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Abstract

We study the waiting-time distributions in cyclic polling models with renewal
arrivals, general service and switch-over times, and exhaustive service at each
of the queues. The assumption of renewal arrivals prohibits an exact anal-
ysis and reduces the available analytic results to heavy-traffic asymptotics,
limiting results for large switch-over times and large numbers of queues, and
some numerical algorithms. Motivated by this, the goal of this paper is
to propose a new method for deriving simple closed-form approximations for
the complete waiting-time distributions that work well for arbitrary load val-
ues. Extensive simulation results show that the approximations are highly
accurate over a wide range of parameter settings.

Key words: Polling systems, renewal arrivals, waiting-time distribution,
approximation

1. Introduction

Polling systems are queueing systems consisting of multiple queues, at-
tended by a single server that visits the queues to serve waiting customers.
Whenever the server proceeds from one queue to another, a switch-over time
is incurred. Typically, the queues are visited in a cyclic order. Polling mod-
els occur naturally in the modelling of applications where different types of
customers compete for access to a common resource. Typical application ar-
eas of polling models are computer-communication systems, manufacturing
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systems, maintenance systems and traffic systems. We refer to [9] for an
overview of the applicability of polling models, and to [15, 17] for overviews
of the available results. In the present paper, we study cyclic polling with
exhaustive service at all queues and with renewal arrival processes.

In the literature, the vast majority of papers on polling models rely on
the assumption of Poisson arrivals, whereas for models with non-Poisson ar-
rivals hardly any exact results on the waiting-time distributions are known.
The most general results known for renewal-driven polling models are asymp-
totic results, such as heavy-traffic asymptotics [13] or asymptotics for large
switch-over times [19]. Closed-form approximations are available for the
mean waiting-time [2], but today there is no simple approximation available
for the tail probabilities of the waiting times at each of the queues. Even in
case of Poisson arrivals, generally little attention is paid to the tail proba-
bilities of the waiting-time distributions. As an exception, assuming Poisson
arrivals, Choudhury and Whitt [3] propose an efficient numerical algorithm
to calculate the moments and the tail probabilities of the waiting times based
on numerical transform inversion, for branching-type polling models [14]. For
models that violate the branching structure, more computationally intensive
algorithms exist [1, 8]. A common drawback of these numerical algorithms
is that they only give limited insight into how the waiting-time distribu-
tion reacts to changes in the system parameters. These observations raise
the need for the development of simple yet accurate approximations for the
tail probabilities of the waiting times for polling models with renewal arrivals.

Motivated by this, in this paper we propose a new method for deriving
closed-form approximations of the waiting-time distribution for arbitrary val-
ues of the load. The approach taken is that of combining known heavy-traffic
(HT) asymptotics for the waiting-time distributions [11, 13], which work well
when the system is heavily loaded, with a recently developed approximation
for the mean waiting times in [2], which works well for the whole range of
load values. This paper presents the first closed-form approximation of the
waiting-time distribution in polling systems with renewal arrivals. In this
regard, the present research is an extension of [2], which derives approximate
expressions for the mean waiting times. This approximation is shown to be
exact in the known limiting cases, and extensive experimentation with sim-
ulations shows that the approximation is highly accurate for a wide range
of parameter settings. We emphasize that the strength of this combined



approach lies in its striking simplicity and the fact that it leads to approxi-
mations in closed form, which opens up many possibilities for generalization
of the approach to other polling models (e.g., with more general branching-
type service policies, and with non-cyclic periodic server routing) and for op-
timization of the system performance with respect to the system parameters.

The remainder of this paper is organized as follows. In Section 2 we in-
troduce the model and notation. In Section 3 we present the distributional
approximation, which is the main result of this paper. In Section 4 we dis-
cuss properties of the approximation, and in Section 5, the accuracy of the
approximation is evaluated by an extensive simulation study. Finally, in Sec-
tion 6 we discuss suggestions for further research.

2. Model description and notation

Consider a polling system consisting of N > 1 queues, @1, ..., Qy, with
an infinite-sized buffer. Customers arrive at (); according to a renewal pro-
cess, with rate \; = m, where A; is the random variable describing the
interarrival times of customers at ();. The total arrival rate to the system
is denoted by A = Zf\il A;. Within a queue, customers are served on a
first-in-first-out (FIFO) basis. The service time of a type-i customer at @); is
denoted by the random variable B; with k* moment E[B¥], and its waiting
time in @Q; by the random variable W; with k" moment E[W}], k > 0. The
random variable B denotes the service time of an arbitrary customer enter-
ing the system, with E[B*] = SN, %E[BF]. Queues are served according
to an exhaustive service discipline, and as soon as (); becomes empty, the
server proceeds to ();1+1. We define a cycle at @); as the time between two
successive departures of the server from ;. The time needed by the server
to switch from Q; to Q4 is denoted by the random variable S; with k"
moment E[S¥] (k > 0). Let the random variable S = Y2V S, denote the
total switch-over time in a cycle. Throughout, it is assumed that E[S] > 0
and that all inter-arrival times, service times and switch-over times are mu-
tually independent and independent of the state of the system. The load
offered to @; is denoted by p; = ME[B;], 1 < i < N. The total load in the
system is denoted by p = Zf\il pi > 0. A necessary and sufficient condition
for the stability of the described system is p < 1 [5]. The waiting time at
Q; is defined as the time between the arrival of an arbitrary customer in the



system and the moment when he is taken into service.

Throughout, it may be convenient to scale a system such that a certain
load is achieved. This scaling is done by keeping the service time distribu-
tions fixed and varying the rates of the renewal processes. In particular, it
proves convenient to denote with Z the value of each variable z that is a
function of p evaluated at p = 1. A; then denotes the inter-arrival time of
Q; customers evaluated at p = 1. Then, scaling to a load p < 1 is done by
taking the random variable A; := A, /p.

Finally, we introduce some notation. The residual length of a random

variable X is denoted by X" with E[X"*] = I;:][E)[(;} The squared coefficient

: Yaa[ﬁ]f] is denoted by c%. We define

o2 = N Ni(Var[B] + ¢4 E[B]?) and 6 = Zj\[:l chv:jﬂ pjPk; note that in
the case of Poisson arrivals, the former can be simplified to o = E[B?]/E[B].

of variation (SCV) of a random variable X

The notation % means convergence in distribution, and 14y denotes the in-
dicator function on the event A. Finally, when a random variable X is said
to have a gamma distribution with shape parameter o and inverse scale pa-
rameter f, its density function is given by fx(z) = e " p*z* 11501 /T(w),
where I'(a) = [;~ e "2 dx.

3. Derivation of the approximation

The two key ingredients of the distributional approximation will be the
HT diffusion approximation for the waiting-time by Olsen and Van der Mei
[13], and the mean waiting-time approximation by Boon et al. [2] for a gen-
eral values of the load p < 1. The HT diffusion approximation will be refined
such that its mean concides with the mean waiting-time approximation, while
the diffusion approximation remains unchanged in the case of HT after re-
finement. The two ingredients are given first, after which the main result is
derived and presented. Although not stated explicitly, it follows naturally
from [13] that

(1—pW; S UL, pt1, (1)

where U is a uniformly distributed random variable on [0,1], and I; a gamma
distributed random variable with parameters
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Let E[WW;] denote the mean waiting-time of a type-i customer at Q;, 1 <
i < N. Then, Boon et al. [2] propose the following approximation E[W; poon|
for the mean waiting times:

(2)

Ko+ Kyip+ K ip?

E[M,Boon] - 1_ P ) (3>

where the constants Ky, K;; and K;; depend on several parameters of the
polling system at hand:

K, = E[$™],
2
N Ca, res res
Kll = pl((cz%li)éll{cg <1} +2 P) I:Z_ 11{02 >1} 1>E[Bz ] + E[B ]
Z 1 N-1 j
+ pi(E[S™] — E[S]) — E[S] > piskVar[Si),
7=0 k=0

1—pAZ (72
Ky = <— E >—K—Ki.
2, 5 (95 T ELlS] 0 — Kj,

In fact, E[W; poon| is an interpolation between a light-traffic (LT) limit
and a HT limit of the mean waiting-time; Ky and K;; stem from the LT
limit, while Ky ; is based directly on the HT limit.

Our distributional approximation will be a refinement of the HT diffusion
approximation given in (1). To this end, in the spirit of (1) we assume that
the waiting-time distribution of (); can be well approximated by a product
of a uniform random variable on [0,1] and a gamma random variable with
@ and g, divided by (1 — p). To parameterize oy, and p;,, we formulate
the following three requirements for the refinement of the approximation in

(3):
1. In HT the refined approximation must coincide with the diffusion ap-
proximation of [13], i.e.,



a — 1 and Hi

Qg Hia

— 1, when p 71 1.

2. The expectation of the refined approrimation coincides with the mean
waiting-time approximation of [2].

3. The SCV of the refined approrimating distribution matches the SCV
of the HT diffusion approzimation by [13], so that the shape of the
refined diffusion approximation matches the shape of the HT diffusion
approrimation.

These three requirements uniquely determine the parameters «;, and fq,
leading to the following approximation for the waiting-time distribution in
polling systems with renewal arrivals and p < 1:

B(Wi < a] ~ BlU Ly < (1 - p)a], (4)

where U is a uniformly distributed random variable on [0,1], and ;4 a
gamma distribution with parameters

_ 2E[S]o B 2E[S]0 + o2
Qig = O = — 5 + 1 and p;q = 2071 = DEW: gl (5)

It can be verified that the £ moment of the obtained distributional
approximation can be expressed as follows, for k > 1,

k—1 . k .
1 1 Qg +1 z Boon k E[S](S + ZO-Q
(W5 amp) (1—pFk+1 ;ill Lia k +1 H 2E[S]0 + 02’ (6)

with a, and p;, as defined above.

Note that we have tried a number of adjustments, but the one presented
in the third requirement turned out to be the most robust and intuitively
appealing (see also Remark 3). Other natural possibilities for adjustment
are, for example, matching the variance of the HT diffusion approximation



or an interpolation between the SCV in LT and HT.
We end this section with a number of remarks.

Remark 1 (Olsen’s approximation). A refined diffusion approximation
for the distribution of the waiting time in polling systems with Poisson ar-
rivals was presented by Olsen [12]. The HT diffusion approximation used in
[12] consists of a uniformly distributed random variable on [0,1] ”"times” a

E[S] >N, pilp—pi)

SN\ (Vatl B BB +1 and inverse

gamma distribution with shape parameter
(1-p) X | pilp—pi)

(1-pi) ity Xi(Var[B; | +E[B;]?)
coincide with the ones used in (1). Refinement is done using an approxima-
tion of the mean delay obtained by [6] for Poisson arrivals. Suggested by
this mean delay approximation, Olsen addNS an extra factor of p in the shape
TS Nasmrem + 1= 2o + 1 The
inverse scale parameter is changed accordingly such that the approximation
satisfies the mean delay approximation in [6]. One can verify that in case
of Poisson arrivals, the shape parameters of Olsen’s approximation and our
approximation coincide. Hence, the distributional approximation as given
in this paper generalises Olsen’s approximation to systems with renewal ar-
rivals, and the presented derivation of the main result of this paper creates
intuition and justification behind the distributional approximation of [12].

scale parameter . Note that in HT these parameters

parameter, such that it becomes

Remark 2 (Information availability). The derived waiting-time distribu-
tion approximation (4) only requires the first two moments of the interarrival,
service and switch-over time distributions as an input, whereas the complete
waiting-time distribution generally depends on their complete distributions,
even for Poisson arrivals. This makes the approximations useful for practical
purposes, because in reality information about more than the first two mo-
ments is often hard to get.

Remark 3 (Applicability). Yet another view is provided by the notion
that the derived approximation gives a procedure to estimate the complete
waiting-time distribution based on the mean waiting time and aggregate mea-
sures for imbalance § and variability o2. In this regard, it is important to
note that the mean waiting-time can easily be measured in real-life applica-
tions, in contrast to higher moments or tail probabilities.



Remark 4 (Other service disciplines). Given that the two key ingre-
dients are available for polling systems with other service disciplines, dis-
tributational waiting-time approximations can be derived for these classes of
polling systems as well using the method as described above. To illustrate
this, consider a polling model where all queues are served according to a gated
service discipline, i.e., where during a visiting period at a queue the server
will only serve the customers which arrived before the start of this period.
For this service discipline, it follows from [13] that

(1—pW, S UL, pt1, (7)

where U is uniform on [p;, 1], and where [I; is a gamma distribution with
parameters « and (1 — j;)u;, with a and p; as given in (2). As for the second
key ingredient, [2] also contains an approximation of the delay’s first moment
for the gated service discipline. This approximation still has the form of (3),
however with different values for Ky, K;; and K ;, derived in [2]. Using these
two key ingredients, one obtains for the distributional approximation

PW; < x] = PlUI 4pp < (1 — p)a], (8)

where U is uniform on [p;, 1] and where I; 4, has a gamma distribution with
parameters «, and (1 4+ p;)pia, With o, and p;, as given in (5). Note that
E[W; Boon) in the expression of p,, in this case refers to the gated version of
Boon’s approximation, derived in [2].

4. Alignment with asymptotic regimes

In [2] it is shown that the first moment of the distributional approxi-
mation is in line with several known exact results, which gives support for
the quality of the approximation. For Poisson arrivals the approximation
satisfies the well-known pseudo-conservation laws and is exact in symmetric
systems, vacation queues and general systems in LT. Moreover, the approx-
imation gives exact results for systems with general renewal arrivals in the
asymptotic regimes of HT or infinite switch-over times, as shown below. In
the present section, comparable results are shown for higher moments of the
distributional approximation.



Heavy-traffic. By construction, the distributional approximation is exact in
systems with general renewal arrivals in HT. This property is very desir-
able from a practical perspective, since the proper operation of a system is
particularly critical when the system is heavily loaded.

Large switch-over times. In case of deterministic switch-over times, the wait-
ing time is only dependent on the total switch-over time in a cycle S, rather
than the marginal switch-over times S; (cf. [7]). A strong conjecture is
presented in [19] that in this case the distribution of % tends to a uni-
form distribution on |0, 11—:%] as S — oo; for the case of Poisson arrivals, a
rigorous proof of this result was given in [10]. It turns out that the distribu-
tional approximation as presented satisfies this result. To this end, consider

the k" moment of %, k> 0 as S — oo. It can easily be verified that

Wi,Boon:I _ 17p2‘
s 1= 21-p)

Wi\ | _ 1 (1=p\* hmlﬁ[255+w?

S k+1\1—p) $sxil 256+ 02 )
_ 1 L —pi g
S k+1\1-p)

This expression exactly coincides with the finite & moment of a uni-
formly distributed random variable Y on [0, 11—__%] Thus, the & moment of

% converges to the k' moment of Y when S tends to infinity, & > 1.
Under certain conditions (which are met here), this moment-wise conver-
gence implies convergence in distribution (cf. [4], Theorem 4.5.5). Therefore,
the distributional approximation becomes exact in the case of deterministic
switch-over times that tend to infinity.

limg . EJ and hence,

lim E

S—o00

5. Simulation study

In this section, we evaluate the accuracy of the approximation of the
waiting-time distribution as presented in Section 3. First, we regard a rather
arbitrary polling system and see how well the approximated and exact den-
sity functions coincide. The “exact” density function is determined by means
of simulation. Then, we study the accuracy of the approximation in a wide
range of parameter combinations by applying the approximation to a test



bed containing 10368 polling systems and summarising the errors of stan-
dard deviation and percentile approximations. Again, the “exact” standard
deviations and percentiles are determined by means of simulation. Also in
case of Poisson arrivals, where numerical methods exist to determine the ex-
act distribution, we opt for simulation, since the determination of the exact
values using numerical methods can be very cumbersome. All simulation re-
sults presented in this section are an average taken from a variable number of
simulation runs with a length of at least 1,000,000 time units, such that the
width of the confidence interval of the average is less than 1% of the value
of the actual average.

5.1. Accuracy of the approzimated density function

We consider a symmetric polling system with five queues. The load p
equals 0.7, the SCV of the interarrival times at each queue are 0.25. All
the service times and switch-over times are exponentially distributed with
mean 1. Since there is no exact closed-form expression available for the
waiting-time distribution in this case, we compare the density function of
the approximated distribution with the simulated density function for an ar-
bitrary queue. To obtain the latter, a kernel estimation was made based on
a huge set of simulated waiting-time realisations. Both the approximated
density function and the simulated density function are depicted in Figure
1. For the interarrival times, a gamma distribution was used with shape
parameter 4 and inverse scale parameter 16.

Figure 1 shows that the shape of the exact waiting-time distribution
closely resembles the approximation, which suggests that the approximation
is useful for approximating the waiting-time distribution. The next subsec-
tion will show that the approximation works well not only in this case, but
also in a variety of other polling systems.

5.2. Accuracy of approximated percentiles and standard deviation

In this subsection we assess the accuracy of the approximation by eval-
uating errors in the approximation of the standard deviation and several
percentiles. We regard the standard deviation and several percentiles of the
approximated distribution and the exact distribution of the waiting-time of
the first queue in a large number of polling systems with exhaustive, cyclic
service. The standard deviation and percentiles of the exact distribution are

10
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Figure 1: Approximated and simulated density function of the waiting-time of an arbitrary
queue in the example in Subsection 5.1.

determined by means of simulation. We first give a general impression of the
accuracy, after which we try to explore the impact of each of the parameters
on the accuracy.

The parameter values contained in the test bed can be found in Table
1. There is no difference between the queues within a particular polling
system in terms of service times and switch-over times. All parameters are
explained above, except for the last one displayed in the table. Qs,...,Qx
take on the same amount of load each. p; denotes what amount of load is
taken on by ) relative to the other queues. For example, if the first queue
takes half, twice or five times as much load as any other, p; becomes 0.5, 2
or 5, respectively. In case of a symmetric system, p; = 1. In the test bed,
several SCV’s are regarded for several random variables. When the SCV
equals one, an exponential distribution is fitted to the mean. For other SCV
values, distributions commonly used in a two-moment fit were fitted to the
first two moments; a mixture of two Erlang distributions in case of a SCV
smaller than one and a Hs distribution (with balanced means) for a SCV
larger than one (cf. [16]).

For each polling system, the approximation error of the standard devi-

11



Notation Parameter Considered parameter values
N Number of queues {5,10,20}
p Load {0.5,0.6,0.7,0.8,0.9,0.95}
01241_ SCV interarrival times | {0.25,0.5,0.75,1,1.25,1.5,1.75, 2}
E[B;] Mean service times {1}
. SCV service times {0,1,4}
E[S;] | Mean switch-over times {0.2,1,10}
3, SCV switch-over times {0,1}
D1 Measure of asymmetry {0.5,1,2,5}

Table 1: Parameter values of the test bed used in subsection 5.2.

ation and the approximation error of the 40, 50", 60", 70!, 80, 90"
and 95"-percentiles are calculated. The errors are measured in a percentual
absolute relative way, i.e.,

ja — 5|

where a denotes the approximated value by means of the distributional ap-
proximation as presented in Section 3 and s denotes the exact value, deter-
mined by means of simulation.

Tables 2 and 3 show the errors made in approximating the standard de-
viation and in approximating the percentiles respectively in bins of 5%. This
table suggests that the approximation performs best in case of p; < 1. Re-
gardless, it is shown that the majority of the standard deviation approxima-
tions, and even more so the percentile approximation have errors lower than

5%.

To assess the impact of the system parameters on the performance of the
approximation, the mean absolute relative errors of the standard deviation
approximation and the percentile approximation are given in Tables 4 and 5,
respectively, vertically categorised in the different rates of asymmetry, hori-
zontally categorised in each of the relevant system parameters. Tables 4(a)
and 5(a) show that the distributional approximation becomes better when N
increases. The same behaviour of the approximation error in /N is present in
the approximations of [2, 12]. Tables 4(b) and 5(b) show a surprising effect
of the SCV of the service times on the performance of the approximation.

12



D1 Bins

0-5% | 5-10% | 10-15% | 15-20% | 20%+
0.5 | 69.98% | 19.68% | 5.02% | 2.28% | 3.05%
1 169.87% | 19.33% | 5.56% | 2.39% | 2.85%
2 1 67.67% | 19.98% | 6.17% | 3.20% | 2.97%
5 | 58.72% | 22.07% | 8.60% | 4.86% | 5.75%

Table 2: Mean standard deviation error of the approximation applied to the test bed,
categorised in bins of 5%.

D1 Bins

0-5% | 5-10% | 10-15% | 15-20% | 20%+

0.5 | 82.25% | 10.77% | 3.26% | 1.07% | 2.65%
1 | 82.14% | 10.98% | 3.44% | 1.03% | 2.41%

82.25% | 11.17% | 3.38% | 1.04% | 2.16%

5 | 77.63% | 13.32% | 4.76% | 2.00% | 2.29%

Table 3: Mean percentile error of the approximation applied to the test bed, categorised
in bins of 5%.

While in case of C%i = 0 the standard deviation approximation error seems
to grow with p;, the same effect does not seem to happen when c%i = 4.
Also, if ¢ = 1 or ¢ = 4, the approximation error of the standard deviation
and the approximation error of the percentiles do not seem to react in the
same way to changes in p;. Tables 4(c) and 5(c) suggest that the distribu-
tional approximation becomes better when the variance of the switch-over
times increases. Tables 4(d) and 5(d) suggest that approximations become
better as p approaches 1, i.e. as the system becomes closer to HT. This is
very plausible, since by construction the approximation is exact in HT, as
discussed in Section 4. According to Tables 4(e) and 5(e) the approximations
seem to become better as the switch-over times larger. This is in line with
the observation made in Section 4 that the approximations becomes exact
as the total switch-over time tends to infinity. Also, using (6) one can show
that the moments of the distributional approximation become less depen-
dent of 02 and § as switch-over times become smaller, which gives support to
the plausibility of the approximation becoming less reliable when the switch-
over times become relatively small. Finally, both Tables 4(f) and 5(f) show
that the approximations’ quality is dependent on the SCV of the interarrival
times, but again an interaction effect with the value of p; is observed.

13



Table 4: Mean standard deviation error categorised by the value of p; vertically and the
number of queues (a), the SCV of the service times (b), the SCV of the switch-over times
(c), the total load (d), the mean switch-over time (e), and the SCV of the interarrival

times (f) horizontally.

Table 6 shows the mean absolute relative error categorised per tested per-

P1 N 2! CB, P1 3,
5 10 20 0 1 4 0 1
0.5 (597 |4.02 | 3.17 0.5 391 |3.25]5.99 0.5 |4.49 | 4.28
1 [5.99]4.06 | 3.25 1 |4.15|3.33 | 5.81 1 4.59 | 4.27
2 1641|431 3.29 2 |4.80 | 3.64 | 5.57 2 8.80 | 4.46
5 19.08 | 5.76 | 3.77 5 16.97|5.49 | 6.15 5 6.73 | 5.68
(d) (e)
P b1 E[Sz]
0.5 0.6 | 0.7 | 0.8 | 0.9 |0.95 0.2 1 10
05| 822 |6.66|5.11 | 3.48 | 1.81 | 1.06 051|735 3371 2.44
1 | 837 | 6.77]5.12 1349 | 1.79 | 1.06 1 [7.34 353|233
2 8.82 | 7.14 | 5.42 | 3.65 | 1.87 | 1.12 2 | 7.44 1407 | 2.30
5 | 11.02 1930 | 7.36 | 5.19 | 2.75 | 1.60 5 | 8.76 | 6.79 | 3.06
(f)
P1 Ca,
0.25| 0.5 | 0.75 1 1.25 1 1.50 | 1.75 2
051411 |4.13|3.95|4.04|4.34|4.59 | 4.821 5.10
1 [4.10]4.14|4.00 | 4.06 | 4.40 | 4.67 | 4.91 | 5.18
2 418 1 4.42 | 4.28 | 4.33 | 4.67 | 4.93 | 5.18 | 5.37
5 |1 4.7715.20 | 5.28 | 6.00 | 6.48 | 6.94 | 7.30 | 7.65

centile. Generally, the 80% percentiles seem to be approximated best.

From the test-bed results we can conclude that the approximation per-
forms well over a wide range of parameter combinations. In case of extremely
variable service times, low load and negligibly small switch-over times, the
relative error becomes worse. The worst-case scenarios found in the testbed

14




p1 N 1 CB, p1 c3,

0.5]5.77 | 3.27 | 1.99 05215240 6.48 D | 3.87 | 3.49

0
1 |5.4513.23|2.05 1 1228[22716.19] |1 |3.77|3.39
5.10 | 3.18 | 2.02 2 12441231556 | |2 |3.58]329
5 | 5.87]3.50 215 5 1335/3.03|514| |5 |4.14|3.54
(d) (e)
2 p 2 E[Si]
05 ] 067 077087097095 02 1 [ 10

051599 | 579|446 | 289|137 |0.79 0.5 ] 750 (219|134
1 [ 586|565 |4.28 275|130 0.79 1 1698|231 |1.45
2 1567544 |4.05]256|1.22|0.75 2 1643|242 | 1.46
5 [6.14 | 586 | 4.60 | 3.10 | 1.55 | 0.91 5 [6.14]3.64|1.74

D1 Ca;

025] 05 |07 1 |125| 15 |17 | 2

0.5 420|359 (325|331 |348]|3.65]|3.86 | 4.09
1 397|341 |3.14|329|3.44|3.61|3.78]| 397

3.53 | 3.13 | 3.04 | 3.30 | 3.45 | 3.56 | 3.67 | 3.80

S5 | 3.15]3.26 | 3.52 | 3.80 | 4.00 | 4.18 | 4.32 | 4.50

Table 5: Mean percentile error categorised by the value of p; vertically and the number
of queues (a), the SCV of the service times (b), the SCV of the switch-over times (c), the
total load (d), the mean switch-over time (e), and the SCV of the interarrival times (f)
horizontally.

in terms of absolute relative error are approximations of the 50" percentile
in systems with N =5, p = 0.5, ¢ = 4 and E[S;] = 0.2 having errors with
an order of magnitude of 100%. However, in practice these characteristics
are uncommon. For example, in production systems settings like CQBZ, =4
are hardly found due to the just-in-time philosophy, which dictates to reduce
variability in e.g. service times in order to reduce in-process inventory. Also,
these systems are typically utilized beyond p = 0.5 to increase productivity,
and switch-over periods are commonly longer than service periods. More-
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D1 Percentile

40th 50th 60th 70th 80th 90th 95th

0.5]5.90 | 5.23 | 415 | 2.88 | 1.72 | 2.29 | 3.57
1 |5.7315.00 (393|271 |1.67]|237| 3.63
2 5421|459 |3.60 | 250167249 |3.78
5 | 6.29 | 4.87|3.40 | 2.11 | 1.88 | 3.42 | 4.92

Table 6: Mean absolute relative errors categorised in the several percentiles.

over, in case of a low load and small switch-over times, although the relative
error of the percentile approximations can be high, the absolute errors may
still be rather small when compared to the order of longitude of service time
durations. Therefore, the sojourn time distribution is already much better
approximated in these situations.

6. Further research

The present paper gives birth to a variety of directions for further re-
search. Firstly, the distributional approximation for cyclic systems with
exhaustive service may be generalised to models with branching-type ser-
vice policies [14], non-cyclic periodic server routing [13] and other model
variations. Secondly, the simple closed-form expression may act as a ba-
sis for design decisions within polling systems. Finally, one could attempt
to improve the approximation by deriving an interpolation approximation
for higher moments of the waiting-time and, subsequently, fit a phase-type
distribution. Such an extension would be of particular interest if one has
more information than the first two moments of the interarrival, service and
switch-over time distributions (see also Remark 2). However, this would im-
pel one to considerably extend the analysis of [2], while potentially losing the
simple form of the current distributional approximation.
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