
Dynami
 Thread Assignment inWeb Server Performan
e OptimizationWemke van der Weij, Sandjai Bhulai, and Rob van der MeiCWI Vrije Universiteit AmsterdamKruislaan 413 Fa
ulty of S
ien
esP.O. Box 94079 De Boelelaan 1081a1090 GB Amsterdam 1081 HV AmsterdamThe Netherlands The Netherlands{weij, mei}�
wi.nl sbhulai�few.vu.nlAbstra
tPopular web sites are expe
ted to handle huge amounts of requests 
on
urrentlywithin a reasonable timeframe. The performan
e of these web sites is largely depen-dent on effe
tive thread management of their web servers. Although the implemen-tation of stati
 and dynami
 thread poli
ies is 
ommon pra
ti
e, remarkably little isknown about the impli
ations on the performan
e. Moreover, the 
ommonly usedpoli
ies do not take into a

ount the 
omplex intera
tion between the threads that
ompete for a

ess to a shared pro
essor resour
e.We propose new dynami
 thread-assignment poli
ies that minimize the averageresponse time of web servers. The web server is modeled as a two-layered tandem ofmulti-threading queues, where the a
tive threads 
ompete for a

ess to a 
ommonhardware resour
e. Our results show that the optimal dynami
 thread-assignmentpoli
ies yield strong redu
tions in the response times. Validation on an Apa
he webserver shows that our dynami
 thread poli
ies 
on�rm our analyti
al results.1 Introdu
tionThe rise of Internet and broadband 
ommuni
ation te
hnology have boosted the use ofweb-based servi
es that 
ombine and integrate information fromgeographi
ally distributedinformation systems. As a 
onsequen
e, popular web sites are expe
ted to handle hugenumbers of requests simultaneously without noti
eable degradation of the response-timeperforman
e. Moreover, web servers must perform signi�
ant CPU-intensive pro
essing,
aused by the emergen
e of server-side s
ripting te
hnologies (e.g., Java servlets, A
tiveServer Pages, PHP). Furthermore, web pages involving re
ent and personalized informa-tion (lo
ation information, headline news, hotel reservations) are 
reated dynami
allyon-the-�y and hen
e are not 
a
heable. This limits the effe
tiveness of 
a
hing infrastru
-tures that are usually implemented to boost the response-time performan
e of 
ommer
ialweb sites and to limit bandwidth 
onsumption. At the same time, as a result of the re
entadvan
es in wired networking te
hnology, there is usually ample 
ore network bandwidthavailable at reasonable pri
es. As a 
onsequen
e of these developments, web servers tendto be
ome performan
e bottlene
ks in many 
ases; examples of badly performing web
1



sites appear in the newspapers on a regular basis. These observations raise the need forweb-based servi
e providers to 
ontrol the performan
e of their web servers.Web servers are typi
ally equipped with a pool of threads. In many 
ases, a request is
omposed of a number of pro
essing steps that are performed in sequential order. For ex-ample, anHTTPGET requestmay require pro
essing in several steps: a do
ument-retrievalstep and a sequen
e of s
ript-pro
essing steps to 
reate dynami
 
ontent. Similarly, anHTTP POST request may require a do
ument-pro
essing step and several database updatequeries. To handle the in
oming requests, web servers usually implement a number ofthread pools that are dedi
ated to pro
ess a spe
i�
 pro
essing step [1℄.The performan
e of the web server is largely dependent on the thread-managementpoli
y. This poli
y may be either stati
 (i.e., with a �xed number of threads � possiblyof different types) or dynami
 (i.e., where threads may be 
reated or killed dependingon the state of the server). Traditionally, many web servers implement a simple stati
thread-assignment poli
y, where the size of the thread pool (i.e., the maximum numberof threads that 
an simultaneously exe
ute pro
essing steps) is a 
on�gurable system pa-rameter. This leads to a trade-off regarding the proper dimensioning of thread pools tooptimize performan
e: on the one hand, assigning too few threads may lead to relativestarvation of pro
essing power, 
reating a performan
e bottlene
k that may in
rease theaverage response time of requests, parti
ularly when the workload in
reases. On the otherhand, if the total number of threads running on a single hardware 
omponent is too large,performan
e degradation may o

ur due to super�uous 
ontext swit
hing overhead andmemory or disk I/O a
tivity. Nowadays, more ef�
ient thread poli
ies are widely imple-mented. In order to effe
tively rea
t to sudden bursts of transa
tion requests, many webservers implement simple dynami
 thread-management algorithms that allow threads tobe 
reated or killed, depending on the a
tual number of a
tive threads. However, eventhough the implementation of these thread poli
ies is 
ommon pra
ti
e, a thorough un-derstanding of the impli
ations of the proper 
hoi
e of thread-assignment poli
ies andthe settings of the parameters on the performan
e of the web server is mostly la
king.In parti
ular, the trade-off between relative starvation of pro
essing power in the 
ase oftoo few threads and the performan
e degradation in the 
ase of too many threads is notwell understood. Moreover, the 
ommonly used thread poli
ies do not take into a

ountthe probability distribution of the servi
e times required by the different requests, whilesigni�
ant performan
e improvements 
an be obtained by doing so.A key feature ofmulti-threaded web servers is that the threads typi
ally share a 
ommonpro
essor (CPU) with a limited amount of pro
essor 
apa
ity. This naturally leads to theformulation of a two-layered tandem of multi-server queues , where the a
tive threads share thepro
essor 
apa
ity in a pro
essing sharing fashion; i.e., when there are k threads a
tive atsomemoment in time, then ea
h of these k threads has a fair share 1/k of the total pro
essor
apa
ity [1℄. In this model, transa
tion requests are represented by 
ustomers, threads arerepresented by servers, and response times are represented by the sojourn times of the
ustomers. To identify optimal thread-assignment poli
ies, we des
ribe the evolutionof the system as a Markov de
ision model and derive optimal thread poli
ies from theproperties of the relative value fun
tion. In doing so, we show that the stru
ture of theoptimal thread poli
y strongly depends on the servi
e-time distributions of the differentpro
essing steps in the web server; in pra
ti
e, these distributions 
an be monitored and
2



updated on-the-�y.An interesting feature of this model is that it has a two-layered stru
ture, modelingthe 
omplex intera
tion between 
ontention at the hardware (CPU) and the software entities(threads) layer. At the software layer, the pro
essing steps, 
omprising a request, arepro
essed by different, say N , types of threads. However, ea
h of the a
tive threadseffe
tively shares the underlying pro
essor 
apa
ity: the more threads are a
tive, thesmaller the pro
essor 
apa
ity is assigned to ea
h thread. In this way, the thread is nolonger an autonomous entity operating at a �xed rate; instead, the pro
essing rate of ea
hthread 
ontinuously 
hanges over time. Evidently, for N = 1 , the model 
oin
ides withthe 
lassi
al pro
essor-sharing dis
ipline; but for N > 1 , the pro
essing speed of onethread pool depends on the state of the other thread pools. This type of intera
tion makesthe model rather 
ompli
ated.1.1 Related LiteratureAlthough the theory of job s
heduling with autonomous independent servers is well-matured, in the literature only a few papers deal with s
heduling of web servers. Har
hol-Balter et al. [2 , 3℄ and Crovella et al. [4℄ study s
heduling poli
ies for web servers to redu
ethe response-time performan
e of web servers with stati
 web pages, provided the size ofa web page is known a-priori; for this type of models, the results show that the 
lassi
alShortest Remaining Pro
essing Time (SRPT) poli
y is very effe
tive [5℄. In 
ontrast to thepresent paper, it should be noted that the results in [2 , 3℄ are based on the assumptionthat the network interfa
e, rather than the web server itself, is the performan
e bottlene
k;this leads to fundamentally different performan
e models than the one 
onsidered in thepresent paper.Detailed performan
e models for web servers, expli
itly in
luding the intera
tion be-tween software and hardware 
ontention, were proposed in [1, 6℄. A limited number ofpapers fo
us on these queueing networks with a layered stru
ture. Rolia and Sev
ik [7℄propose the Method of Layers (MoL), i.e., a 
losed queueing-network model based onthe responsiveness of 
lient-server appli
ations. Woodside et al. [8℄ propose the so-
alledSto
hasti
 Rendez-Vous Network (SRVN) model to analyze the performan
e of appli
a-tion software with 
lient-server syn
hronization. Related models are the so 
alled 
oupled-pro
essor models, i.e., multi-server models where the speed of a server at a queue dependson the number of servers at the other queues (see [9, 10 , 11℄). For a two-layered networkof two multi-server queues with pro
essor sharing, remarkable results on the per-queuestability were obtained in [12℄. To the best of the authors' knowledge, the problem ofdynami
 thread assignment in layered queueing networks has not been addressed in theliterature.1.2 ContributionIn this paper we model a web server by a two-layered queueing network with a sharedpro
essor resour
e. We des
ribe the evolution of the system as a Markov de
ision pro-
ess from whi
h we obtain simple and readily implementable dynami
 thread-assignmentpoli
ies that minimize the expe
ted response time of the requests. The servi
e-time dis-tributions are modeled by the 
lass of phase-type distributions, whi
h is a broad 
lass of
3



distributions and also allows to study the impa
t of heavy-tailed distributions. The resultsshow not only that , but also how the optimal poli
y depends on the servi
e-time distribu-tions at ea
h of the pro
essing steps. The proposed poli
y uses monitored information onboth the number of a
tive threads and the probability distribution of the required servi
etime per request. Our results show that the optimal dynami
 thread-assignment poli
iesyield strong redu
tions in the response times. To validate the model, we have tested theperforman
e of our poli
ies in an experimental setting on an Apa
he web server. Theexperimental results show that our poli
ies indeed lead to signi�
ant redu
tions of theresponse time, whi
h demonstrates the pra
ti
al usefulness of the results.1.3 OutlineThe remainder of this paper is organized as follows. In Se
tion 2 we formulate the model.Se
tion 3 derives optimal dynami
 thread-assignment poli
ies. In Se
tion 4 we 
onsidernumeri
al experiments and evaluate them on an Apa
he web server. We 
on
lude inSe
tion 5 and give ideas for further resear
h dire
tions.2 Model des
riptionIn this se
tion we model the problem of dynami
 thread assignment in the 
ontext ofa multi-layered queueing system with a shared resour
e. For this purpose, 
onsider anetwork ofN queues in tandemwith a single shared pro
essor for serving arriving requests.Requests arrive a

ording to a Poisson pro
ess with rate λ to the �rst queue. At ea
h queue,threads 
an be spawned whi
h may be assigned to a request. When a request is assignedto a thread at queue i , it re
eives servi
e Si with mean duration βi for i = 1, . . . ,N .However, during servi
e, the request only gets a fra
tion of the total 
apa
ity of the server,depending on the number of outstanding threads k(i) at ea
h queue i for i = 1, . . . ,N .Upon 
ompletion of servi
e, the thread is terminated and the request pro
eeds to queue
i + 1 if i < N , or it leaves the system otherwise. If a request is not assigned a thread, therequest joins an in�nite buffer at the queue and waits until it is assigned a thread. Notethat we do not expli
itly model delays due to 
ontext swit
hing between threads, sin
e theCPU time in 
omparison to the pro
essing times of the threads is neglible (see Remark 4.1for a justi�
ation).To obtain optimal thread-assignment poli
ies that minimize the expe
ted responsetimes, we model the system in the framework of Markov de
ision theory. To this end,we model the servi
e-time distribution of Si by a phase-type distribution. Consequently,
onsider a Markov 
hain with Mi +1 states having probability distribution η(i) de�ned onstates 1 to Mi for the initial state. When the Markov 
hain is in state j , the time that thepro
ess spends in state j has an exponential distribution with parameter µ

(i)
j . After thisexponentially distributed time, the pro
ess jumps to state l with probability p
(i)
jl , or jumpsto the absorbing state Mi + 1 with probability p

(i)
j,Mi+1. The absorbing state 
orrespondsto a 
ompletion of the servi
e period at that queue.Phase-type distributions have the important feature that they are dense in the 
lassof all non-negative distributions, while retaining their tra
tability [13℄. Therefore, it ispossible to model heavy-tailed distributions by phase-type distributions. This is espe
ially

4



1

k(1)

...
λ

k(N)

...

1

CPU (PS)

· · ·

nN
z }| {

n1
z }| {

Figure 1: A two-layered queueing systemrelevant, sin
e it has been observed that �le sizes on web servers follow a heavy-taileddistribution (see, e.g., [4℄). It is 
ommon to �t phase-type distributions on the meanESi = βi and on the 
oef�
ient of variation cSi
(see, e.g., [14℄), or by the more 
omplexEM-algorithm (see [15℄).Next, we uniformize the system (see Se
tion 11.5 of [16℄). For simpli
ity we assumethat λ + max{1/β1, . . . , 1/βN} = 1; we 
an always get this by s
aling. Uniformizing isequivalent to adding dummy transitions (from a state to itself) su
h that the rate out ofea
h state is equal to 1; then we 
an 
onsider the rates to be transition probabilities. Notethat rate 
osts in this 
ase are equivalent to lump 
osts at ea
h epo
h.Let ~n be the ve
tor that denotes the number of requests in ea
h phase, i.e., n(i)

j is thenumber of requests in phase j that are waiting at queue i plus the number of requestsin phase j in servi
e at queue i for i = 1, . . . ,N . Moreover, let the ve
tor ~k denotethe number of outstanding threads, i.e, k
(i)
j is the number of outstanding threads forrequests in phase j at queue i. Thus, the number of outstanding threads at queue i equals

k(i) = k
(i)
1 + · · · + k

(i)
Mi

. A state x of the system, depi
ted in Figure 1, is then given by thetuple (~n,~k).The goal is to minimize the expe
ted number of requests in the system, whi
h dire
tlyrelates to minimizing the expe
ted response time using Little's Law (see [14℄). Therefore,the system is subje
t to unit 
osts for holding a request per unit of time in the system. Let
ut(x) denote the total expe
ted 
osts up to time t when the system starts in state x. Notethat the Markov 
hain satis�es the uni
hain 
ondition, so that the average expe
ted 
ost
g = limt→∞ ut(x)/t is independent of the initial state x (Proposition 8.2.1 of [16℄).We de�ne the dynami
 programming operator T as follows:

TV (~n,~k) =

N
∑

i=1

Mi
∑

j=1

n
(i)
j + λ

M1
∑

j=1

η
(1)
j H

(

~n + e
(1)
j , ~k

)

+

N
∑

i=1

Mi
∑

j=1

Mi
∑

l=1

k
(i)
j µ

(i)
j p

(i)
jl H

(

~n − e
(i)
j + e

(i)
l , ~k − e

(i)
j + e

(i)
l

)

k(1) + · · · + k(N)
+

5



N
∑

i=1

Mi
∑

j=1

Mi
∑

l=1

k
(i)
j µ

(i)
j p

(i)
j,Mi+1 η

(i+1)
l

k(1) + · · · + k(N)
H

(

~n − e
(i)
j + e

(i+1)
l , ~k − e

(i)
j

)

+

[

1 − λ −

N
∑

i=1

Mi
∑

j=1

Mi+1
∑

l=1

k
(i)
j µ

(i)
j p

(i)
jl

k(1) + · · · + k(N)

]

V (~n,~k),with ei the unit ve
tor with all entries zero, ex
ept for the i-th entry for i = 1, . . . ,N , andwith eN+1 the zero ve
tor. The unit ve
tor e
(i)
j is similarly de�ned. The a
tions, denotedby H , are given by

H(~n,~k) = min

{

V
(

~n,~k + a e
(i)
j

)

∣

∣

∣

∣

i = 1, . . . ,N,
j = 1, . . . ,Mi,

a ∈ N0

}

,with N0 = {0, 1, 2, . . .}.The �rst term in the expression TV (~n,~k)models the dire
t 
osts, i.e., the total numberof requests in the system. The se
ond termmodels the arrivals, whi
h o

ur with rate λη
(1)
jto phase j at the �rst queue. The transitions of a request to a different phase within ea
hqueue are given by the third term. A transition from phase j to phase l for a request inqueue i o

urs with rate µ

(i)
j p

(i)
jl , but this is adjusted with the fa
tor k(i)

j /
(

k(1)+· · ·+k(N)
) ,sin
e that request only uses a fra
tion of the servi
e 
apa
ity. The next term, whi
h a

ountsfor a transition to the absorbing state, is similarly explained with the ex
eption that thedeparture is split into arrivals to phase l of the next queue with probability η

(i+1)
l . The lastterm is the uniformization 
onstant to a

ount for the dummy transitions added to themodel.Note that the system is spe
i�
ally modeled su
h that when a request moves from onephase to another, the previously assigned thread is not lost. The thread is only releasedupon 
ompletion of the servi
e period. From the de�nition of H , we see that it is possibleto spawnmore threads than there are requests waiting. This is obviously not optimal, sin
ethat will lead to loss of 
apa
ity in the model. Therefore, the model ensures that threadswill only be spawned for requests that are waiting for servi
e. Also observe that uponarrival of a request, the system dire
tly knows in whi
h servi
e phase the request will start.This is not unrealisti
 to assume, sin
e web servers 
an indu
e this information from theHTTP request headers.In the above set of equations, the fun
tion V is 
alled the relative value fun
tion.The relative value fun
tion V (~n,~k) has the interpretation of the asymptoti
 differen
e intotal 
osts that results from starting the pro
ess in state (~n,~k) instead of some referen
estate. The long-term average optimal a
tions are a solution of the optimality equation (inve
tor notation) g + V = TV . Another way of obtaining them is through value iteration,by re
ursively de�ning Vl+1 = TVl for arbitrary V0. For l → ∞ , the maximizing a
tions
onverge to the optimal ones (for existen
e and 
onvergen
e of solutions and optimalpoli
ies we refer to [16℄). Consequently, when V is known, we 
an restri
t our attentionto the fun
tion H to obtain the optimal a
tions.

6



3 Dynami
 thread managementIn this se
tion we fo
us on dynami
 thread management. We determine, using dynami
programming, optimal poli
ies minimizing the expe
ted response time per request. Theperforman
e of the optimal poli
ies is 
ompared to the performan
e of poli
ies that onlyserve requests based on the number of threads outstanding. A spe
i�
 example of the latter
ase is the poli
y that serves one request with only one outstanding thread until it leavesthe system, resulting in a �rst-
ome-�rst-served (FCFS) poli
y. The other extreme is thepoli
y that always serves all requests so that new threads are spawned for arriving requests.The intermediate 
ase, whi
h is 
ommonly implemented in web servers, is the poli
y thatserves requests simultaneously with a number of threads of whi
h the maximum numberis limited by some spe
i�ed number. More pre
isely, let π(k) be the poli
y that spawnsat most k threads in total su
h that the requests in queue i get priority over requests inqueue j when i ≥ j. Note that the three poli
ies mentioned earlier are represented by
π(1) , π(∞) , and π(k) for k = 2, 3, . . . , respe
tively.Exponential servi
e-time distributions are a spe
ial 
ase of phase-type distributions,namely those with one phase only. They a

urately model the servi
e times of simpleHTTP requests, e.g., a GET request for an HTML do
ument. In this 
ase, the optimalpoli
y that minimizes the expe
ted response time is to serve a

ording to poli
y π(1) ,i.e., serve one request with only one outstanding thread until it leaves the system, su
hthat the requests in queue i get priority over requests in queue j when i ≥ j. This resultalso holds when the servi
e-time distributions are repla
ed with Erlang distributions. This
lass of distributions models the situation where a web server fet
hes a web page and alsoperforms server-side s
ripting for the page.The optimal poli
y 
hanges when the servi
e-time distributions are repla
ed withhyper-exponential distributions. In this 
ase, requests waiting in queue i may overtakerequests in queue j ≥ i when a thread is opened at station i. It turns out that assigning anew thread is only optimal when overtaking a request further in the queueing network ispossible. Therefore, the optimal poli
y 
an be obtained ef�
iently by re
ursive 
omputa-tion. Note that this poli
y 
oin
ides with the optimal poli
ies for exponential and Erlangservi
e-time distributions. For these distributions there is only one servi
e phase, so thatrequests 
annot overtake ea
h other. Therefore, there is only one thread outstanding atmost.In the previous paragraphs, we have obtained intuition for optimal poli
ies for dynami
thread management. We have seen that overtaking of requests plays a key role in thede
ision to spawn threads. In the 
ase of exponential and Erlang servi
e distributions itwas not possible to overtake when spawning additional threads, and therefore the FCFSpoli
y is optimal. In the 
ase of hyper-exponential servi
e distributions, we obtained thatthe optimal a
tions at queue i depend on the state of queues j ≥ i and the de
ision rulesfor those queues. This result also holds for the general phase-type servi
e distributions.Theorem 3.1: Letϕi(~n,~k) denote the de
ision rule that des
ribes the thread-managementrule at queue i , for i = 1, . . . , N . Let ϕi be su
h that it spawns s threads for requests inphase j at queue i given state (~n,~k) , when the s phase-j requests overtake in expe
tationrequests in queue j ≥ i under de
ision rules ϕi+1, . . . , ϕN . Then poli
y π = (ϕ1, . . . , ϕN )is optimal.

7



4 Numeri
al experimentsIn the previous se
tion, we determined optimal poli
ies for general phase-type servi
edistributions. In this se
tion, we 
ompare these poli
ies with other thread-assignment rulesthat are frequently used. First, for various parameter settings, we analyti
ally show thatthe optimal poli
ies outperform the simple thread-assignment rules. Then, we 
omparethe theoreti
ally obtained improvements with those that are obtained in an experimentalsetting on an Apa
he web server.4.1 Comparison of poli
iesIn this subse
tion, we analyti
ally 
ompare the optimal poli
y, whi
h we denote by π∗ ,with 
ommonly used alternative poli
ies. For this purpose, we use a web server infrastru
-ture with N = 2 , so that overtaking 
an o

ur. Moreover, for this infrastru
ture the statespa
e is still of reasonable size so that the 
omputation of the expe
ted response times isnumeri
ally tra
table. We 
onsider the following alternative poli
ies: π(1) , π(4) , π(∞) ,and π(1,1). Note that the �rst three poli
ies follow the notation given in Se
tion 3, i.e., thepoli
y that spawns at most k = 1, 4 , and unlimited threads in total su
h that requests inqueue i get priority over requests in queue j when i ≥ j. The last poli
y, denoted by π(1,1) ,is the poli
y that spawns at most one thread at queue 1 and at most one thread at queue 2 ,independent of ea
h other. We are interested in the gain (EW (π(s))−E(π∗)
)

/EW (π∗) ,where EW (π) is the expe
ted response time under poli
y π , and π(s) is one of the alter-native poli
ies.In our s
enarios, we fo
us on exponentially and hyper-exponentially distributed servi
etimes. The 
hoi
e for these distributions ismotivated by the fa
t that they have a 
oef�
ientof variation that is equal to one and bigger than one, respe
tively. The 
oef�
ient ofvariation 
an be seen as a measure for the variation in the servi
e times, i.e., it is the ratioof the standard deviation and the mean of the servi
e times. Low (high) values of the
oef�
ient of variation 
orrespond to low (high) variability in the servi
e times. Theseservi
e distributions are ri
h and simple enough to gain insight into the stru
ture of optimalpoli
ies. The Erlang distributed servi
e times (whi
h have a 
oef�
ient of variation smallerthan one) are not 
onsidered here, be
ause the optimal poli
y for the 
ase of Erlang andexponentially distributed servi
e times are equal.In Table 1 we present the different s
enarios with the 
orresponding parameter settingsfor whi
h we have 
ompared the poli
ies. In 
ase the 
oef�
ient of variation equalsone, we only mention β
(i)
1 , sin
e there are no other phases. Moreover, the average load

ρ = λ(β1 + β2) on the system is taken to be 
onstant, ρ = 0.6. The table also presentsthe gains in expe
ted response times for the 12 different 
ases. The last line in this tablerepresents the average gain 
ompared to ea
h poli
y.Figure 2 shows the expe
ted response times for the �ve poli
ies. We 
an immediatelysee that the optimal poli
y π∗ leads to signi�
ant redu
tions in the expe
ted response time.For exponentially distributed servi
e times at both queues, the optimal poli
y is given by
π(1) , and this 
an be seen in the �gure by the two bars of equal height. However, we seethat in many 
ases of hyper-exponentially distributed servi
e times, the gain is signi�
ant
ompared to all other poli
ies.

8



case c2S1
c2S2

r
(1)
1 r

(2)
1 β

(1)
1 β

(1)
2 β

(2)
1 β

(2)
2 π(1) π(4) π(∞) π(1,1)

1 1 1 1.00 1.00 0.00% 13.82% 17.63% 16.92%

2 1 5 0.91 1.00 0.55 5.45 18.99% 5.73% 3.45% 47.38%

3 5 1 0.91 0.55 5.45 1.00 34.79% 19.77% 17.19% 53.05%

4 5 5 0.91 0.91 0.55 5.45 0.55 5.45 66.06% 23.78% 14.50% 94.96%

5 1 1 1.00 5.00 0.00% 7.12% 9.08% 10.02%

6 1 5 0.91 1.00 2.75 27.25 78.61% 14.73% 2.04% 97.35%

7 5 1 0.91 0.55 5.45 5.00 5.57% 9.93% 11.11% 14.74%

8 5 5 0.91 0.91 0.55 5.45 2.75 27.25 99.82% 26.93% 11.94% 119.78%

9 1 1 5.00 1.00 0.00% 7.12% 9.% 4.57%

10 1 5 0.91 5.00 0.55 5.45 0.00% 4.13% 5.25% 5.74%

11 5 1 0.91 2.75 27.25 1.00 98.91% 40.53% 13.64% 104.17%

12 5 5 0.91 0.91 2.75 27.25 0.55 5.45 91.26% 21.49% 7.14% 98.07%

41.17% 16.25% 10.17% 55.56%Table 1: The performan
e of poli
ies under twelve s
enarios.4.2 The Apa
he web serverIn this subse
tion we validate the theoreti
ally obtained improvements of the previousse
tion with improvements that are obtained in an experimental setting on an Apa
he webserver. For the experimental setup, we use the Apa
he HTTP server version 1.3.33 runningon a 2.8 GHz Linux platform with kernel version 2.4.31. The requests are generateda

ording to a Poisson pro
ess by a Perl s
ript that issues HTTP GET requests from aremote desktop. The requests that the s
ript makes are requests to PHP pages that drawa random number w from a pre-spe
i�ed probability distribution. This random numberis then used to generate a �le of size w megabytes, and is displayed as a web page. Afterdisplaying the web page, a se
ond PHP page is requested whi
h behaves similarly. These
ond page represents the requests at the se
ond queue that also use the same underlyingCPU, memory, and I/O hardware.The poli
ies are not implemented dire
tly in the Apa
he web server 
ode. The s
riptthat issues the requests for the web pages keeps tra
k of the requests in servi
e and doesrequest poli
ing. Thus, it maintains a list of requests that still need to be issued andimplements a queue. Therefore, the s
ript has 
omplete state information and 
an de
idewhen to issue a request for a webpagewith the right parameters, based on the givenpoli
ies.Sin
e the time the s
ript needs for de
isionmaking is neglible, we expe
t that implementingthe 
ode in the Apa
he web server does not add signi�
ant additional 
omputationaloverhead. Therefore, the results still give realisti
 indi
ations of the improvements that
an be obtained.Remark 4.1: Note that the threads are spawned by the Apa
he web server itself, and
onsequently delays due to 
ontext swit
hing between threads are taken into a

ount inthese experiments. In pra
ti
e, when the number of threads in
reases, other hardwareresour
es may be
ome a bottlene
k (e.g., memory or disk I/O). However, the optimalpoli
ies spawn only a �nite number of threads su
h that these phenomena do not o

urin our experiments. This leads to having in
reased queue sizes while the web server remainsstable. Hen
e, we advise to use admission 
ontrol based on the queue sizes su
h that thequeues remain stable.Presently, the Apa
he web server 
onsists of a Multi-Pro
essing Module (MPM) thatimplements a hybrid multi-pro
ess multi-threaded server. This module uses threads toserve requests with less system resour
es than a pro
ess-based server. The maximum totalnumber of threads that may be spawned is equal to the parameter MaxClients , whi
h isset to 150 in the standard 
on�guration. The 
on�guration �le of the Apa
he web server
9



1 2 3 4 5 6

0

5

10

15

20

25

30
π(1)

π(4)

π(∞)

π(1,1)

π∗

7 8 9 10 11 12

0

5

10

15

20

25

30

35
π(1)

π(4)

π(∞)

π(1,1)

π∗

Figure 2: Expe
ted response timesadvises to set this number high so that maximum performan
e 
an be a
hieved (thus,effe
tively implementing π(∞)). In addition, Apa
he always tries to maintain a pool ofspare or idle server threads, whi
h stands ready to serve arriving requests. In this way,requests do not need to wait for new threads to be 
reated before they 
an be served.Consequently, the assumption in our model that 
reating (killing) threads does not 
ostadditional time is justi�ed.In Table 2 the gains of using poli
y π∗ over poli
y π(1) and π(∞) are listed. We
ompare π∗ only with these two poli
ies, sin
e the results in Table 1 suggest that the bestalternative poli
y is a
hieved either under π(1) or π(∞). As mentioned in the previousparagraph, the poli
y π(∞) also 
oin
ides with the standard thread-management poli
yused by the Apa
he web server. In Figure 3 the gains of the different 
ases are 
ompared tothe theoreti
ally 
al
ulated gains. The �gure shows that the observed gains 
losely mat
hthe theoreti
al gains, so that the multi-layered queueing model 
an be used to establisheffe
tive thread management poli
ies in pra
ti
e.5 Con
lusions and further resear
hWe have 
onsidered the important problem of dynami
 thread assignment in web serverssu
h that the expe
ted response time is minimized. This problem, in the 
ontext of multi-layer queueing networks, has re
eived little attention. Consequently, the performan
e ofthread-assignment poli
ies is not well understood. We show that for phase-type servi
e-time distributions the optimal poli
y spawns a thread for a request if that request 
anovertake a request in the queueing system. This insight, when using dynami
 poli
iesthat have information on the servi
e-time distributions, leads to an ef�
ient re
ursive
omputation of the optimal poli
y. When the performan
e of this optimal poli
y is
ompared to the performan
e of poli
ies that serve requests only based on the numberof outstanding threads, it is shown that signi�
ant gains 
an be obtained. Experimentson an Apa
he web server show that the theoreti
ally predi
ted gains are also a
hieved inpra
ti
e.We mention a number of interesting avenues for further resear
h. First, for manytransa
tion-based appli
ations, the user-per
eived performan
e is not fully des
ribed bythe expe
ted response time. The variability, and inmany 
ases, even the tail probabilities of
10



case π(1) π(∞)

1 0.00% 16.01%
2 17.55% 3.41%
3 31.62% 16.03%
4 60.23% 10.42%
5 0.00% 8.78%
6 75.56% 1.13%
7 5.12% 10.91%
8 92.76% 6.47%
9 0.00% 7.98%
10 0.00% 5.12%
11 92.16% 10.61%
12 85.23% 3.82%

38.35% 8.39%Table 2: Performance gains ob-
tained on Apache web server.

 

0

20

40

60

80

100
Apache
Theory

1 2 3 4 5 6 7 8 9 10 11 12

π(1)

π(∞)Figure 3: Comparison of gains:Apa
he vs. modelthe response times, have a signi�
ant impa
t on the per
eived performan
e. Alternatively,from the perspe
tive of a servi
e provider, the model 
an be extended to deal with multiplerequest types, ea
h having its own servi
e level agreement. These extensions raise many
hallenging questions that are of pra
ti
al interest.Se
ond, in many web-based servi
es a single user transa
tion indu
es a sequen
e ofserver and database requests. These requests do not need to progress through the systemlinearly, but may be routed in a general manner through the network, so that 
ertainqueues are visited more than on
e. In this 
ase, the optimal de
ision rules may depend onthe de
ision rules of all the queues, sin
e requests that are behind a parti
ular request 
anbe routed su
h that they will be ahead the request. The insight provided by our model
an prove to be useful for deriving optimal poli
ies for this system.Finally, many web server ar
hite
tures deal with more than one shared resour
e at thehardware layer in addition to the CPU, e.g., memory, I/O, bandwidth, or more CPUs.Therefore, the highly distributed nature of today's information and 
ommuni
ation in-frastru
tures warrants resear
h for multi-layered queueing models with multiple sharedresour
es. Our model 
an serve as a basis for addressing issues related to the optimalallo
ation of hardware and software resour
es in these systems.Referen
es[1℄ van der Mei, R.D., Hariharan, R., Reeser, P.K.: Web server performan
e modeling.Tele
ommuni
ation Systems 16 (2001) 361�378[2℄ Har
hol-Balter, M., Bansal, N., S
hroeder, B.: Implementation of SRPT s
hedulingin web servers (2000)[3℄ Har
hol-Balter, M., Bansal, N., S
hroeder, B., Agrawal, M.: SRPT s
heduling forweb servers. Le
ture Notes in Computer S
ien
e 2221 (2001) 11�21
11



[4℄ Crovella, M.E., Frangioso, R., Har
hol-Balter, M.: Conne
tion s
heduling in webservers. In: Pro
eedings USENIX symposium on Internet Te
hnologies and Systems.(1999)[5℄ S
hrage, L.E.: The queue M/G/1 with the shortest remaining pro
essing time dis
i-pline. Operation resear
h 14 (1966) 670�684[6℄ Hariharan, R., Ehrli
h, W.K., Reeser, P.K., van der Mei, R.D.: Performan
e of webservers in a distributed 
omputing environment. In de Souza, J.M., da Fonse
a, N.,de Souza e Silva, E., eds.: Teletraf�
 Engineering in the Internet Era. (2001) 137�148also Pro
eedings 17th International Teletraf�
 Congress (Salvador, De
. 2001).[7℄ Rolia, J.A., Sev
ik, K.C.: The method of layers. IEEE Transa
tions on SoftwareEngineering 21 (1995) 689�699[8℄ Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The sto
hasti
 ren-dezvous network model for the performan
e of syn
hronous 
lient-server like dis-tributed software. IEEE Transa
tions on Computers 44 (1995) 20�34[9℄ Konheim, A., Meilijson, I., Melkman, A.: Pro
essor-sharing of two parallel lines.Journal of Applied Probability 18 (1981) 952�956[10℄ Cohen, J.W., Boxma, O.J.: Boundary value problems in queueing system analysis.North-Holland, Amsterdam (1983)[11℄ Fayolle, G., Iasnogorodski, R.: Two 
oupled pro
essors: the redu
tion to a Riemann-Hilbert problem. Zeits
hrift für Wars
heinli
hkeitstheorie und Verwandte Gebiete47 (1979) 325�351[12℄ van der Weij, W., van der Mei, R.D.: Stability and throughput in a two-layered net-work of multi-server queues. In: Pro
eedings 3rd international working 
onferen
eon Performan
e Modelling and Evaluation of Heterogeneous Networks, HETNETS.Number P02, Ilkley, England (2005)[13℄ S
hassberger, R.: Wartes
hlangen. Springer-Verlag (1973)[14℄ Tijms, H.C.: Sto
hasti
 Models: An Algorithmi
 Approa
h. John Wiley & Sons,Chi
hester, England (1994)[15℄ Asmussen, S., Nerman, O., Olsson, M.: Fitting phase type distributions via the EMalgorithm. S
andinavian Journal of Statisti
s 23 (1996) 419�441[16℄ Puterman, M.L.: Markov De
ision Pro
esses. John Wiley & Sons (1994)
12


