
Dynami Thread Assignment inWeb Server Performane OptimizationWemke van der Weij, Sandjai Bhulai, and Rob van der MeiCWI Vrije Universiteit AmsterdamKruislaan 413 Faulty of SienesP.O. Box 94079 De Boelelaan 1081a1090 GB Amsterdam 1081 HV AmsterdamThe Netherlands The Netherlands{weij, mei}�wi.nl sbhulai�few.vu.nlAbstratPopular web sites are expeted to handle huge amounts of requests onurrentlywithin a reasonable timeframe. The performane of these web sites is largely depen-dent on effetive thread management of their web servers. Although the implemen-tation of stati and dynami thread poliies is ommon pratie, remarkably little isknown about the impliations on the performane. Moreover, the ommonly usedpoliies do not take into aount the omplex interation between the threads thatompete for aess to a shared proessor resoure.We propose new dynami thread-assignment poliies that minimize the averageresponse time of web servers. The web server is modeled as a two-layered tandem ofmulti-threading queues, where the ative threads ompete for aess to a ommonhardware resoure. Our results show that the optimal dynami thread-assignmentpoliies yield strong redutions in the response times. Validation on an Apahe webserver shows that our dynami thread poliies on�rm our analytial results.1 IntrodutionThe rise of Internet and broadband ommuniation tehnology have boosted the use ofweb-based servies that ombine and integrate information fromgeographially distributedinformation systems. As a onsequene, popular web sites are expeted to handle hugenumbers of requests simultaneously without notieable degradation of the response-timeperformane. Moreover, web servers must perform signi�ant CPU-intensive proessing,aused by the emergene of server-side sripting tehnologies (e.g., Java servlets, AtiveServer Pages, PHP). Furthermore, web pages involving reent and personalized informa-tion (loation information, headline news, hotel reservations) are reated dynamiallyon-the-�y and hene are not aheable. This limits the effetiveness of ahing infrastru-tures that are usually implemented to boost the response-time performane of ommerialweb sites and to limit bandwidth onsumption. At the same time, as a result of the reentadvanes in wired networking tehnology, there is usually ample ore network bandwidthavailable at reasonable pries. As a onsequene of these developments, web servers tendto beome performane bottleneks in many ases; examples of badly performing web
1



sites appear in the newspapers on a regular basis. These observations raise the need forweb-based servie providers to ontrol the performane of their web servers.Web servers are typially equipped with a pool of threads. In many ases, a request isomposed of a number of proessing steps that are performed in sequential order. For ex-ample, anHTTPGET requestmay require proessing in several steps: a doument-retrievalstep and a sequene of sript-proessing steps to reate dynami ontent. Similarly, anHTTP POST request may require a doument-proessing step and several database updatequeries. To handle the inoming requests, web servers usually implement a number ofthread pools that are dediated to proess a spei� proessing step [1℄.The performane of the web server is largely dependent on the thread-managementpoliy. This poliy may be either stati (i.e., with a �xed number of threads � possiblyof different types) or dynami (i.e., where threads may be reated or killed dependingon the state of the server). Traditionally, many web servers implement a simple statithread-assignment poliy, where the size of the thread pool (i.e., the maximum numberof threads that an simultaneously exeute proessing steps) is a on�gurable system pa-rameter. This leads to a trade-off regarding the proper dimensioning of thread pools tooptimize performane: on the one hand, assigning too few threads may lead to relativestarvation of proessing power, reating a performane bottlenek that may inrease theaverage response time of requests, partiularly when the workload inreases. On the otherhand, if the total number of threads running on a single hardware omponent is too large,performane degradation may our due to super�uous ontext swithing overhead andmemory or disk I/O ativity. Nowadays, more ef�ient thread poliies are widely imple-mented. In order to effetively reat to sudden bursts of transation requests, many webservers implement simple dynami thread-management algorithms that allow threads tobe reated or killed, depending on the atual number of ative threads. However, eventhough the implementation of these thread poliies is ommon pratie, a thorough un-derstanding of the impliations of the proper hoie of thread-assignment poliies andthe settings of the parameters on the performane of the web server is mostly laking.In partiular, the trade-off between relative starvation of proessing power in the ase oftoo few threads and the performane degradation in the ase of too many threads is notwell understood. Moreover, the ommonly used thread poliies do not take into aountthe probability distribution of the servie times required by the different requests, whilesigni�ant performane improvements an be obtained by doing so.A key feature ofmulti-threaded web servers is that the threads typially share a ommonproessor (CPU) with a limited amount of proessor apaity. This naturally leads to theformulation of a two-layered tandem of multi-server queues , where the ative threads share theproessor apaity in a proessing sharing fashion; i.e., when there are k threads ative atsomemoment in time, then eah of these k threads has a fair share 1/k of the total proessorapaity [1℄. In this model, transation requests are represented by ustomers, threads arerepresented by servers, and response times are represented by the sojourn times of theustomers. To identify optimal thread-assignment poliies, we desribe the evolutionof the system as a Markov deision model and derive optimal thread poliies from theproperties of the relative value funtion. In doing so, we show that the struture of theoptimal thread poliy strongly depends on the servie-time distributions of the differentproessing steps in the web server; in pratie, these distributions an be monitored and
2



updated on-the-�y.An interesting feature of this model is that it has a two-layered struture, modelingthe omplex interation between ontention at the hardware (CPU) and the software entities(threads) layer. At the software layer, the proessing steps, omprising a request, areproessed by different, say N , types of threads. However, eah of the ative threadseffetively shares the underlying proessor apaity: the more threads are ative, thesmaller the proessor apaity is assigned to eah thread. In this way, the thread is nolonger an autonomous entity operating at a �xed rate; instead, the proessing rate of eahthread ontinuously hanges over time. Evidently, for N = 1 , the model oinides withthe lassial proessor-sharing disipline; but for N > 1 , the proessing speed of onethread pool depends on the state of the other thread pools. This type of interation makesthe model rather ompliated.1.1 Related LiteratureAlthough the theory of job sheduling with autonomous independent servers is well-matured, in the literature only a few papers deal with sheduling of web servers. Harhol-Balter et al. [2 , 3℄ and Crovella et al. [4℄ study sheduling poliies for web servers to reduethe response-time performane of web servers with stati web pages, provided the size ofa web page is known a-priori; for this type of models, the results show that the lassialShortest Remaining Proessing Time (SRPT) poliy is very effetive [5℄. In ontrast to thepresent paper, it should be noted that the results in [2 , 3℄ are based on the assumptionthat the network interfae, rather than the web server itself, is the performane bottlenek;this leads to fundamentally different performane models than the one onsidered in thepresent paper.Detailed performane models for web servers, expliitly inluding the interation be-tween software and hardware ontention, were proposed in [1, 6℄. A limited number ofpapers fous on these queueing networks with a layered struture. Rolia and Sevik [7℄propose the Method of Layers (MoL), i.e., a losed queueing-network model based onthe responsiveness of lient-server appliations. Woodside et al. [8℄ propose the so-alledStohasti Rendez-Vous Network (SRVN) model to analyze the performane of applia-tion software with lient-server synhronization. Related models are the so alled oupled-proessor models, i.e., multi-server models where the speed of a server at a queue dependson the number of servers at the other queues (see [9, 10 , 11℄). For a two-layered networkof two multi-server queues with proessor sharing, remarkable results on the per-queuestability were obtained in [12℄. To the best of the authors' knowledge, the problem ofdynami thread assignment in layered queueing networks has not been addressed in theliterature.1.2 ContributionIn this paper we model a web server by a two-layered queueing network with a sharedproessor resoure. We desribe the evolution of the system as a Markov deision pro-ess from whih we obtain simple and readily implementable dynami thread-assignmentpoliies that minimize the expeted response time of the requests. The servie-time dis-tributions are modeled by the lass of phase-type distributions, whih is a broad lass of
3



distributions and also allows to study the impat of heavy-tailed distributions. The resultsshow not only that , but also how the optimal poliy depends on the servie-time distribu-tions at eah of the proessing steps. The proposed poliy uses monitored information onboth the number of ative threads and the probability distribution of the required servietime per request. Our results show that the optimal dynami thread-assignment poliiesyield strong redutions in the response times. To validate the model, we have tested theperformane of our poliies in an experimental setting on an Apahe web server. Theexperimental results show that our poliies indeed lead to signi�ant redutions of theresponse time, whih demonstrates the pratial usefulness of the results.1.3 OutlineThe remainder of this paper is organized as follows. In Setion 2 we formulate the model.Setion 3 derives optimal dynami thread-assignment poliies. In Setion 4 we onsidernumerial experiments and evaluate them on an Apahe web server. We onlude inSetion 5 and give ideas for further researh diretions.2 Model desriptionIn this setion we model the problem of dynami thread assignment in the ontext ofa multi-layered queueing system with a shared resoure. For this purpose, onsider anetwork ofN queues in tandemwith a single shared proessor for serving arriving requests.Requests arrive aording to a Poisson proess with rate λ to the �rst queue. At eah queue,threads an be spawned whih may be assigned to a request. When a request is assignedto a thread at queue i , it reeives servie Si with mean duration βi for i = 1, . . . ,N .However, during servie, the request only gets a fration of the total apaity of the server,depending on the number of outstanding threads k(i) at eah queue i for i = 1, . . . ,N .Upon ompletion of servie, the thread is terminated and the request proeeds to queue
i + 1 if i < N , or it leaves the system otherwise. If a request is not assigned a thread, therequest joins an in�nite buffer at the queue and waits until it is assigned a thread. Notethat we do not expliitly model delays due to ontext swithing between threads, sine theCPU time in omparison to the proessing times of the threads is neglible (see Remark 4.1for a justi�ation).To obtain optimal thread-assignment poliies that minimize the expeted responsetimes, we model the system in the framework of Markov deision theory. To this end,we model the servie-time distribution of Si by a phase-type distribution. Consequently,onsider a Markov hain with Mi +1 states having probability distribution η(i) de�ned onstates 1 to Mi for the initial state. When the Markov hain is in state j , the time that theproess spends in state j has an exponential distribution with parameter µ

(i)
j . After thisexponentially distributed time, the proess jumps to state l with probability p
(i)
jl , or jumpsto the absorbing state Mi + 1 with probability p

(i)
j,Mi+1. The absorbing state orrespondsto a ompletion of the servie period at that queue.Phase-type distributions have the important feature that they are dense in the lassof all non-negative distributions, while retaining their tratability [13℄. Therefore, it ispossible to model heavy-tailed distributions by phase-type distributions. This is espeially

4



1

k(1)

...
λ

k(N)

...

1

CPU (PS)

· · ·

nN
z }| {

n1
z }| {

Figure 1: A two-layered queueing systemrelevant, sine it has been observed that �le sizes on web servers follow a heavy-taileddistribution (see, e.g., [4℄). It is ommon to �t phase-type distributions on the meanESi = βi and on the oef�ient of variation cSi
(see, e.g., [14℄), or by the more omplexEM-algorithm (see [15℄).Next, we uniformize the system (see Setion 11.5 of [16℄). For simpliity we assumethat λ + max{1/β1, . . . , 1/βN} = 1; we an always get this by saling. Uniformizing isequivalent to adding dummy transitions (from a state to itself) suh that the rate out ofeah state is equal to 1; then we an onsider the rates to be transition probabilities. Notethat rate osts in this ase are equivalent to lump osts at eah epoh.Let ~n be the vetor that denotes the number of requests in eah phase, i.e., n(i)

j is thenumber of requests in phase j that are waiting at queue i plus the number of requestsin phase j in servie at queue i for i = 1, . . . ,N . Moreover, let the vetor ~k denotethe number of outstanding threads, i.e, k
(i)
j is the number of outstanding threads forrequests in phase j at queue i. Thus, the number of outstanding threads at queue i equals

k(i) = k
(i)
1 + · · · + k

(i)
Mi

. A state x of the system, depited in Figure 1, is then given by thetuple (~n,~k).The goal is to minimize the expeted number of requests in the system, whih diretlyrelates to minimizing the expeted response time using Little's Law (see [14℄). Therefore,the system is subjet to unit osts for holding a request per unit of time in the system. Let
ut(x) denote the total expeted osts up to time t when the system starts in state x. Notethat the Markov hain satis�es the unihain ondition, so that the average expeted ost
g = limt→∞ ut(x)/t is independent of the initial state x (Proposition 8.2.1 of [16℄).We de�ne the dynami programming operator T as follows:

TV (~n,~k) =

N
∑

i=1

Mi
∑

j=1

n
(i)
j + λ

M1
∑

j=1

η
(1)
j H

(

~n + e
(1)
j , ~k

)

+

N
∑

i=1

Mi
∑

j=1

Mi
∑

l=1

k
(i)
j µ

(i)
j p

(i)
jl H

(

~n − e
(i)
j + e

(i)
l , ~k − e

(i)
j + e

(i)
l

)

k(1) + · · · + k(N)
+

5



N
∑

i=1

Mi
∑

j=1

Mi
∑

l=1

k
(i)
j µ

(i)
j p

(i)
j,Mi+1 η

(i+1)
l

k(1) + · · · + k(N)
H

(

~n − e
(i)
j + e

(i+1)
l , ~k − e

(i)
j

)

+

[

1 − λ −

N
∑

i=1

Mi
∑

j=1

Mi+1
∑

l=1

k
(i)
j µ

(i)
j p

(i)
jl

k(1) + · · · + k(N)

]

V (~n,~k),with ei the unit vetor with all entries zero, exept for the i-th entry for i = 1, . . . ,N , andwith eN+1 the zero vetor. The unit vetor e
(i)
j is similarly de�ned. The ations, denotedby H , are given by

H(~n,~k) = min

{

V
(

~n,~k + a e
(i)
j

)

∣

∣

∣

∣

i = 1, . . . ,N,
j = 1, . . . ,Mi,

a ∈ N0

}

,with N0 = {0, 1, 2, . . .}.The �rst term in the expression TV (~n,~k)models the diret osts, i.e., the total numberof requests in the system. The seond termmodels the arrivals, whih our with rate λη
(1)
jto phase j at the �rst queue. The transitions of a request to a different phase within eahqueue are given by the third term. A transition from phase j to phase l for a request inqueue i ours with rate µ

(i)
j p

(i)
jl , but this is adjusted with the fator k(i)

j /
(

k(1)+· · ·+k(N)
) ,sine that request only uses a fration of the servie apaity. The next term, whih aountsfor a transition to the absorbing state, is similarly explained with the exeption that thedeparture is split into arrivals to phase l of the next queue with probability η

(i+1)
l . The lastterm is the uniformization onstant to aount for the dummy transitions added to themodel.Note that the system is spei�ally modeled suh that when a request moves from onephase to another, the previously assigned thread is not lost. The thread is only releasedupon ompletion of the servie period. From the de�nition of H , we see that it is possibleto spawnmore threads than there are requests waiting. This is obviously not optimal, sinethat will lead to loss of apaity in the model. Therefore, the model ensures that threadswill only be spawned for requests that are waiting for servie. Also observe that uponarrival of a request, the system diretly knows in whih servie phase the request will start.This is not unrealisti to assume, sine web servers an indue this information from theHTTP request headers.In the above set of equations, the funtion V is alled the relative value funtion.The relative value funtion V (~n,~k) has the interpretation of the asymptoti differene intotal osts that results from starting the proess in state (~n,~k) instead of some referenestate. The long-term average optimal ations are a solution of the optimality equation (invetor notation) g + V = TV . Another way of obtaining them is through value iteration,by reursively de�ning Vl+1 = TVl for arbitrary V0. For l → ∞ , the maximizing ationsonverge to the optimal ones (for existene and onvergene of solutions and optimalpoliies we refer to [16℄). Consequently, when V is known, we an restrit our attentionto the funtion H to obtain the optimal ations.

6



3 Dynami thread managementIn this setion we fous on dynami thread management. We determine, using dynamiprogramming, optimal poliies minimizing the expeted response time per request. Theperformane of the optimal poliies is ompared to the performane of poliies that onlyserve requests based on the number of threads outstanding. A spei� example of the latterase is the poliy that serves one request with only one outstanding thread until it leavesthe system, resulting in a �rst-ome-�rst-served (FCFS) poliy. The other extreme is thepoliy that always serves all requests so that new threads are spawned for arriving requests.The intermediate ase, whih is ommonly implemented in web servers, is the poliy thatserves requests simultaneously with a number of threads of whih the maximum numberis limited by some spei�ed number. More preisely, let π(k) be the poliy that spawnsat most k threads in total suh that the requests in queue i get priority over requests inqueue j when i ≥ j. Note that the three poliies mentioned earlier are represented by
π(1) , π(∞) , and π(k) for k = 2, 3, . . . , respetively.Exponential servie-time distributions are a speial ase of phase-type distributions,namely those with one phase only. They aurately model the servie times of simpleHTTP requests, e.g., a GET request for an HTML doument. In this ase, the optimalpoliy that minimizes the expeted response time is to serve aording to poliy π(1) ,i.e., serve one request with only one outstanding thread until it leaves the system, suhthat the requests in queue i get priority over requests in queue j when i ≥ j. This resultalso holds when the servie-time distributions are replaed with Erlang distributions. Thislass of distributions models the situation where a web server fethes a web page and alsoperforms server-side sripting for the page.The optimal poliy hanges when the servie-time distributions are replaed withhyper-exponential distributions. In this ase, requests waiting in queue i may overtakerequests in queue j ≥ i when a thread is opened at station i. It turns out that assigning anew thread is only optimal when overtaking a request further in the queueing network ispossible. Therefore, the optimal poliy an be obtained ef�iently by reursive omputa-tion. Note that this poliy oinides with the optimal poliies for exponential and Erlangservie-time distributions. For these distributions there is only one servie phase, so thatrequests annot overtake eah other. Therefore, there is only one thread outstanding atmost.In the previous paragraphs, we have obtained intuition for optimal poliies for dynamithread management. We have seen that overtaking of requests plays a key role in thedeision to spawn threads. In the ase of exponential and Erlang servie distributions itwas not possible to overtake when spawning additional threads, and therefore the FCFSpoliy is optimal. In the ase of hyper-exponential servie distributions, we obtained thatthe optimal ations at queue i depend on the state of queues j ≥ i and the deision rulesfor those queues. This result also holds for the general phase-type servie distributions.Theorem 3.1: Letϕi(~n,~k) denote the deision rule that desribes the thread-managementrule at queue i , for i = 1, . . . , N . Let ϕi be suh that it spawns s threads for requests inphase j at queue i given state (~n,~k) , when the s phase-j requests overtake in expetationrequests in queue j ≥ i under deision rules ϕi+1, . . . , ϕN . Then poliy π = (ϕ1, . . . , ϕN )is optimal.

7



4 Numerial experimentsIn the previous setion, we determined optimal poliies for general phase-type serviedistributions. In this setion, we ompare these poliies with other thread-assignment rulesthat are frequently used. First, for various parameter settings, we analytially show thatthe optimal poliies outperform the simple thread-assignment rules. Then, we omparethe theoretially obtained improvements with those that are obtained in an experimentalsetting on an Apahe web server.4.1 Comparison of poliiesIn this subsetion, we analytially ompare the optimal poliy, whih we denote by π∗ ,with ommonly used alternative poliies. For this purpose, we use a web server infrastru-ture with N = 2 , so that overtaking an our. Moreover, for this infrastruture the statespae is still of reasonable size so that the omputation of the expeted response times isnumerially tratable. We onsider the following alternative poliies: π(1) , π(4) , π(∞) ,and π(1,1). Note that the �rst three poliies follow the notation given in Setion 3, i.e., thepoliy that spawns at most k = 1, 4 , and unlimited threads in total suh that requests inqueue i get priority over requests in queue j when i ≥ j. The last poliy, denoted by π(1,1) ,is the poliy that spawns at most one thread at queue 1 and at most one thread at queue 2 ,independent of eah other. We are interested in the gain (EW (π(s))−E(π∗)
)

/EW (π∗) ,where EW (π) is the expeted response time under poliy π , and π(s) is one of the alter-native poliies.In our senarios, we fous on exponentially and hyper-exponentially distributed servietimes. The hoie for these distributions ismotivated by the fat that they have a oef�ientof variation that is equal to one and bigger than one, respetively. The oef�ient ofvariation an be seen as a measure for the variation in the servie times, i.e., it is the ratioof the standard deviation and the mean of the servie times. Low (high) values of theoef�ient of variation orrespond to low (high) variability in the servie times. Theseservie distributions are rih and simple enough to gain insight into the struture of optimalpoliies. The Erlang distributed servie times (whih have a oef�ient of variation smallerthan one) are not onsidered here, beause the optimal poliy for the ase of Erlang andexponentially distributed servie times are equal.In Table 1 we present the different senarios with the orresponding parameter settingsfor whih we have ompared the poliies. In ase the oef�ient of variation equalsone, we only mention β
(i)
1 , sine there are no other phases. Moreover, the average load

ρ = λ(β1 + β2) on the system is taken to be onstant, ρ = 0.6. The table also presentsthe gains in expeted response times for the 12 different ases. The last line in this tablerepresents the average gain ompared to eah poliy.Figure 2 shows the expeted response times for the �ve poliies. We an immediatelysee that the optimal poliy π∗ leads to signi�ant redutions in the expeted response time.For exponentially distributed servie times at both queues, the optimal poliy is given by
π(1) , and this an be seen in the �gure by the two bars of equal height. However, we seethat in many ases of hyper-exponentially distributed servie times, the gain is signi�antompared to all other poliies.

8



case c2S1
c2S2

r
(1)
1 r

(2)
1 β

(1)
1 β

(1)
2 β

(2)
1 β

(2)
2 π(1) π(4) π(∞) π(1,1)

1 1 1 1.00 1.00 0.00% 13.82% 17.63% 16.92%

2 1 5 0.91 1.00 0.55 5.45 18.99% 5.73% 3.45% 47.38%

3 5 1 0.91 0.55 5.45 1.00 34.79% 19.77% 17.19% 53.05%

4 5 5 0.91 0.91 0.55 5.45 0.55 5.45 66.06% 23.78% 14.50% 94.96%

5 1 1 1.00 5.00 0.00% 7.12% 9.08% 10.02%

6 1 5 0.91 1.00 2.75 27.25 78.61% 14.73% 2.04% 97.35%

7 5 1 0.91 0.55 5.45 5.00 5.57% 9.93% 11.11% 14.74%

8 5 5 0.91 0.91 0.55 5.45 2.75 27.25 99.82% 26.93% 11.94% 119.78%

9 1 1 5.00 1.00 0.00% 7.12% 9.% 4.57%

10 1 5 0.91 5.00 0.55 5.45 0.00% 4.13% 5.25% 5.74%

11 5 1 0.91 2.75 27.25 1.00 98.91% 40.53% 13.64% 104.17%

12 5 5 0.91 0.91 2.75 27.25 0.55 5.45 91.26% 21.49% 7.14% 98.07%

41.17% 16.25% 10.17% 55.56%Table 1: The performane of poliies under twelve senarios.4.2 The Apahe web serverIn this subsetion we validate the theoretially obtained improvements of the previoussetion with improvements that are obtained in an experimental setting on an Apahe webserver. For the experimental setup, we use the Apahe HTTP server version 1.3.33 runningon a 2.8 GHz Linux platform with kernel version 2.4.31. The requests are generatedaording to a Poisson proess by a Perl sript that issues HTTP GET requests from aremote desktop. The requests that the sript makes are requests to PHP pages that drawa random number w from a pre-spei�ed probability distribution. This random numberis then used to generate a �le of size w megabytes, and is displayed as a web page. Afterdisplaying the web page, a seond PHP page is requested whih behaves similarly. Theseond page represents the requests at the seond queue that also use the same underlyingCPU, memory, and I/O hardware.The poliies are not implemented diretly in the Apahe web server ode. The sriptthat issues the requests for the web pages keeps trak of the requests in servie and doesrequest poliing. Thus, it maintains a list of requests that still need to be issued andimplements a queue. Therefore, the sript has omplete state information and an deidewhen to issue a request for a webpagewith the right parameters, based on the givenpoliies.Sine the time the sript needs for deisionmaking is neglible, we expet that implementingthe ode in the Apahe web server does not add signi�ant additional omputationaloverhead. Therefore, the results still give realisti indiations of the improvements thatan be obtained.Remark 4.1: Note that the threads are spawned by the Apahe web server itself, andonsequently delays due to ontext swithing between threads are taken into aount inthese experiments. In pratie, when the number of threads inreases, other hardwareresoures may beome a bottlenek (e.g., memory or disk I/O). However, the optimalpoliies spawn only a �nite number of threads suh that these phenomena do not ourin our experiments. This leads to having inreased queue sizes while the web server remainsstable. Hene, we advise to use admission ontrol based on the queue sizes suh that thequeues remain stable.Presently, the Apahe web server onsists of a Multi-Proessing Module (MPM) thatimplements a hybrid multi-proess multi-threaded server. This module uses threads toserve requests with less system resoures than a proess-based server. The maximum totalnumber of threads that may be spawned is equal to the parameter MaxClients , whih isset to 150 in the standard on�guration. The on�guration �le of the Apahe web server
9



1 2 3 4 5 6

0

5

10

15

20

25

30
π(1)

π(4)

π(∞)

π(1,1)

π∗

7 8 9 10 11 12

0

5

10

15

20

25

30

35
π(1)

π(4)

π(∞)

π(1,1)

π∗

Figure 2: Expeted response timesadvises to set this number high so that maximum performane an be ahieved (thus,effetively implementing π(∞)). In addition, Apahe always tries to maintain a pool ofspare or idle server threads, whih stands ready to serve arriving requests. In this way,requests do not need to wait for new threads to be reated before they an be served.Consequently, the assumption in our model that reating (killing) threads does not ostadditional time is justi�ed.In Table 2 the gains of using poliy π∗ over poliy π(1) and π(∞) are listed. Weompare π∗ only with these two poliies, sine the results in Table 1 suggest that the bestalternative poliy is ahieved either under π(1) or π(∞). As mentioned in the previousparagraph, the poliy π(∞) also oinides with the standard thread-management poliyused by the Apahe web server. In Figure 3 the gains of the different ases are ompared tothe theoretially alulated gains. The �gure shows that the observed gains losely maththe theoretial gains, so that the multi-layered queueing model an be used to establisheffetive thread management poliies in pratie.5 Conlusions and further researhWe have onsidered the important problem of dynami thread assignment in web serverssuh that the expeted response time is minimized. This problem, in the ontext of multi-layer queueing networks, has reeived little attention. Consequently, the performane ofthread-assignment poliies is not well understood. We show that for phase-type servie-time distributions the optimal poliy spawns a thread for a request if that request anovertake a request in the queueing system. This insight, when using dynami poliiesthat have information on the servie-time distributions, leads to an ef�ient reursiveomputation of the optimal poliy. When the performane of this optimal poliy isompared to the performane of poliies that serve requests only based on the numberof outstanding threads, it is shown that signi�ant gains an be obtained. Experimentson an Apahe web server show that the theoretially predited gains are also ahieved inpratie.We mention a number of interesting avenues for further researh. First, for manytransation-based appliations, the user-pereived performane is not fully desribed bythe expeted response time. The variability, and inmany ases, even the tail probabilities of
10



case π(1) π(∞)

1 0.00% 16.01%
2 17.55% 3.41%
3 31.62% 16.03%
4 60.23% 10.42%
5 0.00% 8.78%
6 75.56% 1.13%
7 5.12% 10.91%
8 92.76% 6.47%
9 0.00% 7.98%
10 0.00% 5.12%
11 92.16% 10.61%
12 85.23% 3.82%

38.35% 8.39%Table 2: Performance gains ob-
tained on Apache web server.

 

0

20

40

60

80

100
Apache
Theory

1 2 3 4 5 6 7 8 9 10 11 12

π(1)

π(∞)Figure 3: Comparison of gains:Apahe vs. modelthe response times, have a signi�ant impat on the pereived performane. Alternatively,from the perspetive of a servie provider, the model an be extended to deal with multiplerequest types, eah having its own servie level agreement. These extensions raise manyhallenging questions that are of pratial interest.Seond, in many web-based servies a single user transation indues a sequene ofserver and database requests. These requests do not need to progress through the systemlinearly, but may be routed in a general manner through the network, so that ertainqueues are visited more than one. In this ase, the optimal deision rules may depend onthe deision rules of all the queues, sine requests that are behind a partiular request anbe routed suh that they will be ahead the request. The insight provided by our modelan prove to be useful for deriving optimal poliies for this system.Finally, many web server arhitetures deal with more than one shared resoure at thehardware layer in addition to the CPU, e.g., memory, I/O, bandwidth, or more CPUs.Therefore, the highly distributed nature of today's information and ommuniation in-frastrutures warrants researh for multi-layered queueing models with multiple sharedresoures. Our model an serve as a basis for addressing issues related to the optimalalloation of hardware and software resoures in these systems.Referenes[1℄ van der Mei, R.D., Hariharan, R., Reeser, P.K.: Web server performane modeling.Teleommuniation Systems 16 (2001) 361�378[2℄ Harhol-Balter, M., Bansal, N., Shroeder, B.: Implementation of SRPT shedulingin web servers (2000)[3℄ Harhol-Balter, M., Bansal, N., Shroeder, B., Agrawal, M.: SRPT sheduling forweb servers. Leture Notes in Computer Siene 2221 (2001) 11�21
11



[4℄ Crovella, M.E., Frangioso, R., Harhol-Balter, M.: Connetion sheduling in webservers. In: Proeedings USENIX symposium on Internet Tehnologies and Systems.(1999)[5℄ Shrage, L.E.: The queue M/G/1 with the shortest remaining proessing time disi-pline. Operation researh 14 (1966) 670�684[6℄ Hariharan, R., Ehrlih, W.K., Reeser, P.K., van der Mei, R.D.: Performane of webservers in a distributed omputing environment. In de Souza, J.M., da Fonsea, N.,de Souza e Silva, E., eds.: Teletraf� Engineering in the Internet Era. (2001) 137�148also Proeedings 17th International Teletraf� Congress (Salvador, De. 2001).[7℄ Rolia, J.A., Sevik, K.C.: The method of layers. IEEE Transations on SoftwareEngineering 21 (1995) 689�699[8℄ Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The stohasti ren-dezvous network model for the performane of synhronous lient-server like dis-tributed software. IEEE Transations on Computers 44 (1995) 20�34[9℄ Konheim, A., Meilijson, I., Melkman, A.: Proessor-sharing of two parallel lines.Journal of Applied Probability 18 (1981) 952�956[10℄ Cohen, J.W., Boxma, O.J.: Boundary value problems in queueing system analysis.North-Holland, Amsterdam (1983)[11℄ Fayolle, G., Iasnogorodski, R.: Two oupled proessors: the redution to a Riemann-Hilbert problem. Zeitshrift für Warsheinlihkeitstheorie und Verwandte Gebiete47 (1979) 325�351[12℄ van der Weij, W., van der Mei, R.D.: Stability and throughput in a two-layered net-work of multi-server queues. In: Proeedings 3rd international working onfereneon Performane Modelling and Evaluation of Heterogeneous Networks, HETNETS.Number P02, Ilkley, England (2005)[13℄ Shassberger, R.: Warteshlangen. Springer-Verlag (1973)[14℄ Tijms, H.C.: Stohasti Models: An Algorithmi Approah. John Wiley & Sons,Chihester, England (1994)[15℄ Asmussen, S., Nerman, O., Olsson, M.: Fitting phase type distributions via the EMalgorithm. Sandinavian Journal of Statistis 23 (1996) 419�441[16℄ Puterman, M.L.: Markov Deision Proesses. John Wiley & Sons (1994)
12


