstiness and have higher di�eren
es betweenthe average job times on the pro
essors. That last property is mainly
aused by the fa
t that the nodes inset two are globally distributed and the nodes in set one are distributed within the USA; set one shows more
oheren
e between the generated datasets. In order to work with the di�erent job time measurements, wede�ne JTi(k) as the kth job time measurement of dataset i, where i = 1 : : : 130 and k = 1 : : : 2000. The �rst40 datasets form set one and the last 90 form set two.To provide a strong basis of the simulations, extensive measurements on the durations of the other di�erentpro
esses besides the job times (as explained in Se
tion 2) of a BSP program are ne
essary. The appli
ationfor the measurements has been
arefully
hosen so as to meet the following requirements. The appli
ationmust have the same dependen
ies between its iterations as a general BSP program and the same stru
turebetween the pro
essors. A suitable appli
ation is the Su

essive Over Relaxation (SOR) appli
ation. SORis an iterative method that has proven to be useful in solving Lapla
e equations. For more information, werefer to [12℄.For our simulations, we need realisti
 measurements of the syn
hronization times (ST s) for the simulationsof ELB, DLB, and JR. We dis
overed that the syn
hronization time strongly depends on the maximum ofthe send times between all pairs of neighbor pro
essors. Therefore, for realisti
 simulations we need sendtimes measurements between all possible pairs of nodes. Analysis of the send times have shown that the sendtimes between two nodes do not depend on the number of pro
essors used. Consequently, in total 77 original
7

SOR-appli
ation runs on four pro
essors were ne
essary to generate datasets of the send times between ea
hpossible pair of nodes. In total 231 datasets of 2000 send times have been
reated during this pro
ess. Thesend times are on average around 750 ms. We de�ne SndTi;j(k) as the kth send time measurement betweennode i and j, where i; j = 1 : : : 130, and k = 1 : : : 2000.Further, it is important for the JR simulation to gather realisti
 measurements of the time that the �nalizemessage takes to be sent from the fastest node to another node. Therefore, we implemented this send pro
essin the SOR-appli
ation. This pro
ess is di�erent from the above send pro
ess, be
ause less information hasto be sent, and no a
knowledgement is needed. We ran again in total 77 original SOR-appli
ation runs onfour pro
essors to generate 231 datasets of 2000 �nalize-message times. The �nalize message times wereon average around 300 ms. We de�ne FMi;j(k) as the kth measurement of the �nalize-message send-timebetween node i and j, where i; j = 1 : : : 130, and k = 1 : : : 2000.Moreover, for the DLB simulation it is essential to gather measurements of the res
heduling time. Conse-quently, we implemented the
omplete res
heduling phase in the DLB appli
ation. Analyses have shown thatit is suÆ
ient to randomly sele
t in the simulation res
heduling times (RS
hT s) from a set of 10000 mea-surements. The RS
hT depends on too many di�erent fa
tors to subdivide the RS
hT s to all those fa
tors.The total res
heduling pro
edure, as explained in 2.2.1, takes on average around 37500 ms. We note that itis possible to apply more e�e
tive pa
kaging methods in this pro
edure, whi
h
an signi�
antly de
rease theRS
hT s. De�ne RS
hT (l) as the lth measurement of the res
heduling time, where l = 1 : : : 10000.In addition, we use the data of the DLB res
heduling times to estimate the overhead to swit
h from one tothe other implementation type. Those times will in pra
ti
e show
omparable
harateristi
s for the followingreason. During an implementation swit
h, the steps to be taken are the same as during as DLB res
hedulingphase (details in: 2.2.3) A swit
h from JR to DLB takes less time than a DLB res
heduling phase be
ausethe amount of the to be redistributed load is smaller; the nodes already
ontain most of the ne
essary loadof the other pro
essors. Small experiments have shown that a swit
h from JR to DLB takes around 60% ofthe time of a DLB res
heduling step. During a swit
h from DLB to JR, more data has to be redistributeddue to the fa
t that all the pro
essors need to gather repli
ations of load from the other pro
essors. Thisswit
h takes around 140% of the time of a DLB res
heduling step.Altogether, we generated the following datasets for our tra
e-driven simulation analyses: JTi(k), with i =1 : : : 130, k = 1 : : : 2000, SndTi;j(k), FMi;j(k), and RS
hT (l), with i = 1 : : : 22, j = 1 : : : 22, k = 1 : : : 2000,and l = 1 : : : 10000.
8

3.2 Simulation detailsBefore we explain the simulation details of DLB, and JR, we de�ne for both strategies:
D(P) := runtime of DLB-run on P nodesR(R;P) := runtime of R-JR run on P nodesR�(P) := runtime best JR strategy on P nodes:= minR=1;2;4;:::;P R(R;P):

Furthermore, we de�ne the speedups of DLB and of the best JR strategy as the number of times that thosestrategies are faster than the run without DLB or JR: ELB.
speedup D(P) := R(1; P)D(P) ; (1)
speedup R�(P) := R(1; P)R�(P) : (2)

Note that R(1; P), whi
h is the running time of a 1-JR run (i.e., ea
h job exists only one time), equals therunning time of a ELB run.Simulations of dynami
 load balan
ingIn this se
tion, we des
ribe the details of the tra
e-driven DLB simulations. We assume a linear relationbetween the job size and their job times in BSP programs. The following steps have been in
orporated inthe simulations:Step 1: We randomly sele
t a resour
e set S = fp1; : : : ; pP g of P pro
essors from the datasets and orderthem su
h that the send times between the pro
essors are minimized. These numbers p1; : : : ; pP
orrespondto the numbers of the datasets.Step 2: The DES-based predi
tion ŷi (see for more details: [10℄) represents the predi
ted job time onpro
essor i. Consequently, the expe
ted speed of pro
essor i (i.e., the fra
tion of the total load pro
essed perms) for the next iteration is 1P ŷi . Further, the expe
tation of the total pro
essor speed of the P pro
essorstogether is PPi=1 1P ŷi . Consequently, the expe
ted time of the next iteration without send- and res
hedulingtimes given an optimal load distribution is: 11P PPi=1 1̂yi : (3)
As a
onsequen
e, the optimal load fra
tion of pro
essor i is:9

PŷiPPi=1 1̂yi (4)
Finally, to simulate the EJTi of pro
essor i for this and the next iterations before the next load res
hedulingstep, we multiply the fra
tions with the real
orresponding data values JTi from the datasets. We introdu
eparameter k whi
h indi
ates the iteration number.

EJTi(k) = Pŷi(k)PPi=1 1ŷi(k) JTi(k): (5)
Step 3: Next, we derive the iteration time (IT) whi
h is the maximum of the EJTis of that iteration plusthe syn
hronization time (ST): IT (k) = maxi=1;:::;P EJTi(k) + ST (k): (6)
Step 4: We derive the running time of the R-JR run by repeating step three 2000 times, sum up all theITs, and add up all the load res
heduling times:

D(P) := 2000Xk=1 IT (k) + b2000=N
Xl=1 RS
hT (l); (7)
with N as the number of iterations between two load res
heduling steps.Step 5: We derive the expe
ted running time of a DLB run on P pro
essors by repeating steps one to four1000 times, and �nally
omputing the average of the running times.Simulations of job repli
ationWithin a R-JR run, R repli
ations of the same job are exe
uted by a set of R di�erent pro
essors. Forsimpli
ity, we assume that PR is an integer value. Consequently, the same groups of pro
essors exe
ute ea
hiteration the same job. Thus, we are able to divide the P pro
essors in PR exe
ution groups whi
h all
onsistof R pro
essors. We pro
eed along the following 6 steps to simulate the exe
ted running time of a R-JR runon P pro
essors.Step 1: See step one of the DLB simulation.Step 2: Divide the set of pro
essors in exe
ution groups. Exe
ution group 1
onsists of pro
essors p1; : : : ; pR,group 2
onsists of pro
essors pR+1; : : : ; p2R, until group PR that
onsists of pro
essors pP�R+1; : : : ; pP . Wede�ne EG(i) as the set of pro
essors that are in the same exe
ution group as pro
essor i.Step 3: In this step, we derive the e�e
tive job times (EJT1; : : : ; EJTP) for all P pro
essors. Therefore,we �rst derive within ea
h exe
ution group whi
h pro
essor �nished the same job as �rst. This
an be done

10

by taking one job time value from ea
h dataset of that exe
ution group and observe whi
h pro
essor has thelowest job time. Within one exe
tion group the EJT of the fastest pro
essor (f), EJTf , equals the job timevalue from its dataset (JTf). The EJT s of the other pro
essors in the same exe
ution group equal EJTfplus the time that it takes to send the �nalize-message from f to the other pro
essors in the exe
ution group,whi
h is the above de�ned FMf;j.
EJTi = 8><>: minj2EG(i) JTj when i = f;minj2EG(i) JTj + FMf;i else. (8)

Step 4: Next, we derive the iteration time (IT). This time
an be derived by repeating step two R times(ea
h pro
essor gets R di�erent jobs during one iteration), sum up the EJT s for ea
h pro
essor, taking themaximum of those sums, and adding up the syn
hronization time (ST). Note that it is ne
essary to take intoa

ount all the previous EJT s of ea
h pro
essor, be
ause of the dependen
ies between
onse
utive EJT s.We introdu
e parameters k, and m, whi
h respe
tively indi
ate the iteration number and the step numberwithin a iteration. Given the above de�nitions, the iteration time equals:
IT (k) = maxi=1;:::;P RXm=1EJTi(k;m) + ST (k): (9)

Step 5: We derive the running time of the R-JR run by repeating step three until all datavalues of theR datasets have been pro
essed in the simulation and sum up all the IT s. In order to be able to
omparethe running times of runs with di�erent values for R, we multiply this sum with R to derive a
omparablerunning time of 2000 iterations for ea
h possible R-JR run:
R(R;P) := R� b2000=R
Xk=1 IT (k): (10)

Step 6: We derive the expe
ted running time of a R-JR run on P pro
essors by repeating steps one to �ve1000 times, and �nally
omputing the average of the running times.3.3 Dynami
 sele
tion methodIn this se
tion, we �rst analyze the opportunity to develop a sele
tion method that is based on a thresholdvalue. Se
ond we propose a sele
tion method that optimally sele
ts between the two implementation types:DLB and JR.
11

3.3.1 AnalysisTo be able to develop su
h a sele
tion method, we need to �nd formulas that indi
ate the height of theiteration times for the di�erent implementations for a given easy-to-measure statisti
. To this end, we �rstderive an approximation of the expe
ted IT for DLB, whi
h is based on the predi
tions ŷt, by adding theexpe
ted ST and res
heduling time to (3).EITD(P) � 11P PPi=1 1Eŷi +EST + ERS
hTN : (11)
However, this expe
tation di�ers from the real measured ITs, mainly due to inevitable di�eren
es betweenthe expe
ted job times and the realized job times. Therefore, we de�ne an equation for the expe
ted iterationtime of DLB (namely, EITD(P)) with a- and b-values whi
h take into a

ount those di�eren
es. We assumethat the send- and res
heduling times
an also be in
luded in the b values.

EITD(P) = aDLB 11P PPi=1 1Eŷi + bDLB: (12)
Furthermore, be
ause of the reason that the iteration time of JR also has a strong linear relation to (3), wede�ne the expe
ted iteration time of JR as:

EITR(R;P) = aR(R;P) 11P PPi=1 1Eŷi + bR(R;P): (13)
We address that the heights of the a- and the b-values depend on (1) the MSE between the predi
ted andthe realized job times, (2) the distribution of the send times, (3) the distribution of the res
heduling times,and (4) the values of the parameters R and P .Next, we investigate the relation between the average of 100 realized iteration times provided by realisti
tra
e-driven simulations and the estimations of the ITs by the above equations. An e�e
tive statisti
al prop-erty to quantify this dependen
y is the
orrelation
oeÆ
ient. This property
an be derived by substitutingthe data values of both quantities in the
orrelation formula. The
orrelation
oeÆ
ient varies by de�nitionbetween -1.0, whi
h indi
ates a
omplete negative linear dependen
y, and 1.0, whi
h indi
ates a
ompletepositive linear dependen
y. A
orrelation of 0.0 indi
ates no linear dependen
y. More details
an be foundin [15℄. The high
orrelation of 0.97 between those values implies that equations (12) to (13) are a

urateindi
ations of the possibly realizable speedups. Consequently, this means that for a given implementationand a given
hoi
e of parameters (e.g., number of pro
essors), the speedup strongly depends on the statisti
,whi
h is de�ned in (3). In the rest of this paper, we
all this statisti
 Y (= P=PPi=1 1EJTi).

12

We
onsider the following situation. We perform 1000 simulations of a 4-JR implementation on 4 nodes and1000 simulations of a DLB implementation on 4 nodes. For
omparison reasons, the 1000 simulations of theDLB implementation have been exe
uted on the same set of nodes as on the
orresponding JR simulation.Figure 2 depi
ts the averages of 100 iteration times of those tra
e-driven simulated runs of DLB and JRagainst statisti
 Y .

Figure 2: S
atterplot of DLB and JR iteration times
This �gure shows, as expe
ted, the strong linear relation between the statisti
 Y and the ITs. We �ttedtrendlines by a least-square �t and derived the R2 values of those equations, whi
h will both be explainedat the end of this se
tion. The trendline of the ITs of JR has the following equation:

ITR(4;4) = 2:0475Y + 1224; (14)
with a R2-value of 0.9228, and for DLB the trendline equals:

ITDLB(4) = 1:2779Y + 7157; (15)
with a R2-value of 0.9597.The above observations imply the possibility of deriving a threshold value Y � of statisti
 Y that de�nes theoptimal implementation
hoi
e by equating both equations. The threshold poli
y works as follows: whenstatisti
 Y is lower than this threshold, we
hoose for JR and when Y is higher, we
hoose for DLB. Thethreshold for the above situation would be: Y = 7708, whi
h is the solution of equating the formulas for

13

ITR(4;4) with ITDLB(4).The DLB/JR methodGiven the above equations, we are able to develop a method that dynami
ally
hooses the most e�e
tiveimplementation from both DLB or JR. We propose the following sele
tion method:Step 1: Start with DLB as the
urrent
hoi
e.Step 2: Measure for the
urrent implementation
hoi
e the job- and iteration times during Ip iterations.Step 3: Estimate the job- and iteration times for the other as the
urrent implementation by straightforward
omputations, whi
h are shown in 3.2.Step 4: Compute statisti
 Y := P=PPi=1 1EJTi .Step 5: Fit the values of aDLB, aR(R;P), bDLB, and bR(R;P) in equations (12)-(13) by a least-square �t (moreinformation below) of the
olle
ted data about the ITs and the statisti
s [20℄. When only one datapoint hasbeen
olle
ted, go to step eight and take the ITs of the �rst Ip iterations as expe
ted ITs for the next Ipiterations.Step 6: To derive an expe
tation of the ITs of the di�erent implementations, take the latest
omputed valueof Y and substitute it in equations (12)-(13) with the �tted values of aDLB, aR(R;P), bDLB, and bR(R;P).Step 7: Choose the implementation with the lowest expe
ted IT for the next Ip iterations.Step 8: If the run is not �nished, go to step two.A least-square �t is an e�e
tive method that �ts a linear equation in a
olle
tion of datapoints. It is basedon minimizing the sum of the squares of the deviations between the linear equation and the datapoints. Thevalues of a and b
an be derived by a dire
t formula of the values of the data points. The R2 value is anindi
ation of the overall deviation between the trendline and the datapoints, and ranges between 0.0 (no �t)and 1.0 (
omplete �t). For brevity, we omitted the formulas for a, b, and the R2. For more details, we referto [15℄.We
hose to take Ip = 100 as the number of iterations between two implementation-evaluation steps. Onthe one hand, this number is low enough to rea
t fast on a
hange in the best implementation type. On theother hand, an implementation with this number involves relatively low overhead
osts that is
aused by theswit
h pro
edure between DLB and JR.The results of extensive analysis of IT-predi
tions have shown that an estimation whi
h is based on sub-stituting measurements of Y in (12)-(13) is far more a

urate than taking the average IT of the last 100
14

P Sets R CCRs1 1 2 1 0.01, 0.25, 0.502 1 2 1 2 0.01, 0.25, 0.504 1 2 1 2 4 0.01, 0.25, 0.508 1 2 1 2 4 8 0.01, 0.25, 0.5016 1 2 1 2 4 8 16 0.01, 0.25, 0.5032 1 2 1 2 4 8 16 32 0.01, 0.25, 0.5064 2 1 2 4 8 16 32 64 0.01, 0.25, 0.50
Table 1: Sets, Rs and CCRs, for given P (a) 40 datasets of USA nodes (b) 90 datasets of globalnodesFigure 3: DLB Runtimes for di�erent CCRs
iterations.
4 Experimental Results
In this se
tion, we present the experimental results of the tra
e-driven simulation experiments. We
onsidersimulations of the previously des
ribed di�erent methods to
ope with the
u
tuating job times on the pro-
essors: (1) equal load balan
ing (ELB), (2) dynami
 load balan
ing (DLB), (3) job repli
ation (JR), and(4) the sele
tion method. We perform extensive simulations in whi
h we investigate several experimentalsettings. As des
ribed in Se
tion 3, we use the two generated sets of datasets: one set of 40 datasets and oneset of 90 datasets.First, we simulate the running times of DLB for di�erent numbers of pro
essors with set one and two. Fur-thermore, we analyze the impa
t of the CCR, de�ned as the
ommuni
ation time divided by the
omputationtime, on the runtimes of DLB. The average CCR of a ELB run on 2 pro
essors is found to be 0.01 in ourdatasets. This value indi
ates that the
omputations take around 99% of the total run time. In order toinvestigate this impa
t, we linearly interpolate the heights of the
omputation times su
h that we are ableto derive simulations of runs with a CCR of 0.25, and of 0.50. With those interpolated job times, we againsimulate runs based on DLB for a wide range of situations.Se
ond, we simulate runs of BSP parallel appli
ations that use JR and analyze the expe
ted speedups fordi�erent numbers of pro
essors, for di�erent numbers of repli
ations, for the two di�erent sets of datasets,and for the following di�erent CCR values: 0.01, 0.25, and 0.50. Subsequently, we derive the optimal numberof repli
ations for the di�erent situations. Table 1 depi
ts whi
h di�erent situations have been investigated.
Third, we
ompare the results of the running times and the speedups of the ELB-, DLB- and the JR imple-

15

P R� R�(set one) (set two)2 2 24 4 48 4 816 4 432 4 464 - 4
Table 2: R�s for given P s (a) 40 datasets of USA nodes (b) 90 datasets of global nodes

Figure 4: Speedups of JR
mentations.Fourth, we simulate the speedups of the proposed sele
tion method whi
h is des
ribed in 3.3. Therefore, weperform tra
e-driven simulations of this method with set two of datasets.4.1 DLB experimentsIn this se
tion, we present the results of the simulations of the DLB runs. We investigated the DLB running-times with both sets of pro
essors for runs with a CCR of 0.01, 0.25, and 0.50 on 1, 2, 4, 8, 16, and 32pro
essors. Figure 3(a) depi
ts the average runtimes on a logaritmi
 s
ale of all performed simulations onnodes of set one. Moreover, Figure 3(b) depi
ts the average runtimes on a logaritmi
 s
ale of all the performedsimulations on nodes of set two.From the simulations results of the runs with a CCR of 0.01, we
on
lude that sele
ting more pro
essors inthe run de
reases the running times, whi
h is the main motivation for programming in parallel. Althoughthe res
heduling- and send times in
rease when more pro
essors are sele
ted in the run, the de
rease in the
omputation times for this
ase is always higher. As is shown by Figures 3(a) and 3(b), we draw di�erent
on
lusions when the CCR is higher. For runs on nodes of set one and a CCR of 0.25, we noti
e a de
rease inrunning times until the amount of 16 pro
essors is sele
ted. When more pro
essors have been sele
ted, therunning times will in
rease due to the signi�
ant heights of the res
heduling- and send times. Furthermore,we
on
lude that for every experimental setting, DLB
onsistently shows a speedup in
omparison to ELB,even for runs with a CCR of 0.50. However, one
ould doubt the e�e
tiveness of programming in parallel,be
ause of the in
rease in running times when more pro
essors are used.

16

4.2 Job Repli
ation experimentsIn this se
tion, we show the results of the JR experiments. Figure 4(a) and 4(b) depi
t the speedups in therunning times of JR on di�erent numbers of pro
essors with CCR 0.01 (the original CCR) for set one andtwo respe
tively. For example, the white bars show the speedup that
an be gained by JR for di�erent Rs on32 pro
essors. Subsequently, we present in Table 2 the optimal number of repli
ations for di�erent numbersof pro
essors.We
on
lude from Figure 4(a) and Table 2 that for a given number of pro
essors, the speedup in
reaseswhen 2-JR or 4-JR has been applied. The impa
t of the
u
tuations on the running times is high enoughsu
h that 4 repli
ations of ea
h job (i.e., make 3 extra
opies of ea
h job) have to be made to maximallyde
rease the running times. Repli
ating more than 4 times leads to a speeddown
ompared to a 4-JR run.Furthermore, we
on
lude that the impa
t of JR on the speedup for a given number of repli
ations in
reaseswhen the number of pro
essors has been in
reased.The results of the set with 90 datasets, whi
h are shown by Figure 4(b) and Table 2, show again 4 as theoptimal number of repli
ations for most numbers of pro
essors. Ex
ept for the runs with 8 pro
essors, as
an be seen in Figure 4(b), a slightly higher speedup
an be gained for the 8- in
omparison with the 4-JR
ase. A di�eren
e between the results of this set and the results of the �rst set is that the speedups aresigni�
antly higher. For example, the highest speedup for set one is below the 2.0, while for set two evenspeedups of higher than 6.0 have been registered. This is
aused by the di�eren
es between set one and two,whi
h is des
ribed in 3.1.Furthermore, we simulated the running times of JR on parallel appli
ations with a CCR of 0.25 and 0.50.Figure 5(a) and 5(b) present the results. We
on
lude that JR on parallel appli
ations with a CCR of 0.50never leads to de
reases in the running times; the best repli
ation strategy is not to repli
ate, whi
h equalsan ELB run. Furthermore, JR for the nodes in set one and a CCR of 0.25, JR again does not lead to arunning-time de
rease. However, the running times on nodes of set two and a CCR of 0.25 show in many
ases a small de
rease of 30%
ompared to ELB for the best JR strategy. The runtimes of runs with CCRof 0.50 show a
onsistent in
rease in running times when the number of pro
essors in
reases, whi
h showsthat running in parallel in this
ase is not e�e
tive.4.3 Comparison of ELB, DLB, and JRIn this se
tion, we
ompare the running times of the best JR strategy, the DLB implementation, and of theELB. Figures 6(a) and 6(b) depi
t the running times of the above mentioned three di�erent strategies for
17

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributednodesFigure 5: Running times of JR for di�erent CCRpro
essors set one and set two respe
tively.

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributednodesFigure 6: Runtimes of DLB and JR with CCR 0.01
From Figures 6(a) and 6(b)
an be
on
luded that the running times of JR and of DLB are
onsistently lowerthan those of the ELB implementation. For a CCR of 0.01 holds that for all three types of implementationsand for both sets of datasets deploying more pro
essors for the same amount of load leads to a signi�
antspeedup. Figure 6(b) depi
ts superlinear speedups for JR and DLB if two pro
essors are used instead ofone. This is
aused by the e�e
t that if one pro
essor is used, peaks in the job times have a dramati
 impa
ton the total runtime of the appli
ation. In runs with two pro
essors this e�e
t
an be redu
ed by the fasterse
ond pro
essor. A di�eren
e between the results of set one and set two is that the running times of theDLB and JR implementations of set two de
rease faster while the running times of ELB de
rease slower.This is
aused by the di�eren
es between set one and two, whi
h is des
ribed in 3.1.

18

For further analysis, we
ompute the speedups, as de�ned in 3.2, of the best JR strategy and DLB for set oneand two from the running times from Figures 6(a) and 6(b). Figures 7(a) and 7(b) depi
t those
omputedspeedups.

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributednodesFigure 7: Speedups of DLB and JR with sets of 40 and 90 datasets with CCR 0.01Figure 7(a) shows for the simulations with set one that DLB
onsistently outperforms or at least performs asgood as JR. We
on
lude from Figure 7(b) that in
omparison with the results of nodes from set one signif-i
antly higher speedups
an be gained on the nodes of set two. This insight
orresponds to the observationsmentioned above in this se
tion. In 3.1, the
auses of these observationed have been mentioned. Moreover,we noti
e for the experiments with the nodes of set two that the best JR strategy has a higher speedupthan DLB for runs on 2 or 4 pro
essors. However, when more pro
essors are used, DLB outperforms all JRstrategies. This is mainly
aused by the fa
t that when more pro
essors are used, the amount of load perpro
essor de
reases and, as a
onsequen
e, the load that has to be redistributed during the DLB res
hedul-ing phase de
reases. For this reason, the overhead time of DLB shows more sensitivity to the number ofpro
essors. Those numbers are the results of the following trade-o�. On the one hand, when more pro
essorshave been deployed, the load per pro
essor and, therefore, the gain by DLB, de
reases. On the other hand,the probability on slow pro
essors in
reases, whi
h delay the whole pro
ess in ELB implementations. Weobserve that the results of set one show that the speedup of DLB has its maximum at 16 pro
essors andfor set two the maximal speedup
an be gained when 32 pro
essors are used. This is again
aused by thedi�eren
es in average pro
essing times between the nodes and the higher
u
tuations over time. We remarkthat the results of Figure 7(a) are
onsistent with the results in [9℄: the DLB runs on four randomly sele
tedpro
essors of set one show again on average a speedup of 1.8.Comparing the results of DLB and JR for the di�erent CCR 0.01, 0.25, and 0.50 show that for a CCR of
19

0.01, there are some
ir
umstan
es for whi
h repli
ation shows the best results. However, for CCRs of 0.25and 0.50 DLB
learly outperforms JR for all situations. For many of the
ases, repli
ation does not evenshow speedups in
omparison with ELB. We
on
lude that when the CCR in
reases, the gain that
an beobtained by JR is too small the
ompensate the overhead and extra
omputations of this method. On theother hand, the overhead of DLB remains low enough when the CCR in
reases, to be able to gain speedups.4.4 Sele
tion-method experimentsIn this se
tion, we present the results of the tra
e-driven simulations of the sele
tion-method implementation.This method sele
ts dynami
ally during the run between the two implementations DLB and JR. The detailsof this method are des
ribed in 3.3. For example, we perform an experiment with DLB, and 4-JR on4 pro
essors. Figure 8 shows us for this experiment the derived values of statisti
 Y for the followingdi�erent groups of iteration numbers: 1� 100; 101� 200; : : : ; 1901� 2000. Moreover, the Figure depi
ts the
orresponding realized iteration times of DLB and JR.

Figure 8: Statisti
 Y against ITs of DLB and JR
As we have seen above, the threshold value Y � for the
omparison between a JR-run with 4 repli
ationsand a DLB run on 4 pro
essors is 7708. Figure 8 shows that for this situation, the Y is lower of equal than7708 until iteration number 900. This means that JR has the lowest running times, whi
h
orresponds tothe measured average ITs for these iteration numbers. Until iteration number 1400, the stati
ti
 Y movesaround the threshold value and therefore both implementations
an be used. Likewise, the realized ITs ofboth implementations do not di�er signi�
antly. After iteration number 1400, the threshold value
learlymoves above the threshold whi
h indi
ates that DLB is the best
hoi
e, be
ause of lower iteration times.Finally, we
ompare the speedups of the sele
tion method to those of the DLB and JR implementations. Tothis end, we performed 1000 experiments with the sele
tion method on 1, 2, 4, 8, 16, 32, and 64 randomly

20

hosen nodes from set two. Figure 9 depi
ts the speedups of the method
ompared to those of DLB and JR.

Figure 9: Speedup of sele
tion method, DLB and JR
We
on
lude that the method that sele
ts between DLB and JR performs at least as good as both DLB and JRfor all situations. The overhead of the swit
hes to the best performing method is in every experimental setting
ompletely
ompensated by the gain in running time resulting from those e�e
tive swit
hes. For the
ases inwhi
h one of the two implementation types is signi�
antly faster, the performan
e of the sele
tion methodexa
tly equals the highest possible performan
e, be
ause for those situations it immediately sele
ts the onewith the highest speedups. Altogether, the results in Figure 9 show that the introdu
ed dynami
 method isvery e�e
tive in making Bulk Syn
hronous Pro
essing parallel programs robust against the
u
tuations of aglobally distributed grid environment and in whi
h there is no knowledge about whi
h of the methods JR orDLB will perform best.
5 Con
lusion and Outlook
In summary, in this paper we have made an extensive assessment and
omparison between the two mainte
hniques that are most suitable to make parallel appli
ations robust against the unpredi
tability of the grid:DLB and JR. We found that there exists an easy-to-measure statisti
 Y and a
orresponding threshold valueY � su
h that DLB outperforms JR for Y > Y �, whereas JR
onsistently performs better for Y < Y �. Basedon this observation, we propose the so-
alled DLB/JR method, a simple and easy-to-implement approa
hthat
an make on-the-
y de
isions about whether to use to DLB or JR. Extensive simulations based on alarge set of real data in a global-s
ale grid show that this new dynami
 approa
h always performs at leastas good as both DLB and JR in all
ir
umstan
es. As su
h, the DLB/JR approa
h presented provides apowerful means to make parallel appli
ations robust in large-s
ale grid environments.The results presented in this paper address a number of
hallenges for further resear
h. First, the ex-

21

perimental results presented are based on tra
e-driven simulations. The next step is to bring the resultsto a higher level of reality by extensively analyzing the e�e
tiveness of our approa
h for a variety of "live"global-s
ale grid environments. Se
ond, a
hallenging area for further resear
h is to make use of mathemati
alte
hniques to provide a more solid foundation for the results presented in this paper, e.g., by formally provingthe in
reased e�e
tiveness indu
ed by the our approa
h. Finally, an interesting and important problem is todetermine the optimal number of job repli
as needed to obtain the best speedup performan
e. Our experi-mental results suggest that generating four job repli
as seems to be a good value to start with. It remainsa
hallenging topi
 for further resear
h to develop pra
ti
al guidelines for determining the (near-)optimalrepli
ation level in large-s
ale grid environments.
Referen
es
[1℄ http://www.planet-lab.org.
[2℄ I. Ahmad and Y.-K. Kwok (1994). A New Approa
h to S
heduling Parallel Programs Using Task Du-pli
ation. In: Pro
. International Conferen
e on Parallel Pro
essing, pp. 47-51.
[3℄ H. Attiya (2004). Two Phase algorithm for load balan
ing in heterogeneous distributed systems. In:Pro
. 12th Euromi
ro
onferen
e on parallel, distributed and network-based pro
essing, pp. 434.
[4℄ R. Bajaj and D.P. Agrawal (2004). Improving S
heduling of Tasks in a Heterogeneous Environment.IEEE Transa
tions on Parallel and Distributed Systems 15 (2), pp. 107-118.
[5℄ I. Bani
es
u and V. Velusamy (2002). Load Balan
ing Highly Irregular Computations with the AdaptiveFa
toring", In: Pro
. of the 16th International Parallel and Distributed Pro
essing Symposium (IEEEComputer So
iety), pp.195.
[6℄ J.Y. Colin and P. Chretienne (1991). C.P.M. S
heduling with Small Communi
ation Delays and TaskDupli
ation. Operations Resear
h 39 (4), pp. 680-486.
[7℄ S. Darbha and D.P. Agrawal (1998). Optimal S
heduling Algorithm for Distributed-Memory Ma
hines.IEEE Transa
tions on Parallel and Distributed Systems 9 (1), pp. 87-95.
[8℄ A.M. Dobber, G.M. Koole and R.D. van der Mei (2004). Dynami
 Load Balan
ing for a Grid Appli
ation.In: Pro
. HiPC 2004 (Springer-Verlag), 342-352.

22

[9℄ A.M. Dobber, G.M. Koole and R.D. van der Mei (2005). Dynami
 Load Balan
ing Experiments in aGrid. In: Pro
. 5th IEEE International Symposium on Cluster Computing and the Grid (IEEE Press),123{130.
[10℄ A.M. Dobber, R.D. van der Mei and G.M. Koole (2006). E�e
tive Predi
tion of Job Pro
essing Times ina Large-S
ale Grid Environment. In: Pro
. 15th IEEE International Symposium on High Performan
eDistributed Computing.
[11℄ A.M. Dobber, R.D. van der Mei and G.M. Koole (2006). Statisti
al Properties of Task Running Times ina Global-S
ale Grid Environment. In: Pro
. 6th IEEE International Symposium on Cluster Computingand the Grid (IEEE Press).
[12℄ D.J. Evans (1984). Parallel SOR iterative methods. Parallel Computing 1, 3-18.
[13℄ M.J. Flynn (1972). Some Computer Organizations and Their E�e
tiveness. IEEE Transa
tions on Com-puters C-21, 948-960.
[14℄ L. Guodong, C. Daoxu, D. Wang and Z. Defu (2003). Task Clustering and S
heduling to Multipro
essorswith Dupli
ation. In: Pro
. International Parallel and Distributed Pro
essing Symposium, pp. 6b.
[15℄ J.F. Kenney and E.S. Keeping (1962). Mathemati
s of Statisti
s,
hapter 15: Linear and Correlation,pp. 252-285.
[16℄ A. Mondal, K. Goda and M. Kitsuregawa (2003). E�e
tive load-balan
ing via migration and repli
ationin spatial grids. LNCS 2736", pp. 201-211.
[17℄ G.-L. Park, B. Shirazi and J. Marquis (1998). Mapping of parallel tasks to multipro0
essors with dupli-
ation. In: Pro
. 31st Annual Hawaii Intenational Conferen
e on Systems S
ien
es, vol. 7, pp. 96.
[18℄ B.A. Shirazi, A.R. Hurson and K.M. Kavi (1995). S
heduling and Load Balan
ing in Parallel and Dis-tributed Systems. IEEE CS Press.
[19℄ L.G. Valiant (1990). A bridging model for parallel
omputation. Communi
ations of the ACM 33 (8),pp. 103-111.
[20℄ D. York (1966). Least-square �tting of a straight line. Canadian Journal of Physi
s 44, pp. 1079-1086.
[21℄ K. Yu-Kwong (2000). Parallel program exe
ution on a heterogeneous PC
luster using task dupli
ation.In: Pro
. 9th Heterogeneous Computing Workshop, pp. 364.23

[22℄ M.J. Zaki, W. Li and S. Parthasarathy (1997). Customized dynami
 load balan
ing for a network ofworkstations. Journal of Parallel and Distributed Comouting 43 (2), 156-162.
[23℄ S. Zhou (1988). A tra
e-driven simulation study of dynami
 load balan
ing. IEEE Transa
tions onSoftware Engineering 14 (9), 1327-1341.

24

